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Abstract

We study a primal-dual (PD) reinforcement learning (RL) algorithm for online con-
strained Markov decision processes (CMDPs). Despite its widespread practical use,
the existing theoretical literature on PD-RL algorithms for this problem only pro-
vides sublinear regret guarantees and fails to ensure convergence to optimal policies.
In this paper, we introduce a novel policy gradient PD algorithm with uniform prob-
ably approximate correctness (Uniform-PAC) guarantees, simultaneously ensuring
convergence to optimal policies, sublinear regret, and polynomial sample complexity
for any target accuracy. Notably, this represents the first Uniform-PAC algorithm for
the online CMDP problem. In addition to the theoretical guarantees, we empirically
demonstrate in a simple CMDP that our algorithm converges to optimal policies,
while baseline algorithms exhibit oscillatory performance and constraint violation.

1 Introduction

This paper studies a primal-dual (PD) reinforcement learning (RL) algorithm for the online
constrained Markov decision processes (CMDP) problem (Efroni et al., 2020), where the agent
explores the environment with the aim of identifying an optimal policy that maximizes the return
while satisfying certain constraints. The CMDP framework is particularly promising for designing
policies in safety-critical decision-making applications, such as autonomous driving with collision
avoidance (He et al., 2023b; Gu et al., 2023) and controlling thermal power plants with temperature
satisfaction (Zhan et al., 2022). Please refer to Gu et al. (2022) for more examples.

Two primary approaches for the online CMDP problem are the linear programming (LP) approach
and the PD approach. While the LP approach is common in theoretical literature (Efroni et al.,
2020; Liu et al., 2021a; Bura et al., 2022; HasanzadeZonuzy et al., 2021; Zheng & Ratliff, 2020),
the PD approach is more popular in practice due to its adaptability to high-dimensional problem
settings. The PD approach typically involves iterative policy gradient ascent over the Lagrange
function, making it amenable to recent deep policy gradient RL algorithms (Achiam et al., 2017;
Tessler et al., 2018; Wang et al., 2022; Le et al., 2019; Russel et al., 2020).

Despite its practical importance, theoretical results of PD RL algorithms are currently scarce.
Existing results on PD RL for online CMDPs are limited to sublinear regret guarantees (Efroni et al.,
2020; Liu et al., 2021a; Wei et al., 2021; Ding et al., 2021; Ghosh et al., 2023). However, sublinear
regret guarantees only bound the integral of the magnitude of mistakes during the training, and
they cannot ensure the performance of the last-iterate policy up to arbitrary accuracy (Dann et al.,
2017). An alternative performance measure is (ε, δ)-PAC, which ensures that the last-iterate policy’s
performance is sufficiently close to an optimal policy. However, (ε, δ)-PAC has only been established
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Table 1: Regret bound and (ε, δ)-PAC bound comparison of online CMDP algorithms. The “LP” and “PD” rows
correspond to linear programming and primal-dual algorithms, respectively. The “Optimality” and “VIO” columns
correspond to the bounds for optimality gap and constraint violation, respectively. In the “VIO” column, “same” means
that the bound for constraint violation is the same as that for the optimality gap, and “const” means that the bound
does not depend on K. In the “Regret” column, the subscript “ +” means that the bound is concerning to strong regret
measures rather than weak measures (see Appendix B). If the “LIC?” column is “✓”, the algorithm is guaranteed the
last-iterate convergence (LIC) to optimal policies. This table is presented under single constraint settings (i.e., N = 1)
for a fair comparison. The algorithms are: OptCMDP, OptPrimalDual-CMDP (Efroni et al., 2020), OptPress-LP,
OptPress-PrimalDual (Liu et al., 2021a), DOPE (Bura et al., 2022), OPDOP (Ding et al., 2021), Triple-Q (Wei et al.,
2021), Online-CRL (HasanzadeZonuzy et al., 2021), and Regularized Primal-Dual Algorithm (Müller et al., 2024).
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(

XA
1
2 H2K

1
2

)
+

same+ - - ✗
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(

b−1
gapX

3
2 A

1
2 H3K

1
2

)
const - - ✗

Triple-Q Õ
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(

b−2
gapX

1
2 A

1
4 H

9
2 K0.93

)
+

same+ - - ✗
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(

b−1
gapX

1
2 A

2
7 H4K

6
7

)
+

same+ Õ
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for LP algorithms in the online CMDP problem (HasanzadeZonuzy et al., 2021). Furthermore,
it is known that both sublinear regret and (ε, δ)-PAC are insufficient to ensure convergence to
optimal policies (Dann et al., 2017). CMDP algorithms lacking convergence guarantees may yield
policies exhibiting oscillatory performance and constraint violation, those are undesirable in practical
applications due to their potential impact on system stability and safety (Moskovitz et al., 2023).

Numerous studies have tackled the convergence problem of PD algorithms for CMDPs, but most
of them are limited to cases without exploration. Even in the absence of exploration, these studies
possess unfavorable limitations for application, such as optimization over occupancy measures 1 rather
than policies (Moskovitz et al., 2023), providing convergence guarantees only through an average of
past returns or a mixture of past policies (Li et al., 2021; Chen et al., 2021b; Ding et al., 2020; Liu et al.,
2021b), and converging to a biased solution with fixed ε > 0 (Ying et al., 2022; Ding et al., 2023). More
related works can be found in Appendix A. In light of these limitations, a natural question then arises:

Is it possible to design a policy gradient PD algorithm for online CMDPs that ensures the triplet of
sublinear regret, (ε, δ)-PAC, and convergence to optimal policies?

We provide an affirmative response by proposing a novel policy gradient PD algorithm for online
CMDPs with a uniform probably approximate correctness (Uniform-PAC) guarantee (Dann et al.,
2017), called Uniform-PAC Optimistic Regularized Policy Gradient Primal-Dual (UOpt-RPGPD).
Uniform-PAC, a stronger performance metric than sublinear regret and (ε, δ)-PAC, ensures not only
convergence to optimal policies but also sublinear regret and polynomial sample complexity for any
target accuracy. Notably, UOpt-RPGPD is the first-ever online CMDP algorithm with Uniform-PAC
guarantees for both LP and PD approaches. Furthermore, UOpt-RPGPD ensures strong regret
guarantees whereas most of the existing PD algorithms (Efroni et al., 2020; Ding et al., 2021;
Liu et al., 2021a; Wei et al., 2021) provide weaker guarantees as relying on the error cancellation

1An occupancy measure of a policy denotes the set of distributions over the state-action space generated by executing
the policy in the environment. See Equation (12) for the definition.
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technique (see Remark B.3 in Appendix B for details). The very recent Müller et al. (2024) provides
a PD algorithm with a strong regret guarantee but they cannot be Uniform-PAC due to their bonus
design (see Appendix C). Table 1 compares the theoretical guarantees of online CMDP algorithms.

Finally, we empirically demonstrate the effectiveness of the three techniques through an ablation
study on a simple CMDP. Our results illustrate that UOpt-RPGPD converges to optimal policies,
while other baseline algorithms fail to converge or even exhibit oscillatory behaviors.

2 Preliminary

We use the shorthand R+ := [0, ∞). The set of probability distributions over a set S is denoted
by ∆(S). For a positive integer N ∈ N, we define [N ] := {1, . . . , N}. All scalar operators and
inequalities should be understood point-wise when used for vectors and functions. For example,
for functions f, g, z : X → R, we express “f(x) ≥ g(x) for all x” as f ≥ g and “z(x) = f(x) + g(x)
for all x” as z = f + g. For p1, p2 ∈ ∆(A) with p1, p2 > 0, we define the KL divergence between
p1 and p2 as KL[p1, p2] :=

∑
a∈A p1(a) ln p1(a)

p2(a) . For x, a, b ∈ R, we define a clipping function such
that clip(x, a, b) = min{max{x, a}, b}. For two positive sequences {an} and {bn} with n = 1, 2, . . .,
we write an = O (bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all
n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors.

Constrained Markov Decision Processes. Let N ∈ {0, 1, . . .} be the number of constraints.
A finite-horizon and episodic CMDP is defined as a tuple (X, A, H, P, r, b, x1), where X denotes
the finite state space with size X, A denotes the finite action space with size A, H ∈ N denotes
the horizon of an episode, b ∈ [0, H]N denotes the constrained threshold vector, where bn is the
threshold scalar for the n-th constraint, x1 denotes the fixed initial state, and r := {rn}n∈{0}∪[N ]
denotes the set of reward functions, where rn

· (·, ·) : [H] × X × A → [0, 1] denotes the n th reward
function, and rn

h(x, a) is the n-th reward when taking an action a at a state x in step h. The
reward function r0 is for the objective to optimize and the reward functions {r1, . . . , rN } are for
constraints. P·(· | ·, ·) : [H] × X × A → ∆(X) denotes the transition probability kernel, where Ph(y |
x, a) is the state transition probability to a new state y from a state x when taking an action a
in step h. With an abuse of notation, for a function V : X → R, let Ph be an operator such that
(PhV )(x, a) =

∑
y∈X V (y)Ph(y | x, a).

Policy and Regularized Value Functions. A policy is defined as π·(· | ·) : [H] × X → ∆(A),
where πh(a | x) denotes the probability of taking an action a at state x in step h. For a policy π with
π > 0, we denote ln π·(·|·) : [H]×X×A → R as the function such that ln πh(x|a) = ln(πh(a | x)). The
set of all the policies is denoted as Π. With an abuse of notation, for any policy π and Q : X×A → R,
let πh be an operator such that (πhQ)(x) =

∑
a∈A πh(a | x)Q(x, a).

For a policy π, transition kernel P , reward function r·(·, ·) : [H] × X × A → R, and an entropy
coefficient τ ≥ 0, let V π

· [P, r, τ ](·) : [H] × X → R be the regularized value function such that

V π
h [P, r, τ ](x) = E

[
H∑

i=h

rh(xi, ai) − τ ln πh(ai | xi)

∣∣∣∣∣ xh = x, π, P

]
,

where the expectation is taken over all possible trajectories, in which ah ∼ πh(· |xh) and xh+1 ∼ Ph(· |
xh, ah). We set V π

H+1[P, r, τ ](x) = 0 for all x ∈ X. We define the regularized action-value function
Qπ

· [P, r, τ ](·, ·) : [H] × X × A → R such that

Qπ
h[P, r, τ ](x, a) = rh(x, a) +

(
PhV π

h+1[P, r, τ ]
)
(x, a) .

We set Qπ
H+1[P, r, τ ](x, a) = 0 for all (x, a) ∈ X × A. When τ = 0, we omit τ from notations. For

example, we write Qπ
h[P, r] := Qπ

h[P, r, 0].
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2.1 Learning Problem Setup

We consider an algorithm operating an agent that repeatedly interacts with a CMDP
(X, A, H, P, r, b, x1) by playing a sequence of policies π1, π2, . . . , where πk ∈ Π denotes the pol-
icy that the agent follows in the k-th episode. Each episode k starts from the fixed initial state
x1. At the beginning of each time-step h ∈ [H] in an episode k, the agent observes a state xk

h and
chooses an action ak

h, which is sampled from πk
h(· | xk

h). The next state is sampled as xk
h+1 ∼ Ph(· |

xk
h, ak

h). The learning agent lacks prior knowledge of the transition kernel P . We assume that the set
of reward functions r is known for simplicity, but extending our algorithm to unknown stochastic
rewards poses no real difficulty (Azar et al., 2017; Ayoub et al., 2020).

Let Πsafe :=
{

π
∣∣minn∈[N ](V π

1 [P, rn](x1) − bn) ≥ 0
}

be a set of policies that do not violate the
constraints. An optimal policy π⋆, which maximizes the non-regularized return while satisfying all
the constraints, is defined as

π⋆ ∈ arg max
π∈Πsafe

V π
1 [P, r0](x1) .

Finally, we assume the following slater condition. This assumption is mild as it holds when there
exists some strictly feasible policy (Efroni et al., 2020; Liu et al., 2021a; Paternain et al., 2019).
Assumption 2.1 (Slater Point). There exists an unknown policy πsafe ∈ Πsafe such that
V πsafe

1 [P, rn](x1) = bn
safe, where bn

safe > bn for all n ∈ [N ]. Let bgap := minn∈[N ](bn
safe − bn).

2.2 Performance Measure

Let ∆k
opt := V π⋆

1 [P, r0](x1) − V πk

1 [P, r0](x1) and ∆k
vio := maxn∈[N ] bn − V πk

1 [P, rn](x1) be the
temporal optimality gap and constraint violation, respectively. Let ∆k

opt+ := max
{

∆k
opt, 0

}
and

∆k
vio+ := max

{
∆k

vio, 0
}

be their positively clipped values. For any K ∈ N and ε > 0, the following
notations are useful to introduce the performance measures:

Mε
opt :=

∞∑
k=1

1{∆k
opt > ε}, and Mε

vio :=
∞∑

k=1
1{∆k

vio > ε} . (1)

Mε
opt and Mε

vio measure the count of mistakes that exceed ε > 0 related to optimality gap and
constraint violation, respectively.

