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ABSTRACT

Meta-learning has been proposed to address fast adaptation to unseen tasks with
little data. Traditional meta-learning is modeled as the Single-Leader Multi-
Follower game consisting of inner and outer-level problems to minimize average
or worst-case task loss. Because they assume all sampled tasks are independent,
it reduces the flexibility of modeling complex interaction among tasks. Thus, we
formulate meta-learning as a Single-Leader Multi-Follower game by considering
the interaction among tasks at the inner level. We propose the Nash-GBML incor-
porating a penalty term into the task loss function to model the interaction among
task-specific parameters. We discuss the iteration complexity and convergence of
the Nash-GBML algorithm. To validate our Nash-GBML algorithm, we introduce
two penalty terms, which are designed to reduce the average and worst-case task
loss. We empirically show that the Nash-GBML with the proposed penalty terms
outperforms traditional GBML for supervised learning experiments.

1 INTRODUCTION

In machine learning, fast adaptation to unseen tasks with little data remains challenging. Meta-
learning, also known as learning-to-learn (Baxter, 1998), has been proposed to address this issue.
According to the framework proposed by Baxter (1998), meta-learning aims to minimize the ex-
pected loss on new tasks by leveraging information learned from similar tasks. One approach for
meta-learning is gradient-based meta-learning (GBML) (Finn et al., 2017).

In GBML, the parameter for a new task is updated from the meta-parameter with only a few stochas-
tic gradient descent (SGD) steps. Stemming from the Model-Agnostic Meta-Learning (MAML)
(Finn et al., 2017), GBML has developed in diverse directions. First-order MAML (FOMAML)
(Nichol et al., 2018) learns faster than MAML by ignoring second-order derivatives. Reptile (Nichol
et al., 2018) also learns faster by updating the meta-parameter using the expected gradient of meta-
training tasks. Meta-SGD (Li et al., 2017) learns more efficiently compared to MAML by learning
not just the meta-parameter but also the update direction and learning rate. CAVIA (Zintgraf et al.,
2019) is less prone to overfitting by updating context parameters at the inner level, instead of the
entire network. Task-robust MAML (TR-MAML) (Collins et al., 2020) is the task-robust meta-
learning by minimizing the worst-case task loss, instead of the average task loss at the outer level.
These studies first update task-specific parameters independently during meta-training to solve the
inner level problem. Then, they update the meta-parameter during meta-testing to solve the outer
level problem.

Typical meta-learning optimizes the meta-parameter by minimizing the average task loss or the
worst-case task loss, assuming that all sampled tasks are independent. The assumption can greatly
simplify the optimization of the meta-parameter; however, it reduces the flexibility of modeling
complex interaction among tasks. We hypothesize that considering the interaction among tasks
will affect the updating process of the meta-parameter and the overall performance. Based on
this hypothesis, we propose a new meta-learning framework that considers the interaction among
meta-training tasks. Here, the interaction refers to each task-specific parameter influencing the op-
timization of other task-specific parameters, akin to how a single decision maker’s decision affects
other decision makers’ utility in game theory. Thus, we formulate meta-learning as a Single-Leader
Multi-Follower (SLMF) game (Xi et al., 2022) where the optimization process of task-specific pa-
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Figure 1: GBML algorithms compute the gradient of the meta-loss function dF
dθ by using∇ϕi

LTi
. To

consider the interaction among tasks, Nash-GBML transforms the task loss function LTi
of GBML

algorithms into fi by incorporating terms affected by the joint task-specific parameter. Nash-GBML
algorithm computes a Nash equilibrium of the inner level problem and computes the meta-gradient
dF
dθ by using ∇ϕi

fi.

rameters is the decision-making process of multiple followers, and the optimization process of the
meta-parameter is the decision-making process of the leader.

As GBML has been proposed as an effective algorithm to solve the meta-learning problem, we
first propose Nash-GBML as an algorithm to address meta-learning problems modeled as the SLMF
game. As shown in Figure 1, while GBML assumes that tasks are independent, Nash-GBML consid-
ers the interactions among tasks. Thus, solving meta-learning modeled as the SLMF game is equiv-
alent to finding a general Stackelberg equilibrium among the leader and followers. Nash-GBML
consists of two levels of equilibrium-finding problems: (1) finding a Nash equilibrium among fol-
lowers (task-specific parameters) and (2) finding a general Stackelberg equilibrium of the leader
(meta-parameter) given a Nash equilibrium among the followers. Because Nash-GBML can con-
sider various forms of interactions among tasks, it is more expressive and capable of capturing
complex dependencies among tasks. Next, we discuss the iteration complexity and convergence of
the Nash-GBML algorithm.

