
Published as a conference paper at ICLR 2024

INVARIANCE-BASED LEARNING OF LATENT DYNAMICS

Kai Lagemann*

Statistics and Machine Learning, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
kai.lagemann@dzne.de

Christian Lagemann*

Department of Mechanical Engineering, University of Washington, Seattle, USA

Sach Mukherjee
Statistics and Machine Learning, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
sach.mukherjee@dzne.de

ABSTRACT

We propose a new model class aimed at predicting dynamical trajectories from high-
dimensional empirical data. This is done by combining variational autoencoders
and (spatio-)temporal transformers within a framework designed to enforce certain
scientifically-motivated invariances. The models allow inference of system behav-
ior at any continuous time and generalization well beyond the data distributions
seen during training. Furthermore, the models do not require an explicit neural
ODE formulation, making them efficient and highly scalable in practice. We study
behavior through simple theoretical analyses and extensive empirical experiments.
The latter investigate the ability to predict the trajectories of complicated systems
based on finite data and show that the proposed approaches can outperform existing
neural-dynamical models. We study also more general inductive bias in the context
of transfer to data obtained under entirely novel system interventions. Overall, our
results provide a new framework for efficiently learning complicated dynamics in a
data-driven manner, with potential applications in a wide range of fields including
physics, biology, and engineering.

1 INTRODUCTION

Dynamical models are central to our ability to understand and predict natural and engineered systems.
A key question in studying dynamical systems is predicting future behavior. Real-world systems
often show time-varying behavior that is much too complex for straightforward statistical forecasting
or extrapolation approaches. This is due to the fact that the temporal behavior, while potentially
explained by an underlying dynamical model, can show strong, possibly abrupt changes in the
observation/data space, precluding effective modeling via traditional curve-fitting or extrapolation.
Furthermore, different instances or realizations of a single scientific/engineering system (e.g. with
different initial conditions or constants) can show large differences in terms of data distributions,
hence going beyond standard in-distribution assumptions of traditional data-fitting approaches.

Against this background, in recent years a wide range of sophisticated dynamical machine learning
approaches have been proposed, including in particular neural ordinary differential equations Chen
et al. (2018) and a wider class of related models (see for example Zhi et al. (2022); Finlay et al. (2020);
Duong and Atanasov (2021); Choi et al. (2022); Chen et al. (2021); Kim et al. (2021b)). Broadly
speaking, these models go beyond simple curve-fitting/extrapolation schemes by leveraging suitable
inductive biases to allow learning of latent dynamical models. There has been rapid progress in this
area but key challenges remain for complicated real-world systems, due to multiple factors, including
data limitations, generalization to unseen settings, irregular time sampling and issues relating to
long-horizon trajectories (Iakovlev et al., 2023).

*These authors contributed equally to this work.

1

Published as a conference paper at ICLR 2024

…

Query

Time

Latent Dynamics

Learning

…

Multiple Shooting

Augmentation

Spatio-temporal

Transformation R
e

p
re

se
n

ta
ti
o

n
 L

e
a

rn
in

g

Decoding

Input

Trajectory

Output

Trajectory

…

…

…

: observation

Q

K

V

C
N

N

Temporal

Attention

Transformer

Tokens

Representation

Encoder

: used tokens

: unused tokens

𝜓𝑟

R
e

p
re

se
n

ta
ti
o

n

A
g

g
re

g
a

ti
o

n

𝜇

𝜎

: likelihood

: latent sample

𝑙𝑒𝑚𝑏

Embedding Network

V
a

ri
a

ti
o

n
a

lE
m

b
e

d
d

in
g

Query Time 𝑡

NN𝜓𝑟

𝑧𝑡

Latent Trajectories 𝑧

Dynamics

Network
: Smoothness Loss

C
N

N

Decoder

𝑧

…

Figure 1: Architecture: Learning of Latent Dynamics via Invariant Decomposition (LaDID). A
set of high-dimensional snapshots on a regular or irregular time-grid serves as the input to LaDID.
The trajectory is split into subpatches using Multiple Shooting Augmentation (i). The first time-
points of each subpatch are used to compute a subtrajectory representation: features of the selected
snapshots are re-weighted w.r.t. time and spatial location (ii), transformed to a low-dimensional
embedding (iii), and aggregated into one trajectory representation ψr (iv). During inference, the latent
dynamical model is conditioned on the representation ψr. Prediction is possible at any continuous
time by querying the latent state of any time point (v). Latent subtrajectories are sewn together by a
smoothness loss. Finally, the entire latent trajectory is decoded to the observation space (vi).

Motivated by these challenges, we propose a new framework, called “Latent Dynamics via Invariant
Decomposition” or LaDID, for learning latent dynamics from empirical data. LaDID leverages
certain scientifically-motivated invariances to permit efficient learning and effective generalization. In
numerous real-world dynamical systems, longitudinal trajectories may exhibit significant variability,
e.g. due to differences in initial conditions or model constants. Each temporal trajectory, which
we refer to as a “realization”, represents a particular manifestation of the system’s dynamics under
certain conditions. A key notion underpinning LaDID is that, even when temporal trajectories from a
class of scientific systems appear diverse, they can still be effectively explained by an appropriate,
in a sense “universal", model; such a model is therefore realization-invariant. To facilitate broad
generalization, LaDID introduces factors specific to each realization as inputs to its universal model.
These factors are hence realization-specific and play the role of (implicitly) encoding aspects such as
the initial states of the system or specific model constants. A transformer-based architecture is used to
learn all model aspects from data, including both realization-specific (RS) and realization-invariant
(RI) information. At inference-time LaDID can output predictions for any continuous time. Due
to the universal nature of the RI model, LaDID can effectively handle substantial variations in
system behavior and data distributions (e.g. due to changes in initial conditions or system constants).
We empirically validate LaDID on various spatio-temporal systems with dynamics on regular and
irregular time grids governed by ordinary or partial differential equations. The LaDID architecture is
fast and easy to train and, as we show, substantially outperforms existing neural-dynamical models
over a range of challenging tasks. Thus, our main contributions are:

• We present a novel framework, and associated transformer-based network, for the separation
of realization-specific information and (realization-invariant) latent dynamical systems.

• We systematically study performance on short- and longer-horizon prediction of a wide
range of complex temporal and spatio-temporal problems, comparing against a range of
state-of-the-art neural-dynamical baselines.

• We study the challenging case of transfer to data obtained under entirely novel system
interventions via a few-shot learning (FSL) approach.

2

Published as a conference paper at ICLR 2024

2 RELATED WORK

Flexible neural models have been exploited to learn dynamical models, with connections drawn
between deep architectures and numerical solvers for ODEs, PDEs and SDEs (Chen et al., 2018;
Weinan, 2017; Lu et al., 2018; Ruthotto and Haber, 2020; Haber and Ruthotto, 2017; Richter-Powell
et al., 2022). Algorithms rooted in neural differential equations (NODEs) have been shown to offer
benefits relative to standard recurrent neural networks (RNNs) and their variants. However, since
NODEs directly relate to the problem formulation of standard ODEs, they inherit some associated
limitations. Specifically, the temporal dynamics only depend on the current state but not on the
history putting a limit on the complexity of the trajectories that NODEs can model (Holt et al., 2022).

Improvements have been proposed that augment the latent state space to broaden the range of
dynamical systems that can be learned (Dupont et al., 2019) while Rubanova et al. (2019) suggested a
combination with an autoregressive RNN updated at irregularly sampled time points. Complementary
work has proposed neural controlled differential equations, a mechanism to adjust the trajectory
based on subsequent observation (Kidger et al., 2020; Morrill et al., 2021). Massaroli et al. (2021)
transferred the concept of multiple shooting to solve differential equations to the conceptual space of
NODEs and Iakovlev et al. (2023) extended this concept to sparse Bayesian multiple shooting, with
both works evaluating latent NODEs. However, for certain types of dynamics numerical instability
poses challenges for NODEs (and their variants) (Li et al., 2020). This is due to the fact that NODEs
rely on numerical ODE solvers to predict the latent trajectory (forward pass) and this becomes
unstable with longer time horizons (Iakovlev et al., 2023). In contrast, by exploiting RS and RI
invariances our model eschews explicit neural ODEs altogether, providing an arguably simpler and
faster transformer-based scheme that can be trained in a straightforward fashion, as we detail below.

The idea of leveraging invariances is a core notion in scientific modeling and is seen throughout the
natural sciences at a conceptual and practical level. For instance, in the field of AI, it has been utilized
in the context of video frame prediction as demonstrated by various studies (van der Wilk et al.,
2018; Franceschi et al., 2020; Kabra et al., 2021). LaDID differs from these approaches because
it uses invariances to model a kind of generalized initial condition (motivated by scientific uses of
dynamical models; see below) and because it learns continuous latent trajectories (as opposed to an
autoregressive model), including in the irregular time-sampling case. See Section A of the Appendix
for further details on related work.

3 PROBLEM STATEMENT AND CONCEPTUAL OUTLINE

We start with a high-level problem statement and outline the motivating concepts behind LaDID,
deferring a detailed description of the architecture itself to subsequent Sections. We focus on settings
in which we have (finite) observations of a system of interest at time points t ∈ T (potentially
irregularly spaced). We do not require any specific prior information on the underlying model; rather
our approach is data-driven, informed by certain very general invariances as detailed below.

For an instance/realization r of a dynamical system of interest let Xr ∈ RT×C×H×W denote a
high-dimensional trajectory in the observation space; T denotes the number of time steps (possibly
irregular), and C, H , and W respectively the number of channels, frame height and frame width (in
empirical examples we focus on image-like data inputs) of the observations. Let X=(Xr)r∈R denote
the collection of available training trajectories; the notation emphasizes the possibility that available
data spans multiple instances/realizations. Given these initial data, LaDID seeks to predict future
observations xrt for any continuous time t and for any realization r.

From invariances to a simple learning framework. We start by studying a basic, conceptual
set-up that sheds light on how our assumptions lead to a simple, but very general, learning framework.
Intuitively, we demonstrate that while we cannot guarantee recovery of the true underlying model
parameters, under mild invariance assumptions, there exists a function capable of reconstructing the
true observations, even when dealing with potentially highly heterogeneous parameters and data.
Importantly, we do not make any prior assumptions about the nature of these potentially complex
and nonlinear functions. Instead, our learning framework simultaneously uncovers and refines these
functions in a data-driven, end-to-end manner, as elaborated in Section 4.

Consider an entirely general system f in which some aspects are realization-specific (RS) while
others are realization-invariant (RI); the latter model aspects are general to all instances/realizations
of the model, while the former are not. We assume also that the RS aspects are the same for all

3

Published as a conference paper at ICLR 2024

times; i.e. these are time-invariant. Our model is not specific to physical ODE-like models, but
rather generalizes invariances to permit flexible learning in a wide range of settings. To fix ideas, it is
nevertheless useful to consider the specific example of a physical model class described by ODEs.
For this latter setting, the model itself would be RI, while the initial conditions or system constants
could be thought of as RS. As a result, the same model class can describe a wide range of actual
systems which share an underlying scientific basis while differing (perhaps strongly) in details.

Let xrt=f(t; Θr) denote the fully general model. Here, Θr is the complete parameter set needed
to specify the time-evolution;, including both RS and RI parts. To make the separation clear,
we write the two parts separately as xrt=f(t; θr, θ), where θr, θ are respectively the RS and RI
parameters and r indexes the realization. Suppose θ̂r is a candidate encoding of the RS information.
We now assume that the encoding, while possibly incorrect (i.e. such that θ̂r ̸=θr) satisfies the
property ∃m, ∃θm : θr=m(θ̂r; θ, θm), where m is a function that “corrects” θ̂r to give the correct
RS parameter. This essentially demands that while the encoding θ̂r might be very different from the
true value (and may even diverge from it in a complicated way that depends on unknown system
parameters), there exists an RI transformation that recovers the true RS parameter from it, and in
this sense the encoding contains all RS information. We call this the sufficient encoding assumption
(SEA). In the context of dynamics involving latent variables z∈Rq again consider a model with RS
and RI parts but at the level of the latents, i.e. zrt=f(t; θr, θ). Assume the observables are given
by (an unknown) function g of the hidden state z. Then, as shown in the Appendix B, assumptions
similar in spirit to SEA above imply existence of a mapping function that allows arbitrary queries to
in principle be predicted via a straightforward learning scheme. In brief, these assumptions* require
that we have access to an approximation ĝ of the observation process that while possibly very far
away from the true function, can nonetheless be “corrected” in a specific way (see Appendix B for
details). We emphasize that as for SEA, it is not required that we have a good approximation in the
usual sense of being close to the true function g, only that there exists a correction of a certain form.
Importantly, at no point do we actually require prior knowledge of the underlying dynamical system,
its true latent variables nor any system constants or initial conditions; rather, the assumptions imply
existence of mapping functions that can be learned from data, even when the underlying model is
entirely unknown at the outset.

Analogy to traditional ODE formulations. To facilitate a more intuitive understanding of our
framework, we discuss further analogies to standard ODE problems. Typical ODE solvers comprise a
formulated ODE function and some initial values (IVs) which are evolved over time using well-known
integration methods, e.g, Euler, Runge-Kutta, or DOPRI schemes. From a high-level perspective,
the IVs relate to our RS representation while the ODE functions and its corresponding integration
approach is our RI part. However, please note that this analogy only holds on a superficial level due
to two fundamental differences: First, LaDID relies only on observations of a specific system, for
which underlying state variables required to apply standard ODE solvers are not known (and in fact
not observed). Hence, our RS representation benefits from access to a collection of high-dimensional
observations. Second, our RI function is continuous in time and therefore unites temporal integration
and dynamics function on an abstract level. To do so, we condition our RI model on specific RS
representations and only query time points from it to obtain a discretized latent trajectory.