The performance of an online CMDP algorithm is typically measured by either the high-probability
regret (Efroni et al., 2020; Liu et al., 2021a; Bura et al., 2022) or (ε, δ)-PAC (HasanzadeZonuzy
et al., 2021; Zeng et al., 2022; Vaswani et al., 2022; Bennett et al., 2023). Their formal definitions
are deferred to Appendix B. Since neither sublinear regret nor (ε, δ)-PAC guarantees convergence
to optimal policies (Dann et al., 2017), we consider the following Uniform-PAC measure to evaluate
the algorithm’s performance.
Definition 2.2 (Uniform-PAC). Given ε > 0 and δ ∈ (0, 1], let FUPAC(· · ·) be shorthand for
FUPAC(X, A, H, N, 1/bgap, 1/ε, ln(1/δ)), where FUPAC is a real-valued function polynomial in all its
arguments. An algorithm achieves Uniform-PAC for δ > 0 if there exists FUPAC(· · · ) such that

P
(
∃ε > 0 such that Mε

opt > FUPAC(· · · ) ∨ Mε
vio > FUPAC(· · · )

)
≤ δ .

Theorem 2.3. Suppose an algorithm is Uniform-PAC for δ with FUPAC(· · · ) = Õ(Cε−α), where
C, α > 0 are constants independent of ε. Then, the algorithm

1. converges with high probability: P
(
limk→∞ ∆k

opt = 0 ∧ limk→∞ ∆k
vio = 0

)
≥ 1 − δ.

2. is (ε, δ)-PAC with sample complexity FUPAC(· · · ) for all ε > 0.

3. achieves Õ
(

C
1
α K1− 1

α

)
regret with probability at least 1 − δ, where K ∈ N.

The first and the second claims are direct applications of Theorem 3 from Dann et al. (2017). The
third claim follows from Lemma F.2 in Appendix F.
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Algorithm 1 UOpt-RPGPD
Input: δ ∈ (0, 1], αη ∈ (0, 1], ατ ∈ (0, 1]
Set λ1 := 0. Set π1

h(a | x) := 1
A ∀(x, a, h) ∈ [H] × X × A

Set ηk := (k + 3)−αη and τk := (k + 3)−ατ

for k = 1, 2, 3, . . . do
Compute bonus βk,δ by Equation (3)
Q̃k,0, Ṽ k,0 := RegularizedPolicyEvaluation(r0, βk,δ, P

k
, πk, τk)

Q̃k,n, Ṽ k,n := RegularizedPolicyEvaluation(rn, βk,δ, P
k
, πk, 0) for all n ∈ [N ]

Q̃k := Q̃k,0 +
∑N

n=1 λk,nQ̃k,n

Compute πk+1 by Equation (4) and compute λk+1 by Equation (5)
Rollout πk+1 and then update nk and P

k

end for

3 The UOpt-RPGPD Algorithm

This section provides our Uniform-PAC Optimistic Regularized Policy Gradient Primal-Dual
(UOpt-RPGPD) algorithm. Our UOpt-RPGPD relies on the combination of three key techniques: (i)
the Lagrange function regularized by policy entropy and Lagrange multipliers, (ii) Uniform-PAC
exploration bonus, and (iii) careful adjustment of the regularization coefficient and learning rate.
We present the pseudo-code of our algorithm in Algorithm 1. It is important to remark that existing
online CMDP algorithms are designed only for a fixed iteration length K ∈ [N ] (Efroni et al., 2020;
Liu et al., 2021a; Bura et al., 2022; HasanzadeZonuzy et al., 2021; Zheng & Ratliff, 2020; Wei et al.,
2021; 2022; Ding et al., 2021; Amani et al., 2021; Ghosh et al., 2023). In contrast, our algorithm
works with an infinite episode length.

Regularized Lagrange function. UOpt-RPGPD is designed to solve the following regularized
Lagrange function in Equation (2) while exploring the environment. For a policy π ∈ Π, Lagrange
multipliers λ ∈ RN

+ , and an entropy coefficient τ ≥ 0, we define the regularized Lagrange function as

Lτ (π, λ) := V π
1
[
P, r0, τ

]
(x1) +

N∑
n=1

λn(V π
1 [P, rn](x1) − bn) + τ

2 ∥λ∥2
2 . (2)

Let π⋆
τ := arg maxπ∈Π minλ∈RN

+
Lτ (π, λ) and λ⋆

τ := arg minλ∈RN
+

maxπ∈Π Lτ (π, λ). Note that (π⋆
τ , λ⋆

τ )
is the unique saddle point of Lτ as the following lemma shows (the proof is provided in Appendix G).
Lemma 3.1. For any τ ∈ (0, ∞), there exists a unique saddle point (π⋆

τ , λ⋆
τ ) ∈ Π × RN

+ such that

Lτ (π⋆
τ , λ) ≥ Lτ (π⋆

τ , λ⋆
τ ) ≥ Lτ (π, λ⋆

τ ) ∀(π, λ) ∈ Π × RN
+ .

The regularized Lagrange technique is derived from the work by Ding et al. (2023), wherein the
consideration of exploration is absent. The introduced regularization affords us to upper bound the
value of

∑H
h=1

∑
x∈X w

π⋆
τ

h [P ](x)KL[π⋆
τk,h(· | x), πk

h(· | x)] by a decreasing function on k. Intuitively,
it implies that the pair (πk, λk) converges to (π⋆

τk
, λ⋆

τk
), leading to the decreasing optimality gap

and constraint violation of UOpt-RPGPD. The detailed upper bound is provided in Appendix H.4.

Uniform-PAC Exploration Bonus. The second technique in our algorithm is the use
of the Uniform-PAC bonus function. Let llnp(x) := ln(ln(max{x, e})). Let nk

h(x, a) :=∑k
i=1 1

(
xi

h = x, ai
h = a

)
be the number of times a pair (x, a) was observed at step h before episode

k + 1. We define the empirical estimation of the transition model as

P k
h (y | x, a) :=

∑k
i=1 1

(
xi

h = x, ai
h = a, xi

h+1 = y
)

nk
h(x, a) ∨ 1

.
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Algorithm 2 RegularizedPolicyEvaluation
Input: r, β, P , π ∈ Π, τ ∈ R+
Set ṼH+1 := 0
for h = H, · · · 1 do

Q̃h := min
{

rh + (1 + τ ln A)Hβh + P hṼh+1, (1 + τ ln A)(H − h + 1)1
}

Ṽh := πh

(
Q̃h − τ ln πh

)
end for
Return: Q̃, Ṽ

Given a failure probability δ, we define the bonus function βk,δ
· (·, ·) : [H] × X × A → R such that

βk,δ
h (x, a) =

∑
y∈X

√
4P

k

h(y | x, a)ϕ + 5ϕ2 where ϕ :=

√
2 llnp

(
2nk

h(x, a)
)

+ 2 ln(48X2AHδ−1)
nk

h(x, a) ∨ 1
. (3)

Using the bonus βk,δ, UOpt-RPGPD computes the regularized optimistic value functions Q̃k,0, Ṽ k,0,
and the non-regularized optimistic value functions

{
Q̃k,n, Ṽ k,n

}
n∈[N ]

by a regularized policy

evaluation (Algorithm 2).

Our bonus design is inspired by the work of Dann et al. (2017). While naive bonus functions (e.g.,
Efroni et al. (2020)) scale to

√
ln(K)/nk

h(x, a) with a fixed iteration length K, our bonus scales to√
ln ln(nk

h(x, a))/nk
h(x, a). This allows the bonus to diminish sufficiently quickly even when K → ∞,

in contrast to existing bonuses that can increase when K becomes large.

Adjust Regularization Coefficients and Learning Rate. The combination of the above two
techniques may not be sufficient for Uniform-PAC because it can introduce a biased solution due to
the regularization in Equation (2). To overcome this issue, we decrease the regularization coefficient
and the policy learning rate as ηk := k−αη and τk := k−ατ with 0 < ατ < 0.5 < αη < 1. We remark
that employing naive learning rates such as ηk = τk ∝ 1/k or ηk = τk ∝ 1/

√
k, as seen in prior works

like Efroni et al. (2020), fails to guarantee Uniform-PAC. To attain Uniform-PAC, we applied careful
sequential analysis techniques akin to those utilized in bandit studies (e.g., Cai et al. (2023)) to our
primal-dual CMDP algorithm.

Coupled with this adjustment technique, UOpt-RPGPD updates the policy and the Lagrange
multipliers based on the regularized Lagrange objective (Equation (2)) with the Uniform-PAC bonus
(Equation (3)). Specifically, it updates the policy through an entropy-regularized natural policy
gradient ascent (Cen et al., 2022) as

πk+1
h (· | x) ∝

(
πk

h(· | x)
)(1−ηkτk) exp

(
ηkQ̃k

h(x, ·)
)

(4)

for all (x, h) ∈ X × [H], where Q̃k is defined as Q̃k := Q̃k,0 +
∑N

n=1 λk,nQ̃k,n.

UOpt-RPGPD then updates the Lagrange multipliers through a projected regularized gradient descent,
given by

λk+1,n := clip
[
Λ, 0,

H(1 + τk ln A)
bgap

]
∀n ∈ [N ] (5)

where Λ := λk,n + ηk

(
bn − Ṽ k,n

1 (x1) − τkλk,n
)

and λk,n denotes the n-th value of λk.

4 Uniform-PAC Analysis

Our UOpt-RPGPD achieves the following Uniform-PAC guarantee.
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Figure 1: Comparison of the algorithms described in Section 5. Left: optimality gap (∆k
opt) and

Right: constraint violation (∆k
vio).

Theorem 4.1. Suppose that Assumption 2.1 holds. Set the regularization coefficient ατ and the
learning rate αη such that 0 < ατ < 0.5 < αη < 1 and αη + ατ < 1. Then, for δ > 0, UOpt-RPGPD
achieves Uniform-PAC for FUPAC(· · · ) such that

FUPAC(· · · ) = Õ
((

b−2
gap(1 + N)XA

1
2 H7ε−2

) 1
αη−0.5

)
︸ ︷︷ ︸

(i)

+ Õ
((

b−1
gapHε−1) 1

ατ

)
︸ ︷︷ ︸

(ii)

+
(

24
1 − (αη + ατ ) ln 12

1 − (αη + ατ )

) 1
1−(αη+ατ )

︸ ︷︷ ︸
(iii)

.

(6)

The proof is provided in Appendix H. Note that this bound depends on the values of ατ and αη.
Below, we establish a concrete bound by setting the values of ατ and αη, focusing on the order of ε.
The first term (i) decreases as αη approaches 1. However, the conditions 0 < ατ < 0.5 < αη < 1 and
αη + ατ < 1 restrict αη from nearing 1 due to the second term (ii) and the third term (iii). This
tradeoff makes achieving Õ(ε−6) in Equation (6) unattainable.

Hence, we select values for αη and ατ to make the order of ε in Equation (6) to be Õ(ε−7). The
ensuing corollary is presented as follows.
Corollary 4.2. Suppose that Assumption 2.1 holds. With αη = 11

14 and ατ = 1
7 , UOpt-RPGPD

achieves Uniform-PAC for δ > 0 for FUPAC such that

FUPAC(· · · ) = Õ
(

b−7
gap(1 + N)

7
2 X

7
2 A2H25ε−7

)
.

Therefore, with probability at least 1 − δ, UOpt-RPGPD converges to optimal policies and has regret

Õ
(

b−1
gap(1 + N) 1

2 X
1
2 A

2
7 H4K

6
7

)
.

In Corollary 4.2, the convergence and regret bound follows immediately from Theorem 2.3. To
our knowledge, UOpt-RPGPD is the first RL algorithm for online CMDPs that achieves the triplet
of sublinear regret, (ε, δ)-PAC, and convergence to optimal policies.

5 Experiments

This section describes the experimental behavior of our UOpt-RPGPD on a simple CMDP. We
randomly instantiate a CMDP with X = 30, A = 3, H = 10, and N = 1. The construction of a
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CMDP is based on a tabular (C)MDP experiment conducted by Dann et al. (2017) and Moskovitz
et al. (2023). A detailed description of the experimental setup can be found in Appendix D.