The interaction among tasks can be modeled in various ways, reflecting the characteristics of the
domain. In this study, we introduce two penalty terms applied to the task loss function to model the
interaction among the task-specific parameters in a way that is universally applicable across various
domains. Because all task-specific parameters should be close to the meta-parameter to ensure they
can be obtained through a few gradient update steps, we first design a penalty term to regularize
the task-specific parameters to be close to each other. Then, to improve the worst-case performance
across tasks, we define another penalty term to apply a stronger regularization to the task-specific
parameter that are farther from the meta-parameter. We evaluate the effectiveness of the proposed
meta-learning framework with the designed penalty terms and the Nash-GBML algorithm using
three benchmark problems.

2 PRELIMINARIES

2.1 GAME THEORY

Game theory is the discipline that models problems where multiple decision-makers aim to optimize
their objectives. Game consists of players who make decisions, their feasible regions (or strategies),
and their objective functions (or utilities). In this study, we introduced Nash game (Nash, 1950;
1951) and the Single-Leader Multi-Follower (SLMF) game (Song, 1992; Xi et al., 2022; Jo et al.,
2023) to model the meta-learning using game-theoretic concept. First, we discuss the N players’
Nash game in which N players make decisions simultaneously.
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Definition 2.1 Let G =
〈
P, (ui)i∈P , (Ωi)i∈P

〉
be a N players’ Nash game. Then, player i ∈ P

makes their decisions to maximize the utility function ui:

max
xi∈Ωi

ui (xi,x−i) (1)

where P = {1, · · · , N} is the set of players, ui is the utility function of the player i, xi is the
player i’s decision belonging to the strategy set Ωi, and x−i = (x1, · · · ,xi−1,xi+1, · · · ,xN ) is
the player’s joint decision except player i. Then, we refer to x∗ ∈

∏
i∈P Ωi as a Nash equilibrium

of the N player’s Nash game G if it satisfies the following equation.

x∗
i = arg max

xi∈Ωi

ui

(
xi,x

∗
−i

)
,∀i ∈ P (2)

When the player i’s strategy set Ωi is dependent to other players’ decisions x−i, we refer to G as
a generalized Nash game (Facchinei & Kanzow, 2010), and x∗ ∈

∏
i∈P Ωi

(
x∗
−i

)
as a generalized

Nash equilibrium.

Next, we discuss the SLMF game where a leader makes decisions first, and then N followers make
their decisions simultaneously after observing the leader’s decision.

Definition 2.2 Let Γ =
〈
{1} ,F, uL, (ui)i∈F ,ΩL, (Ωi)i∈F

〉
be the SLMF game. First, a leader

makes their decisions to maximize the utility function uL:

max
y∈ΩL

uL
(
y, (xi)i∈F

)
(3)

where F = {1, · · · , N} is the set of followers, uL is the utility function of a leader, and y is
the leader’s decision belonging to the strategy set ΩL. Then, N followers make their decisions
simultaneously to maximize the utility function:

max
xi∈Ωi(y)

ui (y,xi,x−i) (4)

where ui is the utility function of follower i, and xi is the follower i’s decision belonging to the
strategy set Ωi. Then, we refer to

(
y∗, (x∗

i )i∈F

)
∈ ΩL×

∏
i∈F Ωi (y

∗) of Γ as a general Stackelberg
equilibrium if it satisfies the following equation.

sup
x∈S(y∗)

uL (y∗,x) ≥ inf
x∈S(y)

uL (y,x),∀y ∈ ΩL (5)

where x = (xi)i∈F is the followers’ joint decision, and S (y) is the set of a (generalized) Nash
equilibrium of the N followers’ (generalized) Nash game given leader’s decision y, G (y) =〈
F, (ui)i∈F , (Ωi)i∈F

〉
.

2.2 GAME THEORETIC INTERPRETATION OF GRADIENT-BASED META-LEARNING

Traditional meta-learning is generally modeled as the Single-Leader Multi-Follower (SLMF) game
Γ =

〈
{1} , [N ] , F, (LTi)i∈[N ] ,Rd,Rd

〉
where N is the number of task, F is the meta-loss function,

and LTi
is the task i’s loss function.

Leader: min
θ∈Rd

F (θ, ϕ) :=
1

N

N∑
i=1

L
(
θ, ϕi;Dtest

i

)
(6)

Follower: min
ϕi∈Rd

L
(
θ, ϕi;Dtr

i

)
,∀i ∈ [N ] (7)

where ϕ = (ϕi)i∈[N ] is the joint task-specific parameter, N is the number of tasks, Dtest
i is the task

i’s meta-testing data, Dtr
i is the task i’s meta-training data, L is the task loss function, and d is the

dimension of the meta-parameter.

