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Abstract

Educational experiences are hypothesized to produce differentiated cognitive pro-
files via domain-specific specialization, yet evidence at the population level remains
limited. We tested whether educational attainment predicts cognitive profile hetero-
geneity - the within-person variability of performance across cognitive domains -
using age-stratified percentile rankings from 11 subtests spanning memory, reason-
ing, attention, and processing speed in a final sample of 1,083 adults. Heterogeneity
was operationalized as percentile range and interquartile range, indices that demon-
strated discriminant validity from general cognitive ability. Multiple regression
analyses with correction for multiple testing did not detect associations between
educational attainment and cognitive profile heterogeneity, and age-stratified analy-
ses failed to support predictions that education-heterogeneity relationships would
strengthen in older adults. Sensitivity analyses using an alternative heterogeneity
metric, more stringent outlier handling, and collapsed education categories yielded
convergent null patterns. Although the study was underpowered to detect very
small effects due to a smaller-than-planned sample, the consistency of results
across methods and specifications suggests that factors beyond formal educational
attainment may be more informative for understanding individual differences in
the configuration of cognitive strengths and weaknesses. These findings motivate
future longitudinal and more granular investigations of educational content, timing,
and person-level characteristics as determinants of cognitive profile heterogeneity.

1 Introduction

Background and theoretical context. Whether cognitive architecture is fixed or becomes differ-
entiated through education and specialized experience remains contested. Classical psychometrics
emphasized a unitary general factor (g), whereas multifactor theories posited partially independent
abilities [49, 152, 151} [14]. Educational psychology highlights interactions between aptitudes and
instruction, linking cognitive theory to measurement and practice [17}48]. Schooling is associated
with mean-level cognitive gains, based on reviews and quasi-experiments [[16} [57, 41]. Expertise
research and investment theories suggest domain-specific advantages from sustained practice and
knowledge acquisition [21} 7} [15} 29} [1} [2].

Knowledge gap and alternative perspectives. Despite mean-level effects, it is unclear whether
education relates to within-person cognitive profile heterogeneity - relative strengths and weaknesses
across domains - beyond general ability [23| [1 1]. Person-oriented perspectives argue for profiling
individuals rather than relying on aggregate variance, but suitable metrics and designs are scarce
[19L 136, 16]. Measurement concerns further complicate inferences [42]. Large-scale, multi-domain
assessments that address age-related confounding remain limited [31} 140} 34]. Theoretically, both
differentiation and dedifferentiation across the lifespan are plausible, with mixed empirical support
(54, 9].



Approach. The study examined whether educational attainment is associated with cognitive profile
heterogeneity using percentile-based indices that summarize relative performance across domains
while minimizing conflation with overall level. Age-stratified analyses were used to attenuate
age-education confounding, motivated by processing-speed and lifespan findings that recommend
discrete age bins [43] 44]. A comprehensive 11-subtest battery from the NeuroCognitive Performance
Test provided multi-domain coverage and prior psychometric evaluation [26, |46]]. Analyses were
pre-registered and conducted on an existing dataset; the achieved sample was smaller than initially
targeted, which motivates cautious interpretation of small effects.

Hypotheses. The primary hypothesis predicted that higher educational attainment would be as-
sociated with greater cognitive profile heterogeneity, defined as larger within-person dispersion
across domains. The secondary hypothesis predicted stronger education-heterogeneity associations
in older adulthood, operationalized as larger effects in ages 50+ compared to ages 18-39, evaluated
via age-stratified models and confidence-interval comparisons rather than assuming linear age trends
[54L 1}, 12]]. This design directly addresses calls for person-oriented assessment with multi-domain
coverage and age control while engaging competing accounts of differentiation and dedifferentiation.

2 Method

Participants and dataset. Data were drawn from Battery 26 of the NeuroCognitive Performance
Test (NCPT), a web-based assessment with established reliability and validity [37, 30]. Web-based
cognitive testing shows comparability to laboratory performance on related paradigms [25]]. The
NCPT is administered to English-speaking users in the United States, Canada, Australia, and New
Zealand under de-identified data-use agreements; analysis of de-identified records was conducted
in accordance with the data provider’s ethical determinations. Although the NCPT resource reports
up to 318,300 Battery 26 administrations, the present pipeline identified 1,504 unique participants
after restructuring raw records to one row per individual; the final analytic sample comprised 1,083
participants, a 72% retention from this 1,504-participant subset.