In this experiment, we compare UOpt-RPGPD with OptPrimalDual-CMDP from Efroni et al. (2020) as
it adheres to the naive primal-dual framework. The detail of the algorithm is provided in Appendix C.
Furthermore, to empirically validate the efficacy of the three techniques introduced in UOpt-RPGPD as
expounded in Section 3, we compare: (i) UOpt-RPGPD without regularization technique (i.e., τk = 0),
(ii) UOpt-RPGPD with the naive bonus function by Equation (10), and (iii) UOpt-RPGPD with fixed
ηk and τk. We call the three algorithms No-regularization, No-UPAC-bonus, and No-adjustment,
respectively.

Figure 1 compares algorithms and presents their optimality gap (Left) and constraint violation (Right).
The results are from a single run of the same randomly generated CMDP, yet it is illustrative. We
reran the experiment with different random seeds, consistently obtaining qualitatively similar results.

Compared to other algorithms, our UOpt-RPGPD quickly converges to optimal policies. Algorithms
without regularization, such as No-regularization and OptPrimalDual-CMDP, fail to converge and
even display oscillatory behaviors. No-UPAC-bonus results in slow learning and No-adjustment
converges to a biased solution. These results highlight the importance of the three techniques
introduced in UOpt-RPGPD.

6 Conclusion

We introduced UOpt-RPGPD, the first primal-dual RL algorithm for online CMDPs with Uniform-PAC
guarantees. UOpt-RPGPD ensures simultaneous convergence to optimal policies, sublinear regret, and
polynomial sample complexity for any target accuracy. In addition to the theoretical analysis, we
empirically demonstrated that our algorithm successfully converges to optimal policies in a simple
CMDP, whereas the existing primal-dual algorithm exhibits oscillatory behavior.

Limitation and Future Work. Although UOpt-RPGPD achieves Uniform-PAC, it may violate
constraints during exploration. The development of a zero-violation algorithm is currently a significant
topic in the study on online CMDP (Liu et al., 2021a; Bura et al., 2022; Wei et al., 2021). We defer
the extension of our results to a zero-violation algorithm as part of our future work.

Another future research involves the extension to function approximation. A theoretical study of the
primal-dual approach with function approximation could reveal opportunities for improvement in exist-
ing practical primal-dual deep RL algorithms. While there are CMDP algorithms with linear function
approximation (Ding et al., 2021; Amani et al., 2021; Ghosh et al., 2023), none establish Uniform-PAC
guarantees when using function approximation. The extension to function approximation, such as lin-
ear MDPs (Zhou et al., 2021; Hu et al., 2022; He et al., 2023a) or general function approximation (Jiang
et al., 2017; Du et al., 2021; Jin et al., 2021), represents another promising direction for future work.

Finally, our Uniform-PAC bound may not be tight. Compared to the Õ(
√

K) regret bound by
the LP algorithm Efroni et al. (2020), our Corollary 4.2 provides Õ(K 6

7 ) regret bound. It remains
unclear whether this is an artifact of our analysis or a genuine limitation of Uniform-PAC primal-dual
algorithms. We leave this topic as a future work.

Broader Impact Statement

This paper presents work whose goal is to advance the field of RL theory. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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A Related Work

Online CMDP Algorithms. The seminal work by Efroni et al. (2020) provides both LP and
primal-dual algorithms with sublinear regret. Liu et al. (2021a) and Bura et al. (2022) extend this work,
achieving sublinear performance regret with a zero constraint violation guarantee during learning. Wei
et al. (2021) propose a model-free primal-dual algorithm with sublinear regret, and Wei et al. (2022)
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extend it to the average-reward setting. Ding et al. (2021), Amani et al. (2021), and Ghosh et al.
(2023) propose CMDP algorithms with linear function approximation and sublinear regret guarantees.
While the sublinear regret guarantee is common in online CMDPs, even an optimal regret algorithm
may still make infinitely many mistakes of arbitrary quality (e.g., Theorem 2 in Dann et al. (2017)).

While numerous online CMDP algorithms guarantee sublinear regret, those equipped with (ε, δ)-PAC
guarantees remain scarce. HasanzadeZonuzy et al. (2021) present an LP algorithm with an (ε, δ)-PAC
guarantee for online CMDPs but do not include a primal-dual algorithm. Zeng et al. (2022) and
Vaswani et al. (2022) offer primal-dual algorithms with (ε, δ)-PAC guarantees for infinite horizon
CMDPs. However, Zeng et al. (2022) assume that the MDP is ergodic, and Vaswani et al. (2022)
assume access to a simulator, both potentially obscuring the challenges associated with exploration.
Bennett et al. (2023) provide an (ε, δ)-PAC algorithm for the problem wherein the state-action-wise
constraint signal is given by binary feedback. Although these (ε, δ)-PAC algorithms ensure the
performance of the last-iterate policy, they share a common limitation: they halt learning once an
ε-optimal policy is found. This implies that existing (ε, δ)-PAC CMDP algorithms never converge to
optimal policies since they may make infinitely many mistakes with accuracy ε/2 (Dann et al., 2017).

Convergence Guarantees of Primal-dual Algorithms without Exploration. Numerous
studies have struggled to design primal-dual algorithms that provide convergence guarantees even in
non-exploration settings.

One fundamental approach involves utilizing the average of model parameters. By exploiting
the convexity of CMDPs concerning the occupancy measure (Altman, 1999), a straightforward
primal-dual method over the occupancy measure ensures that the average of the updated occupancy
measures throughout training converges to an optimal solution (Zahavy et al., 2021). However,
optimization over the occupancy measure becomes impractical when the state space is large. To
address this challenge, Miryoosefi et al. (2019), Chen et al. (2021b), Li et al. (2021), and Liu et al.
(2021b) propose policy optimization algorithms. While they offer certain performance guarantees for
the average of past policies, there is no assurance for the last-iterate policy. This poses a challenge
in cases where policy averaging is impractical, as in deep RL applications. Ding et al. (2020) provide
a policy gradient algorithm independent of policy averaging, but their performance is guaranteed
only for the average of past performances, not for the last-iterate policy.

Rather than the average-based approach, certain studies try to ensure the performance of the
last-iterate policy. Moskovitz et al. (2023) propose a primal-dual algorithm with a last-iterate
convergence guarantee. However, their optimization is over the occupancy measure, and furthermore,
they do not provide non-asymptotic performance guarantees. Ying et al. (2022) achieve a
non-asymptotic performance guarantee by employing a policy-entropy regularized Lagrange function,
and Ding et al. (2023) present an extended algorithm regularized by both policy-entropy and
Lagrange multipliers. However, their algorithms converge to a biased solution rather than the
optimal solution due to the regularization.

B Other Performance Measures

We use the following notations to define the high-probability regret.

RK
opt+ :=

K∑
k=1

∆k
opt+, RK

vio+ :=
K∑

k=1
∆k

vio+, (7)

Intuitively, RK
opt+ and RK

vio+ quantify the cumulative optimality gap and cumulative constraint
violation up to episode K ∈ N, respectively.
Definition B.1 (Regret). For an episode length K ∈ N and a failure probability δ ∈ (0, 1], let
FHPR(· · ·) be shorthand for FHPR(X, A, H, K, N, 1/bgap, ln(1/δ)), where FHPR is a real-valued
function polynomial in all its arguments. An algorithm achieves FHPR(· · · ) regret for δ if there
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exists FHPR(· · · ) such that

P
(
RK

opt+ > FHPR(· · · ) ∨ RK
vio+ > FHPR(· · · )

)
≤ δ ,

where P is for the randomness of πk due to the stochastic interaction to the CMDP. We say that
the regret is sublinear if FHPR(· · · ) is sublinear with respect to K.
Definition B.2 ((ε, δ)-PAC). For an admissible accuracy ε > 0, let FPAC(· · ·) be shorthand for
FPAC(X, A, H, N, 1/bgap, 1/ε, ln(1/δ)), where FPAC is a real-valued function polynomial in all its
arguments. For ε > 0 and δ > 0, an algorithm achieves (ε, δ)-PAC if there exists FPAC(· · · ) such that

P
(
Mε

opt > FPAC(· · · ) ∨ Mε
vio > FPAC(· · · )

)
≤ δ .

Remark B.3 (Weak Regret Measures). Rather than RK
opt+ and RK

vio+, the regret of an algorithm
is often measured by the following RK

opt and RK
vio (Efroni et al., 2020; Liu et al., 2021a; Bura et al.,

2022; Wei et al., 2021):

RK
opt :=

K∑
k=1

∆k
opt , RK

vio :=
K∑

k=1
∆k

vio . (8)

Note that ∆k
opt and ∆k

vio might be negative since policy πk might violate the constraints. The
negative temporal value allows an algorithm to cancel the past positive regret with the future
negative regret. On the other hand, such error cancellations are not permitted in RK

opt+ and RK
vio+.

Hence, regret guarantees for RK
opt+ and RK

vio+ are stronger than those for RK
opt and RK

vio in the sense
that guarantees on the former imply guarantees on the latter, but not vice versa.

C Naive Primal-Dual RL for Online CMDPs

Algorithm 3 Naive Primal-Dual RL for online CMDPs
Input: δ ∈ (0, 1] and iteration length K ∈ N
Set λ1 := 0. Set π1

h(a | x) := 1
A ∀(x, a, h) ∈ [H] × X × A

for k = 1, . . . K do
Compute bonus βk,δ by Equation (10)
Compute L̃k(π, λ) by Equation (11)
Compute πk+1 by a policy optimization over L̃k(·, λk)
Compute λk+1 by a gradient descent over L̃k(πk, ·)
Rollout πk+1 and then update nk and P

k

end for

For a better understanding of our proposed algorithm in Section 3, this section introduces the naive
PD-RL algorithm for online CMDPs under Assumption 2.1 (e.g., Efroni et al. (2020); Liu et al.
(2021a); Wei et al. (2021)). We provide the pseudocode of the algorithm as Algorithm 3.

Let L : Π×RN
+ → R be the Lagrange function such that for a policy π ∈ Π and its multipliers λ ∈ RN

+ ,

L(π, λ) := V π
1
[
P, r0](x1) +

N∑
n=1

λn(V π
1 [P, rn](x1) − bn) . (9)

Let λ⋆ ∈ arg minλ∈RN
+

maxπ∈Π L(π, λ). The central idea of the naive algorithm involves exploring
the environment to identify a pair (π⋆, λ⋆), which is a saddle point of L (Altman, 1999). In other
words, the pair satisfies: L(π⋆, λ) ≥ L(π⋆, λ⋆) ≥ L(π, λ⋆) for any (π, λ) ∈ Π × RN

+ .

The key to encouraging exploration is adhering to the optimism-in-the-face-of-uncertainty principle,
which propels the agent with an optimistic policy. Given a failure probability δ ∈ (0, 1] and
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a fixed iteration length K ∈ N, the principle is typically realized by introducing a bonus term
βk,δ

· (·, ·) : [H] × X × A → R into the reward function, where βk,δ takes the form of

βk,δ
h (x, a) ≈

ln
(
Kδ−1)

nk
h(x, a) ∨ 1

+

√
ln(Kδ−1)

nk
h(x, a) ∨ 1

. (10)

Here, we highlight the terms dependent on nk
h(x, a), K, and δ and conceal all other relevant

terms for simplicity. Using P
k and βk,δ, the algorithm computes an optimistic Lagrange function

L̃k : Π × RN
+ → R such that

L̃k(π, λ) = V π
1

[
P

k
, r0 + βk,δ

]
(x1) +

N∑
n=1

λn
(

V π
1

[
P

k
, rn + βk,δ

]
(x1) − bn

)
. (11)

Let πk ∈ Π and λk ∈ RN
+ be the policy and the Lagrange multipliers at the episode k, respectively.

The algorithm computes πk+1 by a policy optimization method, such as policy gradient, with the
aim of maximizing L̃k(·, λk). Subsequently, it computes λk+1 by a projected gradient descent to
minimize L̃k(πk, ·). The naive algorithm iterates this update scheme until the episode reaches K.

Challenges towards a Uniform-PAC Algorithm. While the naive algorithm attains sublinear
regret (Efroni et al., 2020; Liu et al., 2021a; Wei et al., 2021), it may fall short in delivering
Uniform-PAC guarantees, encountering two primary challenges.

Firstly, even in the absence of exploration, i.e., P
k = P for all k, finding a saddle point (π⋆, λ⋆)

of the Lagrange function in Equation (9) is non-trivial. Even if we have λk = λ⋆ and an associated
maximum policy πk+1 ∈ arg maxπ∈Π L(π, λ⋆), it is not guaranteed that πk+1 represents an optimal
policy. In some CMDPs where feasible policies in Πsafe must be stochastic (Altman, 1999), the
maximization can provide a deterministic πk+1 that cannot be feasible. Hence, ensuring that (πk, λk)
will be close to (π⋆, λ⋆) poses a potential challenge.