To compute a general Stackelberg equilibrium of the SLMF game described in equations (6) and
(7), MAML with a one-step gradient update first approximates the optimal task-specific parameter
of the inner level problem as the one SGD update from the meta-parameter. Then, it computes the
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gradient of the meta-loss dF
dθ of the outer level problem by approximating the meta-loss function F

as the average of meta-training task losses.

θ∗ := arg min
θ∈Rd

F (θ, ϕ∗ (θ)) ≈ 1

B

B∑
i=1

L
(
ϕ∗
i (θ) ;Dtest

i

)
(8)

ϕ∗
i (θ) := arg min

ϕi∈Rd
L
(
θ, ϕi;Dtr

i

)
≈ θ − α

d

dϕi
L
(
ϕi,Dtr

i

)
|ϕi=θ,∀i ∈ [N ] (9)

where α is the inner learning rate, and B is the batch size.

The game theoretic interpretation for the other famous GBML algorithms such as Meta-SGD (Li
et al., 2017), iMAML (Rajeswaran et al., 2019), CAVIA (Zintgraf et al., 2019), and TR-MAML
(Collins et al., 2020) are discussed in Appendix A.

3 NASH GRADIENT-BASED META-LEARNING

3.1 PROBLEM FORMULATION

Traditional meta-learning independently optimizes each task-specific parameter at the inner level.
We extend the meta-learning framework by considering the interaction among meta-training tasks
at the inner level. In this study, we combine a penalty term p (θ, ϕi, ϕ−i) into the task loss
LTi

(θ, ϕi) for each task i to account for the influence of the other task-specific parameters ϕ−i

during meta-training. Thus, the new meta-training framework can be formulated as the SLMF game
Γ =

〈
{1} , [N ] , F, (fi)i∈[N ] ,Ω

L, (Ωi)i∈[N ]

〉
where N is the number of tasks, fi is the inner level

objective function, and ϕ = (ϕi)i∈[N ] is the joint task-specific parameter.

Leader: min
θ∈ΩL

F (θ, ϕ) (10)

Follower: min
ϕi∈Ωi

fi (θ, ϕ) ,∀i ∈ [N ] (11)

where the task i’s objective function for the inner level problem fi is defined as the sum of task loss
LTi

and the penalty term p to be affected by other task-specific parameters ϕ−i.

fi (θ, ϕ) = L
(
θ, ϕi;Dtr

i

)
+ p

(
θ, ϕi, ϕ−i;Dtr

i

)
(12)

We account for the interactions among tasks at the inner level through a penalty term. We discuss
the penalty terms in detail in Section 3.3. The inner level problem described in equation (11) is
modeled as the N players’ Nash game G (θ) =

〈
[N ] , (fi)i∈[N ] , (Ωi)i∈[N ]

〉
.

3.2 ALGORITHM

In Nash-GBML, we approximately sample B tasks to compute the general Stackelberg equilibrium
of the SLMF game Γ described in equations (10) and (11). That is, we compute a Nash equilibrium
of the B players’ Nash game Ĝ (θ) =

〈
[B] , (fi)i∈[B] , (Ωi)i∈[B]

〉
at the inner level to approximate

a Nash equilibrium of G (θ) =
〈
[N ] , (fi)i∈[N ] , (Ωi)i∈[N ]

〉
, then update the meta-parameter by

approximating the meta-loss F as the average or the worst-case task loss for meta-training tasks.

Inner level problem. During meta-training, Nash-GBML algorithm first computes a Nash equi-
librium ϕ(t) of the Nash game Ĝ

(
θ(t)
)
=
〈
[B] , (fi)i∈[B] , (Ωi)i∈[B]

〉
using Algorithm 2. Algo-

rithm 2 is based on well-known algorithms for computing Nash equilibrium such as the proximal-
decomposition algorithm (Scutari et al., 2012; Atzeni et al., 2013), regularized NI-function type
method (Facchinei & Kanzow, 2010; Jo & Park, 2020), or the projected reflected gradient descent
(PRGD) method (Malitsky, 2015). Nash-GBML algorithm approximates a Nash equilibrium ϕ(t)

by n-step gradient update.
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Outer level problem. During meta-testing, Nash-GBML algorithm updates the meta-parameter
θ(t) using dϕ(t)

dθ , which is computed through back-propagation of ϕ(t) in Algorithm 1. Therefore, the
solution computed by Nash-GBML algorithm is approximately the general Stackelberg equilibrium
of the SLMF game Γ =

〈
{1} , [N ] , F, (fi)i∈[N ] ,Ω

L, (Ωi)i∈[N ]

〉
. Nash-GBML for MAML, Meta-

SGD, and CAVIA approximates the meta-loss function as F (θ, ϕ) ≈ 1
B

B∑
i=1

L (θ, ϕi;Dtest
i ), and

Nash-GBML for TR-MAML approximates it as F (θ, ϕ) ≈ maxi∈[B] L (θ, ϕi;Dtest
i ).

