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Abstract. This work proposes a structured prior integrated within the
Bayesian framework for variable flip angle T1 mapping. The proposed
structured prior combines total variation (TV) and ℓ1 norm functions,
and is proven to be a proper prior. The TV–ℓ1 prior promotes sparsity in
the spatial gradients of the parametric maps, resulting in smooth and co-
herent image reconstructions. Embedding the prior within the Bayesian
framework enables uncertainty quantification for both T1 and M0 esti-
mates. Posterior inference was performed using the No-U-Turn Sampler
(NUTS). The proposed method is compared to maximum likelihood esti-
mation and to alternative Bayesian models that employ uniform, Laplace,
and bounded TV priors. The results show that the proposed method
yields narrower probability density functions, indicating reduced uncer-
tainty. The proposed method also achieves lower variance and exhibits a
smaller negative bias, reflecting more stable estimates. Overall, the inte-
gration of TV and ℓ1 functions in a prior within the Bayesian framework
enhances spatial coherence in T1 mapping and delivers improved uncer-
tainty quantification, making it a promising tool for robust quantitative
MRI parameter estimation.

Keywords: Bayesian inference · T1 Mapping · Uncertainty quantifica-
tion · Structured prior · Total variation.

1 Introduction

Magnetic resonance imaging (MRI) is a widely used medical imaging modal-
ity [20]. Compared to other imaging modalities, such as ultrasound or computed
tomography (CT), MRI provides superior soft tissue contrast and eliminates
the risks of exposure to ionizing radiation [18]. Despite its advantages, conven-
tional MRI primarily provides qualitative images based on contrast differences,
which limits its sensitivity to subtle or early pathological changes [12]. Quanti-
tative MRI (qMRI), on the other hand, provides measurements in standardized
physical units that allow for objective and reproducible tissue characterization,
extending the capabilities of conventional MRI [9].

T1 mapping is a qMRI technique that measures the longitudinal or spin-
lattice relaxation time. T1 mapping has, e.g., been used to uncover pathological
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processes in the brain [8] and myocardial tissue characterization [2]. Multiple T1

mapping pulse sequences have been proposed [25], with inversion recovery widely
regarded as the gold standard due to its accuracy [22]. Alternative methods have
been proposed to improve efficiency, such as the Look-Locker (LL) technique [16],
the Modified Look-Locker Inversion Recovery (MOLLI) sequence [17], and the
Variable Flip Angle (VFA) method [4].

However, these T1 mapping techniques are typically limited by long acquisi-
tion times and introduce systematic errors in the T1 estimation [21]. An effective
approach to accelerate qMRI is by undersampling the k-space, which results in
underdetermined equation systems [23]. Compressed sensing that combines reg-
ularization, e.g., based on low-rank constraint and/or total variation (TV), has
been used to solve such ill-posed inverse problems. Zhang et al. [27] proposed a
local low-rank constraint for VFA T1 mapping, as well as multi-echo spin-echo
T2 mapping. Pandey et al. [19] proposed joint TV-based reconstruction for accel-
erated qMRI reconstruction. Le et al. [13] used recurrent neural networks with
a cyclic, model-based loss for cardiac MOLLI T1 mapping.

Uncertainty quantification is essential in medical image analysis, where es-
timated parameters often guide clinical decisions. The aforementioned meth-
ods follow a frequentist framework, estimating parameters via maximum like-
lihood—typically under Gaussian noise assumptions—reducing to (regularized)
least-squares problems. While maximum likelihood estimation (MLE) offers com-
putational efficiency and point estimates, it lacks measures of confidence or relia-
bility, which are essential in risk-sensitive clinical contexts. In contrast, Bayesian
inference provides a full posterior distribution over parameters and predictions,
enabling quantification of confidence (credibility) and uncertainty. For instance,
Beirinckx et al. [3] used a Bayesian approach with a TV prior for T1 and T2 map-
ping super-resolution. Löfstedt et al. [15] developed a Bayesian method based
on a bounded TV prior for T1 mapping that both reduced and estimated uncer-
tainty in parameter maps. Huang et al. [11] proposed a Bayesian formulation that
models the Wavelet coefficients of VFA-multi-echo images as Laplace distributed
to achieve model-based T1, T ∗

2 , and proton density map reconstructions.
TV regularization encourages smooth solutions by promoting sparsity in the

spatial gradients of the coefficients, effectively favoring homogeneous parameter
maps and sharp edges, and suppressing small, noisy fluctuations. In this work, we
propose to combine both TV and the ℓ1 norm to construct a proper prior. This
approach retains the smoothness-promoting properties of TV while allowing full
Bayesian inference with a well-defined posterior distribution. We applied this
approach to VFA T1 mapping within the Bayesian framework and evaluated the
performance compared to MLE and alternative Bayesian models using uniform,
Laplace, and bounded TV priors, defined in detail in Section 3.