Secondly, the naive bonus function in Equation (10) might not be adequate for achieving a uniform
PAC guarantee. The inclusion of ln(K) in the bonus function implies that the algorithm attempts
each action in each state infinitely often, potentially leading to an infinite number of mistakes (Dann
et al., 2017).

D Experiment Details

Environment Construction. We instantiated a CMDP with X = 30, A = 3, H = 10, and N = 1,
employing a construction strategy akin to that of Dann et al. (2017). For all x, a, h, the transition
probabilities Ph(· | x, a) were independently sampled from Dirichlet(0.1, . . . , 0.1). This transition
probability kernel is concentrated yet encompasses non-deterministic transition probabilities.

The reward values for the objective r0
h(x, a) are set to 0 with probability 0.5 and uniformly chosen at

random from [0, 1] otherwise. The reward values for the constraint r1
h(x, a) are set to 1 − r0

h(x, a).
Thus, the constraint and objective are in conflict in this CMDP. This aligns with the CMDP
construction strategy proposed by Moskovitz et al. (2023) to generate a straightforward CMDP
where a naive primal-dual algorithm might struggle to converge.

The initial state x0 is randomly chosen from X and fixed during the training. The constraint threshold
is set as b1 = 1

2 maxπ∈Π V π
1 [P, r1](x1).

Algorithm Implementations. We modify the OptPrimalDual-CMDP algorithm from Efroni et al.
(2020) for the setting where the reward functions r are known.

All the algorithms use δ = 0.1. For OptPrimalDual-CMDP and No-UPAC-bonus that use the naive
bonus function (Equation (10)), we set K = 105. For UOpt-RPGPD and No-UPAC-bonus, we set
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αη = 0.53 and ατ = 0.4, that do not contradict to Theorem 4.1. For No-regularization, we set
αη = 0.53 and τk = 0. For No-adjustment, we set τk = ηk = 0.1.

Finally, we scale the bonus functions of all the algorithms by a factor of 10−3 to observe the algorithms’
behavior in relatively smaller episodes.

E Notation for Proofs

For any h ∈ [H], let wπ
· [P ] : [H] → ∆(X × A) be the occupancy measure of π in P . In other words,

for any (h, x, a) ∈ [H] × X × A, it satisfies

wπ
h [P ](x, a) = P(xh = x, ah = a | π, P ) . (12)

With an abuse of notation, we write wπ
h [P ](x) =

∑
a∈A wπ

h [P ](x, a).

Let Ṽ k
· (·) : [H] × X → R be the regularized optimistic value function such that:

Ṽ k
h (x) = Ṽ k,0

h (x) +
N∑

n=1
λk,nṼ k,n

h (x) ∀(h, x) ∈ [H] × X , (13)

where Ṽ k;n for n ∈ {0} ∪ [N ] are defined in Algorithm 1.

We use the shorthand Hent := H(1 + ln A). Finally, for a set of positive values {an}N
n=1, we

write x = polylog (a1, . . . , aN ) if there exists an absolute constant C > 0 and α > 0 such that
x ≤ C

(∑N
n=1 ln an

)α

holds.

F Useful Lemmas

F.1 RL Useful Lemmas

Lemma F.1 (Lemma 34 in Efroni et al. (2020)). Let π, π′ be two policies, P be a transition model,
and g be a reward function. Let Ṽ π

· (·) : [H] × X → R be a function such that Ṽ π
h = πhQ̃h for all

h ∈ [H], where we defined Q̃·(·, ·) : [H] × X × A → R. Then,

Ṽ π
1 (x1) − V π′

1 [P ; g](x1)

=
H∑

h=1

∑
x∈X

wπ′

h [P ](x)
∑
a∈A

(π′
h(a | x) − πh(a | x))Q̃h(x, a)

+
H∑

h=1

∑
x,a∈X×A

wπ′

h [P ](x, a)
(

Q̃h (x, a) − gh (x, a) −
(

P ′
hṼ π

h+1

)
(x, a)

)
Lemma F.2 (Error to regret). Consider two sequences of real values x1, x2, . . . and y1, y2, . . . .
Assume that 0 ≤ xi, yi ≤ u for any i ∈ N with u > 0. For any ε ∈ (0, u], assume that

xk − yk ≤ ε

on all k ∈ N except at most ⌈
Z1

εα

(
ln
(

Z2

ε

))β
⌉

times, where α ≥ 1, β ≥ 0, Z1 > 0, and Z2 ≥ max{u, e} are constants that do not depend on ε. We
also assume that Z2 ≥ eZ

1
α
1 . Then, for any K ∈ N, it holds that

K∑
k=1

max{xk − yk, 0} ≤ K1− 1
α Z

1
α
1 polylog(K, Z1, Z2, u) .
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Proof. This proof follows the strategy of Theorem A.1 in Dann et al. (2017).

Let z :=
(

K
Z1

) 1
α with K ∈ N. Due to the assumption that Z2 ≥ eZ

1
α
1 , we have

Z2z = Z2

Z
1
α
1

K
1
α ≥ Z2

Z
1
α
1

≥ e . (14)

Also, let g(ε) := Z1
εα

(
ln
(

Z2
ε

))β and εmin := (ln(Z2z))
β
α

z . Note that g(ε) is well-defined since ln Z2−ln ε ≥
0 due to Z2 ≥ max{u, e}. Then, it holds that

g(εmin) = Z1

εα
min

(
ln Z2

εmin

)β

= Z1
zα

(ln(Z2z))β

ln(Z2z) − β

α
ln ln(Z2z)︸ ︷︷ ︸

≥0 due to Equation (14)


β

≤ Z1
zα

(ln(Z2z))β
(ln(Z2z))β = Z1zα = K .

Since g(ε) is monotonically decreasing for ε > 0, due to g(εmin) ≤ K, we have g(ε) ≤ K for any
ε ∈ [εmin, u]. Using the above results with xk − yk ≤ u for any k, it holds that

K∑
k=1

max{xk − yk, 0} ≤
∫ u

0
g(ε) ≤ Kεmin +

∫ u

εmin

g(ε)dε .

For the intuition of the above inequality, see Figure 3 in Dann et al. (2017). We are going to bound
both terms in the right-hand side separately.

For the first term, we have

Kεmin = K

(
ln Z2 + 1

α ln K − 1
α ln Z1

) β
α(

K
Z1

) 1
α

= K1− 1
α Z

1
α
1 polylog(K, Z1, Z2) .

For the second term, we have∫ u

εmin

g(ε)dε =
∫ u

εmin

Z1

εα

(
ln
(

Z2

ε

))β

dε ≤ Z1

(
ln
(

Z2

ε

))β ∫ u

εmin

ε−αdε .

When α = 1, we have

Z1

(
ln
(

Z2

ε

))β ∫ u

εmin

ε−1dε = Z1

(
ln
(

Z2

ε

))β

(ln u − ln εmin) = Z1 polylog(K, Z1, Z2, u) .

When α > 1, we have

Z1

(
ln
(

Z2

ε

))β ∫ u

εmin

ε−αdε ≤ Z1

α − 1

(
ln
(

Z2

ε

))β

ε1−α
min = K1− 1

α Z
1
α
1 polylog(K, Z1, Z2) ,

where we used ε1−α
min = K1− 1

α Z
1
α −1
1 polylog(K, Z1, Z2).

Therefore, we conclude that

K∑
k=1

max{xk − yk, 0} ≤ K1− 1
α Z

1
α
1 polylog(K, Z1, Z2, u) .
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Lemma F.3. Suppose that Assumption 2.1 holds. For any τ ∈ (0, ∞) and (π, λ) ∈ Π × RN
+ , it holds

that

V π
1 [P, r0](x1) +

N∑
n=1

λ⋆,n
τ (V π

1 [P, rn](x1) − bn) ≤ V
π⋆

τ
1 [P, r0](x1) +

N∑
n=1

λ⋆,n
τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

+ τHent ,

and
N∑

n=1
λ⋆,n

τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

≤
N∑

n=1
λn
(

V
π⋆

τ
1 [P, rn](x1) − bn

)
+ τ

2 ∥λ∥2
2 .

Proof. Lτ (π, λ⋆
τ ) ≤ Lτ (π⋆

τ , λ⋆
τ ) due to Lemma 3.1 indicates that

V π
1
[
P, r0](x1) +

N∑
n=1

λ⋆,n
τ (V π

1 [P, rn](x1) − bn) + τ

2 ∥λ⋆
τ ∥2

2

≤V π
1
[
P, r0, τ

]
(x1) +

N∑
n=1

λ⋆,n
τ (V π

1 [P, rn](x1) − bn) + τ

2 ∥λ⋆
τ ∥2

2

≤V
π⋆

τ
1
[
P, r0](x1) + τHent +

N∑
n=1

λ⋆,n
τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

+ τ

2 ∥λ⋆
τ ∥2

2 .

The first claim holds by rearranging the above inequality.

Also, Lτ (π⋆
τ , λ⋆

τ ) ≤ Lτ (π⋆
τ , λ) due to Lemma 3.1 indicates that

V
π⋆

τ
1
[
P, r0, τ

]
(x1) +

N∑
n=1

λ⋆,n
τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

≤V
π⋆

τ
1
[
P, r0, τ

]
(x1) +

N∑
n=1

λ⋆,n
τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

+ τ

2 ∥λ⋆
τ ∥2

2

≤V
π⋆

τ
1
[
P, r0, τ

]
(x1) +

N∑
n=1

λn
(

V
π⋆

τ
1 [P, rn](x1) − bn

)
+ τ

2 ∥λ∥2
2 .

The second claim holds by rearranging the above inequality.

Lemma F.4 (Properties of λ⋆
τ and π⋆

τ ). Suppose that 0 ≤ τ ≤ 1. Under Assumption 2.1, we have
N∑

n=1
λ⋆,n

τ ≤ Hent

bgap
and V

π⋆
τ

1 [P, rn](x1) − bn ≥ −τHent

bgap
∀n ∈ [N ] .

Proof. We first assume τ > 0. Since λ⋆,n
τ = arg minλn∈R+ λn

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

+ τ
2 (λn)2, λ⋆,n

τ

can be analytically computed as 1
τ

max
{

bn − V
π⋆

τ
1 [P, rn](x1), 0

}
for every n ∈ [N ]. Thus, from

Lemma 3.1 and Assumption 2.1,

Lτ (πsafe, λ⋆
τ ) = V πsafe

1 [P, r0, τ ](x1) +
N∑

n=1
λ⋆,n

τ (V πsafe
1 [P, rn](x1) − bn)︸ ︷︷ ︸

≥bgap by Assumption 2.1

≤ V
π⋆

τ
1 [P, r0, τ ](x1) +

N∑
n=1

λ⋆,n
τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

︸ ︷︷ ︸
≤0 from the analytical expression of λ⋆,n

τ

≤ V
π⋆

τ
1 [P, r0, τ ](x1) .

(15)

By rearrangement,

bgap

N∑
n=1

λ⋆,n
τ ≤ V

π⋆
τ

1 [P, r0, τ ](x1) − V πsafe
1 [P, r0, τ ](x1) ≤ H(1 + τ ln A) ≤ Hent ,
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which concludes the proof of the first claim for τ > 0. Furthermore, as λ⋆,n
τ ≤

∑N
m=1 λ⋆;m

τ for any
n ∈ [N ],

bn − V
π⋆

τ
1 [P, rn](x1) ≤ max

{
bn − V

π⋆
τ

1 [P, rn](x1), 0
}

= τλ⋆,n
τ ≤ τHent

bgap
,

which concludes the proof of the second claim for τ > 0.

The first and second claims when τ = 0 obviously hold. Indeed, V
π⋆

0
1 [P, rn](x1) − bn ≥ 0 for

every n ∈ [N ] by definition, and thus, λ⋆,n
τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

= 0 when τ = 0, which provides
Equation (15).

Lemma F.5 (KL to optimality gap). Let τ > 0 and π ∈ Π with π > 0. Assume that Assumption 2.1
holds and

H∑
h=1

∑
x∈X

w
π⋆

τ

h [P ](x)KL[π⋆
τ,h(· | x), πh(· | x)] ≤ ε .

Then, π satisfies
V π⋆

1 [P, r](x1) − V π
1 [P, r](x1) ≤ τHent + H

√
2Hε

and bn − V π
1 [P, rn](x1) ≤ τHent

bgap
+ H

√
2Hε ∀n ∈ [N ] .

Proof. Note that

V π⋆

1 [P, r](x1) − V π
1 [P, r](x1) = V π⋆

1 [P, r](x1) − V
π⋆

τ
1 [P, r](x1)︸ ︷︷ ︸

(i)

+ V
π⋆

τ
1 [P, r](x1) − V π

1 [P, r](x1)︸ ︷︷ ︸
(ii)

.