Algorithm 1 Nash-GBML
Require : Distribution over tasks p (T ), outer learning rate β
Randomly initialize meta-parameters θ(0), t = 0
while not done do

Sample batch of tasks {Ti}Bi=1 ∼ p (T )
Compute joint task-specific parameter ϕ(t) = Nash-Equilibrium

(
{Ti}Bi=1 , θ

(t)
)

Update θ(t+1) ← θ(t) − β∇θ∈ΩLF
(
θ(t), ϕ(t)

)
t← t+ 1

end while

Algorithm 2 Nash-Equilibrium
Require : Inner learning rate α, number of gradient updates n
Input : Batch of tasks {Ti}Bi=1, meta-parameter θ
Initialize task-specific parameter ϕi = θ,∀i ∈ [B]
for k ∈ {0, 1, · · · , n− 1} do

for all i ∈ [B] do
ϕi ← ϕi − α∇ϕi∈Ωi

fi (θ, ϕ)
end for

end for
Return : ϕ

3.3 PENALTY TERMS

Because Nash-GBML is the framework that incorporates a penalty term p into the task loss L for the
inner level problem of traditional GBML, the interaction among tasks is determined by the structure
of the penalty term. While the structure of the penalty term varies depending on the domain, we
introduce the following two penalty terms, which are universally applicable across various domains
as a guideline. Note that the following penalty terms are simply examples, and you can design your
own penalty term depending on the domain characteristics.

Because meta-learning is for similar tasks sampled from the same task distribution, each task-
specific parameter ϕi should be close to each other for effective few-shot adaptation to fit new tasks.
Thus, we expect that adjusting the meta-parameter and each task-specific parameter to be closer in
the inner level problem will minimize the meta-loss function F in the outer level problem. More-
over, it serves as a clamp function for the gradient of the meta-loss function, allowing the algorithm
to converge more stably. Based on this hypothesis, we design two penalty terms to penalize the
distance between the meta-parameter θ and task-specific parameters ϕi.

Centroid penalty term. The centroid penalty term pC (θ, ϕi, ϕ−i;w) with a weight w is designed
to penalize the distance between the meta-parameter and the center of task-specific parameters
1
B

B∑
k=1

ϕk. Because it is a penalty that shifts the meta-parameter toward the center of the task-specific

parameters, it sometimes negatively impact the worst-case task loss, but it reduces the average task
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Table 1: Complexity for the gradient-based meta-learning

GBML Algorithm Iteration complexity Memory
MAML (GD, full back-prop) κ log (D/δ) Mem (∇L)κ log (D/δ)
MAML (Nesterov’s AGD, full back-prop)

√
κ log (D/δ) Mem (∇L)

√
κ log (D/δ)

implicit MAML (Nesterov’s AGD)
√
κ log (D/δ) Mem (∇L)

Nash-GBML (PRGD, full back-prop) κ log (D/δ) Mem (∇L)κ log (D/δ)

loss. The centroid penalty term is defined as follows:

pC (θ, ϕi, ϕ−i;w) = w

(
B

αN

)2
∥∥∥∥∥∥θ − 1

B

∑
k ̸=i

ϕk −
1

B
ϕi

∥∥∥∥∥∥
2

2

(13)

where α is the inner learning rate, N is the number of task for domain, and B is the batch size.(
B
αN

)2
is the proportional constant that ensures robustness to the algorithm’s hyper-parameters.

The detailed explanation for the proportional constant is provided in Appendix E.

Robust penalty term. Next, we introduce the robust penalty term pR (θ, ϕi, ϕ−i;w, r) with
weight w and robustness constant r. The robust penalty term pR is designed to impose a stronger
penalty on tasks that are farther from the meta-parameter θ by penalizing the distance between
the meta-parameter and a task-specific parameter ∥θ − ϕi∥ relative to the sum of its distance
B∑

k=1

∥θ − ϕk∥. That is, we define the robust penalty term as follows:

pR (θ, ϕi, ϕ−i;w, r) = w
B ∥θ − ϕi∥2r2

C +
B∑

k=1

∥θ − ϕk∥2r2

(14)

where C is a very small constant to prevent the denominator from becoming zero. As the robustness
constant r increases, we impose a stronger penalty on tasks farther from the meta-parameter.