4 METHODS

Based on these initial arguments, we now put forward a specific architecture to allow learning
in practice. At a high level, the architecture implements the general mapping approach outlined
above (further details in the Appendix), learning, in a data-driven manner, both RS and RI model
components and putting these together to allow prediction at any continuous time in a query realization.
Implementation details and a full ELBO derivation can be found in Section C - F of the Appendix.

4.1 MODEL, INFERENCE AND PREDICTION
Model. The LaDID architecture* is composed of three main components: the encoder fϕenc

, the
invariant dynamical system fϕdyn

, and the decoder fϕdec
, respectively governed by parameters ϕenc,

ϕdyn, and ϕdec. The encoder is a collection of three NNs: a CNN processing spatial information in

*Called the sufficient mapping assumption (SMA) and realization-specific SMA (RS-SMA) for the cases in
which the latent-to-observed mapping is itself RI or RS respectively; see Appendix for details.

*A reference implementation is available under https://github.com/kl844477/LaDID.

4

https://github.com/kl844477/LaDID

Published as a conference paper at ICLR 2024

the observation space, a transformer utilizing temporal attention and a learnable mapping function.
Since we want to predict future observations based on a few observations, we only use the first K
datapoints in time and process these in a shared convolutional encoder (green trapezoid in Figure 1
(ii)). We employ a shallow CNN that compresses the input to 1/16 of the initial input size using four
ReLU activated and batch-normalized convolutional layers. The resulting tensors are then flattened
and mapped linearly to a single vector. Next, we use a transformer on the K output vectors of the
convolutional encoder, applying temporal attention to reweigh vectors. We tested two approaches
(Bulat et al., 2021; Iakovlev et al., 2023) with comparable performance which are discussed in the
Appendix in more detail. For each of the k ∈ K time aware representations ρTAk , we sample a
latent embedding using the reparameterization trick, i.e. lembk ∼ N (fµ(ρ

TA
k), fσ(ρ

TA
k)). The final

trajectory representation ψr is the output of an aggregation over all K tokens. In our implementation,
we choose a simple yet effective mean-aggregation which can be changed based on the task at hand.
The second important part of our proposed framework is the dynamical model fϕdyn

. We utilized
a three layer MLP which can also be interchanged by other functions. To obtain a latent trajectory,
we condition the latent dynamical model on our end-to-end learned trajectory representation ψr
and roll-out the latent trajectory z based on the queried time points tq represented through a time
encoding which we choose as a set of different sine and cosine waves with different wave length.
Finally, we map all data points of our latent trajectory back to the original observation space. Our
decoder module fϕdec

is kept very simple consisting of four deconvolutional layers.

The key novelty of our approach lies in the unique structure of the latent space mimicking the interplay
of realization-specific information and a realization-invariant dynamical model similar to the frame
of differential equations. However, we can significantly reduce computational costs as we are not
forced to solve explicitly any differential equation since we rely on an effective end-to-end learning
scheme.

Generative model, inference and optimization. We now turn the descriptive technical context of
our method to a probabilistic model. Our graphical model (see Figure A1 in the Appendix) consists
of trainable parameters Φ = ϕenc ∪ ϕdyn ∪ ϕdec, a random variable ψr which additionally acts as
global random variable at the level of latent states ztq and observations xtq . The index tq refers to a
specific queried time point within a trajectory. The joint distribution is given by

p(x, z, ψr) = p(x, z|ψr)p(ψr) = p(x|z)p(z|ψr)p(ψr). (1)

Our graphical model assumes these independencies: (i) The dataset contains i.i.d. trajec-
tories of varying length. (ii) The observation of trajectory xrtq at time tq is conditionally
independent of xrtq−1

at time tq−1, given latent states zrtq and trajectory representation ψr:
p(xtq |ztq , ψr) ⊥⊥ p(xtq−1

|ztq−1
, ψr). Analyzing data with this graphical model involves computing

posterior distributions of hidden variables given observations

p(z, ψr|x) = p(x, z, ψr)∫
p(x|z)p(z|ψr)p(ψr)dzdψr

. (2)

To effectively process long-horizon time series data, we apply a variant of multiple shooting. However,
since our model does not rely on an explicit ODE formulation, we are not concerned with turning an
initial value problem into a boundary value problem (Massaroli et al., 2021). Instead, we incorporate
a Bayesian continuity prior (Hegde et al., 2022; Iakovlev et al., 2023) to extend the multiple-shooting
framework from deterministic neural ODEs to a probabilistic context. Our approach dissects each
realization xrt:T into a series of N overlapping subtrajectories and independently condenses each
patch into a latent representation. Within this Bayesian multiple shooting framework, the smoothness
prior connects the patches via

p(z|ψr) =
N∏
i=1

p(zn|ψrn)p(zn|zn−1, ψ
r
n−1) (3)

to form a cohesive global trajectory. We leverage the independence of trajectory representations in
subpatches i.e. p(zi|ψri) ⊥⊥ p(zj |ψrj). For the continuity prior, we follow Hegde et al. (2022) and
place a Gaussian prior on the error between consecutive subtrajectories, i.e. ∆ ∼ N (0, σ∆) entailing
exact overlapping if ∆ → 0. This yields our continuity prior

p(zn|zn−1, ψ
r
n−1) = N ((zt1n |z−tn−1, ψ

r
n−1), σ∆), (4)

5

Published as a conference paper at ICLR 2024

Figure 2: Training scheme with losses, and test/evaluation procedure. Top left: Multiple Shooting
Multi-length Training. An input trajectory is split into subpatches. Subtrajectory length is increased
in multiple phases. Bottom left: Testing: only the first few points are used to roll-out the latent
trajectory and transformed to the observational space. Evaluation: Last T samples of the predicted
trajectory are used to compute the evaluation metrics, the average of the summed normalized mean
squared error and a time history diagram showing the error evolution. Right: Loss consisting of three
parts: negative log likelihood loss to penalize reconstruction errors , representation loss to define a
gradient field between representations, smoothness loss to penalize jumps between latent subpatches.

where the time index −t refers to the last time point of a subpatch. The prior trajectory representation
is set to a Gaussian, i.e. p(ψr) ∼ N (0, 1). With the priors introduced above, we get the following
generative model (we drop the subpatch index n for improved readability):

p(lembK |x) = N (fϕenc,µ(xK), fϕenc,σ(xK)) (5)

p(ψr|x) = fagg(l
emb
K) (6)

p(z|ψr, x) = fϕdyn
(ψr, tq) (7)

p(x|z) = N (fϕdec
(z), σdec) (8)

For inference, we use Gaussian approximations and set σdec = 10−2. We then seek to minimize the
KL divergence KL[q(z, ψr)||p(z, ψr|x)], essentially equivalent to maximizing the ELBO in eq. 9. A
full derivation of this ELBO can be found in Section C of the Appendix.

maxEq(z,ψr)

N∑
n=1

ln pn(x̂n)︸ ︷︷ ︸
(i) likelihood

−
N∑
n=1

KL(q(ψrn)||p(ψrn|xn))︸ ︷︷ ︸
(ii) representation prior

−
N∑
n=2

Eq(z,ψr)KL(q(zn)||p(zn|zn−1, ψ
r
n))︸ ︷︷ ︸

(iii) smoothness prior

(9)

5 EXPERIMENTAL SET-UP
Experiments are structured into four different series that shed light on the performance of LaDID. We
provide a short overview of the experimental set-up in the following. Further details can be found in
Section J in the Appendix.

Datasets. We consider a wide range of physical systems ranging from relatively simple ODE-
based datasets to complex turbulence-driven fluid flows. Specifically, we consider high-dimensional
observations (p=16, 384) from: a nonlinear swinging pendulum; a swinging double pendulum;
realistic simulations of the two-dimensional wave equation; a lambda-omega reaction-diffusion
system; the two-dimensional incompressible Navier-Stokes equations; and the fluid flow around
a blunt body solved via the latticed Boltzmann equations. This extensive range sheds light on
performance on complex datasets relevant to real-world use-cases, including models frequently used
in the literature on dynamical modeling. Regular and irregular time grids are included. We study also
the challenging problem of making predictions in a completely novel setting obtained by intervention
on the system. This is similar in spirit to experiments seen in causal AI and in this case involves
generating small datasets on intervened dynamical systems (either via modifying the underlying
systems, for example by changing the gravitational constant or the mass of a pendulum, or via
augmenting the realization-specific observation, e.g. by changing the length of a pendulum or the

6

Published as a conference paper at ICLR 2024

location of a simulated cylinder) and fine-tuning a pre-trained model on a fraction of the data in the
target setting. We direct the interested reader to Appendix I for further details.
Training. Training is carried out in a multi-phase schedule w.r.t. the multiple shooting loss in eq. 9.
In the different phases, we split the input trajectory into overlapping patches and start learning by
predicting one step ahead. We double the number of prediction steps per patch every 3000 epochs
meaning that learning is done on longer patches with decreased number of patches per trajectory
(where trajectory length is not divisible by number of steps, we omit the last patch and scale the
loss accordingly). In the final phase, training is carried out on the entire trajectory. All network
architectures are implemented in the open source framework PyTorch (Paszke et al., 2019). Further
training details and hyperparameters can be found in Appendix F.
Testing. We test the trained models on entirely unseen trajectories. During testing, the first k=10
trajectory points are provided to the trained model. Based on these samples, an RS representation ψr
is computed and used to roll out the trajectory to the time points of interest. Finally, predictions and
ground truth observations are compared using the evaluation metrics below.
Evaluation metrics. We consider mean squared error (MSE) over trajectories: inference runs over 2T
steps with MSE computed over the last T timesteps, allowing assessment for relatively distant times
(relative to the reconstruction MSE). We set T = 60 for all experiments, with MSE normalized w.r.t.
average (true) intensity, as recommended in Zhong et al. (2021); Botev et al. (2021). Additionally,
we provide time history diagrams plotting root mean square error (RMSE) against normalized time
(mapping the interval [T, 2T] to the unit interval). Metrics are averaged across all test trajectories
and five runs, with mean and 75% inter-quantile ranges (IQR) reported. Subsampled predictions
and pixelwise L2 error of one (randomly chosen) trajectory is shown for visual inspection; we
acknowledge that these cannot always be representative and should be considered alongside formal
metrics. See Figure 2 for intuition on the train/test procedure and metrics.
Comparisons. We compare our approach to recent models from the literature, including ODE-RNN
(Rubanova et al., 2019), NDP (Norcliffe et al., 2021), ODE2VAE (Yildiz et al., 2019), and MSVI
(Iakovlev et al., 2023). In common with LaDID, these models feature encode-simulate-decode
structures and seek to learn low-dimensional latent dynamics. ODE2VAE simulates latent trajectories
in a straightforward fashion using a BNN to model the underlying dynamics. In contrast, ODE-RNN,
NDP and MSVI leverage neural ODE solvers to integrate latent states forward in time. Further details
regarding these baselines can be found in Section G of the Appendix.

6 RESULTS

First, we examined performance on synthetic data for which the training and test data come from
the same dynamical system. This body of experiments test whether the model can learn to map
from a finite, empirical dataset to an effective latent dynamical model. Second, we examine few-
shot generalization to data obtained from systems subject to nontrivial intervention (and in that
sense strongly out-of-distribution). In particular, we train our model on a set of trajectories under
interventions, i.e. interventions upon the mass or length of the pendulum, changes to the Reynolds
number, or variations to the camera view on the observed system, and apply the learned inductive
bias to new and unseen interventional regimes in a few-shot learning setting. This tests the hypothesis
that the inductive bias of our learned latent dynamical models can be a useful proxy for dynamical
systems exposed to a number of interventions.

6.1 BENCHMARK COMPARISONS TO STATE-OF-THE-ART MODELS FOR ODE AND PDE
PROBLEMS

We begin by investigating whether LaDID can learn latent dynamical models in the conventional
case in which the training and test data come from the same system. We evaluate the performance of
ODE-RNN, ODE2VAE, NODEP, MSVI and LaDID on the data described in Section 5 and Section I
of the Appendix with increasing order of difficulty, starting with the non-linear mechanical swing
systems with underlying ODEs, before moving to non-linear cases based on PDEs (reaction-diffusion
system, 2D wave equation, von Kármán vortex street at the transition from laminar to turbulent flows,
and Naiver-Stokes equations). Due to limited space, we only present results for a subset of performed
experiments but refer the interested reader to Appendix K for a detailed presentation of all results.

Applications to ODE-based systems. For visual inspection and intuition, Figure 4 provides predicted
observations x̂rt of a few time points of one test trajectory of the single pendulum dataset for all tested
algorithms, followed by the ground truth trajectory and the pixelwise L2-error. In addition, Figure 3

7

Published as a conference paper at ICLR 2024

presents the normalized MSE over entire trajectories averaged across the entire test dataset and the
evolution of the RMSE over time for the second half of the predicted observations averaged over all
test trajectories (see Section 5) is provided in the Appendix. Across all ODE-based datasets LaDID
achieves the lowest normalized MSE. The time history diagram (see Figure K.1 in the Appendix)
reveals gains using LaDID for long-horizon predictions relative to all other algorithms tested.

models
0

10

20

30

no
rm

al
ize

d
M

SE ODE-RNN
NDP
ODE2VAE
MSVI
Ours

Figure 3: Test errors - Normalized MSE

This can also seen by visual inspection in Fig-
ure 4 as for other approaches the predicted states
at later time points deviate from the ground truth
trajectory substantially while LaDID’s predic-
tions essentially follow the ground truth. Con-
sidering only the baselines, one can observe that
MSVI (a sophisticated, recently proposed ap-
proach), predicts accurately within a short-term
horizon but nonetheless fails on long-horizon
predictions. The results for the challenging double pendulum test case can be found in the Appendix.

Figure 4: Left: predicted test trajectory at various timesteps t, right: corresponding pixelwise error.