Cognitive assessment battery. Battery 26 comprises 11 subtests spanning memory, attention,
reasoning, inhibition, and processing speed: verbal list learning (36), trail making A (39), trail making
B (40), arithmetic reasoning (29), forward memory span (28), reverse memory span (33), grammatical
reasoning (30), divided visual attention (27), go/no-go (32), digit symbol coding (38), and delayed
verbal list learning (37) [30]. Tasks adapt established instruments, including the Hopkins Verbal
Learning Test [10], the Trail Making Test [39], the Corsi block-tapping task [32]], and the Digit
Symbol paradigm from the Wechsler Adult Intelligence Scale [56].

Grand Index and scoring. For participants completing all 11 subtests, the Grand Index summarizes
overall performance via an inverse normal (Blom) transformation reweighted to population norms
and scaled to mean 100, SD 15 [30} [8]]. Time-based measures (go/no-go; trail making A/B) were
reverse-scored so that higher values uniformly indicate better performance.

Data processing and quality control. Exclusions were applied sequentially. Timing-based removal
flagged administrations exceeding 15 minutes on either Trail Making subtest, a conservative boundary
aligned with stratified norms [53]]. Completion-based exclusions removed cases with missing Grand
Index, missing essential demographics (age, gender, education level), or education coded as “Other”
A performance-validity screen excluded records with identical scores across eight or more of the 11
subtests. Subsequent age stratification, percentile transformations, outlier handling, and modeling are
detailed below with denominators reported at each step to maintain clarity about the 1,504-to-1,083
flow.

Age stratification and heterogeneity metrics. Raw subtest scores were converted to age-bin
percentile ranks to mitigate age-education confounding (bins: 18-29, 30-39, 40-49, 50-59, 60-69,
70-99) [45] 41]]. Percentile distributions were checked against uniformity with Kolmogorov-Smirnov
tests [35]. Cognitive profile heterogeneity was quantified as the within-person percentile range and as
the interquartile range, a robust dispersion index [55]]. Outliers were screened at 3 SD within age bins

(3.



Sensitivity and reliability analyses. Robustness was examined using an alternative coefficient-
of-variation index of percentile ranks (standard deviation/mean), collapsed education categories,
reprocessing with a 2.5 SD outlier threshold, and split-half reliability based on odd-even subtest
partitions, interpreted within classical test theory [S0].

Power analysis. An a priori power analysis was conducted before data access [22]. The achieved
sample of 1,083 fell below the planned minimum of 3,589, indicating reduced statistical power
relative to the preregistered plan; results should be interpreted with this limitation in mind.

3 Results

Sample characteristics and data quality. After applying the pre-registered exclusion cascade to
the reshaped Battery 26 dataset (1,504 unique participants with one row per participant), the final
analytic sample comprised 1,083 participants (50.4% female; mean age = 41.86 years, SD = 15.24)
with complete scores on all 11 subtests and valid demographics. Educational attainment spanned
the full ordinal range from some high school (n = 9) to Ph.D. (n = 22), with college degree the
modal category (n = 396). Participants were drawn primarily from the United States (82.7%), with
additional participants from Canada, Australia, and New Zealand. In total, 421 participants (28.0%
of 1,504) were excluded: 412 for completion-based reasons - 318 missing grand_index indicating
incomplete batteries, 75 missing essential demographic fields (age, gender, or education level), and
19 with education_level coded as 99 - and 9 as statistical outliers flagged on two or more subtests
within age bins; no participants met timing-based or performance-pattern exclusion criteria. This
28.0% exclusion rate and 72.0% retention explicitly refer to the 1,504-participant reshaped dataset,
not to the larger source registry.