To verify whether the proposed penalty terms work well to achieve the designed purposes, we eval-
uate the Nash-GBML, which combines traditional GBML with the proposed penalty terms through
few-shot supervised learning experiments in Section 4.

3.4 ANALYSIS

First, we discuss the iteration complexity of the Nash-GBML algorithm by Theorem 3.1 when we
use the projected-reflected gradient-descent (PRGD) method (Malitsky, 2015) to compute a Nash
equilibrium. Table 1 summarizes the iteration complexity to compute dϕ∗

dθ of traditional GBML
(Finn et al., 2017; Rajeswaran et al., 2019) and Nash-GBML with PRGD method. Note that the
iteration complexity to compute meta-gradient for Nash-GBML is equivalent to traditional GBML
algorithms as O (log (D/δ)).

Theorem 3.1 Let D be the diameter of search space of the joint task-specific parameter ϕ =
(ϕi)i∈[B] in the inner level problem (i.e. ∥ϕ − ϕ∗∥ ≤ D). Suppose that the PRGD method is

used to compute δ-accurate estimation of the optimal joint task-specific parameter ϕ̂ =
(
ϕ̂i

)
i∈[B]

of a Nash equilibrium, which is the convergent point of the inner level of Nash-GBML algorithm.
Under Assumption B.1, Nash-GBML algorithm computes ϕ̂ with O (κ log (D/δ)) number of itera-
tions, and only O (Mem (∇Li)κ log (D/δ)) memory is required where κ is the condition number.

Next, we discuss the convergence of the Nash-GBML algorithm. We discuss the convergence crite-
rion and convergence speed in Theorem 3.2. Then, we prove that the Nash-GBML algorithm always
converges to the general Stackelberg equilibrium of the SLMF game regardless of the gradient up-
date order of the task-specific parameters in the inner level, the initial meta-parameter, and the initial
task-specific parameters in Theorem 3.3.
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Table 2: MSE on 5-shot 3-step sinusoid regression with 95% confidence intervals over 5 random
trials. The bold values indicate the best performance metric for each of the GBML algorithms.

Algorithm Mean Worst Std. Dev.
MAML (Finn et al., 2017) 0.59± 0.01 3.18± 0.86 0.57± 0.04
MAML +pC (0.1) 0.54± 0.01 3.00± 0.79 0.55± 0.03
MAML +pR (0.01, 2) 0.56± 0.01 2.81± 0.59 0.51± 0.02
Meta-SGD (Li et al., 2017) 0.19± 0.01 1.48± 0.68 0.18± 0.03
Meta-SGD +pC (0.1) 0.14± 0.00 1.32± 0.67 0.17± 0.02
Meta-SGD +pR (0.00001, 1) 0.14± 0.00 1.07± 0.37 0.16± 0.01
CAVIA (Zintgraf et al., 2019) 0.14± 0.01 1.29± 0.62 0.14± 0.02
CAVIA +pC (0.001) 0.13± 0.00 1.15± 0.59 0.14± 0.02
CAVIA +pR (0.00001, 2) 0.13± 0.01 1.18± 0.46 0.15± 0.02
TR-MAML (Collins et al., 2020) 0.62± 0.02 2.35± 0.46 0.29± 0.02
TR-MAML +pC (0.01) 0.51± 0.02 2.33± 1.23 0.28± 0.04
TR-MAML +pR (0.01, 1) 0.52± 0.01 2.20± 1.12 0.26± 0.04

Theorem 3.2 (Informal Statement) Let δ and δ̄ be the convergence criterion of the inner level and
the outer level, respectively. Under convexity assumption, the Nash-GBML algorithm with outer
learning rate β ≤ δ̄√

4C2δ2+4
(
C̄1+

C1C2
µ1+µ2

)2
is converged to the general Stackelberg equilibrium of

the SLMF game with convergence speed O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
.

Theorem 3.3 (Informal Statement) Under the convexity assumption, the Nash-GBML algorithm
converges to the same optimal solution regardless of the gradient update order of the task-specific
parameters in the inner level, the initial meta-parameter, and the initial task-specific parameters.

The proof of Theorem 3.1 is provided in Appendix C. The formal statement and the proof of Theo-
rems 3.2 and 3.3 are provided in Appendix D.