Applications to PDE-based processes. We additionally evaluated all baselines and our proposed
method on PDE-based processes. Due to space restrictions, we focus our analysis on the flow
evolution characterized by the Navier-Stokes equation in the two dimensional case, which is of great
importance in many engineering tasks, e.g. the

models
0.0
0.2
0.4
0.6
0.8
1.0

no
rm

al
ize

d
M

SE (2.19) (1.56) ODE-RNN
NDP
ODE2VAE
MSVI
Ours

Figure 5: Test error - Normalized MSE

analysis of internal air flow in a combustion en-
gine (Lagemann et al., 2022), drag reduction
concepts in the transportation and energy sector
(Gowree et al., 2018; Lagemann et al., 2023a;
Mäteling et al., 2023), and many more. Re-
sults in Figure 5 show that LaDID clearly out-
performs all considered comparators. The nor-
malized MSE is the lowest and the averaged
RMSE is also the lowest at any time. This is echoed in the other experiments whose results are
presented in detail in Section K in the Appendix.

Overall, these results support the notion that LaDID achieves good performance for challenging ODE
and PDE based systems. We direct the interested reader to Section K for the complete collection of
experimental results supporting this statement. In this context, Table H.2 of the Appendix highlights
the massively reduced computational ressources required during training and inference since LaDID
eschews an explicit neural ODE formulation (including the costly ODE solvers), making it efficient
and highly scalable in practice.
Performance on regular and irregular time grids. Here, we study the performance of LaDID on
regular and irregular time grids and compare it to other neural-dynamical models (which are able
to deal with irregular time series data). As shown in Figure L.1 and Figure L.2 in the Appendix,
the proposed LaDID performs very similarly on both types of the time grids relative to both ODE-
based benchmark examples and challenging PDE-based real-world systems, outperforming existing
methods demonstrating strong and robust performance on irregularly sampled data.
Effects of relevant network modules. LaDID leverages three key features: a reconstruction
embedding, a spatio-temporal attention module and a specifically designed loss heuristic to learn
temporal dynamics from empirical data. We investigated the importance of these modules (results
appear in the Section N of the Appendix). First, we compared LaDID with ablated counterparts, e.g.

8

Published as a conference paper at ICLR 2024

a pure reconstruction loss and loss combinations either using the representation or smoothness loss.
Overall, the proposed loss heuristic appears to stabilize training and yields the lowest MSE and IQR
values. Second, we compared LaDID to counterparts trained on ablated attention modules. Empirical
results underline the utility of the applied spatio-temporal attention. Finally, Table N.3 further shows
the usefulness of the representation-specific encoding. This representation encoding can be thought
of a learning-enhanced initial value stabilizing the temporal evolution of latent trajectory dynamics.
Moreover we study the effect of restricted training trajectories on the performance of LaDID in
Section K.7 of the Appendix to better understand efficiency under limited data.

6.2 GENERALIZING TO NOVEL SYSTEMS VIA FEW-SHOT LEARNING

Here, we assess LaDID’s ability to generalize to a novel system obtained by nontrivial intervention on
the system coefficients themselves (e.g., mass, length, Reynolds number). Such changes can induce
large changes to data distributions and can be viewed through a causal lens (see also Appendix O). In
particular, we train a dynamical model on a set of interventions and fine-tune it to new intervention
regimes with only a few samples, finally evaluating performance on an entirely unseen dataset. We
compare the performance of our prior-based few-shot learning model with a model trained solely on
the fine-tuning dataset (“scratch-trained” model). In our first experiment, we use the single pendulum
dataset and test the transferability hypothesis on fine-tuning datasets of varying sizes. The results
show that the prior-based model outperforms the scratch-trained model at all fine-tuning dataset sizes,
and achieves comparable performance to the model trained on the full dataset with a fine-tuning
dataset size of 32%. At a fine-tuning dataset size of 8%, LaDID produces partially erroneous but still
usable predictions, which are only slightly worse than the predictions of an advanced NODE based
model, MSVI, trained on the full dataset. Further results including robustness to input noise and color
shifts in the observation space appear in Section M in the Appendix.

Second, we investigate the effect of interventions on the observation process by testing the trans-
ferability to new observation settings on the von Kármán vortex street dataset. We re-simulate
different cylinder locations (shifted the cylinder to the left, right, up, and down) and evaluate the
performance under different fine-tuning dataset sizes. The results show that the prior-based model
consistently outperforms the scratch-trained model and produces accurate and usable predictions
under new observation conditions with a fine-tuning dataset size of as little as 8%. These findings
support our hypothesis that LaDID is capable of extracting general dynamical models from training
data. Additional transfer learning experiments are detailed in the Section P of the Appendix, studying
the model’s performance when jointly trained on a dataset encompassing Reynolds numbers of
Re = [100, 250, 500] and subsequently applied for zero-shot predictions on unseen Re numbers.

4% 8% 16% 32%
percentage of seen data samples

0
5

10
15
20
25

no
rm

al
ize

d
M

SE

full dataset
scratch
prior based

(a) single pendulum

4% 8% 16% 32%
percentage of seen data samples

0.00

0.05

0.10

0.15

0.20

no
rm

al
ize

d
M

SE

full dataset
scratch
prior based

(b) vortex street

Figure 6: Test errors for a set of transfer learning experiments.

7 CONCLUSIONS

In this paper, we presented a novel approach called LaDID aimed at end-to-end learning of la-
tent dynamical models. LaDID uses a novel transformer-based architecture that leverages certain
scientifically-motivated invariances to allow separation of a universal dynamics module and encoded
realization-specific information. We demonstated strong performance on several new and challenging
test cases and well-known benchmarks. Additionally, we showed that LaDID can generalize to
systems under nontrivial intervention (when trained on the un-intervened system) using few-shot
learning. Currently, while LaDID accommodates irregular time sampling, data acquired from ir-
regular spatial grids will need further work. A future research direction is to explore graph-based
methodologies to address this specific challenge.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was partly supported by the German Federal Ministry of Education and Research (BMBF)
project “LODE", the UK Medical Research Council (MC-UU-00002/17) and the National Institute
for Health Research (Cambridge Biomedical Research Centre at the Cambridge University Hospitals
NHS Foundation Trust). The work of CL was funded by the Deutsche Forschungsgemeinschaft
within the Walter Benjamin fellowship LA 5508/1-1. We gratefully acknowledge the Gauss Centre
for Supercomputing e.V. for supporting this project via computing time on the GCS Supercomputers.

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Roberto Benzi, Sauro Succi, and Massimo Vergassola. The lattice Boltzmann equation: theory and
applications. Physics Reports, 222(3):145–197, 1992.

Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes in gases. I.
Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3):
511, 1954.

Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of optimal
control problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

Aleksandar Botev, Andrew Jaegle, Peter Wirnsberger, Daniel Hennes, and Irina Higgins. Which
priors matter? Benchmarking models for learning latent dynamics. Advances in Neural Information
Processing Systems, 34, 2021.

Manuel Brenner, Florian Hess, Jonas M Mikhaeil, Leonard F Bereska, Zahra Monfared, Po-Chen
Kuo, and Daniel Durstewitz. Tractable dendritic RNNs for reconstructing nonlinear dynamical
systems. In International Conference on Machine Learning, pages 2292–2320. PMLR, 2022.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

Adrian Bulat, Juan Manuel Perez Rua, Swathikiran Sudhakaran, Brais Martinez, and Georgios
Tzimiropoulos. Space-time mixing attention for video transformer. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 19594–19607. Curran Associates, Inc., 2021.

Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. Traffic transformer: Capturing
the continuity and periodicity of time series for traffic forecasting. Transactions in GIS, 24(3):
736–755, 2020.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
coordinates and governing equations. Proceedings of the National Academy of Sciences, 116(45):
22445–22451, 2019.

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning Neural Event Functions for
Ordinary Differential Equations. International Conference on Learning Representations, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 31, 2018.

Matthew Choi, Daniel Flam-Shepherd, Thi Ha Kyaw, and Alán Aspuru-Guzik. Learning quantum
dynamics with latent neural ordinary differential equations. Physical Review A, 105(4):042403,
2022.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

10

Published as a conference paper at ICLR 2024

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-Bayes: Continuous
modeling of sporadically-observed time series. Advances in neural information processing systems,
32, 2019.

Thai Duong and Nikolay Atanasov. Hamiltonian-based Neural ODE Networks on the SE(3) Manifold
For Dynamics Learning and Control. In Proceedings of Robotics: Science and Systems, 2021.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in Neural
Information Processing Systems, 32, 2019.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your neural
ode: the world of jacobian and kinetic regularization. In International conference on machine
learning, pages 3154–3164. PMLR, 2020.

Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simplifying hamiltonian and lagrangian
neural networks via explicit constraints. Advances in Neural Information Processing Systems, 33,
2020.

Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen, Sylvain Lamprier, and Patrick Gallinari.
Stochastic latent residual video prediction. In International Conference on Machine Learning,
pages 3233–3246. PMLR, 2020.

Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang Bernie Wang, Mu Li, and Dit-Yan Yeung.
Earthformer: Exploring space-time transformers for earth system forecasting. Advances in Neural
Information Processing Systems, 35:25390–25403, 2022.

Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer: Simple
temporal regularization for neural ode. Advances in Neural Information Processing Systems, 33:
14831–14843, 2020.

Erwin R Gowree, Chetan Jagadeesh, Edward Talboys, Christian Lagemann, and Christoph Brücker.
Vortices enable the complex aerobatics of peregrine falcons. Communications biology, 1(1):27,
2018.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34
(1):014004, 2017.

Dieter Hänel. Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice-
Boltzmann-Methoden. Springer-Verlag, 2006.

Pashupati Hegde, Çağatay Yıldız, Harri Lähdesmäki, Samuel Kaski, and Markus Heinonen. Varia-
tional multiple shooting for bayesian odes with gaussian processes. In James Cussens and Kun
Zhang, editors, Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelli-
gence, volume 180 of Proceedings of Machine Learning Research, pages 790–799. PMLR, 01–05
Aug 2022.

Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri Lähdesmäki.
Learning unknown ODE models with Gaussian processes. In International Conference on Machine
Learning, pages 1959–1968. PMLR, 2018.

Florian Hess, Zahra Monfared, Manuel Brenner, and Daniel Durstewitz. Generalized teacher forcing
for learning chaotic dynamics. In International Conference on Machine Learning. PMLR, 2023.

Samuel I Holt, Zhaozhi Qian, and Mihaela van der Schaar. Neural Laplace: Learning diverse classes
of differential equations in the Laplace domain. In International Conference on Machine Learning,
pages 8811–8832. PMLR, 2022.

Valerii Iakovlev, Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Latent neural ODEs
with sparse bayesian multiple shooting. In The Eleventh International Conference on Learning
Representations, 2023.

11

Published as a conference paper at ICLR 2024

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell, Matt Botvinick,
Alexander Lerchner, and Chris Burgess. Simone: View-invariant, temporally-abstracted object
representations via unsupervised video decomposition. Advances in Neural Information Processing
Systems, 34:20146–20159, 2021.

Kadierdan Kaheman, J. Nathan Kutz, and Steven L. Brunton. SINDy-PI: a robust algorithm for
parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 476(2242), 2020.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33, 2020.

Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary
differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9), 2021a.

Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos D Brody. Inferring latent dynamics
underlying neural population activity via neural differential equations. In International Conference
on Machine Learning, pages 5551–5561. PMLR, 2021b.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. Identifying
nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
PLoS computational biology, 15(8):e1007263, 2019.

Christian Lagemann, Kai Lagemann, Sach Mukherjee, and Wolfgang Schroeder. Generalization of
deep recurrent optical flow estimation for particle-image velocimetry data. Measurement Science
and Technology, 2022.

Esther Lagemann, Marian Albers, Christian Lagemann, and Wolfgang Schröder. Impact of reynolds
number on the drag reduction mechanism of spanwise travelling surface waves. Flow, Turbulence
and Combustion, pages 1–14, 2023a.

Kai Lagemann, Christian Lagemann, Bernd Taschler, and Sach Mukherjee. Deep learning of causal
structures in high dimensions under data limitations. Nature Machine Intelligence, 5(11):1306–
1316, 2023b.

Longyuan Li, Jian Yao, Li Wenliang, Tong He, Tianjun Xiao, Junchi Yan, David Wipf, and Zheng
Zhang. Grin: Generative relation and intention network for multi-agent trajectory prediction.
Advances in Neural Information Processing Systems, 34:27107–27118, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
In The Eighth International Conference on Learning Representations, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209, 2022.

Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng, and
Roger Zimmermann. Airformer: Predicting nationwide air quality in china with transformers. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 14329–14337,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

12

Published as a conference paper at ICLR 2024

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference on
Machine Learning, pages 3276–3285. PMLR, 2018.

Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model
prior for deep learning. In International Conference on Learning Representations, 2019.

Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita,
and Hajime Asama. Differentiable multiple shooting layers. Advances in Neural Information
Processing Systems, 34:16532–16544, 2021.

Esther Mäteling, Marian Albers, and Wolfgang Schröder. How spanwise travelling transversal surface
waves change the near-wall flow. Journal of Fluid Mechanics, 957:A30, 2023.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
for long time series. In International Conference on Machine Learning, pages 7829–7838. PMLR,
2021.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural {ode} processes.
In International Conference on Learning Representations, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing approach. Physical
review letters, 120(2):024102, 2018.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Yue-Hong Qian, Dominique d’Humières, and Pierre Lallemand. Lattice BGK models for Navier-
Stokes equation. Europhysics letters, 17(6):479, 1992.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Jack Richter-Powell, Yaron Lipman, and Ricky T. Q. Chen. Neural Conservation Laws: A Divergence-
Free Perspective. In Advances in Neural Information Processing Systems, volume 35, 2022.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In Advances in Neural Information Processing Systems, volume 32,
2019.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62:352–364, 2020.

Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, and Daniel Durstewitz.
Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies.
In International Conference on Learning Representations. PMLR, 2021.

Bernhard Schoelkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij.
On causal and anticausal learning. In International Conference on Machine Learning. PMLR,
2012.

13

Published as a conference paper at ICLR 2024

B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Toward
causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. TranAD: Deep Transformer Networks for
Anomaly Detection in Multivariate Time Series Data. Proceedings of VLDB, 15(6):1201–1214,
2022.

Evren Mert Turan and Johannes Jäschke. Multiple shooting for training neural differential equations
on time series. IEEE Control Systems Letters, 6:1897–1902, 2021.

Mark van der Wilk, Matthias Bauer, ST John, and James Hensman. Learning invariances using the
marginal likelihood. Advances in Neural Information Processing Systems, 31, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Pantelis R Vlachas, Wonmin Byeon, Zhong Y Wan, Themistoklis P Sapsis, and Petros Koumout-
sakos. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory
networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
474(2213):20170844, 2018.

Pantelis R Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis, Michelle Girvan, Edward
Ott, and Petros Koumoutsakos. Backpropagation algorithms and reservoir computing in recurrent
neural networks for the forecasting of complex spatiotemporal dynamics. Neural Networks, 126:
191–217, 2020.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. In International Conference on Learning Representations. PMLR, 2021.

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, S Yu Philip, and Ming-
sheng Long. Predrnn: A recurrent neural network for spatiotemporal predictive learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(2):2208–2225, 2022.

E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, 2017.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In International Conference on Learning Repre-
sentations, 2022.

Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai
Xiong. Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint
arXiv:2001.02908, 2020.

Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic
models for time series classification. In International conference on machine learning, pages
11808–11819. PMLR, 2021.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. ODE2VAE: Deep generative second order
ODEs with Bayesian neural networks. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Gallinari.
Continuous PDE Dynamics Forecasting with Implicit Neural Representations. In International
Conference on Learning Representations, 2023.

Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer
networks for pedestrian trajectory prediction. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16, pages 507–523. Springer,
2020.

14

Published as a conference paper at ICLR 2024

Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, and Lam M Nguyen.
Concernet: A contrastive learning based framework for automated conservation law discovery and
trustworthy dynamical system prediction. arXiv preprint arXiv:2302.05783, 2023.

Weiming Zhi, Tin Lai, Lionel Ott, Edwin V Bonilla, and Fabio Ramos. Learning efficient and robust
ordinary differential equations via invertible neural networks. In International Conference on
Machine Learning, pages 27060–27074. PMLR, 2022.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-Net: Learning
Hamiltonian Dynamics with Control. In International Conference on Learning Representations,
2020.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Benchmarking energy-conserving
neural networks for learning dynamics from data. In Proceedings of the 3rd Conference on
Learning for Dynamics and Control, pages 1218–1229. PMLR, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pages 27268–27286. PMLR, 2022.

15

Published as a conference paper at ICLR 2024

A EXTENDED RELATED WORK

We begin by discussing the wide variety of methods proposed to learn dynamical models from data.
Our focus is on ML-based approaches.

Operator learning and approximating dynamics. Brunton et al. (2016); Kaheman et al. (2020)
access Koopman theory to learn coefficients of a finite set of non-linear functions to approximate
the observed dynamics. Other approaches (Cranmer et al., 2020; Lutter et al., 2019; Greydanus
et al., 2019; Finzi et al., 2020; Zhong et al., 2020; Bai et al., 2019) induce Hamiltonian and La-
grangian priors into neural networks exploiting the reformulations of Newton’s equations of motion
in energy-conservative dynamics. This attractive inductive bias allows for accurate predictions over
a significantly wider time-horizon but involves strong assumptions that may not hold for many
real-world systems. Purely data-driven ML approaches have attracted much recent attention and
have shown strong performance in many areas. For instance, Heinonen et al. (2018) learns a data-
driven approximation of a dynamical system via a Gaussian Processes. Recent works focus on
the field of operator learning that seeks to learn mappings between infinite-dimensional functions.
Two prominent approaches are DeepONet (Lu et al., 2019) and Fourier Neural Operator (FNO;
(Li et al., 2020)). DeepONet which is based on physics-informed neural networks (Raissi et al.,
2019) can query any coordinate in the domain for a value of the output function. However, the input
function must be observed on a set of predefined locations, requiring the same observation grid for all
observations, for training and testing. FNO is an instance of neural operators, a family of approaches
that integrate kernels over the spatial domain. Since this operation can be expensive, FNO addresses
the problem by employing the fast Fourier transform (FFT) to transform the inputs into the spectral
domain. As a consequence it cannot be used with irregular grids. Li et al. (2022) introduce an FNO
extension to handle more flexible geometries, but it is tailored for design problems. To summarize,
despite promising results for several applications, current operator approaches still face generalization
limitations, and more importantly require access to the system’s variable space to work sufficiently.
As a result, the performance of these approaches drops dramatically if applied to longitudinal system
representations and not the system itself.

Incorporating strong physical priors in dynamics modeling. In real-world dynamical systems it
is often infeasible to have a reliable analytical model of the underlying processes. In such cases, a
more general approach is to learn and capture the latent dynamics of the data using an architecture
that incorporates an appropriate inductive bias. Hamiltonian and Lagrangian mechanics offer distinct
mathematical reformulations of Newton’s equations of motion, specifically for energy-conservative
dynamics. The conservation of energy in these systems enables predictions of the system’s state over
significantly longer time horizons, both forward and backward, compared to the training data. This
property makes them attractive biases to incorporate into deep neural networks. Despite the different
coordinate frames they employ (Hamiltonian using position q and momentum p, and Lagrangian
using position q and velocity q̇), both formalisms describe the same underlying dynamics, allowing for
seamless translation between the two without any loss of generality. One advantage of these models
is that they only need to infer the Hamiltonian or the Lagrangian, without the additional burden of
learning a state representation. This also simplifies evaluation, as it requires calculating the distance
between the ground truth states and the states predicted by the model along the trajectory. To tackle
this challenge, several approaches have been proposed that augment physics-inspired models with
encoder/decoder modules Cranmer et al. (2020); Lutter et al. (2019); Greydanus et al. (2019); Finzi
et al. (2020); Zhong et al. (2020); Bai et al. (2019); Wang et al. (2021); Zhang et al. (2023). These
modules facilitate the inference of low-dimensional states from high-dimensional pixel observations
bridging the gap between visual input and the underlying dynamics.

Neural ODEs. In a recent line of research, the ability of NNs to approximate arbitrary functions has
been exploited for unknown dynamical models, with connections drawn between deep architectures
and numerical solvers for ODEs, PDEs and SDEs (Chen et al., 2018; Weinan, 2017; Lu et al.,
2018; Ruthotto and Haber, 2020; Haber and Ruthotto, 2017; Richter-Powell et al., 2022). This
has given rise to new algorithms rooted in neural differential equations that have been shown to
provide improved modeling of a variety of dynamical systems relative to standard recurrent neural
networks (RNNs) and their variants. However, Neural ODEs inherit some key limitations of ODEs.
Specifically, the temporal dynamics only depends on the current state but not on the history. This puts
a theoretical limit on the complexity of the trajectories that ODEs can model, and leads to practical

16

Published as a conference paper at ICLR 2024

consequences (e.g. ODE trajectories cannot intersect). Some existing works mitigate this issue
by introducing latent variables (Rubanova et al., 2019) or higher order terms (Yildiz et al., 2019).
Other attempts include combining recurrent neural nets with neural ODE dynamics (De Brouwer
et al., 2019), where latent trajectories are updated upon observations, as well as upon Hamiltonian
(Zhong et al., 2020), Lagrangian (Lutter et al., 2019), second-order (Yildiz et al., 2019), or graph
neural network based dynamics (Poli et al., 2019), 2019]. Dupont et al. (2019) put forward a simple
augmentation to the state space to broaden the range of dynamical systems that can be learned; Kidger
et al. (2020) propose neural controlled differential equations; a mechanism to adjust the trajectory
based on subsequent observation denoting the natural equivalent to recurrent neural networks,
the work of Morrill et al. (2021) incorporate concepts of rough theory to extend applicability to
trajectories spanning thousands of steps, and Jia and Benson (2019) explore extensions to account for
interrupting stochastic events. However, they still operate in the ODE framework and cannot model
broader classes of differential equations. Another limitation of Neural ODE and extensions is that
they struggle to model certain types of dynamics due to numerical instability. This is because Neural
ODE relies on a numerical ODE solver to predict the trajectory (forward pass) and to compute the
network gradients (backward pass). Two common scenarios where standard numerical ODE solvers
fail are (1) systems with piecewise external forcing or abrupt changes (i.e. discontinuities) and (2)
stiff ODEs (Ghosh et al., 2020), both are common in engineering and biological systems. Some
existing works address this limitation by using more powerful numerical solvers. Specifically, when
modelling stiff systems, Neural ODE requires special treatment in its computation: either using
a very small step size or a specialized IVP numerical solver (Kim et al., 2021a). Both lead to a
substantial increase in computation cost.

RNNs for modeling spatio-temporal dynamic systems. RNNs, with their capability of capturing
temporal dependencies in time sequences, have found extensive use in dynamic system modeling.
A notable example is the data-driven forecasting method for high-dimensional chaotic systems
using LSTM networks, as proposed by Vlachas et al. (2018). These networks can be used to infer
high-dimensional dynamical systems in a reduced order space and have proven to be effective
nonlinear approximators of their attractor. In a subsequent study,Vlachas et al. (2020) studied
backpropagation algorithms and explored the merit of Reservoir Computing (RC) (Pathak et al.
(2018)) and Backpropagation through time (BPTT) in RNNs for predicting complex spatio-temporal
dynamics. The study revealed that RC outperforms BPTT in terms of predictive performance
and capturing long-term statistics when the full state dynamics are available for training, but in
the case of reduced order data, large scale RC models appear to be more unstable and tend to
diverge faster compared to the BPTT algorithms. On the other hand, BPTT methods demonstrated
superior forecasting performance in reduced order systems and better captured dynamics in these
challenging conditions. In a different line of research, Koppe et al. (2019) proposed a state space
model (SSM) leveraging generative piecewise-linear recurrent neural networks (PLRNN) to infer
dynamics from neuroimaging data (fMRI). They outline the superior interpretability of the PLRNN
model with respect to latent embeddings and showed that it is amenable to systematic dynamical
systems analysis while allowing a straightforward transformation into an equivalent continuous-time
dynamical system. In a follow-up study, the same group introduced a state space model based on a
dynamically interpretable and mathematically tractable RLRNN augmented by a linear spline basis
expansion (Brenner et al. (2022)). This approach retains all the theoretically appealing properties
of the simple PLRNN while boosting its performance and accuracy when dealing with arbitrary
nonlinear dynamical systems in comparatively low dimensions. That is, they empirically showed
that the dendritically expanded PLRNN achieves better reconstructions with fewer parameters and
dimensions on various dynamical systems benchmarks. In a similar vein, the same group of authors
proposed a simple modification of the teacher forcing which allows for faithful reconstructions
on noisy real-world data and yields an even more improved interpretability Hess et al. (2023). In
complementary work, Schmidt et al. (2021) targeted a simpler regularization scheme for vanilla
RNNs based on ReLU activation which aims to solve long-range dependency problems. Precisely,
the proposed approach aims to express slow time scales while retaining a simple mathematical
structure which makes their dynamical properties partly analytically accessible. Both proposed
theorems demonstrate a strong link between the dynamics of regularized RNNs and their gradients,
showcasing the effectiveness of their methodology across various benchmarks. Recently, Wang
et al. (2022) presented PredRNN, a state-of-the-art recurrent network for predictive learning of
spatiotemporal sequences that allows to model systematically visual appearances and temporal

17

Published as a conference paper at ICLR 2024

dynamics of spatiotemporal observations. Based on the overall goal to generate future images
by learning from the historical context, the authors proposed that visual dynamics have modular
structures that can be learned with compositional subsystems using convolutional gated networks. In
PredRNN, a pair of memory cells are explicitly decoupled to form unified representations of the
complex environment and operate in nearly independent transition manners. Based on novel zigzag
memory flow, this network enables the learning of visual dynamics at different levels of RNNs.

Multiple shooting approaches. Multiple shooting breaks up the time grid of an observed trajectory
into some number of segments, and using single shooting method to solve for each segment. The idea
behind this multiple shooting method stems from the observation that long integration of dynamics
can be counterproductive for transcribing continuous optimal control problems, and this problem
can be tackled by limiting the integration over arbitrarily short time intervals (Bock and Plitt, 1984).
Hence, multiple shooting solves the ODE separately on each interval. In the context of neural ODE
modeling, Turan and Jäschke (2021) proposed to combine multiple shooting with existing approaches
drastically reducing the complexity of the loss landspape. That is, for long range time horizon optimal
control or oscillation data driven problems, multiple shooting can be used to train the neural networks
which helps to escape “flattened out” fitting for oscillation data. Concurrently, Massaroli et al. (2021)
showed that multiple shooting can also be combined with neural differential equation and introduced
differential multiple shooting layers. Iakovlev et al. (2023) extended this concept to sparse Bayesian
multiple shooting, with both works evaluating latent NODEs.