2 Proposed Bayesian Model

VFA T1 mapping quantifies T1 values from repeated scans at different excitation
flip angles [1]. The measured signal intensity S is a function of the longitudinal
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relaxation time T1, repetition time TR, flip angle αi for i = 1, 2, . . . , I, and the
equilibrium longitudinal magnetization M0, which is determined by the proton
density and other factors [5]. The VFA signal model is defined as [4],

Sθ(αi) = M0
1− e−

TR
T1

1− cos (αi) e
−TR

T1

sinαi, (1)

where θ = (T1,M0) contains the parameters T1 and M0, which vary for tissues
with different properties. However, residual unspoiled transverse magnetization
may yield discrepancies between measured signal intensities and the theoretical
values modeled in Equation (1) [1].

The measurement in the n-th pixel is thus modeled as,

y(i)n = Sθn(αi) + ϵ(i)n , (2)

where the additive noise term ϵ
(i)
n is assumed to follow an independent zero-mean

Normal distribution with variance σ2, i.e., ϵ
(i)
n ∼ N (0, σ2). The parameters,

θn = (T1,M0), represents the tissue properties in voxel n, with n = 1, 2, . . . , N ,
for N the total number of voxels.

Assuming the measurements y
(i)
n ∼ N (Sθn(αi), σ

2) are independent, the
probability of observing the data given the model parameters, i.e., the likeli-
hood function, is

p(y | θ, σ2) = (
√
2πσ2)−NI exp

(
− 1

2σ2

I∑
i=1

N∑
n=1

(
y(i)n − Sθn(αi)

)2)
. (3)

2.1 A Structured Prior Based on Total Variation

Neighboring voxels often correspond to the same underlying tissue, which sug-
gests that the T1 and M0 maps are likely to exhibit spatial smoothness. To
encourage this, we consider a structured prior based on TV. A TV prior can be
defined using the Boltzmann distribution (Gibbs distribution) as

pTV(x) =
1

Z
e−λTV(x), (4)

where Z is a normalizing constant and x is an image. Specifically, this work
considered the anisotropic TV [6], expressed as,

TV(x) = ∥Dx̄∥1,
where x̄ ∈ RN denotes a vectorized (flattened) version of x, and D is a linear
difference operator, that computes finite differences to approximate the spatial
gradient in x.

The distribution in Equation (4) results in high probabilities for sparse spatial
changes in the model parameters. However, the normalizing constant, Z, diverges
due to invariance in the direction of 1, i.e., for constant images. To address
this, we introduce an additional ℓ1 norm to the TV function. We show that the
resulting combination defines a proper prior distribution.
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Lemma 1. Let TVµ be a modified TV function, such that

TVµ(x) = TV(x) + µ∥x̄∥1, (5)

where µ > 0 and ∥ · ∥1 is the ℓ1 norm, Then∫
e−λTVµ(x) dx̄ < ∞,

for all λ > 0.

Proof. For any x we have that λ∥Dx̄∥1 ≥ 0, so∫
e−λTVµ(x) dx̄ =

∫
RN

e−λ∥Dx̄∥1−λµ∥x̄∥1 dx̄

≤
∫
RN

e−λµ∥x̄∥1 dx̄

=

N∏
n=1

∫ ∞

−∞
e−λµ|xn| dxn

=

(
2

λµ

)N

< ∞.

Lemma 1 guarantees the existence of a finite normalizing constant, which allows
us to formulate the following theorem.

Theorem 1. The modified prior,

pTVµ
(x) =

1

Z
e−λTVµ(x),

is a proper prior.

2.2 Posterior Distribution for VFA T1 mapping

A Bayesian model combines a likelihood, such as that in Equation (3), with
a prior distribution, that accounts for available prior information or any other
prior beliefs. Specifically, a Bayesian model assigns a posterior distribution over
the parameters, constructed using a likelihood and a prior, as

p(θ | y) = p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ ∝ p(y | θ)p(θ), (6)

where p(θ | y), p(y | θ) and p(θ) are the posterior distribution, the likelihood,
and the prior distribution, respectively. The proportionality is in the parameters,
θ. Since it is typically impossible or at least computationally intractable to
compute the integral in the denominator, an efficient approach is to draw samples
from the posterior using Markov chain Monte Carlo (MCMC) algorithms [10].
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Using the modified TVµ prior and a half-normal prior with a hyper-parameter
σϵ over σ, we define the posterior as,

pTVµ(θ, σ | y) ∝ p(y | θ, σ)p(θ, σ) = p(y | θ, σ)pTVµ(θ)p(σ)

=
(
σ
√
2π
)−NI

exp

(
− 1

2σ2

I∑
i=1

N∑
n=1

(
y(i)n − Sθn(αi)

)2)

·
∏

θ∈(T1,M0)

1

Zθ
e−λTVµ(θ) ·

√
2

σϵ
√
π
exp

(
− σ2

2σ2
ϵ

)
,

and thus sample from this posterior distribution using MCMC.