4 EXPERIMENTS

In this section, we aim to validate the following questions regarding Nash-GBML experimentally:
(1) Do the penalty terms work well for its intended purpose? (2) Is Nash-GBML generally applicable
to the traditional GBML algorithms such as MAML, Meta-SGD, CAVIA, and TR-MAML? (3) Can
we apply Nash-GBML across various domains such as regression and classification?

In this section, we set the same network architecture and same hyper-parameters of both the tra-
ditional GBML and Nash-GBML for a fair comparison. The detail explanation for the network
architecture and experiment setting are described in Appendix F.

4.1 SINUSOID REGRESSION

We evaluate the performance of traditional GBML algorithms (Finn et al., 2017; Li et al., 2017;
Zintgraf et al., 2019; Collins et al., 2020) and the Nash-GBML algorithm with two penalty terms
pC (w) and pR (w, r) in few-shot sinusoid regression problem (Collins et al., 2020). The target is
a sine function y = a sin (x+ b) on x ∈ [−5, 5] with amplitude a ∈ [0.1, 5] and phase b ∈ [0, π].
The amplitude follows the uniform distribution on interval [0.1, 1.05] ∪ [4.95, 5] for meta-training,
[0.1, 5] for meta-testing. The phase follows the uniform distribution on [0, π], and each task consists
of K = 5 samples where inputs are uniformly sampled from [−5, 5].
We partition the amplitude interval [0.1, 5] into 490 distinct subintervals of length 0.01, and each
task is defined as the subintervals. During the meta-testing process, we randomly sample 5000 tasks
and computed the test loss for each of the 490 subintervals. Table 2 shows the average MSE, worst
MSE, and standard deviation of subintervals with its 95% confidence interval over 5 random trials.

In Table 2, we show that Nash-GBML algorithms consistently outperform the traditional GBML
algorithms in both average and worst-case MSE. In Nash-GBML, the weight of the cetnroid penalty

7
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Figure 2: Test MSE statistics with 95% confidence intervals over 5 random trials of MAML and its
Nash-GBML. The leftmost plot shows the average MSE loss, the middle plot shows the worst MSE
loss, and the rightmost plot shows the standard deviation. The statistics are empirical averages over
5000 samples.

Table 3: MSE on 100-shot 5-step image regression with 95% confidence intervals over 5 random
trials. The bold values indicate the best performance metric for each of the GBML algorithms.

Algorithm Mean
[
×10−2

]
Worst

[
×10−2

]
Std. Dev.

[
×10−2

]
MAML (Finn et al., 2017) 1.62± 0.02 6.25± 1.43 0.70± 0.02
MAML +pC (0.01) 1.59± 0.01 5.94± 0.94 0.68± 0.02
MAML +pR (0.0001, 1) 1.61± 0.01 5.91± 1.26 0.69± 0.02
Meta-SGD (Li et al., 2017) 1.64± 0.02 6.02± 1.28 0.71± 0.01
Meta-SGD +pC (0.01) 1.63± 0.02 5.72± 0.58 0.70± 0.02
Meta-SGD +pR (0.01, 2) 1.69± 0.02 5.69± 0.54 0.73± 0.01
CAVIA (Zintgraf et al., 2019) 1.85± 0.02 6.53± 0.52 0.80± 0.01
CAVIA +pC (0.1) 1.65± 0.02 6.57± 2.04 0.71± 0.02
CAVIA +pR (0.00001, 2) 1.62± 0.02 5.96± 0.53 0.70± 0.01

term, the weight and robustness constant of the robust penalty term are chosen from 10−1 to 10−4,
10−2 to 10−5, and 1 or 2, respectively. As described in section 3.3, we validate that the cen-
troid penalty term pC (w) is effective in reducing the average MSE, while the robust penalty term
pR (w, r) is effective in reducing the worst-case MSE in simple regression tasks.

We also evaluate the convergence of Nash-GBML algorithm during training process in Figure 2.
Nash-GBML algorithm which combines MAML with two penalty terms consistently outperform
MAML after sufficient iterations. In Appendix F, we evaluate the convergence of other Nash-GBML
algorithms during training process.

In Appendix F, we compare the traditional GBML and Nash-GBML algorithms depending on the
hyper-parameters for the penalty terms, batch size, and step size and verify that Nash-GBML outper-
forms GBML in most cases. These results show that the penalty terms work well and Nash-GBML
is generally applicable to the traditional GBML algorithms on the simple regression task. As de-
scribed in section 3.3, we also validate that Nash-GBML algorithm converges more stably than the
traditional MAML based on the lower MSE standard deviation and the convergence trajectory.