Attention-based time-series modeling. The innovation of attention-based layers in deep learning
(Vaswani et al., 2017) has been central in recent years in natural language processing, computer vision,
and speech processing. Transformers have shown the ability to model long-range dependencies and
interactions in sequential data and thus are relevant for time series modeling. Many variants of
transformers have been proposed to address special challenges in time series modeling and have been
successfully applied to various time series tasks, such as forecasting (Li et al., 2019; Zhou et al.,
2022), anomaly detection (Xu et al., 2022; Tuli et al., 2022), and classification (Yang et al., 2021). In
spatio-temporal forecasting, both temporal and spatiotemporal dependencies are taken into account in
time series models for accurate forecasting. For instance in challenging computer vision tasks, such as
traffic analysis and trajectory forecasting, Cai et al. (2020); Xu et al. (2020) propose an autoencoding
structure that uses a self-attention module to capture temporal-temporal dependencies and a graph
neural network module to model spatial dependencies. In Yu et al. (2020) an attention-based graph
convolution mechanism is introduced that is able to learn a complicated temporal-spatial attention
pattern to trajectory prediction. Targeting a different research topic, Earthformer (Gao et al., 2022)
proposes a cuboid attention for efficient space-time modeling, which decomposes the data into
cuboids and applies cuboid-level self-attention in parallel. It is shown that this framework achieves
good performance in weather and climate forecasting. Recently, Liang et al. (2023) proposed a
novel spatial self-attention module and a causal temporal self-attention module to efficiently capture
spatial correlations and temporal dependencies, respectively. Furthermore, it enhances transformers
with latent variables to capture data uncertainty. Multivariate and spatio-temporal time series are
becoming increasingly common in applications, calling for additional techniques to handle high
dimensionality, especially the ability to capture the underlying relationships among dimensions.
Recently, several studies have demonstrated that the combination of GNN and attentions could bring
significant performance improvements in multimodal forecasting (Li et al., 2021), enabling better
understanding of the spatio-temporal dynamics and latent causality.

Our approach is inspired by this body of work in that we also use neural networks to learn latent
dynamical models. However, two key differences are as follows. First, our models are specifically
designed to separate input trajectories into a realization-specific and realization-invariant and hence,
leverage a particular kind of scientifically-motivated inductive bias from the outset. Second, exploiting
these invariances allows us to eschew explicit neural ODEs altogether, providing an arguably simpler,
transformer-based scheme that can be trained in a straightforward fashion, but that, as we show,
achieves excellent performance on unseen data from complex dynamical systems and that can even
be leveraged for few-shot learning to generalize to nontrivial system interventions.

18

Published as a conference paper at ICLR 2024

B DETAILS OF RISK-BASED FRAMING

In the main text we introduced the sufficient encoding assumption or SEA. Here we show how under
SEA, the learning task can be framed in a particularly simple way. Note that in this section, we
consider a simple, abstract version of the full problem, with the aim of understanding how the problem
can be usefully placed in a learning framework. The notation in this section follows from Section 3.2
in the main text and is otherwise self-contained and intended to be readable. We emphasize that the
development below does not map one-to-one with the architecture in Section 3.3 in the main text, but
rather explains, at a high level, why such a scheme is at all possible in this context. The architecture
in the main text can be regarded as one way to instantiate the general ideas below.

To fix ideas, we first consider the simple case with no latent space and then consider the latent
dynamics case. Consider supervised training of a NN, with training (input, output) pairs of the form

{(t, θ̂r)︸ ︷︷ ︸
input

, x
(r)
t︸︷︷︸

output

}(t,r)∈Train,

where, as in Section 3.2 in the main text, θ̂r is a candidate RS encoding, t is a time point and x(r)t
the observation at time t in realization r. The goal is to learn a mapping that takes the input (the RS
encoding and query time point) and yields the correct system output, for any test pair (t′, r′). Consider
the prediction x̂(r)t = f(t;m(θ̂r; θ, θm), θ), and note that we can write the RHS as h(t, θ̂r; Θ) where
Θ = (θ, θm) is a RI parameter. This emphasizes the fact that the RHS is in fact a function (here h,
itself involving combination of f and m) of only the inputs (t, θ̂r), and therefore potentially learnable
from training pairs. Note that the parameters of h are entirely RI and hence the only RS information
is carried by the encoding θ̂r. It is easy to see that under SEA this construction provides the correct
output by writing the RHS as: f(t;m(θ̂r; θ, θm), θ) = f(t; θr, θ) = x

(r)
t , i.e. the correct output.

Thus, combining encoding θ̂r and function h allows prediction of the time evolution of any realisation.
In other words, even if the RS encoding is distant from the true RS parameter, under SEA there exists
a RI function that can correct it, and the second NN aims to learn a function h which combines these
RI elements to provide the desired mapping.

Next, we briefly summarise arguments that extend the analysis to the case of latent dynamics. As in
the main text, consider dynamics at the level of latent variables z ∈ Rq and again consider a model
with RS and RI parts but at the level of the latents, i.e. zrt = f(t; θr, θ). Recall that we assume the
observables are given by (an unknown) function g of the hidden state z.

We first consider the case in which the latent-to-observed mapping is RI, and then the more general
case of a RS mapping.

Case I: RI mapping. Assume the observable is given as xrt = g(zrt ; θg), where g : Rq → Rp is
the (true) observation process and θg is an RI parameter. Further, assume that we have an estimate
θ̂r of the RS parameter that satisfies the sufficient encoding assumption (SEA). In a similar fashion,
assume we have an estimate θ̂g , which may be incorrect (in the sense of θ̂g ̸= θg) but that satisfies:

∃mg,∃θmg
: θg = mg(θ̂g; θ, θmg

) (10)

That is, θ̂g admits an RI correction. As above, the correction is unknown and may potentially depend
on true, RS parameters. Note also that subject to the existence of a correction the estimate (and
implied mapping) may be potentially arbitrarily incorrect. In analogy to SEA, we call this the
sufficient mapping assumption (SMA).

Now, consider training of a NN, with training (input, output) pairs of the form

{(t, θ̂r), xrt}(t,r)∈Train (11)

We want to understand whether supervised learning of a model to predict output for arbitrary queries
(t, r) is possible. This is not obvious, since we now have training data only at the level of the
observables, but the actual dynamics operate at the level of latents. Consider the following function
hSMA:

hSMA(t, θ̂r; Θ) = g(f(t;m(θ̂r; θ, θm);mg(θ̂g; θ, θmg)) (12)

19

Published as a conference paper at ICLR 2024

where Θ = (θ, θm, θmg
) is an RI parameter.

Under SEA and SMA it is easy to see that hSMA provides the correct output, since:

hSMA(t, θ̂r; Θ) = g(f(t;m(θ̂r; θ, θm);mg(θ̂g; θ, θmg
))

= g(f(t; θr, θ); θg)

= g(zrt ; θg)

= xrt

Case II: RS mapping. Suppose now the mapping is RS, with the model specification as above
but with the observation step xrt = g(zrt ; θ

r
g), where θrg is an RS parameter. This means that the

latent-observable relationship is itself non-constant and instead varies between realizations.

Assume we have a candidate estimate θ̂rg which may be incorrect in the sense of θ̂rg ̸= θrg but that
satisfies:

∃mg,∃θmg
: θrg = mg(θ̂

r
g; θ, θmg

) (13)
In analogy to SMA, we call this the realization-specific sufficient mapping assumption or RS-SMA.
Now to create training sets, we extend the formulation to require input triples, as:

{(t, θ̂r, θ̂rg), xrt}(t,r)∈Train (14)

Note that θ̂rg in the input triples may be incorrect, but only needs to satisfy RS-SMA. As in Case I,
we have training data only at the level of observables (not latents) but want to understand whether
supervised learning of a model to predict output for arbitrary queries (t, r) is possible. Consider the
function hRS−SMA:

hRS−SMA(t, θ̂r, θ̂
r
g; Θ) = g(f(t;m(θ̂r; θ, θm), θ);mg(θ̂

r
g; θ, θmg)) (15)

where Θ = (θ, θm, θmg
) is an RI parameter. In a similar manner to Case I, it is easy to see that

hRS−SMA provides the correct output under SEA and RS-SMA, since:

hRS−SMA(t, θ̂r, θ̂
r
g; Θ) = g(f(t;m(θ̂r; θ, θm), θ);mg(θ̂

r
g; θ, θmg

))

= g(f(t; θr, θ); θ̂
r
g)

= g(zrt ; θ̂
r
g)

= xrt

The simple arguments in the foregoing, based on an abstract version of the problem of interest, are
intended to explain why (under the assumptions stated) it is possible to address the learning problem
in a relatively straightforward manner. The key idea is that subject to the sufficient encoding/mapping
assumptions there exists a function (conceptually a combination of various elements as above) that
permits input-output mapping as required. Note that for successful prediction, it is not required to
actually explicitly identify the elements of the combination (and nor do we attempt to do so). The
architecture we propose in the main text represents one way to learn such a function.

C MODEL, APPROXIMATE POSTERIOR AND ELBO

Here, we provide details about our model, the approximate posterior and the ELBO.

Joint distribution. Our graphical model consists of parameters Φ = ϕenc ∪ϕdyn ∪ϕdec, a random
variable ψr which additionally acts as global random variable at the level of latent states ztq and
observations xtq . The index tq refers to a specific queried time point within a trajectory. The joint
distribution is given by

p(x, z, ψr) = p(x, z|ψr)p(ψr) = p(x|z)p(z|ψr)p(ψr) (16)

with
p(ψr) = N (0, 1) (17)

20

Published as a conference paper at ICLR 2024

X

Z

L
D

𝜓!

Φ

Figure A1: Graphical model: The graph consists of three random variables, the realization-specific
trajectory representation ψr, the latent states z and the observations x. Fixed parameters ϕ are
represented by the grey node. Here, the plate notation D indicates the independence between
trajectories within the dataset, while the plate notation L corresponds to the number of queried time
points of the roll-out and denotes the conditional independence of predicted states given the trajectory
representation ψr and the RI parameters Φ, i.e. P (ztqi |ψ

r,Φ) ⊥⊥ P (ztqj |ψ
r,Φ); i ̸= j.

p(z|ψr) =
N∏
i=1

p(zn|ψrn)p(zn|zn−1, ψ
r
n−1) (18)

p(x|z) = N (fϕdec
(z), σdec). (19)

Approximate posterior. Our graphical model assumes the following independencies: (i) The
dataset contains i.i.d. trajectories of varying length. (ii) The observation of trajectory xrtq at time tq
is conditionally independent of xrtq−1

at time tq−1, given latent states zrtq and trajectory represen-
tation ψr: p(xtq |ztq , ψr) ⊥⊥ p(xtq−1 |ztq−1 , ψ

r). Analyzing data with this graphical model involves
computing posterior distributions of hidden variables given observations

p(z, ψr|x) = p(x, z, ψr)∫
p(x|z)p(z|ψr)p(ψr)dzdψr

. (20)

ELBO. To effectively manage long-horizon time series data, we adopt a variation of the multiple
shooting approach. However, our model differs from those based on explicit ODE formulations,
thus avoiding the need to transform initial value problems into boundary value problems (Massaroli
et al., 2021). Instead, we incorporate a Bayesian continuity prior (Hegde et al., 2022; Iakovlev et al.,
2023) to extend the multiple-shooting framework from deterministic neural ODEs to a probabilistic
context. Our approach dissects each realization xrt:T into a series of N overlapping subtrajectories
and independently condenses each patch into a latent representation. Within this Bayesian multiple
shooting framework, the smoothness prior connects the patches via

p(z|ψr) =
N∏
i=1

p(zn|ψrn)p(zn|zn−1, ψ
r
n−1) (21)

to form a cohesive global trajectory. We leverage the independence of trajectory representations in
subpatches i.e. p(zi|ψri) ⊥⊥ p(zj |ψrj). For the continuity prior, we follow Hegde et al. (2022) and
place a Gaussian prior on the error between consecutive subtrajectories, i.e. ∆ ∼ N (0, σ∆) entailing
exact overlapping if ∆ → 0. This yields our continuity prior

p(zn|zn−1, ψ
r
n−1) = N ((zt1n |z−tn−1, ψ

r
n−1), σ∆), (22)

where the time index −t refers to the last time point of a subpatch. The prior trajectory representation
is set to a Gaussian, i.e. p(ψrn) ∼ N (0, 1).

21

Published as a conference paper at ICLR 2024

ELBO:

ln p(x) = ln

∫
p(x, z, ψr)

q(z, ψr)

q(z, ψr)
dzdψr (23)

≥
∫
q(z, ψr) ln

p(x, z, ψr)

q(z, ψr)
dzdψr (24)

=

∫
q(z, ψr) ln

p(x|z)p(z|ψr)p(ψr)
q(z)q(ψr)

dzdψr (25)

=

∫
q(z, ψr) ln

p(x|z)p(ψr)
∏N
n=1 p(zn|ψrn)p(zn|zn−1, ψ

r
n−1)

q(z)q(ψr)
dzdψr (26)

=

∫
q(z, ψr) ln p(x|z)

N∏
n=1

p(zn|ψrn)dzdψr +
∫
q(z, ψr) ln

p(ψrn)

q(ψrn)
dzdψr (27)

+

∫
q(z, ψr) ln

p(z1|z0, ψr0)
∏N
n=2 p(zn|zn−1ψ

r
n−1)

q(zn)
dzdψr (28)

This is equivilant to maximizing eq. 9 of the manuscript with short term notation pn(x̂n) =
p(xn|zn)p(zn|ψrn):

maxEq(z,ψr)

N∑
n=1

ln p(xn|zn)p(zn|ψrn)−
N∑
n=1

KL(q(ψrn)||p(ψrn|x))−
N∑
n=2

Eq(z,ψr)KL(q(zn)||p(zn|zn−1, ψ
r
n))

(29)

D ELBO COMPUTATION AND FORECASTING

To find the approximate posterior which minimizes the Kullback–Leibler divergence

KL[q(z1:N , ψrN)||p(z1:N , ψrN |x1:N)] (30)

we maximize the ELBO which for our model is given via

maxEq(z,ψr)

N∑
n=1

ln pn(x̂n)︸ ︷︷ ︸
(i) likelihood

−
N∑
n=1

KL(q(ψrn)||p(ψrn|xn))︸ ︷︷ ︸
(ii) representation prior

−
N∑
n=2

Eq(z,ψr)KL(q(zn)||p(zn|zn−1, ψ
r
n))︸ ︷︷ ︸

(iii) smoothness prior

(31)

The ELBO is computed as follows:

1. Encode xrt−k:t−1 to obtain ρTAk
2. Sample latent embeddings via lembk ∼ N (fµ(ρ

TA
k), fσ(ρ

TA
k))

3. Compute latent trajectory z1:N
4. Compute ELBO via data likelihood estimation, and KL divergence of representation and

smoothness prior.