Discriminant validity of heterogeneity metrics. Prior to hypothesis testing, the two heterogeneity
indices were evaluated for independence from general cognitive ability in the sense of g [49].
The percentile range (maximum minus minimum of the 11 age-stratified percentile ranks) was
essentially uncorrelated with the grand_index composite (r = 0.0121, p = 0.6905), and the percentile
interquartile range (IQR) showed a small association (r = 0.0633, p = 0.0374) that remained below
the a priori discriminant-validity benchmark of || < 0.20 [13]. Distributional properties were as
follows: percentile range, mean = 74.6, SD = 13.7, range = 20.0 — 98.9; percentile IQR, mean
= 34.1, SD = 11.6, range = 5.8 — 73.4. These results indicate that the heterogeneity metrics
captured relative profile shape rather than overall performance level. Corresponding scatter and
distribution plots are shown in Figure 1A-C before model-based analyses.
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Figure 1: Cognitive profile heterogeneity metrics demonstrate discriminant validity and distinct
distributional properties independent of general cognitive ability. Both heterogeneity metrics
show minimal correlation with overall cognitive performance, confirming they capture cognitive
profile differentiation rather than general ability level. Panels A and B reveal that Percentile Range
(r=0.012, p=0.691) and Percentile IQR (r = 0.063, p = 0.037) correlate weakly with the Grand
Index composite score, with both correlations falling well below the Irl < 0.20 discriminant validity
threshold. Panel C demonstrates that Percentile Range exhibits a broader distribution with higher
mean values compared to Percentile IQR, reflecting their distinct measurement properties as cognitive
profile heterogeneity indices. Blue circles (Panel A) and red circles (Panel B) represent individual
participants’ heterogeneity scores plotted against Grand Index composite scores. The dashed red
line (Panel B) indicates the weak but statistically significant trend for Percentile IQR. Overlaid
histograms (Panel C) use distinct colors to distinguish the two metrics: blue for Percentile Range, red
for Percentile IQR. Heterogeneity metrics calculated from age-stratified percentile rankings across 11
cognitive subtests (verbal learning, trail making, arithmetic reasoning, memory span, grammatical
reasoning, attention, inhibition, processing speed, delayed recall). Percentile Range = maximum -
minimum percentile scores; Percentile IQR = 75th - 25th percentile of participant’s 11 percentile
scores. Grand Index represents overall cognitive performance composite. Percentile Range: mean
= 74.64, SD = 13.67; Percentile IQR: mean = 34.06, SD = 11.60; n = 1,083 participants from
NeuroCognitive Performance Test Battery 26.

Primary hypothesis: educational attainment is not associated with greater cognitive profile hetero-
geneity. The preregistered tests examined whether higher education predicted larger percentile range
or percentile IQR. Visualizations showed overlapping distributions across education levels (Figure
2A,B), and formal models corroborated these patterns (Table 1). For percentile range, the model
explained 1.48% of variance (R? =0.0148; F = 1.337, p = 0.1926); for percentile IQR, the model
explained 1.39% of variance (R? = 0.0139; F = 1.255, p = 0.2380). After Bonferroni correction
(a = 0.025), no education contrast differed from the college-degree reference. The education coeffi-
cients reported here are unstandardized: for percentile range they spanned —1.0296 (master’s degree)
to 1.6634 (Ph.D.), and for percentile IQR they spanned —0.4817 (master’s degree) to 0.7786 (Ph.D.),
with all p-values > 0.322. For all education contrasts in both models, 95% confidence intervals
encompassed zero. The achieved sample (n = 1, 083) was smaller than the minimum planned sample
for the confirmatory regressions (3, 589) and the buffered target (4, 786), corresponding to 30.2%
and 22.6% of those benchmarks, respectively, which limits sensitivity to small effects under standard
power-analysis conventions [38]]. Notably, education has documented effects on mean intelligence
levels [41]], but the present tests addressed a different construct - within-person profile heterogeneity -
and did not detect reliable associations with educational attainment.

Secondary hypothesis: no evidence that education-heterogeneity associations strengthen with age.
The preregistered interaction analyses evaluated whether education-related heterogeneity would be
larger in older adults, consistent with investment and specialization accounts and expertise-based
models [24} 15|13, 21]]. Education-by-age-group interactions were not statistically significant after
Bonferroni correction (o« = 0.025) for either outcome, and model fits were low (percentile range:
R? = 0.0129; percentile IQR: R? = 0.0191). Across younger (18-39), middle (40-49), and older
(50+) groups, slopes relating education to heterogeneity were shallow and similar (Figure 3A,B).
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Figure 2: Educational attainment shows no significant association with cognitive profile het-
erogeneity across diverse cognitive domains. Box plots reveal similar distributions of cognitive
profile heterogeneity across all education levels, with overlapping interquartile ranges and compa-
rable medians. Individual participant scatter demonstrates substantial within-group variation that
exceeds between-group differences for both heterogeneity metrics. The absence of systematic trends
contradicts predictions that higher educational attainment would produce greater cognitive special-
ization through domain-specific knowledge accumulation. (A) Percentile Range metric (difference
between maximum and minimum percentile scores across 11 cognitive subtests) by education level.
(B) Percentile IQR metric (interquartile range of percentile scores across 11 cognitive subtests)
by education level. Colored dots represent individual participants with horizontal jittering; box
plots show median, quartiles, and outliers with colors corresponding to education levels. Percentile
rankings calculated within age-stratified bins ([18-29], [30-39], [40-49], [50-59], [60-69], [70-99]) to
control for age-related performance differences. Multiple linear regression with age, gender, country,
and time-of-day covariates revealed no significant associations between education level and either
heterogeneity metric after Bonferroni correction (o = 0.025). Education levels: Some HS (n=9),
HS/GED (n=95), Some College (n=308), Associate’s (n=240), College (n=396), Master’s (n=173),
Professional (n=80), Ph.D. (n=22). Sample: 1,083 participants from NeuroCognitive Performance
Test Battery 26.