For the term (ii), we have

(ii) = V
π⋆

τ
1 [P, r](x1) − V π

1 [P, r](x1)
(a)

≤ H

H∑
h=1

∑
x∈X

w
π⋆

τ

h [P ](x)
∥∥π⋆

τ,h(· | x) − πh(· | x)
∥∥

1

(b)

≤ H

H∑
h=1

√∑
x∈X

w
π⋆

τ

h [P ](x)
∥∥∥π⋆

τ,h(· | x) − πh(· | x)
∥∥∥2

1

(c)

≤ H

H∑
h=1

√
2
∑
x∈X

w
π⋆

τ

h [P ](x)KL[π⋆
τ,h(· | x), πh(· | x)]

(d)

≤ H

√√√√2H

H∑
h=1

∑
x∈X

w
π⋆

τ

h [P ](x)KL[π⋆
τ,h(· | x), πh(· | x)] ≤ H

√
2Hε ,

where (a) is due to Lemma F.1 (b) uses the fact that (E[x])2 ≤ E[x2], (c) uses the Pinsker’s inequality,
and (d) uses Lemma F.10.

For the term (i), the second claim of Lemma F.3 with λ = 0 indicates that∑N
n=1 λ⋆,n

τ

(
V

π⋆
τ

1 [P, rn](x1) − bn
)

≤ 0 . Then, the first claim of Lemma F.3 with π = π⋆ indicates
that

(i) = V π⋆

1 [P, r0](x1) − V
π⋆

τ
1 [P, r0](x1) ≤ τHent .

Therefore, the optimality gap is bounded as

V π⋆

1 [P, r0](x1) − V πk

1 [P, r0](x1) ≤ τHent + H
√

2Hε .

This concludes the proof of the first claim.
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For the second claim, for any n ∈ [N ], we have

bn − V πk

1 [P, rn](x1) = bn − V
π⋆

τk
1 [P, rn](x1)︸ ︷︷ ︸

(i)

+ V
π⋆

τk
1 [P, rn](x1) − V πk

1 [P, rn](x1)︸ ︷︷ ︸
(ii)

.

By taking a similar transformation of the first claim, the term (ii) can be bounded by (ii) ≤ H
√

2Hε.
Furthermore, Lemma F.4 indicates that (i) ≤ τHent

bgap
. Therefore, we have

bn − V πk

1 [P, rn](x1) ≤ τHent

bgap
+ H

√
2Hε ∀n ∈ [N ] .

F.2 Other Useful Lemmas

Lemma F.6. For x ∈ ∆(A) with |A| = A and 0 < c ≤ 1, it holds that∑
a∈A

(x(a))c(ln x(a))2 ≤ A1−c

(
2
c

− 1 + ln A

)2
.

Proof. Note that the second derivative of f(x) := xc
(
1 − 2

c + ln x
)2 is

∂2

∂x2 f(x) = xc−2

ln(x)

(c − 1)c ln(x)︸ ︷︷ ︸
≥0

+ 2(c − 1)c + 2︸ ︷︷ ︸
≥0

+ (c − 1)c

 ≤ 0

Therefore, f(x) is a concave function.

Accordingly,∑
a∈A

(x(a))c(ln x(a))2 ≤
∑
a∈A

(x(a))c

(
1 − 2

c
+ ln x(a)

)2
≤ A1−c

(
2
c

− 1 + ln A

)2
,

where the second inequality is due to Jensen’s inequality.

Lemma F.7 (Lemma 12 in Cai et al. (2023)). For x ∈ (0, 1) and y > 0, we have x1−y − x ≤
−yx1−y ln x.
Lemma F.8 (Inequality for Mirror Descent). For ℓ : A → R, x ∈ ∆(A), 1 ≥ η > 0, and 1 ≥ κ ≥ 0,
let

x′ = arg min
x̃∈∆(A)

{∑
a∈A

x̃(a)(ℓ(a) + κ ln x(a)) + 1
η

KL[x̃, x]
}

Then, for any u ∈ ∆(A), it holds that∑
a∈A

(x(a) − u(a))(ℓ(a) + κ ln x(a)) ≤ KL[u, x] − KL[u, x′]
η

+ 2ηκ2(1 + ln A)2 + 2η
∑

a

x(a)(ℓ(a))2
.

Proof. By the standard analysis of online mirror descent (e.g., Lemma 14 from Chen et al. (2021a)),
we have∑

a∈A

(xa − ua)(ℓa + τ ln xa) ≤ KL[u, x] − KL[u, x′]
η

+
∑
a∈A

(xa − x′
a)(ℓa + τ ln xa) − 1

η
KL[x′, x]︸ ︷︷ ︸

♣

.

(16)
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We will bound ♣. For two positive vectors x, y ∈ RA such that x(a), y(a) > 0, define a mapping
ϕ such that,

ϕ(x, y) =
∑

a

x(a)(ln x(a) − ln y(a)) − x(a) + y(a) .

Note that when x, y ∈ ∆(A), ϕ(x, y) is equivalent to KL[x, y]. Then, for any g ∈ RA and x′ ∈ ∆(A),∑
a∈A

−x′(a)g(a) − 1
η

KL[x′, x]

=
∑
a∈A

−x′(a)g(a) − 1
η

ϕ(x′, x)

≤ max
y∈RA

∑
a∈A

−y(a)g(a) − 1
η

ϕ(y, x)

= max
y∈RA

∑
a∈A

−y(a)g(a) − 1
η

∑
a

y(a)(ln y(a) − ln x(a) − 1) + x(a)

= max
y∈RA

f(y) − 1
η

∑
a∈A

x(a) ,

where we defined a function f : y ∈ RA 7→
∑

a∈A −y(a)g(a) − 1
η

∑
a y(a)(ln y(a) − ln x(a) − 1). Note

that f(y) is a strongly concave function and has a unique maxima. Let y⋆ := arg maxy∈RA f(y). It
is easy to verify that y⋆ satisfies

y⋆(a) = x(a) exp(−ηg(a)) .

As ln y⋆(a) = ln x(a) − ηg(a), we have
∑

a∈A −y⋆(a)g(a) = 1
η

∑
a∈A y⋆(a)(ln y⋆(a) − ln x(a)) and∑

a∈A x(a)g(a) = 1
η

∑
a∈A x(a)(ln y⋆(a) − ln x(a)). Therefore,∑

a∈A

(x(a) − y⋆(a))g(a) − 1
η

ϕ(y⋆, x) = 1
η

ϕ(x, y⋆)

= 1
η

∑
a∈A

x(a)(ln x(a) − ln y⋆(a)) − x(a) + y⋆(a)

= 1
η

∑
a∈A

x(a)(ηg(a) − 1 + exp(−ηg(a)))

(a)

≤ 1
η

∑
a∈A

x(a)(ηg(a))2 = η
∑
a∈A

x(a)(g(a))2
,

(17)

where (a) uses exp(−z) − 1 + z ≤ z2 for z ≥ −1.

Then, by setting g(a) = ℓ(a) + τ ln x(a) in Equation (17), ♣ can be bounded as

♣ =
∑
a∈A

(x(a) − x′(a))(ℓ(a) + τ ln x(a)) − 1
η

KL[x′, x]

=
∑
a∈A

(x(a) − x′(a))(ℓ(a) + τ ln x(a)) − 1
η

ϕ(x′, x)

≤ max
y∈RA

∑
a∈A

(x(a) − y(a))(ℓ(a) + τ ln x(a)) − 1
η

ϕ(y, x)

≤η
∑
a∈A

x(a)(ℓ(a) + τ ln x(a))2

(a)

≤2η
∑
a∈A

x(a)(ℓ(a))2 + 2ητ2
∑
a∈A

x(a)(ln x(a))2

(b)

≤2η
∑
a∈A

x(a)(ℓ(a))2 + 2ητ2(1 + ln A)2
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where (a) uses (a + b)2 ≤ 2a2 + 2b2 and (b) uses Lemma F.6.

The claim holds by plugging this result to Equation (16).

Lemma F.9 (Inequality for Gradient Descent). For some u, λ ∈ R+, η > 0, and ℓ ∈ R, let
λ′ := clip[λ + ηℓ, 0, u] . Then, for any λ⋆ ∈ [0, u],

ℓ(λ − λ⋆) ≤ 1
2η

(
(λ − λ⋆)2 − (λ′ − λ⋆)2)+ η

2 ℓ2 .

Proof. Let λ̄′ := λ + ηℓ. Since λ⋆ ∈ [0, u], we have

(λ′ − λ⋆)2 = (clip
[
λ′, 0, u

]
− λ⋆)2 ≤ (λ′ − λ⋆)2 .

Therefore,

(λ′ − λ⋆)2 ≤ (λ̄′ − λ⋆)2 = (λ + ηℓ − λ⋆)2 = (λ − λ⋆)2 − 2ηℓ(λ − λ⋆) + η2ℓ2 .

The claim holds by rearranging the above inequality.

Lemma F.10. For any positive real numbers x1, x2, . . . , xn,
∑n

i=1
√

xi ≤
√

n
√∑n

i=1 xi.

Proof. Due to the Cauchy-Schwarz inequality, we have
(∑n

i=1
√

xi

n

)2
≤
∑n

i=1
xi

n . Taking the square

root of the inequality proves the claim.

Lemma F.11. Let g : N → R be a function such that

g(k) = Z1k−α(ln(Z2k))β

where α, β > 0, Z1 > 0, and Z2 ≥ 1 are constants that do not depend on k. Then, for any ε ∈ (0, ∞),
there exists a constant k⋆ = Õ

(
Z

1
α
1 ε− 1

α

)
such that g(k) ≤ ε for all k ≥ k⋆.

Proof. Consider a function κ ∈ [1/Z2, ∞) 7→ Z1κ−α(ln(Z2κ))β . Note that

Z1κ−α(ln(Z2κ))β ≤ ε ⇐⇒ 1
(Z2κ)α/β

ln(Z2κ) ≤
(

ε

Z1

)1/β 1
Z

α/β
2

⇐⇒ ln x

xη
≤ c ,

where x := Z2κ, η := α/β, and c := ε1/βZ
−1/β
1 Z

−α/β
2 . Let f(x) := x−η ln x. Its derivative is given by

f ′(x) = x−1−η(1 − η ln x) .

Therefore f is increasing when 1 ≤ x < e1/η, takes its maximum 1/(ηe) at x = e1/η, and decreasing
towards 0. Hence there exists some x⋆ such that f(x) ≤ c for all x ≥ x⋆. Desired k⋆ can be obtained
by ⌈x⋆/Z2⌉, where ⌈·⌉ is the ceiling function.

As f(x) ≤ 1/(ηe), we assume 1/(ηe) > c otherwise the claim trivially holds. Following the same
discussion as above, it can be shown that a function x 7→ x−ηλ ln x for λ ∈ (0, 1) takes its maximum
1/(eηλ) at x = e1/(ηλ). Then, since

f(x) = 1
x(1−λ)η

1
xλη

ln x ≤ 1
eηλ

1
x(1−λ)η

,

it suffices to find x⋆ such that (ceηλ)−1 ≤ (x⋆)η(1−λ), that is,

x⋆ ≥ 1
η(1 − λ) ln 1

ceηλ
.
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Finally we set λ to 1− (ceη)1/η. Note that 1− (ceη)1/η ∈ (0, 1) due to the assumption that 1/(ηe) > c.
Then,

1
η(1 − λ) ln 1

ceηλ
= 1

η(ceη)1/η
ln 1

ceη(1 − (ceη)1/η)
= Z2

η(eη)1/η

(
Z1

ε

)1/α

ln 1
ceη(1 − (ceη)1/η)

= Z2β

α

(
β

eα

)β/α(
Z1

ε

)1/α

ln β

ceα(1 − (ceα/β)β/α)
.

Therefore, k⋆ is obtained as

k⋆ =
⌈

β

α

(
β

eα

)β/α(
Z1

ε

)1/α

ln β

ceα(1 − (ceα/β)β/α)

⌉
= Õ

(
Z

1
α
1 ε− 1

α

)
.

Lemma F.12 (Lemma E.6 in Dann et al. (2017)). llnp(xy) ≤ llnp(x) + llnp(y) + 1 for all x, y ≥ 0.

Lemma F.13 (Cai et al. (2023) Lemma 3). Let 0 < α < 1 and k ≥
(

24
1−α ln 12

1−α

) 1
1−α . Then,

k1−α ≥ 12 ln k.