Since our approach leverage amortized variational inference, the reparameterization trick is applied
when sampling lembk . Expectations of the data likelihood are computed using Monte Carlo integration
with one sample. KL divergence is computed in closed form.

Forecasting - Inference. Similar to training, also in forecasting a RS vector is derived for a specific
test trajectory aggregating its first K observations as detailed above. This latent representation is
then evolved over time based on the learned dynamics model. Note that in contrast to NODE based

22

Published as a conference paper at ICLR 2024

approaches, here we can query arbitrary points in time which in fact allows us to directly infer only
the latent trajectory state of the query time steps. No evaluations on intermediate grid points are
required saving substantial computational resources. Finally, inferred latent trajectory points are
mapped back to the observation using the trained decoder.

E MODEL ARCHITECTURE

Encoder. The encoder is a collection of three NNs. First, features from the input observations
xrt−k:t−1 are extracted using a convolutional neural network (CNN) parameterized by θenc and
shared across all representations and patches. Specifically, the CNN encoder has the following
architecture: three convolution layers (5x5 kernel, stride 2, padding 2) with batch norm and ReLU
activations, one convolution layer (2x2 kernel, stride 2) with batch norm and ReLU activation. The
channels of the respective CNN layers are doubled throughout. Finally, the downsampled image
features are flattened and linearly projected to the output dimension. Hence, our encoder transforms
the sequence of input observations to a sequence of feature vectors, z(enc),rt−k:T =fθenc

(xrt−k:T).
Then, we compute the trajectory representation and the latent embedding as follows. Each input
patch is split into two disjoint sets by time. The first k ∈ K data points MR={z(enc),rt−k:t } are used
to compute a trajectory specific representation distribution ψr∼qΘR

(xrt−k:t−1) = N (µr, σr) and

µr, σr=fθR(z
(enc),r
t−k:t). In cases of irregularly sampled trajectories, we use a time threshold τ to

define the representation set, MR={z(enc),rti }, ti∈{t<τ}. We model fθR as a transformer network
with temporal attention. In other words, we consider the sequence feature vectors z(enc),rt−k:t as an
time-ordered sequence of tokens and transform each token according to the temporal distance to the
other tokens. We compared two approaches of temporal attention (Iakovlev et al., 2023; Bulat et al.,
2021) which performed roughly similar. First, temporal reweighting is performed as introduced in
Iakovlev et al. (2023): Cij = cij/

∑K
k=1 cik with cij = exp(⟨WQhi,WKhj⟩+ ln(ϵ)(|tj − ti|/δ)p),

where ⟨·, ·⟩ denotes the dot product, WK , WQ, and WV represent the weight matrices for the query,
key, value as in regular attention. ϵ and δ are constants. Hence, the larger the distance |tj − ti|
grows, the stronger the time-aware attention is reduced (Iakovlev et al., 2023). The parameter δ
determines the distance threshold beyond which the scaling of regular attention occurs by at least ϵ.
Moreover, parameter p governs the shape of the scaling curve. This methods works best for most of
the dynamical systems. Second, we tested a temporal attention approach as defined in (Bulat et al.,
2021). This time aware attention is given by CTA(t) =

∑T−1
t′=0 softmax(

⟨WQρt,WKρt′ ⟩√
d

)WV ρt′ .
Finally, the trajectory representation ψr is obtained applying a mean-aggregation of the temporally
transformed representation tokens.

Dynamics model. With initial density given by the encoder networks qΘL
(zt|xrt−k:T , ψr), the

density for all queried latent points (on a continuous time grid) can be predicted by zrtq∼N (µrtq , σ
r
tq)

with µrtq , σ
r
tq=fθdyn

(tq, zt, ψ
r). Note that this approach allows for latent state predictions at any time

since the learned dynamics module fθdyn
is continuous in time and our variational model utilizes

encoders only for obtaining the initial latent distribution. We also make use of the reparameterization
trick to tackle uncertanties in both, the latent states and in the trajectory representations (Kingma
and Welling, 2013). In our implementation fθdyn

consists of three linear layers, with the first two
followed by a ReLU nonlinearity.

Decoder. The decoder maps the latent trajectory points back to the observational space. Hence, our
implementation is fairly simple and comprises a set of transposed convolutional layers. In particular,
it first projects latent trajectory points linearly followed by four transposed convolution layers (2x2
kernel, stride 2) with batch norm and ReLU nonlinearities. Finally, a convolutional layer (5x5 kernel,
padding 2) with sigmoid function computes our output distribution. The channel dimension of the
four transposed convolution layers is halved subsequently from layer to layer.

23

Published as a conference paper at ICLR 2024

F TRAINING DETAILS AND HYPERPARAMETERS

Our implementation uses the PyTorch framework (Paszke et al., 2019). All modules are initialized
from scratch using random weights. During training, an AdamW-Optimizer (Loshchilov and Hutter,
2017) is applied starting at an initial learning rate ε0 = 0.0003. An exponential learning rate
scheduler is applied showing the best results in the current study. Every network is trained for 30
000 epochs. At initialization, we start training at a subpatch length of 1 which is doubled every 3000
epochs. After the CNN encoder, 8 attention layers are stacked each using 4 attention heads. A relative
Sin/Cos embedding is used as position encoding followed by a linear layer. The input resolution
of the observational image data is 128 × 128 px. All computations are run on a single GPU node
equipped with one Nvidia A100 (40 GB) and a global batch size of 16 is used. A full training run on
the single pendulum, the double pendulum, the wave equation and the Navier-Stokes equation dataset
requires approx. 14 h. A full training run on the reaction-diffusion system and the von Kármán vortex
street requires approx. 8 h.

Table F.1: Training hyperparameters

Hyperparameter Value
LR schedule Exp. decay
Initial LR 3e-4
Weight Decay 0.01
Global batch size 16
Parallel GPUs 1
Input resolution 128× 128 px
Number of input timesteps 10
Initial subpatch length 1
Number of epochs per subpatch length 3000
Latent dimension 32
attention mechanism spatio-temporal
Number of attention blocks 8
Number of attention heads 4
Position Encoding relative Sin/Cos encoding

G DETAILS ON COMPARISON BASELINES

All baseline methods are similar to our proposed approach in the sense that they encode longitudinal
observations in a latent space, simulate a low-dimensional latent trajectory and decode such to obtain
future observations. Similar to our approach, NDP (Norcliffe et al., 2021) encodes observations
into two latent variables (an "initial state" and a "global control of an ODE") and aggregates latent
representations in a global representation via averaging. Dynamics are modeled using MLPs or
convolutions and integrated over time using neural ODEs. The decoder outputs a Bernoulli distribution
from which the prediction is sampled.
From a high-level perspective, MSVI (Iakovlev et al., 2023) works similar, but leverages a slightly
modified encoder. Here, a transformer module is added while dynamics function and decoder are
Bayesian MLPs and CNNs whose parameterisation is assumed to be Gaussian. Similar to our work,
amortized multiple shooting is employed leveraging a smoothness prior. Hence, training is performed
based on a sophisticated loss incorporating data, continuity, dynamics, and decoder priors.
Likewise, ODE2VAE (Yildiz et al., 2019) represents a variational inference framework based on
Bayesian Neural Networks. Similar to our work, it encodes a number of observations into a latent
initial state, which are explicitly shaped by a physics-motivated prior, e.g., the latent space is separated
into a velocity and position part. Subsequently, these high-order dynamics are approximated by a
BNN and are evolved over time. The decoder is similar to MSVI where both BNN priors are assumed
to be Gaussian.
Similar to the other baselines, ODE-RNN (Rubanova et al., 2019) represents a family of time series
models whose hidden state dynamics are specified by Neural ODEs. Hence, the trained ODE-RNN
models rely on latent ODEs and can naturally handle arbitrary time gaps between observations. In
this context, note that ODE-RNN is not applicable to spatio-temporal system dynamics by default.
As a result, the same CNN encoding part is used as in our approach while the dynamics function and

24

Published as a conference paper at ICLR 2024

decoder are similar to the ones used in MSVI. In this way, we aim to provide a useful comparison.
All models are trained and tested according to default parameters and code provided in the original
papers. Please note that for comparisons to these baseline methods, we are forced to rely on regular
time grid datasets since ODE2VAE’s encoder is exclusively applicable to evenly spaced grids. For
irregularly sampled observations, we report comparisons to MSVI.

H INFERENCE AND TRAINING TIMES

Table H.2: Comparison of training and inference time as well as the number of trainable model
parameters for all methods applied to the single pendulum test case. Note that for MSVI (block size
= 1 / 8), no inference times can be given since inference requires roll-out across the full trajectory.
All tests are performed on a NVIDIA A100 40 Gb with a AMD EPYC 7742 processor.

forward /
backward pass

[ms]

forward pass
(inference)

[ms]

trainable
parameters
[M params]

ODE-RNN 851.95 351.68 10.51
NDP 388.69 163.15 1.13
ODE2VAE 571.77 68.04 3.04
MSVI (block size = 60) 1192.86 48.37 1.51
MSVI (block size = 8) 285.79 (N/A) 1.51
MSVI (block size = 1) 60.08 (N/A) 1.51
LaDID (ours) 48.11 15.09 1.35

I DATASET DETAILS

Here, we provide details about the datasets used in this work, their underlying mathematical for-
mulations and their implementation details. Partially, some of the datasets we selected are used in
literature to demonstrate the effectiveness of neural based temporal modeling approaches, e.g., a
swinging pendulum or a reaction-diffusion system. However, we also consider more unknown test
cases which represent complex real-world applications such as the chaotic double-pendulum or fluid
flow applications driven by a complex set of PDEs, i.e., the Navier-Stokes equations.

I.1 SWINGING PENDULUM

For the first dataset we consider synthetic videos of a nonlinear pendulum simulated in two spatial
dimensions. Typically, a nonlinear swinging pendulum is governed by the following second order
differential equation:

d2z

dt2
= − sin z (32)

with z denoting the angle of the pendulum. Overall, we simulated 500 trajectories with different
initial conditions. For each trajectory, the initial angle z and its angular velocity dz

dt is sampled
uniformly from z ∼ U(0, 2π) and dz

dt ∼ U(−π/2, π/2). All trajectories are simulated for t = 3
seconds. The training, validation and test dataset is split into 400, 50 and 50 trajectories, respectively.
The swinging pendulum is rendered in black/white image space over 128 pixels for each spatial
dimension. Hence, each observation is a high-dimensional image representation (16384 dimensions -
flatted 128× 128 px2 image) of an instantaneous state of the second-order ODE.

I.2 SWINGING DOUBLE PENDULUM

To increase the complexity of the second dataset, we selected the kinematics of a nonlinear double
pendulum motion. The pendulums are treated as two point masses with the upper pendulum being
denoted by the subscript "1" and the lower one by subscript "2". The kinematics of this nearly chaotic

25

Published as a conference paper at ICLR 2024

system is governed by the following set of ordinary differential equations:

d2z1
dt2

=
−g(2m1 +m2) sin z1 −m2g sin(z1 − 2z2)− 2 sin(z1 − z2)m2(

dz1
dt

2
L2 +

dz1
dt

2
L1 cos(z1 − z2))

L1(2m1 +m2 −m2 cos(2z1 − 2z2))
(33)

d2z2
dt2

=
2 sin(z1 − z2)(

dz1
dt

2
L1(m1 +m2) + g(m1 +m2) cos z1 +

dz2
dt

2
L2m2 cos(z1 − z2))

L2(2m1 +m2 −m2 cos(2z1 − 2z2))
(34)

with mi denoting the mass and the length of each pendulum respectively, and g is the gravitational
constant. Again, we simulated 500 trajectories split in sets of 400, 50 and 50 samples for training,
validation and testing. The initial condition for (z1, z2) and (dz1dt ,

dz2
dt) are uniformly sampled in the

range U(0, 2π) and U(−π/2, π/2). The double pendulum is rendered in a RGB color space over 128
pixels for each spatial dimension with the first pendulum colored in red and the second one in green.
Hence, each observation is a high-dimensional image representation (16384× 3 dimensions - flatted
128× 128 px2 RGB image) of an instantaneous double pendulum state.

I.3 REACTION-DIFFUSION EQUATION

Many real-world applications of interest originate from dynamics governed by partial differential
equations with more complex interactions between spatial and temporal dynamics. One such set
of PDEs we selected as test case is based on a lambda-omega reaction-diffusion system which is
described by the following equations:

du

dt
= (1− (u2 + v2))u+ β(u2 + v2)v + d1(

d2u

dx2
+
d2u

dy2
) (35)

dv

dt
= −β(u2 + v2)u+ (1− (u2 + v2))v + d2(

d2v

dx2
+
d2v

dy2
) (36)

with (d1, d2) = 0.1 denoting diffusion constants and β = 1. This set of equations generates a spiral
wave formation which can be approximated by two oscillating spiral modes. The system is simulated
from a single initial condition from t = 0 to t = 10 in ∆t = 0.05 time intervals for a total number of
10 000 samples. The initial conditions is defined as

u(x, y, 0) = tanh
(√

x2 + y2 cos
(
(x+ iy)−

√
x2 − y2

))
(37)

v(x, y, 0) = tanh
(√

x2 + y2 sin
(
(x+ iy)−

√
x2 − y2

))
. (38)

The simulation is performed over a spatial domain of (x ∈ [−10, 10] and y ∈ [−10, 10] on grid with
128 points in each spatial dimension. We split this simulation into trajectories of 50 consecutive
samples resulting in 200 in dependant realisations. We use 160 randomly sampled trajectories for
training, 20 trajectories for validation and the remaining 20 trajectories for testing. Source code of
the simulation can be found in Champion et al. (2019).