3 Experiments

We evaluated the TVµ prior for VFA T1 mapping within a Bayesian framework,
comparing its performance to that of MLE and to alternative Bayesian models
using uniform, Laplace, and bounded TV priors. The hyperparameters λ and µ
in the TVµ prior were selected either by assigning hyperpriors—referred to as the
Hierarchical TVµ model—or through hyperparameter tuning, denoted simply as
the TVµ model.

When using hyper-priors, the λ, µ should be non-negative and were therefore
both assigned to be Γ (3, 1) distributed. When the hyper-parameters were found
using a grid search, λ and µ were both independently explored over a prede-
fined set of values, namely over {10−3, 10−2, 10−1, 1, 10, 102, 103}. During the
search, the best parameter combination was selected as the one that maximized
the widely applicable information criterion (WAIC) [26], which estimates the
expected log point-wise predictive density.

MLE formulates the estimation as a voxel-wise optimization problem that
minimizes the least squares error (over a feasible parameter set), expressed as,

θ̂ML = argmax
θ

I∑
i=1

N∑
n=1

− 1

2σ2

(
y(i)n − Sθn(αi)

)2 −NI log(σ
√
2π)

subject to 0 ≤ θn ≤ 50, ∀n
(7)

which was solved using the L-BFGS-B algorithm [14]. The baseline priors used
in the experiments were Uniform(0, 50), Laplace(4, 1), and a bounded TV prior.
Specifically, the uniform prior serves as a noninformative baseline, assigning
equal probability to all T1 values within [0, 50] seconds—a conservative range
covering physiologically plausible values. The Laplace prior acts as a shrinkage
prior and keeps values from growing unrealistically. The bounded TV prior was
introduced in [15] and is defined as

pbTV(x) = pTV(x) puni(x | L,H), with L = 0 and H = 50,

where the uniform prior, puni(x | L,H), imposes hard bounds on the parameters’
range. The hyper-parameter λ included in the bounded TV prior was selected
through hyper-parameter search over the same set of values as for the TVµ prior.
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The baselines and the proposed model with the TVµ prior were developed
using PyMC 5.15.03. Samples were drawn from the posterior distributions us-
ing the No-U-Turn Sampler (NUTS) algorithm [10]. Four independent Markov
chains were run. Convergence was evaluated by inspecting trace plots and calcu-
lating the R̂ statistic, which assesses the consistency between and within chains
to confirm reliable mixing and sampling [7]. Specifically, each chain generates
2,000 samples after discarding 2,000 burn-in iterations.

The data used in the experiments were brain MR images simulated using
Equations 1 and 2 with TR = 6.8 ms, TE = 2.1 ms, and flip angles α ∈ {2◦,
4◦, 11◦, 13◦, 15◦}. The ground truth values of T1 and M0 were generated from
the BrainWeb phantom4 using Hero Imaging5. The parameter maps generated
had a matrix size of 256× 256 and a voxel size of 0.98× 0.98× 2.00 mm3. The
added noise was complex circular Gaussian noise following the work by Löfstedt
et al. [15].

Results from different methods were evaluated by analyzing the estimated
probability density functions (PDFs), as well as the bias and variance of the
posterior samples. Specifically, PDFs were estimated voxel-wise using kernel den-
sity estimation with Gaussian kernels [24], based on 8,000 posterior samples per
method. The uncertainty associated with each estimate was assessed by comput-
ing the credible interval spanning two standard deviations around the posterior
mean. Bias and variance were also used for comparisons, and were estimated as,

Bias =
1

S

S∑
s=1

(xs − x), (8)

Varance =
1

S − 1

S∑
s=1

(xs − µ̂)
2
, with µ̂ =

1

S

S∑
s=1

xs, (9)

where x denotes the ground truth and xs is the s-th posterior sample.

4 Results and Discussion

This section presents the estimated PDFs of the T1 values for six representative
voxels, as illustrated in Figure 1, along with corresponding summary statistics
reported in Table 1. The bias and variance for each method, computed using
Equations 8 and 9, are visualized in Figure 2 as spatial maps and in Figure 3 as
comparison metrics across all voxels.