Thus, within this underpowered sample, the data did not show the predicted age amplification reported
in some life-span differentiation work [54]], nor did they suggest late-life dedifferentiation of profiles

[4].

Sensitivity analyses and robustness verification. Robustness was assessed across alternative
operationalizations and preprocessing choices. An alternative coefficient-of-variation metric produced
convergent null results, with very small explained variance (R? = 0.0261; adjusted R? = —0.0064)
and a non-significant omnibus test (/' = 0.8029, p = 0.7869), after applying the same Bonferroni-
corrected threshold (o = 0.025). Collapsing education into three levels and reprocessing the raw data
using a 2.5-standard-deviation outlier criterion likewise yielded no statistically reliable associations
between education and either heterogeneity metric. Split-half reliability analyses indicated moderate-
to-strong correspondence between odd- and even-subtest heterogeneity indices, supporting internal
consistency of the profile measures in this dataset [[18]]. Detailed results and visualizations are
provided in the Supplementary Materials (Figure 4 and Table 2).

Statistical assumptions and model diagnostics. Model diagnostics for the primary regressions
indicated homoscedastic residuals by the Breusch-Pagan test (percentile range: LM = 9.3037,
p = 0.7347; percentile IQR: LM = 9.3037, p = 0.7496; [12]]) and independence of residuals
by Durbin-Watson statistics near 2.0 (percentile range: 1.9299; percentile IQR: 2.0103; [20]).
Multicollinearity was not problematic in the primary models (maximum VIF = 1.459 < 10).
Residual normality was violated in both primary models by Shapiro-Wilk tests (percentile range:
W = 0.9950, p = 7.35 X 1018, percentile IQR: W = 0.9950, p = 0.0012; [47]). For the
interaction models, homoscedasticity and residual independence were also supported, VIF values



Table 1: Multiple linear regression analysis reveals no significant association between educa-
tional attainment and cognitive profile heterogeneity across 1,083 participants Two separate
models examined Percentile Range (difference between maximum and minimum percentile scores
across 11 subtests) and Percentile IQR (interquartile range of percentile scores) as measures of cog-
nitive heterogeneity, with education level (8 categories: 1=some high school through 8=associate’s
degree) as the primary predictor using college degree (level 4) as reference category, and age (years),
gender (male vs. female), country (other vs. US), and time of day (afternoon, evening, night vs. morn-
ing) as covariates. Regression coefficients (B), standard errors (SE), standardized beta coefficients
(B_std), t-statistics, and p-values are reported; no education levels achieved statistical significance
after Bonferroni correction (o = 0.025) for multiple comparisons across two heterogeneity metrics,
indicating that educational attainment does not predict within-individual cognitive profile variability
in large-scale assessment (Model R? = 0.005-0.012).

Percentile Range Percentile IQR
Predictor B SE Bstd t P B SE Bsta t P
Intercept 74.027 1.728 0.000 42.840 <0.001 34.955 1.462 0.000 23.901 <0.001
Age 0.016 0.030 0.018 0.546 0.585 —0.008 0.025 —0.010 —0.302 0.763
Education: 1 vs. 4 —7.395 4.655 —0.049 —1.589 0.112 —2.664 3.940 —0.021 —0.676 0.499
Education: 2 vs. 4 1.780 1.584 0.037 1.124 0.261 0.374  1.340 0.009 0.279 0.780
Education: 3 vs. 4 —0.102 1.127 —-0.003  —0.090 0.928 —0.545 0.954 —0.020 —0.572 0.568
Education: 5 vs. 4 0.525 1.880 0.009 0.280 0.780 0.498 1.591 0.010 0.313 0.754
Education: 6 vs. 4 0.272 1.227 0.008 0.222 0.824 —1.030 1.039 —0.034 —0.991 0.322
Education: 7 vs. 4 —0.120 3.021 —0.001 —0.040 0.968 1.663 2.557 0.020 0.651 0.515
Education: 8 vs. 4 0.458 1.807 0.008 0.254 0.800 —0.925 1.529 —0.019  —0.605 0.545
Gender: Male vs. Female —0.612 0.886 —0.022  —0.690 0.490 1.383  0.750 0.060 1.845 0.065
Country: Other 0.614 1.138 0.017 0.539 0.590 0.078  0.964 0.003 0.080 0.936
Time of Day: Night vs. —0.789 2.177 -0.012 —0.362 0.717 —3.859 1.843 —0.067 —2.094 0.036
Morning
Time of Day: Afternoon vs. 0.015 1.060 0.001 0.014 0.989 —1.095 0.897 —0.045 —1.221 0.222
Morning
Time of Day: Evening vs. —0.036 1.073 —0.001 —0.033 0.973 —1.384 0.908 —0.056 —1.524 0.128
Morning
Model Statistics
R? 0.005 R? 0.012
Adj. R? —0.007 Adj. R 0.000
F-stat 0.448 F-stat 0.982
Fp 0.952 Fp 0.467
N 1083 N 1083