4.2 IMAGE COMPLETION

To verify whether Nash-GBML can be applied to challenging regression tasks, we compare it against
MAML, Meta-SGD, and CAVIA on the image completion task (Garnelo et al., 2018) using the
CelebA domain (Liu et al., 2015). The CelebA contains 162770 training images, 19867 validation
images, and 19962 test images. Each task consists of K = 100 random pixels per image.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: 5-way 5-shot classification accuracies on MiniImageNet with 95% confidence intervals
over 5 random trials. The bold values indicate the best performance metric for each of the GBML
algorithms.

Algorithm Mean Worst Std. Dev.
MAML (Finn et al., 2017) 57.20± 0.60% 29.87± 7.50% 8.57± 0.74%
MAML +pC

(
104
)

58.15± 0.43% 35.20± 3.14% 8.61± 0.45%
MAML +pR

(
10−1, 1

)
57.85± 0.29% 32.80± 4.25% 8.63± 0.53%

Meta-SGD (Li et al., 2017) 56.96± 0.32% 30.67± 5.23% 8.71± 0.27%
Meta-SGD +pC

(
106
)

58.08± 0.40% 30.40± 5.07% 8.69± 0.30%
Meta-SGD +pR

(
10−2, 1

)
58.28± 0.33% 33.33± 6.61% 8.43± 0.84%

CAVIA(32) (Zintgraf et al., 2019) 56.87± 0.99% 29.33± 4.67% 8.89± 0.44%
CAVIA(32) +pC

(
103
)

58.18± 0.45% 29.07± 5.33% 9.21± 0.29%
CAVIA(32) +pR

(
10−1, 2

)
57.76± 0.74% 31.47± 4.85% 9.07± 0.50%

CAVIA(128) (Zintgraf et al., 2019) 63.10± 0.76% 34.93± 4.50% 8.77± 0.32%
CAVIA(128) +pC

(
104
)

63.15± 0.48% 33.87± 7.86% 8.93± 0.50%
CAVIA(128) +pR

(
10−2, 1

)
63.39± 0.50% 35.66± 5.73% 8.68± 0.67%

Table 3 shows the MSE statistics for CelebA dataset. In Nash-GBML, the weight of the centroid
penalty term, the weight and robustness constant of the robust penalty term are determined from
10−1 to 10−4, 10−2 to 10−5, and 1 or 2, respectively. Although the batch size(= 25) is very small
relative to the total number of tasks(= 162770), Nash-GBML outperforms the traditional GBML in
both the average and the worst-case MSE in most settings. In particular, we validate the hypothesis
that the centroid penalty term reduces the average MSE, and the robust penalty term reduces the
worst-case MSE in complex regression tasks, which is described in section 3.3.

4.3 CLASSIFICATION

To evaluate Nash-GBML on large-scale classification problem, we compare MAML, Meta-SGD,
CAVIA(32), and CAVIA(128) and its Nash-GBML algorithms on the MiniImageNet domain (Ravi
& Larochelle, 2017). The MiniImageNet contains 64 training classes, 12 validation classes, and 24
test classes. In N -way K-shot classification, N classes are randomly chosen, and K samples are
randomly chosen from the N classes.

Table 4 shows 5-way 5-shot accuracies for MiniImageNet. In Nash-GBML, we choose the weight
and the robustness constant of two penalty terms from 101 to 106, 10−1 to 10−3, and 1 or 2, respec-
tively. Although the batch size (= 2) is very small relative to the total number of tasks (=

(
64
5

)
),

Nash-GBML algorithms successfully learn the interaction among tasks and outperform the tradi-
tional GBML algorithms in most cases. As described in section 3.3, we also validate that the centroid
penalty consistently improves the average accuracy, while the robust penalty consistently improves
the worst-case accuracy in complex classification tasks. In conclusion, the Nash-GBML algorithm
is generally applicable to the traditional algorithms, and we apply it across various domains.

5 CONCLUSION AND FUTURE WORK

We propose the meta-learning framework, which extends traditional meta-learning at the inner level
by considering the interaction among tasks. To account for the interaction among tasks at the inner
level, we incorporate a penalty term, which is affected by the joint task-specific parameters, into
the loss of traditional meta-learning. As a guideline, we introduce two penalty terms, which are
designed to reduce the average and worst-case task loss. Then, we experimentally validate that (1)
the proposed penalty terms work well to achieve the designed purposes and (2) Nash-GBML is
generally applicable to traditional GBML in various domains.