Figure 1 illustrates that all Bayesian methods produce posterior PDFs that
are generally centered around the ground truth (GT) T1 values. However, the
spread and peakedness of these distributions vary across methods. The proposed
TVµ model yields notably narrower PDFs, reflecting increased confidence and

3 https://www.pymc.io
4 https://brainweb.bic.mni.mcgill.ca/brainweb/
5 https://www.heroimaging.com/
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Fig. 1. PDFs of T1 values at selected voxels (highlighted in red on the anatomical image,
top-left). The estimated PDFs from different Bayesian methods are shown, along with
the MLEs and corresponding GT T1 values for comparison.

Methods Voxel 1 Voxel 2 Voxel 3 Voxel 4 Voxel 5 Voxel 6

GT 0.84 0.74 0.84 4.05 4.05 0.74
MLE 0.78 0.82 0.80 43.70 3.98 0.78

U(0, 50) 0.79, 0.79 ± 0.14 0.81, 0.82 ± 0.10 0.80, 0.81 ± 0.13 3.62, 3.83 ± 1.20 3.96, 4.20 ± 1.33 0.78, 0.79 ± 0.09
Laplace(4, 1) 0.80, 0.80 ± 0.13 0.81, 0.82 ± 0.09 0.83, 0.82 ± 0.13 3.78, 3.69 ± 0.93 3.96, 3.91 ± 0.93 0.78, 0.78 ± 0.09
Bounded TV 0.80, 0.80 ± 0.12 0.81, 0.81 ± 0.08 0.82, 0.82 ± 0.12 3.90, 3.91 ± 0.76 4.05, 4.08 ± 0.81 0.78, 0.78 ± 0.08

Hierarchical TVµ 0.79, 0.79 ± 0.13 0.80, 0.81 ± 0.09 0.82, 0.81 ± 0.13 3.72, 3.71 ± 0.87 3.87, 3.97 ± 0.90 0.78, 0.78 ± 0.09
TVµ 0.80, 0.80 ± 0.11 0.80, 0.80 ± 0.08 0.82, 0.82 ± 0.11 3.91, 3.93 ± 0.57 3.92, 3.94 ± 0.60 0.77, 0.77 ± 0.08

Table 1. Quatitative comparison of results for each highlighted voxel in Figure 1. The
table lists the GT T1 values and the MLEs, alongside the results from different Bayesian
methods, as indicated in the left column. For each Bayesian model, the table reports
the posterior mode, the posterior mean, and the associated uncertainty expressed as
two standard deviations around the mean, in the format “mode,mean ± 2σ”. All T1

values are reported in seconds (s).

GT MLE U(0, 50) Laplace(4,1) Bounded TV Hierarchical TVµ TVµ
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Fig. 2. Comparison of T1, bias, and variance maps from different methods. The first
row displays the GT T1 map, the MLE, and the average T1 maps obtained from each
Bayesian model, as labeled at the top. The second row presents the corresponding bias
maps, while the third row shows the variance maps. Each subplot includes a zoomed-in
view of the central brain region in the top-right corner for detailed comparison.
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Fig. 3. Bias and variance analysis for the Bayesian methods. Unlike Figure 2, which
presents spatially resolved maps, this figure illustrates the relationship between GT
T1 values and the corresponding bias or variance of the estimates. The horizontal axis
shows the GT T1 values, while the vertical axis indicates the bias/variance observed at
each voxel. The orange curves represent the average bias/variance for a certain GT T1

value. The red-shaded area contains 95% of the data points.

reduced uncertainty in the T1 estimates compared to the baseline models. This
qualitative observation is further substantiated by the quantitative results in
Table 1, where the TVµ model demonstrates a substantial improvement in es-
timation accuracy, effectively reducing both bias and credible interval widths
across the selected voxels.

Figure 2 shows that the average T1 maps obtained using the TVµ prior
appear smoother than those obtained with other priors. This observation is con-
sistent with the bias maps. Additionally, the variance maps indicate a lower
variance when using the TVµ prior. Figure 3 confirms that samples from the
TVµ model exhibit a smaller negative bias, particularly at higher T1 values,
than other methods. Moreover, the proposed method consistently shows signifi-
cantly lower variance. This trend is also evident in Table 1.

5 Conclusion

This work proposed a structured prior based on the combination of the TV and
ℓ1 functions. The proposed TVµ prior was proven to be a proper prior and was
used for VFA T1 mapping in the Bayesian framework, which enabled uncertainty
quantification in the reconstructions. The proposed method was compared to
MLE and alternative Bayesian models. The results show that the proposed model
provides smoother results and narrower credible intervals. As the evaluation was
conducted exclusively on synthetic data, the results may not fully capture the
complexity of clinical imaging scenarios. Future work will involve validating the
method on real datasets and investigating the impact of hyperpriors on model
performance.
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