I.4 TWO-DIMENSIONAL WAVE EQUATION

A classical example of a hyperbolic PDE is the two-dimensional wave equation describing the
temporal and spatial propagation of waves such as sound or water waves. Wave equations are
important for a variety of fields including acoustics, electromagnetics and fluid dynamics. In two
dimensions, the wave equation can be described as follows:

∂2u

∂t2
= c2▽2u, (39)

with ▽2 denoting the Laplacian operator in R2 and c is a constant speed of the wave propagation.
The initial displacement u0 is a Gaussian function

u0 = a exp

(
− (x− b)2

2r2

)
, (40)

26

Published as a conference paper at ICLR 2024

where the amplitude of the peak displacement a, the location of the peak displacement b and the
standard deviation r are uniformly sampled from a ∼ U(2, 4), b ∼ U(−1, 1), and r ∼ U(0.25, 0.30),
respectively. Similar to Yin et al. (2023), the inital velocity gradient ∂u∂t is set to zero. The wave
simulations are performed over a spatial domain of (x ∈ [−1, 1] and y ∈ [−1, 1] on a grid with 128
points in each spatial dimension. Overall, 500 independent trajectories (individual initial conditions)
are computed which are split in 400 randomly sampled trajectories for training, 50 trajectories for
validation and the remaining 50 trajectories for testing.

I.5 NAVIER-STOKES EQUATIONS

To ultimately test the performance of our model on complex real-world data, we simulated fluid
flows governed by a complex set of partial differential equations called Navier-Stokes equations.
Overall, two flow cases of different nature are considered, e.g., the temporal evolution of generic
initial vorticity fields and the flow around an obstacle characterized by the formations of dominant
vortex patterns also known as the von Kármán vortex street.
Due to the characteristics of the selected flow fields, we consider the incompressible two-dimensional
Navier-Stokes equations given by

∂u

∂t
+ (u · ▽)u− ν▽2u = −1

ρ
▽p. (41)

Here, u denotes the velocity in two dimensions, t and p are the time and pressure, and ν is the
kinematic viscosity. For the generic test case, we solve this set of PDEs in its vorticity form and
chose initial conditions as described in Li et al. (2020). Simulations are performed over a spatial
domain of (x ∈ [−1, 1] and y ∈ [−1, 1] on a grid with 128 points in each spatial dimension. Overall,
500 independent trajectories (individual initial vorticity fields) are computed which are split in
400 randomly sampled trajectories for training, 50 trajectories for validation and the remaining 50
trajectories for testing.

I.6 FLOW AROUND A BLUNT BODY

The second fluid flow case mimics an engineering inspired applications and captures the flow around
a blunt cylinder body, also known as von Kármán vortex street. von Kármán vortices manifest in a
repeating pattern of swirling vortices caused by the unsteady flow separation around blunt bodies
and occur when the inertial forces in a flow are significantly greater than the viscous forces. A large
dynamic viscosity of a fluid suppresses vortices, whereas a higher density, velocity, and larger size
of the flowed object provide for more dynamics and a less ordered flow pattern. If the factors that
increase the inertial forces are put in relation to the viscosity, a dimensionless measure - the Reynolds
number - is obtained that can be used to characterize a flow regime. If the Reynolds number is larger
than Re > 80, the two vortices in the wake of the body become unstable until they finally detach
periodically. The detached vortices remain stable for a while until they slowly dissociate again in the
flow due to friction, and finally disappear. The incompressible vortex street is simulated using an
open-source Lattice-Boltzmann solver due to computational efficiency. The governing equation is
the Boltzmann equation with the simplified right-hand side (RHS) Bhatnagar-Gross-Krook (BGK)
collision term (Bhatnagar et al., 1954):

∂f

∂t
+ ζk

∂f

∂xk
= −1

τ
(f − feq) (42)

These particle probability density functions (PPDFs) f = f(x⃗, ζ⃗, t) describe the probability to find a
fluid particle around a location x⃗ with a particle velocity ζ⃗ at time t (Benzi et al., 1992). The left-hand
side (LHS) describes the evolution of fluid particles in space and time, while the RHS describes the
collision of particles. The collision process is governed by the relaxation parameter 1/τ with the
relaxation time τ to reach the Maxwellian equilibrium state feq . The discretized form of equation 42
yield the lattice-BGK equation

fk(x⃗+ ζk∆t, t+∆t) = fk(x⃗, t)−
1

τ
(fk(x⃗, t)− feqk (x⃗, t)). (43)

27

Published as a conference paper at ICLR 2024

The standard D2Q9 discretization scheme with nine PPDFs (Qian et al., 1992) is applied. The
equilibrium PPDF is given by

feqk = wkρ

(
1 +

ζku⃗

c2s
+

(ζku⃗)
2

2c4s
− u⃗2

2c2s

)
(44)

where the quantities wk are weighting factors for the D2Q9 scheme given by 4/9 for k ∈ 0, 1/9 for
k ∈ 1, . . . , 4, and 1/36 for k ∈ 5, . . . 9, and u⃗ is the fluid velocity. cs denotes the speed of sound.
The makroscopic variables can be obtained from the moments of the PPDFs. Within the continuum
limit, i.e., for small Knudsen numbers, the Navier-Stokes equations can directly be derived from
the Boltzmann equation and the BGK model (Hänel, 2006). We simulated three different Reynolds
numbers Re = 100, 250, 500 for 425 000 iterations with a mesh size of 128 point in vertical and
256 points in horizontal direction. We skipped the first 25 000 iterations to ensure a developed
flow field and extracted velocity snapshot every 100 iterations. The simulation is performed over
a spatial domain of (x ∈ [−20, 20] and y ∈ [−10, 10]. We split this simulation into trajectories
of 50 consecutive samples resulting in 200 in dependant realisations. We use 160 randomly sam-
pled trajectories for training, 20 trajectories for validation and the remaining 20 trajectories for testing.

J DETAILED DESCRIPTION OF EXPERIMENTS

We structured our experiments into four different series that shed light on the performance of LaDID
in different situations with unique contextual information and challenges.

1. ODE based systems: Here, we investigate the performance for simulated kinematic systems.
In these experiments, the right-hand side of the ODE remains constant, so the underlying
dynamical system is the same for training and test cases. However, every trajectory starts
from a unique initial conditions that lead to unique trajectories in the observational space
(image space). The set of initial conditions of the training data and the test data is entirely
disjoint. We tested two kinematic systems:
(a) Single Pendulum: We simulated 400 training trajectories at an image resolution of

128× 128 pixels and tested on 50 distinct test trajectories. The dataset generation is
described in Subsection I.1. The results are presented in Figure 3, 4, and K.1.

(b) Double Pendulum: We simulated 400 training trajectories at an image resolution of
128× 128 pixels and tested on 50 distinct test trajectories. The dataset generation is
described in Subsection I.2. The results are presented in Figure K.2.

2. PDE based systems: The series of experiments focuses on the performance of LaDID
in PDE based systems. Similar, to the experimental setup of the ODE experiments, the
dynamical system described by the right-hand side of the PDE remains constant throughout
this set of experiments. Every trajectory corresponds to the temporal evolution under the
dynamical system given a unique initial condition. Here, we focus on four different PDE
based dynamical systems:
(a) Reaction-Diffusion Equation: The dataset contains 160 training trajectories and 20

distinct test trajectories at an image resolution of 128× 128 pixels. The generation of
the datasets is given in Subsection I.3 of the Appendix and the results are shown in
Figure K.3.

(b) Wave Equation: The dataset comprises 400 training trajectories and 50 unique test
trajectories, all at an image resolution of 128× 128 pixels. Details on how the datasets
were generated are provided in Subsection I.4 of the Appendix, and the corresponding
results are depicted in Figure K.4.

(c) Navier-Stokes Equations: The dataset comprises 400 training trajectories and 50
unique test trajectories, each with an image resolution of 128× 128 pixels. Detailed
information on the dataset generation is provided in Subsection I.5 of the Appendix,
with corresponding results displayed in Figure K.5.

(d) Flow around a blunt body: We generated 160 training trajectories with an image
resolution of 128× 128 pixels and conducted testing on 20 unique test trajectories. The
details of dataset generation can be found in Subsection I.6. The corresponding results
are illustrated in Figure 3, 4, and K.1.

28

Published as a conference paper at ICLR 2024

3. Regular vs. Irregular time grid: Here, we delve into the impact of time grid regularity on
performance. We systematically compare the model’s predictions when trained on datasets
featuring a regular time grid against those with an irregular time grid. The objective is
to study how the model adapts to variations in the temporal structure of the input data
and assess its generalization capabilities across different time grid configurations. These
experiments aim to provide insights into robustness and flexibility in handling diverse
time representations, shedding light on suitability for real-world scenarios with irregularly
sampled temporal data. We study two test cases:

(a) Single Pendulum
(b) Reaction-Diffusion Equation

The regular case is identical to the experiments for the ODE/PDE systems as described
above. For cases with irregular time grid, we uniformly sample the time points along the
time axis and compute the corresponding observations in the image space. The description
of the datasets is detailed in the Subsection I.1 and I.3, respectively. The results for the
single pendulum test is shown in Figure L.1 and in Figure L.2 for the reaction-diffusion
equation.

4. Transfer Learning:
Few-shot learning and zero-shot learning under interventions upon the dynamical system
In this set of experiments, we focus on evaluating transferability to new dynamical
systems, emphasizing scenarios where the target systems share similarities with the training
distribution but have not been encountered during the training phase. We test this in two
different ways. First, we adopt a few-shot learning paradigm, wherein a pretrained model is
fine-tuned using a limited number of trajectories from the new system. This set-up allows us
to assess the model’s adaptability to novel dynamical systems and to examine its capacity
to generalize knowledge from the training set to previously unseen systems. To study
transferability, we used the single pendulum dataset as described in Subsection I.1 of the
Appendix and fine-tuned the model on a dataset that comprises nnew = [16, 32, 64, 128]
fine-tuning trajectories (which corresponds to p = [4%, 8%, 16%, 32%] of the training
dataset size) obtained through unique interventions on the mass and length of the pendulum.
Additionally, all initial conditions of the trajectories are unique. We conducted testing on
50 unique test trajectories that were subject to new interventions and never seen during
fine-tuning. Note that interventions here yield dynamical systems that are qualitatively
different from the others and in that sense unique. In other words, the right-hand side of the
underlying dynamical system is different for all interventions. The results are presented in
Section 6.2 and Figure 6a of the main text and Section P in the Appendix.

Furthermore, we extend our investigation to encompass zero-shot learning, wherein our
approach is initially trained on a broader class of dynamical systems. Subsequently, we
assess the model’s ability to predict entirely new dynamical systems without additional
training on specific instances. These experiments aim to elucidate ability to leverage learned
knowledge to make accurate predictions for diverse dynamical systems. We chose the flow
around a blunt cylinder as our test case and generated a training dataset that comprises 120
trajectories for three different Reynold’s number Re = [100, 250, 500]. We test zero-shot
transferability for three new Reynold’s numbers Renew = [175, 300, 400]. The results are
presented in Subsection O and Figures P.1 and P.2 of the Appendix.

Interventions upon the measurement process of the dynamical system
In this series of experiments, we explore the robustness and adaptability of our approach
under interventions that mimic variations in the measurement process of the dynamical
system. Specifically, we examine the impact of additive Gaussian noise and salt & pepper
noise, aiming to understand performance under observational variability. Additionally,
we systematically alter channels in the RGB space to investigate the model’s response to
changes in color representations, providing insights into its ability to handle variations in
the visual input domain. These effects are studied using the single-pendulum test case. The
results are presented in Subsection M.1 for perturbed input images using Gaussian additive
and salt & pepper noise. Subsection M.2 shows the effects of alteration in the RGB channels.

29

Published as a conference paper at ICLR 2024

Furthermore, we extend our analysis to include experiments involving few-shot learning,
where the model is presented with trajectories captured from entirely new camera angles and
positions. This design enables us to assess the model’s capacity to adapt and generalize to
novel observational conditions with minimal exposure to the new data. These experiments
collectively provide information on resilience to diverse sources of measurement noise
and environmental changes. This is relevant for real-world applications with varying
observational conditions. In this particular experiment, we selected the flow around a
blunt cylinder as our test case. Utilizing a pretrained model with a fixed camera position,
we proceeded to fine-tune it using a dataset comprising nnew = [6, 12, 24, 48] distinctive
trajectories captured from various camera positions. This corresponds to subsets representing
p = [4%, 8%, 16%, 32%] of the training dataset size, providing a systematic exploration of
model adaptation to diverse camera perspectives. Testing is carried on an entirely unseen
dataset with n = 20 test trajectories under new camera positions. The results are presented
in Section 6.2 and Figure 6b of the main manuscript.

K ADDITIONAL RESULTS

K.1 SWINGING SINGLE PENDULUM

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure K.1: Test errors and exemplary test trajectories of different models for the single pendulum
test case.

30

Published as a conference paper at ICLR 2024

K.2 SWINGING DOUBLE PENDULUM

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure K.2: Test errors and exemplary test trajectories of different models for the double pendulum
test case.

31

Published as a conference paper at ICLR 2024

K.3 LAMBDA-OMEGA REACTION-DIFFUSION SYSTEM

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure K.3: Test errors and exemplary test trajectories of different models for the lambda-omega
reaction-diffusion system.

32

Published as a conference paper at ICLR 2024

K.4 TWO-DIMENSIONAL WAVE EQUATION

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure K.4: Test errors and exemplary test trajectories of different models for the wave equation test
case.