Lemma F.14. Let 0 < α < 1, 0 ≤ β ≤ 2, c ∈ {0} ∪ N, and let k ≥
(

24
1−α ln 12

1−α

) 1
1−α . Then,

k∑
i=1

(i + c)−β
k∏

j=i+1

(
1 − (j + c)−α

) ≤ 9 ln(k + c)(k + c)−β+α

Proof. The case when c = 0 is equivalent to Lemma 1 in Cai et al. (2023). For c ≥ 1, we have

k∑
i=1

(i + c)−β
k∏

j=i+1

(
1 − (j + c)−α

) =
k+c∑

i=1+c

i−β
k+c∏

j=i+1

(
1 − j−α

)
≤

k+c∑
i=1

i−β
k+c∏

j=i+1

(
1 − j−α

) ≤ 9 ln(k + c)(k + c)−β+α ,

where the last inequality uses the result when c = 0 with replacing k by k + c.

Lemma F.15. Let 0 < α < 1, 0 ≤ β ≤ 2, c ∈ {0} ∪ N, and let k ≥
(

24
1−α ln 12

1−α

) 1
1−α . Then,

max
1≤i≤k

(i + c)−β
k∏

j=i+1

(
1 − (j + c)−α

) ≤ 4(k + c)−β

Proof. The case when c = 0 is equivalent to Lemma 2 in Cai et al. (2023). For c ≥ 1, we have

max
1≤i≤k

(i + c)−β
k∏

j=i+1

(
1 − (j + c)−α

) ≤ max
1+c≤i≤k+c

(i + c)−β
k+c∏

j=i+1

(
1 − (j + c)−α

)
max

1≤i≤k+c

(i + c)−β
k+c∏

j=i+1

(
1 − (j + c)−α

) ≤ 4(k + c)−β .

where the last inequality uses the result when c = 0 with replacing k by k + c.
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G Proof of Lemma 3.1

This section provides the proof of Lemma 3.1. While the proof is a direct modification of Lemma 6
in Ding et al. (2023) to the finite-horizon setting, we include the proof here for completeness. The
following lemma is the restatement of Lemma 3.1.

Lemma G.1. For any τ ∈ (0, ∞), there exists a unique saddle point (π⋆
τ , λ⋆

τ ) ∈ Π × RN
+ such that

Lτ (π⋆
τ , λ) ≥ Lτ (π⋆

τ , λ⋆
τ ) ≥ Lτ (π, λ⋆

τ ) ∀(π, λ) ∈ Π × RN
+ .

Proof. Let W := {wπ[P ] | π ∈ Π} be the set of all the occupancy measures on P . Let Lτ : W×RN
+ →

R be the regularized Lagrange function in terms of occupancy measure such that

Lτ (w, λ) =
∑

h,x,a∈[H]×X×A

wh(x, a)
(

r0
h(x, a) +

N∑
n=1

λnrn
h(x, a) − bn

H

)
+ τH(w) + τ

2 ∥λ∥2
2

where H(w) := −
∑

h,x,a∈[H]×X×A

wh(x, a) ln wh(x, a)∑
a′∈A wh(x, a′)

(18)

For this Lagrange function, Lτ (wπ[P ], λ) = Lτ (π, λ) holds for any π and λ. From the one-to-one
correspondence between policies and occupancy measures, it is sufficient to prove that there exists a
unique saddle point (w⋆

τ , λ⋆
τ ) ∈ W × RN

+ such that

Lτ (w⋆
τ , λ) ≥ Lτ (w⋆

τ , λ⋆
τ ) ≥ Lτ (w, λ⋆

τ ) ∀(w, λ) ∈ W × RN
+ .

Note that W is convex and compact (Borkar, 1988). Furthermore, for any w ∈ W, there exists some
finite λw ∈ RN

+ such that Lτ (w, λw) = minλ∈RN
+

Lτ (w, λ) due to the regularization τ
2 ∥λ∥2

2. Thus,
according to Sion’s minimax theorem, the claim immediately holds by showing that Lτ (w, λ) is
strictly concave in w and strictly convex in λ.

It is obvious that Lτ (w, λ) is strictly convex in λ. We then show that Lτ (w, λ) is strictly concave in
w. According to Equation (18), it is sufficient to show that H(w) is strictly convex in w. For any
w1, w2 ∈ W and α ∈ [0, 1], we have

H(αw1 + (1 − α)w2)

= −
∑

h,x,a∈[H]×X×A

(
αw1

h(x, a) + (1 − α)w2
h(x, a)

)
ln αw1

h(x, a) + (1 − α)w2
h(x, a)∑

a′∈A αw1
h(x, a′) + (1 − α)w2

h(x, a′)

(a)

≥ −
∑

h,x,a∈[H]×X×A

αw1
h(x, a) ln αw1

h(x, a)∑
a′∈A αw1

h(x, a′) −
∑

h,x,a∈[H]×X×A

(1 − α)w2
h(x, a) ln (1 − α)w2

h(x, a)∑
a′∈A(1 − α)w2

h(x, a′)

=αH(w1) + (1 − α)H(w2) ,

where (a) is due to the log-sum inequality (
∑

i ai) ln
∑

i
ai∑

i
bi

≤
∑

i ai ln ai

bi
for non-negative ai and bi.

Note that the equality of the log-sum inequality holds if and only if ai

bi
are equal for all i. Therefore,

when w1 ̸= w2, we have

H(αw1 + (1 − α)w2) > αH(w1) + (1 − α)H(w2) .

This concludes the proof.
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H Proofs for Theorem 4.1

H.1 Failure Events and Their Probabilities

In this section, we use a refined notation of the bonus function: βk,δ
h (x, a) =

∑
y∈X βk,δ

h (x, a, y),
where

βk,δ
h (x, a, y) = 2

√
P

k

h(y | x, a)ϕ
(
nk

h(x, a)
)

+ 5ϕ
(
nk

h(x, a)
)2

,

and

ϕ(n) = 1 ∧

√
2

n ∨ 1

(
llnp(2n) + ln 48X2AH

δ

)
.

For any δ > 0, we define the following failure events.

FP
δ :=

{
∃x, y, a, h, k :

∣∣∣P k

h(y | x, a) − Ph(y | x, a)
∣∣∣ ≥ βk,δ

h (x, a, y)
}

,

FN
δ :=

∃x, a, h, k : nk
h(x, a) <

1
2
∑
j<k

wπj

h [P ](x, a) − ln 4XAH

δ

 ,

FL1
δ :=

{
∃x, a, h, k :

∥∥∥P
k

h (· | x, a) − Ph (· | x, a)
∥∥∥

1
≥

√
4

nk
h(x, a) ∨ 1

(
2 llnp

(
nk

h(x, a)
)

+ ln 12XAH(2X − 2)
δ

)}
,

and Fδ := FP
δ ∪ FN

δ ∪ FL1
δ , for which the following results hold.

Lemma H.1. For any δ, the failure probabilities are bounded as follows:

P
(
FP

δ

)
≤ δ

2 , P
(
FN

δ

)
≤ δ

4X
, P
(
FL1

δ

)
≤ δ

4X
, and P(Fδ) ≤ δ ,

Proof. The bound for FP
δ holds by a direct application of Lemma 6 from Dann et al. (2019). The

bounds for FN
δ and FL1

δ hold by Corollary E.4 and Corollary E.3 from Dann et al. (2017),
respectively.

Accordingly,

P(Fδ) ≤ P
(
FP

δ

)
+ P

(
FN

δ

)
+ P

(
FL1

δ

)
≤ δ .

H.2 Bounds for Policy Estimation

Lemma H.2 (Policy Estimation Optimism). Assume that Fc
δ holds. For any (h, x, a) ∈ [H] × X × A

and for any episode k, the following bound holds

Q̃k,n
h (x, a) − rn

h(x, a) − PhṼ k,n
h+1(x, a) ≥ 0 ∀n ∈ {0} ∪ [N ]

and Q̃k
h(x, a) − r0

h(x, a) −
N∑

n=1
λk,nrn

h(x, a) − PhṼ k
h+1(x, a) ≥ 0 .
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Proof. For n = 0, we have

Q̃k,0
h (x, a) − r0

h(x, a) − PhṼ k,0
h+1(x, a)

= min
{

r0
h(x, a) + (1 + τk ln A)Hβk

h(x, a) + P hṼ k,0
h+1(x, a), (1 + τk ln A)(H − h + 1)

}
− r0

h(x, a) − PhṼ k,0
h+1(x, a)

= min
{

(1 + τk ln A)Hβk
h(x, a) +

(
P h − Ph

)
Ṽ k,0

h+1(x, a), (1 + τk ln A)(H − h + 1) − r0
h(x, a) − PhṼ k,0

h+1(x, a)
}

(a)

≥ min
{

(1 + τk ln A)Hβk
h(x, a) +

(
P h − Ph

)
Ṽ k,0

h+1(x, a), 0
}

≥ min

∑
y∈X

(1 + τk ln A)Hβk
h(x, a, y) −

∣∣P h(y | x, a) − Ph(y | x, a)
∣∣∣∣∣Ṽ k,0

h+1(y)
∣∣∣, 0


(b)

≥ min

(1 + τk ln A)H
∑
y∈X

(
βk

h(x, a, y) −
∣∣P h(y | x, a) − Ph(y | x, a)

∣∣), 0

 (c)

≥ 0 ,

(19)
where (a) is due to r0

h(x, a)+PhṼ k,0
h+1(x, a) ≤ 1+(1+τk ln A)(H − (h + 1) + 1) = (1+τk ln A)(H−h+1),

(b) is due to
∣∣∣Ṽ k,0

h+1(y)
∣∣∣ ≤ (1 + τk ln A)H, and (c) is due to the good event Fc. Similarly, for n ∈ [N ],

it is easy to verify that

Q̃k,n
h (x, a) − rn

h(x, a) − PhṼ k,n
h (x, a)

≥ min

H
∑
y∈X

(
βk

h(x, a, y) −
∣∣P h(y | x, a) − Ph(y | x, a)

∣∣), 0

 ≥ 0 .
(20)

The first claim holds by Equation (19) and Equation (20).

According to the definition of Q̃k in Algorithm 1, we have

Q̃k
h(x, a) − r0

h(x, a) −
N∑

n=1
λk,nrn

h(x, a) − PhṼ k
h+1(x, a)

=Q̃k,0
h (x, a) − r0

h(x, a) − PhṼ k,0
h+1(x, a) +

N∑
n=1

λk,n
(

Q̃k,n
h (x, a) − rn

h(x, a) − PhṼ k,n
h+1(x, a)

)
.

(21)

The second claim holds by inserting Equation (19) and Equation (20) into Equation (21).

The following nice-episode technique from Dann et al. (2017) is useful to derive the estimation error
bound (Lemma H.6).
Definition H.3 (ε-Nice Episode). For ε > 0, let wmin(ε) := ε

HHentXA . An episode k is ε-nice if and
only if for all h, x, a ∈ [H] × X × A, the following two conditions hold:

wk
h[P ](x, a) ≤ wmin(ε) ∨ nk

h(x, a) ≥ 1
4
∑
i<k

wi
h(x, a) .

We also define a set

Uk
h(ε) :=

{
(x, a) ∈ X × A

∣∣ wk
h[P ](x, a) ≥ wmin(ε)

}
.

Lemma H.4 (Lemma E.2 in Dann et al. (2017)). On the good event Fc
δ , the number of episodes

that are not ε-nice is at most
6X2AH3

ε
ln 4HXA

δ
.
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Lemma H.5 (Lemma E.3 in Dann et al. (2017)). Fix r ≥ 1, ε > 0, C > 0 and D ≥ 1. C may depend
polynomially on ε−1 and relevant quantities of X, A, H, δ−1. D may depend poly-logarithmically on
relevant quantities. Then,

∑
h∈[H]

∑
x,a∈Uk

h
(ε)

wk
h[P ](x, a)

(
C
(
llnp

(
nk

h(x, a)
)

+ D
)

nk
h(x, a)

)1/r

≤ ε

on all but at most
CXAHr

εr
polylog

(
X, A, H, δ−1, ε−1)

ε-nice episodes.
Lemma H.6 (Estimation Error Bound). Assume that the good event Fc

δ holds. For any k ∈ N and
ε > 0, it holds that

Ṽ k,0
1 (x1) − V πk

1 [P, r0, τk](x1) ≤ ε

and Ṽ k,n
1 (x1) − V πk

1 [P, rn](x1) ≤ ε ∀n ∈ [N ]
on all episodes k ∈ N except at most

X2AH4

ε2 polylog(X, A, H, δ−1, ε−1) + XAH3

ε
polylog(X, A, H, δ−1, ε−1)

episodes.

Proof. Consider n = 0. Note that Ṽ k,0
h = πk

h

(
Q̃k,0

h − τk ln πk
h

)
. Using Lemma F.1, we have

Ṽ k,0
1 (x1) − V πk

1
[
P, r0, τk

]
(x1)

=
H∑

h=1

∑
x,a∈X×A

w
π⋆

τk

h [P ](x)
((

Q̃k
h(x, a) − τk ln πk

h(x, a)
)

−
(
r0

h(x, a) − τk ln πk
h(x, a)

)
−
(

PhṼ k
h

)
(x, a)

)

=
H∑

h=1

∑
x,a∈X×A

w
π⋆

τk

h [P ](x)
(

Q̃k
h(x, a) − r0

h(x, a) −
(

PhṼ k
h

)
(x, a)

)
≥ 0 ,

where the last inequality is due to Lemma H.2.