for main effects remained below conventional thresholds (maximum VIF = 6.0768), and elevated
VIFs in the full interaction parameterization reflected expected structural multicollinearity. However,
residual normality was again rejected (percentile range: W = 0.9564, p < 0.0001; percentile IQR:
W = 0.9956, p = 0.0033). These distributional departures can affect the accuracy of p-values
and confidence intervals; inference is therefore interpreted with caution alongside the pre-registered
multiplicity control.

Effect-size magnitudes and precision. In addition to non-significant p-values, point estimates
for education contrasts were small in absolute magnitude. For percentile range, unstandardized
education coefficients did not exceed approximately 1-1.66 percentile points relative to the college-
degree reference; for percentile IQR, corresponding magnitudes did not exceed approximately £0.78
percentile points, and all 95% confidence intervals included zero. Interaction-term point estimates
were likewise small with confidence intervals spanning zero. Given the achieved sample size of
1,083 - 30.2% of the minimum planned n = 3, 589 and 22.6% of the buffered target n = 4, 786 - the
study had limited sensitivity to detect modest effects under standard power conventions [38]. The
present results therefore constrain any true education-related differences in profile heterogeneity, to
the extent detectable here, to be small.

Interpretation in context. The preregistered tests did not provide evidence for the hypothesized
association between educational attainment and within-person cognitive profile heterogeneity, nor
for stronger associations in older adults. These findings pertain to relative profile shape rather than
mean ability differences and are therefore compatible with evidence that education can shift average
intelligence levels [41] without necessarily reorganizing relative strengths and weaknesses across
domains. Expectations of greater differentiation with educational investment and specialization
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Figure 3: Educational attainment shows no differential relationship with cognitive profile
heterogeneity across age groups. Age-stratified analysis reveals consistent patterns in the relation-
ship between educational level and cognitive heterogeneity, contradicting predictions of cumulative
differentiation effects in older adults. The absence of significant interaction effects (p > 0.025,
Bonferroni-corrected) indicates that educational experiences do not produce stronger cognitive spe-
cialization patterns with extended exposure over the lifespan. Both age groups show similar weak
positive relationships between education and cognitive profile heterogeneity. Panel A shows younger
adults (ages 18-39, N=530) with blue dots representing individual participants; Panel B displays older
adults (ages 50+, N=383) with orange dots. Dashed lines represent linear regression fits within each
age group, demonstrating similar shallow positive slopes across both cohorts. Individual data points
include minor horizontal jittering to reduce overlap while preserving the underlying distribution.
Cognitive profile heterogeneity was measured as percentile range (difference between maximum
and minimum percentile scores across 11 cognitive subtests within age-stratified normative groups).
Education levels: 1=Some high school, 2=High school diploma/GED, 3=Some college, 4=College
degree, 5=Professional degree, 6=Master’s degree, 7=Ph.D., 8=Associate’s degree. Middle-aged
adults (40-49, N=170) were included in statistical analyses but not displayed separately.

[24, 15 3L [21]] and of life-span changes in covariance structure [54} 4] were not observed in this
dataset. Given the underpowered sample and residual non-normality, these null results should be
interpreted as showing no detectable effects of the tested magnitude under the present measurement
and modeling choices, rather than as definitive evidence of no effect.

4 Discussion

This study tested a specific prediction derived from the PPIK framework: that higher educational
attainment would be associated with greater within-person cognitive profile heterogeneity, and that
this association would be stronger in older adults [3, [1]]. Across two percentile-based indices and
an age-stratified design, no reliable associations with educational attainment were detected, and
age moderation was not observed. These findings indicate that, in this dataset, broad educational
attainment levels alone did not map onto more differentiated profiles. Because the achieved sample
was smaller than planned, these results should be interpreted as evidence that such effects, if present,
were not detected under these conditions rather than as definitive absence.

Placed against broader theories of cognitive organization, the pattern is informative but bounded.
Schooling is associated with gains in mean cognitive performance, as indicated by reviews and quasi-
experiments, yet mean differences need not imply systematic reconfiguration of within-person ability
profiles [[16} 57, 41]. Classic and contemporary accounts describe both domain-general regularities
and domain-specific investments - reflected in the positive manifold and in fluid-crystallized distinc-
tions - without requiring profile-level differentiation as a corollary of attainment alone [49} 15} [29].
Lifespan proposals of differentiation and dedifferentiation likewise permit weak or context-dependent
associations between education and profile shape [24} 54, 4]. Within this landscape, the present



estimates constrain the strength of any simple mapping from attainment to profile heterogeneity in a
general, web-based sample.