33

Published as a conference paper at ICLR 2024

K.5 NAVIER-STOKES EQUATIONS

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure K.5: Test errors and exemplary test trajectories of different models for the Navier-Stokes
equations test case.

34

Published as a conference paper at ICLR 2024

K.6 LATTICE BOLTZMANN EQUATIONS

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure K.6: Test errors and exemplary test trajectories of different models for the von Kármán vortex
street test case.

35

Published as a conference paper at ICLR 2024

K.7 RESTRICTED ACCESS TO TRAINING TRAJECTORIES

In this experiment, we explore the impact of limiting the number of trajectories available during
training. Specifically, we assess the performance of LaDID when utilizing only 4%, 8%, 16%, and
32% of the single pendulum dataset, which originally consists of 400 training trajectories. Please see
Section I.1 for details on the data generation. In each experiment, our model is trained from scratch
with a restricted number of trajectories. Comparisons are drawn against baseline algorithms which
are trained on the full dataset. The results indicate that even with just 8% of the data, the model
achieves reasonable predictions. Further, at 16%, LaDID surpasses the performance of all baseline
algorithms.

Figure K.7: Comparison of prediction performance of LaDID as the number of training trajectories
varies. The model’s accuracy is evaluated using different percentages of the standard dataset, ranging
from 4% to 32%. Full dataset performances are represented by horizontal lines for LaDID and all
baselines.

K.8 INVESTIGATING REALIZATION-SPECIFIC AND REALIZATION-INVARIANT INFORMATION

LaDID is rooted in the idea of RS/RI decomposition, as reflected in both model architecture and the
theory. In this section we provide an empirical study to investigate the RS/RI aspect. In particular, to
better understand model intermediates, we carried out an experiment tracking the learned trajectory
representation ψr over a set of pendulum configurations (single pendulum) for which we know
the true initial conditions πr of the underlying ODE system. According to the theory, it should
be possible to recover the latter from the former. To test this, we use a trained LaDID model and
compute the RS trajectory representations ψr for every initial condition of the training dataset. In the
next step, we learn a simple mapping function g that maps the trajectory representations ψr to the
initial conditions πr, i.e. g : R32 → R2 (g is chosen to be a shallow 2 layer MLP with approximately
500 parameters). Training and testing are performed on two mutually disjoint sets of trajectory
representations. That is, for training we computed the trajectory representations ψrtrain from the
original training dataset using the initially trained LaDID encoder in a 1-step multiple shooting
setting. This means that we split an observed trajectory into multiple subtrajectories and compute
for each of these subtrajectories an independent πr. For testing, we compute similar trajectory
representations ψrtest, but this time from the test dataset ensuring that these are entirely disjoint
from the training dataset since neither the LaDID encoder nor the learned mapping have seen these
samples before. At testing, with mapping function g and LaDID model fixed, we then predict the
ground truth initial conditions, i.e. π̂r = g(ψr). We present the results as scatter plots in Figure
K.8; the good correspondence supports the notion that ψr indeed captures the RS information. In
addition, to understand whether the computed trajectory representation of any point of a trajectory
holds information on the corresponding ground truth initial condition (as in ODE/PDEs), we compute
for each time step of a trajectory its corresponding independent trajectory representation and predict
the πr’s as outlined before. The results are presented in Figs. K.8c & K.8d. The x-axis denotes the
time, i.e. the time point from which we would start forecasting the dynamical behaviour, while the
y-axis presents the predicted and ground truth initial conditions, i.e. angle Θ and Θ̂ and angular

36

Published as a conference paper at ICLR 2024

velocity Θ̇ and ˆ̇Θ respectively (note that markers shown in the figures are separate experiments with
independent trajectory representations/initial conditions).

(a) Distribution of the predicted angles Θ (b) Distribution of the predicted angular velocity Θ̇

(c) Temporal distribution of the angle Θ for 5 trajecto-
ries

(d) Temporal distribution of the angular velocity Θ̇ for
5 trajectories

Figure K.8: Comparison of the recovered (predicted nonlinear mapping function) and true initial
conditions of the swinging pendulum dataset: (a) Predicted vs true angles Θ of the entire test dataset,
(b) Predicted vs true angular Θ̇ of the entire test dataset. (c) Temporal distribution of the angles Θ for
five different trajectories. Note that the each marker corresponds to an initial trajectory representation
ψr. (d) Temporal distribution of the angular velocity Θ̇ for five different trajectories.

37

Published as a conference paper at ICLR 2024

L REGULAR AND IRREGULAR TIME GRIDS

(a) Normalized MSE (b) RMSE distribution over time

Figure L.1: Test errors and exemplary test trajectories of different models for regular and irregular
time grids of the single pendulum test case.

(a) Normalized MSE (b) RMSE distribution over time

Figure L.2: Test errors and exemplary test trajectories of different models for regular and irregular
time grids of the lambda-omega reaction-diffusion system.

M ROBUSTNESS TO INPUT NOISE AND APPEARANCE MODIFICATION

M.1 ROBUSTNESS TO INPUT NOISE

In the following experiments, we study the impact of zero-mean Gaussian noise and salt-and-
pepper noise on performance. Specifically, we vary the standard deviation for Gaussian noise
(σ = [0.1, 0.2, 0.3, 0.4]) and the density for salt-and-pepper noise (ρ = [10%, 35%, 50%, 70%]) to
systematically assess robustness. To provide a visual representation, we show example trajectories
that exhibit the effects of these noisy inputs.

Next, we evaluate the summed MSE over trajectories, averaged across the test dataset. Additionally,
we introduce the RMSE distribution plotted over time as detailed in Section 5 of the main text,
offering insights into the model’s response to noise over the entire trajectory duration. These results
demonstrate robustness against the tested sources of noise for LaDID. We see minimal impact for
small noise levels, with an expected increase in error values as noise intensity increases.

38

Published as a conference paper at ICLR 2024

(a) Gaussian noise (b) Salt&Pepper noise

Figure M.1: Visualization of test dataset augmentations to test the robustness to input noise.

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure M.2: Test errors and exemplary test trajectories of the single pendulum test case (gray-scale)
corrupted by Gaussian Noise with various noise levels.

39

Published as a conference paper at ICLR 2024

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure M.3: Test errors and exemplary test trajectories of the single pendulum test case (gray-scale)
corrupted by Salt&Pepper noise with various noise levels.

40

Published as a conference paper at ICLR 2024

M.2 ROBUSTNESS TO MODIFICATION IN THE INPUT APPEARANCE

We explore the impact of random scaling and flipping applied to the RGB channels of input images.
This investigation aims to assess how the model responds to such spatial transformations. To provide
a visual understanding, we start by showing example trajectories, allowing an examination of the
perturbed inputs resulting from these transformations.

Following the visual inspection, we present a quantitative analysis, presenting the summed MSE over
trajectories and averaged across the test dataset. Additionally, we introduce the RMSE distribution
plotted over time, providing insights into the model’s performance over the trajectory duration. The
results indicate only slightly higher error values under the influence of these spatial transformations.

(a) clean dataset (b) flipped RGB channels (c) scaled RGB channels

Figure M.4: Visualization of test dataset augmentations to test the robustness to modifications of the
input appearance.

(a) Normalized MSE (b) RMSE distribution over time

(c) Example trajectory

Figure M.5: Test errors and exemplary test trajectories of different RGB single pendulum test cases
transformed by color augmentations.

41

Published as a conference paper at ICLR 2024

N ABLATIONS - EFFECTS OF RELEVANT NETWORK MODULES

Table N.3: Errors for ablated LaDID models trained on the single pendulum test case.

loss
heuristics

attention
mechanism

representation
encoding

ablation mean IQR ablation mean IQR ablation mean IQR
reconstruction 2.66 1.04 no attention 7.79 6.84 w./o. encoding 2.83 2.02

reconstruction &
representation 2.17 0.99 spatial attention 2.81 1.47 w. encoding 2.02 0.88

reconstruction &
smoothness 2.04 0.92 temporal attention 2.41 0.92

full loss 2.02 0.88 spatio-temporal
attention 2.02 0.88

O GENERALIZATION UNDER INTERVENTIONS

We evaluated our model’s ability to generalize with respect to aspects of the data generating distribu-
tion that are often unknown. Consider vectorized differential equation of the form

d

dt
x = f(x, t) (45)

with general initial conditions x(t0) = x0. Using an appropriate discretization scheme allows us to
foretell the future of the system based on its past states and we can directly read off the causal structure
for such a system. This underlying causal structure remains the same when changing coefficients on
the right hand side which is summarized by the principle of independent causal mechanisms (Peters
et al., 2017; Schoelkopf et al., 2012; Schölkopf et al., 2021; Lagemann et al., 2023b):

Independent Causal Mechanism: Let X be the outcome variable, and let M1,M2, . . . ,Mn be n
distinct mechanisms or factors that independently contribute to X . Then, we can write:

X = f(M1,M2, . . . ,Mn) (46)

where f represents the functional relationship between the mechanisms and the outcome. In other
words, the outcome variable X is determined by the independent contributions of each mechanism
Mi, and these mechanisms operate independently of each other and do not inform each other.

For example, consider a system of ODEs that describes the dynamics of a population of predator and
prey animals:

dx

dt
= ax− bxy (47)

dy

dt
= −cy + dxy (48)

where x represents the population of prey, y represents the population of predators, and a, b, c, d
are parameters that describe the interactions between the two populations. In this system, x and y
represent independent causal mechanisms that contribute to the dynamics of the population. The
equations describe how the population of prey and predators changes over time as a result of their
interactions. By solving the system of ODEs, we can study how changes in the parameters affect
the long-term behavior of the system, and how interventions can be used to control the population
dynamics. Mathematically, an intervention is typically represented as a modification of the equations
that describe the system, by setting the value of one or more variables to a fixed value or function.
This modification represents the assumption that the variable(s) being intervened upon is no longer
subject to external influences, and its value is determined by the intervention. In formal terms,
an intervention upon a set of nodes in the causal structure of a system {Xi : i ∈ I} means any
manipulation of the system that alters its state or behaviour, including changes in the initial conditions,
modifying the parameters, or adding or removing variables or equations. When observing a latent
process, which moves the deterministic setup of an ODE to a probabilistic case, this means that the

42

Published as a conference paper at ICLR 2024

conditional distribution when observing the state of a node given its parents Pa(Xi) is replaced
by a new, predefined distribution. Thus, the joint probability distribution of as system under an
intervention changes to

p̃(X) =
∏
i/∈I

p(Xi|Pa(Xi))
∏
i∈I

p̂(Xi|Pa(Xi)) (49)

where p̂(Xi|Pa(Xi)) indicates the conditional distribution of node Xi in its general form.

43

Published as a conference paper at ICLR 2024

P ADDITIONAL TRANSFER LEARNING RESULTS

In this set of experiments, our focus turns to the robustness and generalization capabilities in the
face of novel fluid flow scenarios. Initially trained on a dataset comprising trajectories of fluid flows
around a blunt object at Reynolds numbers Re = [100, 250, 500], we consider zero-shot predictions
on qualitatively different flows with Reynolds numbers Renew = [175, 300, 400]. Without additional
training on these new systems, we assess adaptability and accuracy in capturing the dynamics of
unseen scenarios.

To evaluate performance, we present the summed MSE averaged across the test set, providing an
overall measure of prediction accuracy. Additionally, we introduce the RMSE distribution over time,
offering insights into the temporal dynamics of prediction errors.

Furthermore, we include a comparative analysis between the ground truth and predicted trajectories for
each Reynolds number, offering a visual representation of the model’s predictive capabilities in these
novel conditions. As anticipated, we observe an increase in error for systems with unseen Reynolds
numbers. However, even in these challenging scenarios, LaDID shows reasonable predictions in the
observation space. These results underscore LaDID’s adaptability and potential for generalization.

(a) Normalized MSE

(b) RMSE distribution over time

Figure P.1: Transfer Learning: Test errors of various vortex street test cases characterized by a
changing Reynolds number.

44

Published as a conference paper at ICLR 2024

(a) Re = 100

(b) Re = 175

(c) Re = 250

(d) Re = 300

(e) Re = 400

(f) Re = 500

Figure P.2: Transfer Learning: Visualization of test trajectories of different vortex street test cases
characterized by a changing Reynolds number.

Q LICENSES BASELINES

• MSVI (Iakovlev et al., 2023): MIT license
• ODE2VAE (Yildiz et al., 2019): The license status is unclear.
• NDP (Norcliffe et al., 2021): MIT license
• ODE-RNN (Rubanova et al., 2019): MIT license

45

	Introduction
	Related Work
	Problem statement and conceptual outline
	Methods
	Model, inference and prediction

	Experimental set-up
	Results
	Benchmark comparisons to state-of-the-art models for ODE and PDE problems
	Generalizing to novel systems via few-shot learning

	Conclusions
	Extended related work
	Details of risk-based framing
	Model, approximate posterior and ELBO
	ELBO computation and forecasting
	Model architecture
	Training details and hyperparameters
	Details on comparison baselines
	Inference and training times
	Dataset details
	Swinging pendulum
	Swinging double pendulum
	Reaction-diffusion equation
	Two-dimensional wave equation
	Navier-Stokes equations
	Flow around a blunt body

	Detailed description of experiments
	Additional results
	Swinging single pendulum
	Swinging double pendulum
	Lambda-omega reaction-diffusion system
	Two-dimensional wave equation
	Navier-Stokes equations
	Lattice Boltzmann equations
	Restricted access to training trajectories
	Investigating realization-specific and realization-invariant information

	Regular and irregular time grids
	Robustness to input noise and appearance modification
	Robustness to input noise
	Robustness to modification in the input appearance

	Ablations - Effects of relevant network modules
	Generalization under interventions
	Additional transfer learning results
	Licenses Baselines