Accordingly, we have

0 ≤Ṽ k,0
1 (x1) − V πk

1
[
P, r0, τk

]
(x1)

=
H∑

h=1

∑
x,a∈X×A

wπk

h [P ](x, a)
(

Q̃k,0
h (x, a) − rn

h(x, a) − PhṼ k,0
h+1(x, a)

)

=
H∑

h=1

∑
x,a/∈Uk

h
( ε

3 )

wπk

h [P ](x, a)︸ ︷︷ ︸
≤wmin( ε

3 )

(
Q̃k,0

h (x, a) − rn
h(x, a) − PhṼ k,0

h+1(x, a)
)

︸ ︷︷ ︸
≤Hent

+
H∑

h=1

∑
x,a∈Uk

h
( ε

3 )

wπk

h [P ](x, a)
(

Q̃k,0
h (x, a) − rn

h(x, a) − PhṼ k,0
h+1(x, a)

)

≤ HHentXAwmin

(ε

3

)
︸ ︷︷ ︸

= ε
3 due to wmin( ε

3 )

+
H∑

h=1

∑
x,a∈Uk

h
( ε

3 )

wπk

h [P ](x, a)
(

Q̃k,0
h (x, a) − rn

h(x, a) − PhṼ k,0
h+1(x, a)

)
︸ ︷︷ ︸

=:♢k

.

where Uk
h( ε

3 ) is defined in Definition H.3.
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According to the definition of Q̃k,n, ♢k is bounded as

♢k ≤
H∑

h=1

∑
x,a∈Uk

h
( ε

3 )

wπk

h [P ](x, a)
(

Hentβ
k
h(x, a) +

∣∣∣(P k
h − Ph

)
Ṽ k,0

h+1(x, a)
∣∣∣) .

On the good event FL1
k , Hölder’s inequality indicates that∣∣∣(P k

h − Ph

)
Ṽ k,0

h+1(x, a)
∣∣∣ ≤

∥∥(P k
h(· | x, a) − Ph(· | x, a)

)∥∥
1

∥∥∥Ṽ k,0
h+1

∥∥∥
∞

≤ Hent

√
4

nk
h(x, a) ∨ 1

(
2 llnp

(
nk

h(x, a)
)

+ ln 12XAH(2X − 2)
δ

)

≤

√
8H2

entX

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 1
2 ln 24XAH

δ

)
.

Also, the bonus term is bounded as

βk
h(x, a) ≤ 5X

nk
h(x, a) ∨ 1

(
2 llnp

(
2nk

h(x, a)
)

+ 2 ln 48X2AH

δ

)

+
∑
y∈X

√
4P h (y | x, a)
nk

h(x, a) ∨ 1

(
2 llnp

(
2nk

h(x, a)
)

+ 2 ln 48X2AH2

δ

)

≤ 10X

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 1 + ln 48X2AH

δ

)

+

√
8X

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 1 + ln 48X2AH

δ

)

≤ 10X

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 2 ln 48X2AH

δ

)
+

√
8X

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 2 ln 48X2AH

δ

)
,

where the second inequality is due to Lemma F.10 and Lemma F.12.

Accordingly, we have

♢k ≤
H∑

h=1

∑
x,a∈Uk

h
( ε

3 )

wπk

h [P ](x, a)
(

10X

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 2 ln 48X2AH

δ

))

+
H∑

h=1

∑
x,a∈Uk

h
( ε

3 )

wπk

h [P ](x, a)

√
35H2

entX

nk
h(x, a) ∨ 1

(
llnp

(
nk

h(x, a)
)

+ 2 ln 48X2AH

δ

)
,

where we used
√

8 +
√

8H2
ent ≤

√
16 + 16H2

ent ≤
√

35H2
ent due to (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R.

For the first term, we apply Lemma H.5 with r = 1, C = 10X, and D = 2 ln 48X2AH
δ to bound this

term by ε
3 on all but at most

X2AH

ε
polylog(X, A, H, δ−1, ε−1)

nice episodes.

For the second term, we apply Lemma H.5 with r = 2, C = 35H2
entX, and D = 2 ln 48X2AH

δ to bound
this term by ε

3 on all but at most

X2AH2
entH

2

ε2 polylog(X, A, H, δ−1, ε−1) = X2AH4

ε2 polylog(X, A, H, δ−1, ε−1)
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nice episodes.

By combining the above results, it holds that Ṽ k,0
1 (x1) − V πk

1
[
P, r0, τk

]
(x1) ≤ ε on all ε-nice episodes

k ∈ N except at most

X2AH4

ε2 polylog(X, A, H, δ−1, ε−1)

nice episodes. Due to Lemma H.4, the number of not ε-nice episodes is at most
XAH3

ε polylog(X, A, H, δ−1, ε−1). Therefore, Ṽ k,0
1 (x1) − V πk

1
[
P, r0, τk

]
(x1) ≤ ε holds on all episodes

k ∈ N except at most

X2AH4

ε2 polylog(X, A, H, δ−1, ε−1) + XAH3

ε
polylog(X, A, H, δ−1, ε−1)

episodes. This concludes the proof of the first claim. It is easy to verify that the second claim (for
n ∈ [N ]) holds using the same proof strategy.

H.3 Duality Gap Analysis

Recall the regularized optimistic value function Ṽ k defined in Equation (13). We decompose the
duality gap at episode k as

0 ≤ Lτk
(π⋆

τk
, λk) − Lτk

(πk, λ⋆
τk

)

= Lτk
(π⋆

τk
, λk) −

(
Ṽ k

1 (x1) + τk

2 ∥λk∥2
2

)
+
(

Ṽ k
1 (x1) + τk

2 ∥λk∥2
2

)
− Lτk

(πk, λ⋆
τk

)

= V
π⋆

τk
1
[
P, r0, τk

]
(x1) +

N∑
n=1

λk,n

(
V

π⋆
τk

1 [P, rn](x1) − bn

)
− Ṽ k

1 (x1) +
N∑

n=1
λk,nbn

︸ ︷︷ ︸
♣k

−
N∑

n=1
λk,nbn + Ṽ k

1 (x1) − V πk

1
[
P, r0, τk

]
(x1) −

N∑
n=1

λ⋆,n
τk

(
V πk

1 [P, rn](x1) − bn
)

+ τk

2 ∥λk∥2
2 − τk

2 ∥λ⋆
τk

∥2
2︸ ︷︷ ︸

♡k

.

H.3.1 ♣k Bound

Let γk
h(x) := KL[π⋆

τk,h(· | x), πk
h(· | x)]. It is easy to see that

V
π⋆

τk
1
[
P, − ln πk

]
(x1) − V

π⋆
τk

1
[
P, − ln π⋆

τk

]
(x1) =

H∑
h=1

∑
x∈X

w
π⋆

τk

h [P ](x)γk
h(x) .

Lemma H.7. Let C1 := 2H2
ent

(
1 + H

bgap

)2
and C2,k := 2(1 + ln A)2. Assume that the good event Fc

δ

holds. Then,

♣k ≤
H∑

h=1

∑
x∈X

w
π⋆

τk

h [P ](x) 1
ηk

(
(1 − ηkτk)γk

h(x) − γk+1
h (x)

)
+ ηkC1 + ηkτ2

k C2,k .
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Proof. Let gk := r0 − τk ln πk +
∑N

n=1 λk,nrn. Note that V π
1
[
P, r0, τ

]
= V π

1
[
P, r0]+ τV π

1 [P, − ln π]
for any π ∈ Π and τ ≥ 0. Accordingly,

♣k = V
π⋆

τk
1
[
P, r0, τk

]
(x1) +

N∑
n=1

λk,n

(
V

π⋆
τk

1 [P, rn](x1) − bn

)
− Ṽ k

1 (x1) +
N∑

n=1
λk,nbn

= V
π⋆

τk
1

[
P, r0 +

N∑
n=1

λk,nrn

]
(x1) − Ṽ k

1 (x1) + τkV
π⋆

τk
1
[
P, − ln π⋆

τk

]
(x1)

= V
π⋆

τk
1
[
P, gk

]
(x1) − Ṽ k

1 (x1) + τkV
π⋆

τk
1
[
P, − ln π⋆

τk

]
(x1) − τkV

π⋆
τk

1
[
P, − ln πk

]
(x1)

= V
π⋆

τk
1
[
P, gk

]
(x1) − Ṽ k

1 (x1)︸ ︷︷ ︸
♢

−τk

H∑
h=1

∑
x∈X

w
π⋆

τk

h [P ](x)γk
h(x) .

Using the definition of Q̃k in Algorithm 1, we have

Ṽ k
h = Ṽ k,0

h +
N∑

n=1
λk,nṼ k,n

h = πk
h

(
Q̃k,0

h − τk ln πk
h +

N∑
n=1

λk,nQ̃k,n
h

)
= πk

h

(
Q̃k

h − τk ln πk
h

)
.

Using Lemma F.1, we have

−♢ = Ṽ k
1 (x1) − V

π⋆
τk

1
[
P, gk

]
(x1)

=
H∑

h=1

∑
x,a∈X×A

w
π⋆

τk

h [P ](x)
(
π⋆

τk,h(a | x) − πk
h(a | x)

)(
Q̃k

h(x, a) − τk ln πk
h(x, a)

)

+
H∑

h=1

∑
x,a∈X×A

w
π⋆

τk

h [P ](x, a)
(

Q̃k
h(x, a) − τk ln πk

h(x, a) − gk
h(x, a) −

(
PhṼ k

h

)
(x, a)

)
︸ ︷︷ ︸

≥0 due to Lemma H.2

≥
H∑

h=1

∑
x,a∈X×A

w
π⋆

τk

h [P ](x)
(
π⋆

τk,h(a | x) − πk
h(a | x)

)(
Q̃k

h(x, a) − τk ln πk
h(x, a)

)
.

(22)

Note that πk+1 is the closed-form solution of the KL-regularized greedy policy (e.g., Equation (5)
of Kozuno et al. (2019)):

πk+1
h (· | x) ∝ πk

h(· | x) exp
(

ηk

(
Q̃k

h − τk ln πk
h

)
(x, ·)

)
= arg min

π̃∈∆A

{∑
a∈A

π̃(a)
((

−Q̃k
h + τk ln πk

h

)
(x, a)

)
+ 1

ηk
KL[π̃, πk

h(· | x)]
}

.
(23)

Also, due to the definition of λk,

∥∥∥Q̃k
∥∥∥

∞
≤
∥∥∥Q̃k,0

∥∥∥
∞︸ ︷︷ ︸

≤Hent

+
N∑

n=1
λk,n

︸ ︷︷ ︸
≤Hent/bgap

∥∥∥Q̃k,n
∥∥∥

∞︸ ︷︷ ︸
≤H

≤ Hent

(
1 + H

bgap

)
. (24)
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Using Lemma F.8 with Equation (23), we have(
π⋆

τk,h(a | x) − πk
h(a | x)

)(
Q̃k

h − τk ln πk
h

)
(x, a)

≤ 1
ηk

(
γk

h(x) − γk+1
h (x)

)
+ 2ηk

∑
a∈A

πk
h(a | x)

(
Q̃k

h(x, a)
)2

+ 2ηkτ2
k (1 + ln A)2

(a)

≤ 1
ηk

(
γk

h(x) − γk+1
h (x)

)
+ ηkC1 + ηkτ2

k C2,k ,

(25)

where (a) is due to Equation (24). By substituting Equation (22) and Equation (25) to ♢, we have

♣k = ♢−
H∑

h=1

∑
x∈X

w
π⋆

τk

h [P ](x)γk
h(x) ≤

H∑
h=1

∑
x∈X

w
π⋆

τk

h [P ](x) 1
ηk

(
(1 − ηkτk)γk

h(x) − γk+1
h (x)

)
+ηkC1+ηkτ2

k C2,k .

H.3.2 ♡k Bound

Lemma H.8. Let ρk := Ṽ k,0
1 (x1)−V πk

1
[
P, r0, τk

]
(x1)+

∑N
n=1 λ⋆,n

τk

(
Ṽ k,n

1 (x1) − V πk

1 [P, rn](x1)
)

. Let

C3 := N
2

(
H + Hent

bgap

)2
. Then,

♡k ≤ 1
2ηk

(
(1 − ηkτk)∥λ⋆

τk
− λk∥2

2 − ∥λ⋆
τk

− λk∥2
2
)

+ ρk + 1
2ηkC3 .