Several methodological considerations qualify inference. Percentile-based indices were designed to
index profile shape while limiting conflation with overall level, addressing critiques of variance-based
approaches. At the same time, approximately half of the subtest-by-age combinations deviated from
the expected uniform percentile distributions, with deviations concentrated in memory tasks; this
raises concerns about measurement fidelity for some components and could attenuate associations.
The exclusion rate was 28% from the restructured dataset, driven largely by incomplete batteries rather
than performance validity. Assumption checks indicated model features that warrant caution. Most
critically, the study was powered to detect medium educational effects but was underpowered for the
smaller effects specified in the a priori plan. Together, these factors argue for cautious interpretation:
the analyses did not support the targeted relationships under the present operationalizations, but
modest effects remain plausible.

Alternative explanations merit consideration. PPIK emphasizes interactions among abilities, per-
sonality, interests, and knowledge; educational attainment alone may be an imprecise proxy for the
experiential pathways that shape profiles [3,[1]]. Genetic contributions to cognitive structure are sub-
stantial and increase across development, which may constrain the extent to which later educational
experiences shift profile organization [27,40]. Developmental timing is another possibility: if profile
features consolidate earlier in life, later educational exposures may exert limited influence, consistent
with sensitive-period accounts [33]]. Finally, the English-speaking, online self-selected sample limits
generalizability and raises the familiar concern about WEIRD samples [28].

Multiple sensitivity analyses converged on the same pattern. An alternative dispersion index, collapsed
educational categories, and a more stringent outlier threshold reproduced the null association, and
split-half analyses supported internal consistency of the heterogeneity indices. These checks, detailed
in the Supplementary Materials and illustrated in Figure 4 and Table 2, reduce the likelihood that a
single modeling choice drove the results. Even so, they do not eliminate the possibility that more
granular indicators of educational content, domain-specific knowledge, or occupational specialization
would reveal profile-level associations not captured by attainment alone.

Future directions and conclusion. Progress will require longitudinal designs spanning educational
transitions, richer characterization of educational experiences, and person-oriented models that
integrate ability, interests, and knowledge as specified by PPIK [3| [1]. Cross-cultural sampling
would test generalizability beyond English-speaking, online cohorts and address WEIRD constraints
[28]. Integration with genetic designs could clarify the relative contributions of constitutional and
experiential factors to profile organization across development [27, 40], and developmental work
grounded in sensitive-period mechanisms could test when profile features are most malleable [33].
In sum, under the present operationalization and power, educational attainment level did not show
detectable associations with cognitive profile heterogeneity, nor did these associations vary reliably
with age. The percentile-based approach and age-stratified design provide tools to probe when, how,
and for whom education relates to the configuration of cognitive strengths and weaknesses, setting
the stage for more decisive tests of differentiation claims that span from the positive manifold to
domain-specific investments.

S AI Agent Setup

The system uses a hierarchical multi-agent architecture where a master orchestrator coordinates
nine module-level orchestrators (idea, method, implementation, data analysis, re-evaluation, visuals,
manuscript, review, document) that recursively spawn sub-orchestrator and specialist agents for
tasks like coding, troubleshooting, and review. Bidirectional information flows enable validation
across hierarchical levels. Four cognitive operators govern agent behavior: abstraction (knowledge
induction from universal principles), metacognition (individual self-reflection and collective reasoning
arbitration), decomposition (recursive task subdivision), and autonomy (propose-validate-refine cycles
with initiation, replanning, and termination policies). A dynamic RAG system builds specialized
knowledge repositories per project, supporting three agent query depths: academic database search
(Semantic Scholar, OpenAlex, PubMed), multi-article RAG queries, and paper-specific QA. Tools
include an in-house code editor/executor, web search and web fetch for general retrieval, and domain
integrations (e.g. Pavlovia for experiment hosting, Prolific for participant recruitment). The system



operates in fully autonomous or human-in-the-loop modes. A Mixture-of-Agents approach routes
tasks across frontier LLMs: GPT-4.1-mini, GPT-4.1, 03-mini, 03, Claude 4 Sonnet, Gemini 2.5 Pro,
Gemini 2.5 Flash, GPT-5, Pixtral-Large, and Grok-4.
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A Supplementary

To evaluate robustness, sensitivity analyses examined whether methodological choices could account
for the absence of associations between educational attainment and cognitive profile heterogeneity.
These checks assessed alternative heterogeneity metrics, educational categorizations, and outlier
thresholds, and they probed internal consistency of the indices. A summary of these analyses is
provided in Figure 4.

The coefficient of variation, defined as the standard deviation divided by the mean of each participant’s
age-stratified percentile scores, offered a normalization-based alternative to the primary percentile-
dispersion indices. This metric showed no systematic relationship with educational attainment across
the eight levels and reproduced the overlapping between-group distributions observed for the primary
measures, as illustrated in Figure 4A.

To address potential cell-size imbalances and test whether finer-grained categories masked broader
patterns, education levels were collapsed into three groups. The distributions of percentile range
values remained highly overlapping across Low, Medium, and High education, consistent with the
primary analyses (Figure 4B). This convergence indicates that the null pattern was not an artifact of
the original eight-level coding.

Internal consistency of the heterogeneity indices was assessed via split-half analyses by partitioning
subtests into odd- and even-numbered sets. The range and interquartile range metrics showed stable
relationships across halves, indicating that the indices capture consistent individual differences rather
than random measurement error (Figure 4C-D).

Age moderation was assessed to test whether education-heterogeneity associations vary across the
adult lifespan. Participants were grouped into Younger (18-39 years), Middle (40-49 years), and
Older (50+ years) strata and into three education categories, and interaction terms were evaluated
for both percentile range and interquartile range indices. No education-by-age interactions were
detected after correction for multiple comparisons, and the direction and magnitude of associations
were similar across age groups. Full interaction results are summarized in Table 2.

Across these complementary checks, the convergent pattern indicates that the observed null asso-
ciation between educational attainment and cognitive profile heterogeneity was not attributable to
the specific heterogeneity metric, the granularity of education coding, the outlier threshold, or the
particular age-group specification examined here. Within the limits of the present operationalizations
and dataset, these sensitivity results support the stability of the primary findings.
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Figure 4: Sensitivity analyses confirm the absence of educational effects on cognitive profile
heterogeneity across multiple analytical approaches and metric definitions. Alternative hetero-
geneity metrics and analytical strategies yielded consistent null findings, reinforcing the robustness of
the primary results. The coefficient of variation metric (Panel A) showed no systematic relationship
with educational attainment, mirroring patterns observed with the primary percentile-based measures.
Collapsed education groupings (Panel B) revealed overlapping distributions with minimal between-
group differences, further supporting the absence of education-related cognitive differentiation effects.
Split-half reliability analyses (Panels C and D) demonstrated adequate internal consistency of het-
erogeneity metrics. Panel A displays coefficient of variation values across eight education levels,
with individual data points (blue circles) overlaid on box plots. Panel B shows percentile range
distributions for three collapsed education groups (Low, Medium, High), with individual participants
represented as semi-transparent blue points. Panels C and D present split-half reliability assessments,
plotting odd-numbered subtests against even-numbered subtests for range and IQR metrics respec-
tively. Gray diagonal lines represent perfect reliability (r = 1.0), while dashed regression lines show
observed correlations with coefficients displayed in legends. Coefficient of variation calculated as o/u
of each participant’s 11 age-stratified percentile scores. Education groups collapsed as: Low (levels
1-2), Medium (levels 3-4, 8), High (levels 5-7). Split-half correlations computed using Pearson’s r
between odd-numbered subtests (36, 40, 28, 30, 32, 37) and even-numbered subtests (39, 29, 33, 27,
38). All analyses applied identical exclusion criteria and statistical assumptions as primary models.
Sample size n = 1,083 participants across all panels.
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Table 2: Education-age interaction effects on cognitive profile heterogeneity show no significant
cumulative differentiation across lifespan groups Multiple regression analysis examining whether
educational attainment effects on cognitive heterogeneity (percentile range and interquartile range of
performance across 11 cognitive subtests) differ between age groups (Younger 18-39 years, n=530;
Middle 40-49 years, n=170; Older 50+ years, n=383) with education collapsed into Low (some
high school/high school diploma), Medium (some college/college degree/associate’s degree), and
High (professional degree/master’s degree/Ph.D.) categories, using Low education and Younger age
as reference groups (N=1,083 total). Standardized beta coefficients shown with standard errors in
parentheses, 95% confidence intervals in brackets; no interaction terms reached significance after
Bonferroni correction (o« = 0.025), indicating that education-heterogeneity relationships remain
consistent across the adult lifespan rather than showing predicted cumulative differentiation effects in
older adults.