Proof. Recall that

♡k = Ṽ k
1 (x1) −

N∑
n=1

λk,nbn − V πk

1
[
P, r0, τk

]
(x1) −

N∑
n=1

λ⋆,n
τk

(
V πk

1 [P, rn](x1) − bn
)

+ τk

2 ∥λk∥2
2 − τk

2 ∥λ⋆
τk

∥2
2 .

Note that

Ṽ k
1 (x1) −

N∑
n=1

λk,nbn − V πk

1
[
P, r0, τk

]
(x1) −

N∑
n=1

λ⋆,n
τk

(
V πk

1 [P, rn](x1) − bn
)

=Ṽ k,0
1 (x1) +

N∑
n=1

λk,n
(

Ṽ k,n
1 (x1) − bn

)
− V πk

1
[
P, r0, τk

]
(x1) −

N∑
n=1

λ⋆,n
τk

(
V πk

1 [P, rn](x1) − bn
)

= Ṽ k,0
1 (x1) − V πk

1
[
P, r0, τk

]
(x1) +

N∑
n=1

λ⋆,n
τk

(
Ṽ k,n

1 (x1) − V πk

1 [P, rn](x1)
)

︸ ︷︷ ︸
=ρk

+
N∑

n=1

(
λk,n − λ⋆,n

τk

)(
Ṽ k,n

1 (x1) − bn
)

(26)

Also, note that

∥λk∥2
2 − ∥λ⋆

τk
∥2

2 =
N∑

n=1
(λk,n)2 − (λ⋆,n

τk
)2 =

N∑
n=1

2λk,n(λk,n − λ⋆,n
τk

) − (λk,n − λ⋆,n
τk

)2 (27)

and Ṽ k,n
1 (x1) − bn︸ ︷︷ ︸

∈[−H,H]

+ τkλk,n︸ ︷︷ ︸
≤Hent/bgap


2

≤
(

H + Hent

bgap

)2
. (28)
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Combining Equation (26), Equation (27), and Equation (28), we have

♡k
(a)

≤ρk +
N∑

n=1

(
λk,n − λ⋆,n

τk

)(
Ṽ k,n

1 (x1) − bn
)

+
N∑

n=1
τkλk,n(λk,n − λ⋆,n

τk
) − τk

2 (λk,n − λ⋆,n
τk

)2

=ρk +
N∑

n=1

(
λk,n − λ⋆,n

τk

)(
Ṽ k,n

1 (x1) − bn + τkλk,n
)

− τk

2 (λk,n − λ⋆,n
τk

)2

(b)

≤ρk +
N∑

n=1

1
2ηk

(
(λk,n − λ⋆,n

τk
)2 − (λk+1,n − λ⋆,n

τk
)2)− τk

2 (λk,n − λ⋆,n
τk

)2 + ηk

2

(
H + Hent

bgap

)2

≤ 1
2ηk

(
(1 − ηkτk)∥λ⋆

τk
− λk∥2

2 − ∥λ⋆
τk

− λk+1∥2
2
)

+ ρk + ηkC3

where (a) uses Equation (27) and (b) uses Lemma F.9 with the definition of λk+1 and Equation (28).

By combining the bounds of ♣k and ♡k, under the good event Fc
δ , we have

0 ≤ ♣k + ♡k ≤
H∑

h=1

∑
x∈X

w
π⋆

τk

h [P ](x)
(
(1 − ηkτk)γk

h(x) − γk+1
h (x)

)
+ η2

kC1 + η2
kτ2

k C2,k

+ 1
2
(
(1 − ηkτk)∥λ⋆

τk
− λk∥2

2 − ∥λ⋆
τk

− λk+1∥2
2
)

+ ηkρk + η2
kC3 .

(29)

H.4 Optimaility Gap and Constraint Violation Analysis

Let Φk :=
∑H

h=1
∑

x∈X w
π⋆

τk

h [P ](x)γk
h(x) + 1

2 ∥λ⋆
τk

− λk∥2
2 and C := maxk∈[N ]

{
C1 + τ2

k C2,k + C3
}

.
By rearranging Equation (29), we get

Φk+1 ≤ (1 − ηkτk)Φk + η2
kC + ηkρk

≤ (1 − ηkτk)(1 − ηk−1τk−1)Φk−1 +
(
(1 − ηkτk)η2

k−1 + η2
k

)
C +

(
(1 − ηkτk)ηk−1ρk−1 + ηkρk

)
≤ · · ·
≤ Ak

1Φ1 + BkC + Ek ,

where Ak
t =

∏k
i=t(1 − ηiτi), Bk =

∑k
i=1 Ak

i+1η2
i , and Ek =

∑k
i=1 Ak

i+1ηiρ
i. For Φk+1, the following

lemma holds.
Lemma H.9. Set the learning rate and the regularization coefficient as ηk = (k + 3)−αη and
τk = (k + 3)−ατ . Set ατ and αη such that 0 < ατ < 0.5 < αη < 1 and αη + ατ < 1. Let

k⋆ :=
(

24
1−(αη+ατ ) ln 12

1−(αη+ατ )

) 1
1−(αη+ατ ) .

Assume that Assumption 2.1 and the good event Fc
δ hold. Then, for any ε > 0, Φk+1 ≤ ε is satisfied

for any k ∈ N except at most

Õ
((

b−1
gap(1 + N)X

√
AH3ε−1

) 1
0.5−ατ

)
+ Õ

((
b−2

gap(1 + N)H4ε−1) 1
αη−ατ

)
+ k⋆

episodes.

Proof. Using Lemma F.14, for k ≥ k⋆, we have

Bk =
k∑

i=1
Ak

i+1η2
i =

k∑
i=1

η2
i

k∏
j=i+1

(1−ηjτj) =
k∑

i=1
(i+3)−2αη

k∏
j=i+1

(1−(j+3)−αη−ατ ) ≤ 9 ln(k+3)(k+3)ατ −αη .
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Note that 1∏3
j=2(1−j−αη−ατ ) ≤ 1

(1−2−0.5)(1−3−0.5) ≤ 9. For Ak
1 , when k ≥ k⋆, we have

Ak
1 =

k∏
i=1

(
1 − (i + 3)−αη−ατ

)
=

k+3∏
i=4

(
1 − i−αη−ατ

)
≤ 9

k+3∏
i=2

(
1 − i−αη−ατ

)
≤ 9
(
1 − (k + 3)−αη−ατ

)k+3

(a)

≤ 9
(

exp
(

−(k + 3)−(αη+ατ )
))k+3

= 9exp
(

−(k + 3)1−(αη+ατ )
) (b)

≤ 9 exp(−12 ln(k + 3)) = 9(k + 3)−12 .

where (a) uses 1 − x ≤ exp(−x) and (b) uses Lemma F.13.

Using Lemma F.15, for k ≥ k⋆, we have

max
1≤i≤k

ηiA
k
i+1 = max

1≤i≤k
ηi

k∏
j=i+1

(1 − ηjτj) = max
1≤i≤k

(i + 3)−αη

k∏
j=i+1

(
1 − (j + 3)−αη−ατ

)
≤ 4(k + 3)−αη .

This indicates that

Ek =
k∑

i=1
Ak

i+1ηiρ
i ≤ 4(k + 3)−αη

k∑
i=1

ρi .

Therefore, Φk+1 is bounded as

Φk+1 ≤ Ak
1Φ1 + BkC + Ek ≤ 9Φ1(k + 3)−12︸ ︷︷ ︸

(i)

+ (9C ln(k + 3))(k + 3)ατ −αη︸ ︷︷ ︸
(ii)

+ 4(k + 3)−αη

k∑
i=1

ρi

︸ ︷︷ ︸
(iii)

.

(i) bound. Since π1 is a uniform policy and λ1 = 0, Lemma F.4 indicates that

Φ1 =
H∑

h=1

∑
x∈X

w
π⋆

τk

h [P ](x) KL[π⋆
τ1;h(· | x), π1

h(· | x)]︸ ︷︷ ︸
≤2 ln A

+1
2 ∥λ⋆

τ1
− λ1∥2

2︸ ︷︷ ︸
=∥λ⋆

τ1∥2
2
≤NH2

ent/b2
gap

≤ 2H ln A + NH2
ent

2b2
gap

.

Therefore, for any ε > 0, (i) = 9Φ1(k + 3)−12 ≤ ε is satisfied for any k ∈ N except at most

Õ
((

ε−1(H + b−2
gapNH2)) 1

12
)

+ k⋆

episodes.

(ii) bound. Recall that

C = (1 + ln A)2 + H2
ent

(
1 + H

bgap

)2
+ N

2

(
H + Hent

bgap

)2
.

Accordingly, we have

9C ln(k + 3) =
(

H4

b2
gap

+ NH2

b2
gap

)
polylog(k) .

Lemma F.11 indicates that, for any ε > 0, (ii) = (9C ln(k + 3))(k + 3)ατ −αη ≤ ε is satisfied for any
k ∈ N except at most

Õ
((

ε−1(b−2
gapH4 + b−2

gapNH2)) 1
αη−ατ

)
+ k⋆

episodes.
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(iii) bound. Lemma H.2 indicates that

0 ≤
k∑

i=1
ρi ≤

k∑
i=1

(
Ṽ i,0

1 (x1) − V πi

τi;1
[
P, r0](x1)

)
+ Hent

bgap

N∑
n=1

k∑
i=1

(
Ṽ i,n

1 (x1) − V πi

1 [P, rn](x1)
)

.

By applying Lemma F.2 to Lemma H.6, we have
k∑

i=1

(
Ṽ i,0

1 (x1) − V πi

τi;1
[
P, r0](x1)

)
≤

√
kX2AH4 polylog

(
k, X, A, H, δ−1)

and
k∑

i=1

(
Ṽ i,n

1 (x1) − V πi

1 [P, rn](x1)
)

≤
√

kX2AH4 polylog
(
k, X, A, H, δ−1) ∀n ∈ [N ] .

This indicates that
k∑

i=1
ρi ≤

(
1 + NHent

bgap

)√
kX2AH4 polylog

(
k, X, A, H, δ−1) .

Lemma F.11 indicates that, for any ε > 0, (iii) = 4(k + 3)−αη
∑k

i=1 ρi ≤ ε is satisfied for any k ∈ N
except at most

Õ
((

ε−1X
√

A
(
H2 + b−1

gapNH3)) 1
αη−0.5

)
+ k⋆

episodes. By combining the above results, we have Φk+1 ≤ ε for all k ∈ N except at most

Õ
((

ε−1(H + b−2
gapNH2)) 1

12
)

+ Õ
((

ε−1(b−2
gapH4 + b−2

gapNH2)) 1
αη−ατ

)
+ Õ

((
ε−1X

√
A
(
H2 + b−1

gapNH3)) 1
αη−0.5

)
+ k⋆

=Õ
((

ε−1X
√

AH4b−2
gap(1 + N)

) 1
αη−0.5

)
+ k⋆

episodes, where we used ατ < 0.5 and b−2
gapH4 ≥ H2 due to bgap ≤ H.

H.5 Proof of Theorem 4.1

We are now ready to prove the main claim. Consider ατ and αη satisfy conditions specified in
Theorem 4.1. Suppose that the good event Fc

δ holds.

Using k⋆ defined in Lemma H.9, for any ε > 0, we have Φk ≤ ε2

H3 for any k ∈ N except at most

Õ

(( ε2

H3

)−1

X
√

AH4b−2
gap(1 + N)

) 1
αη−0.5

+ k⋆ = Õ
((

b−2
gap(1 + N)X

√
AH7ε−2

) 1
αη−0.5

)
+ k⋆

episodes.

Also, when k ≥
(

Hent
ε min{bgap,1}

) 1
ατ , we have τkHent ≤ ε and τkHent

bgap
≤ ε. Furthermore, it is easy to see

that Φk ≤ ε2

H3 indicates
∑H

h=1
∑

x∈X w
π⋆

τk

h [P ](x)γk
h(x) ≤ ε2

H3 . Then, Lemma F.5 indicates that

V π⋆

1 [P, r](x1) − V πk

1 [P, r](x1) ≤ ε and bn − V πk

1 [P, rn](x1) ≤ ε ∀n ∈ [N ]
hold for any ε > 0 and for any k ∈ N except at most

Õ
((

b−2
gap(1 + N)X

√
AH7ε−2

) 1
αη−0.5

)
+Õ

((
ε−1b−1

gapH
) 1

ατ

)
+
(

24
1 − (αη + ατ ) ln 12

1 − (αη + ατ )

) 1
1−(αη+ατ )

episodes.

Finally, Lemma H.1 shows that the good event Fc
δ holds with probability at least 1 − δ. This

concludes the proof of Theorem 4.1.