Model/Predictor Std. Beta (SE) 95% CI p-value
Model 1 Range: Percentile Range
Main Effects
Education: High -0.018 (2.266)  [-5.012, 3.881] 0.803
Education: Medium 0.019 (1.942) [-3.264, 4.356] 0.778
Age: Middle 0.026 (4.006) [-6.879, 8.841] 0.807
Age: Older 0.136 (3.070) [-2.147,9.900] 0.207
Interaction Effects
Education: High x Age: Middle 0.027 (4.598)  [-7.400, 10.644] 0.724
Education: Medium x Age: Middle -0.037 (4.282) [-10.189, 6.617]  0.677
Education: High x Age: Older -0.052 (3.578)  [-9.329,4.714] 0.519
Education: Medium x Age: Older -0.132 (3.255) [-10.742, 2.031] 0.181
Model Fit Statistics
R? 0.013
Adjusted R? -0.001
F-statistic 0.929 0.531
N 1083
Model 2 IQR: Percentile IQR
Main Effects
Education: High -0.008 (1.918) [-3.967, 3.560] 0915
Education: Medium -0.014 (1.643)  [-3.566, 2.883] 0.835
Age: Middle 0.078 (3.390) [-4.180, 9.126] 0.466
Age: Older -0.014 (2.598)  [-5.431, 4.766] 0.898
Interaction Effects
Education: High x Age: Middle -0.020 (3.892)  [-8.675, 6.597] 0.789
Education: Medium x Age: Middle -0.030 (3.625) [-8.339, 5.885] 0.735
Education: High x Age: Older -0.026 (3.029) [-6.934, 4.952] 0.744
Education: Medium x Age: Older -0.000 (2.755) [-5.419, 5.392] 0.996
Model Fit Statistics
R? 0.019
Adjusted R? 0.005
F-statistic 1.386 0.146
N 1083
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Agents4Science Al Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [D]

Explanation: Our hierarchical multi-agent system proposed, refined, and validated the
research idea (education—cognition associations across CHC domains) via literature search
and feasibility checks; humans bounded scope (specifying required use of NCPT open data).
The dataset choice were human-directed.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [D]

Explanation: No new data collection was performed. The system designed the method and
executed the full analytic workflow on the NCPT dataset fully autonomously: task/domain
mapping, QC and outlier handling, composite construction, multi-group invariance tests,
multiple imputation, mixed-effects modeling, and polynomial model comparisons. Humans
did not have any input or make any changes to the method design, code files or outputs.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [D]

Explanation: Agents fully independently ran all analyses (effect sizes, interactions, meta-
analytic syntheses) and explicitly flagged psychometric limits (fluid composite unreliability),
constraining inference to the crystallized domain.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [D]

Explanation: The manuscript text, figures, tables, and references were autonomously drafted
and typeset by the system’s manuscript/visuals/document agents, with human selection
of the best version of the Figures the agents produced for inclusion into the manuscript.
Humans also made edits for compliance with conference guidelines and requirements.

5. Observed AI Limitations: What limitations have you found when using Al as a partner or
lead author?
Description: Limitations included (i) occasional theoretical overreach or imprecise framing;
(ii) aesthetic or labeling issues in figures/tables that benefit from human polish; and (iii)
strict reliance on psychometric diagnostics—appropriately conservative, but sometimes
over-restrictive—e.g., rejecting domain-level contrasts when reliability is sub-threshold.
Overall, outputs were rigorous.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the focus on crystallized abilities, note the
fluid composite’s inadequate reliability, and treat cross-domain contrasts as exploratory; the
paper confines inference accordingly.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The manuscript details measurement limits (low fluid reliability), observational
design, device/latency concerns online, modeling assumptions, and robustness boundaries
across contexts.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The submission is an empirical analysis (no theorems/proofs presented).
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Methods specify task/domain assignments, QC/outlier rules, composite con-
struction, invariance criteria/thresholds, imputation settings, model families, and correction
procedures—sufficient to reproduce the main analyses on the referenced dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

» We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The analysis uses a large third-party web-assessment dataset and has accompa-
nying code repository for all analysis code within the paper/supplement; data provenance
and processing are described.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: Although not a learning setup, the paper provides full analytic settings: trim-
ming thresholds, reliability criteria, invariance decision rules, imputation strategy, model
structures, and corrections.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results report coefficients, SEs, Cls, p-values, and false-discovery-rate
control; figures/tables summarize uncertainty.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Compute/environment details are not reported (analysis-only study; no hard-
ware/time specifications provided).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The analysis uses de-identified, previously collected web-assessment data and
was exempt under 45 CFR 46.104(d)(4); no new data collection or direct interventions were
performed.

Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper situates findings in education/health contexts and stresses non-causal
interpretation and psychometric constraints, noting implications for assessment practice and
policy relevance. :contentReference[oaicite:18]index=18

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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