Because Nash-GBML is the framework generally applicable to GBML algorithms, it can be applied
to the other GBML algorithms not mentioned in this study. Moreover, because the proposed penalty
terms do not reflect the characteristics of the domain, researchers can freely design new penalty

9
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terms according to the target domain. In conclusion, this study proposes a new framework for meta-
learning that considers interaction among tasks, and the methodology to support it. We presents a
pathway for further expansion whenever a novel GBML algorithms or new penalty terms reflecting
domain characteristics are developed.

We are interested in extending the meta-learning framework not only by adding a penalty term to the
objective function but also by adding a joint constraint on the task-specific parameters to the strategy
set in the inner level problem. We can model it as the generalized SLMF game. In the future, we
plan to apply Nash-GBML to other complex regression, classification, and RL domains. We also
plan to design a new penalty term that reflects the characteristics of the domain.
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A GAME THEORETIC INTERPRETATION OF GBML

GBML algorithms (Li et al., 2017; Rajeswaran et al., 2019; Zintgraf et al., 2019; Collins et al., 2020)
based on MAML (Finn et al., 2017) update the meta-parameter θ in the outer level and update the
task-specific parameter ϕ in the inner level. We discuss what problems current GBML algorithms
aim to solve. Let Dtest

i be a task i’s meta-testing data, Dtr
i be a task i’s meta-training data, L be a

loss function, α be a inner learning rate, N is the number of tasks, B be a batch size, and d be a
dimension of meta-parameter.

Meta-SGD (Li et al., 2017) learns the inner learning rate in the outer level. Thus, the target prob-
lem of Meta-SGD can be modeled as the following Single-Leader Multi-Follower (SLMF) game:

Leader: min
θ∈Rd,α∈Rd

F (θ, α,ϕ) :=
1

N

N∑
i=1

L
(
θ, α, ϕi;Dtest

i

)
(15)

Follower: min
ϕi∈Rd

L
(
θ, α, ϕi;Dtr

i

)
(16)

To compute a Stackelberg equilibrium of the SLMF game, Meta-SGD with one-step gradient update
first approximates the optimal task-specific parameter ϕ∗

i (θ, α) = argminϕi∈Rd L (θ, α, ϕi,Dtr
i )

of the inner level problem as the one SGD update from the meta-parameter ϕ̂i (θ, α) = θ − α ◦
d
dϕL (ϕ,D

tr
i ) |ϕ=θ where ◦ denotes element-wise product. Then, Meta-SGD computes the gradi-

ent of the meta-loss dF
dθ of the outer level problem by approximating the meta-loss function F as

1
B

B∑
i=1

L
(
ϕ̂i (θ, α) ;Dtest

i

)
.
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Implicit MAML (iMAML) (Rajeswaran et al., 2019) enforces the proximity of the task-specific
parameters to the meta-parameters through a penalty term λ

2 ∥ϕ − θ∥2. Thus, the target problem of
iMAML can be modeled as following SLMF game:

Leader: min
θ∈Rd

F (θ,ϕ) :=
1

N

N∑
i=1

L
(
θ, ϕi;Dtest

i

)
(17)

Follower: min
ϕi∈Rd

L
(
θ, ϕi;Dtr

i

)
+

λ

2
∥ϕ− θ∥2 (18)

To compute a Stackelberg equilibrium of the SLMF game, iMAML first computes the optimal task-
specific parameter ϕ∗

i (θ) = argminϕi∈Rd L (θ, ϕi,Dtr
i ) +

λ
2 ∥ϕ − θ∥2 of the inner level problem.

Then, iMAML computes the gradient of the meta-loss dF
dθ of the outer level problem by approximat-

ing the meta-loss function F as 1
B

B∑
i=1

L (ϕ∗
i (θ) ;Dtest

i ).

CAVIA (Zintgraf et al., 2019) learns input context parameters in the inner level and meta-
parameter in the outer level. Thus, the target problem of CAVIA can be modeled as following
SLMF game:

Leader: min
θ∈Rd

F (θ,ϕ) :=
1

N

N∑
i=1

L
(
θ, ϕi;Dtest

i

)
(19)

Follower: min
ϕi∈Rd

L
(
θ, ϕi;Dtr

i

)
(20)

To compute a Stackelberg equilibrium of the SLMF game, CAVIA with a one-step gradient update
first approximates the optimal task-specific parameter ϕ∗

i (θ) = argminϕi∈Rn L (θ, ϕi,Dtr
i ) of the

inner level problem as the one SGD update from the initial input context parameter ϕ̂i (θ) = ϕ0 −
α d

dϕL (θ, ϕ;D
tr
i ) |ϕ=ϕ0 where ϕ0 ∈ Rn is the initial input context parameter, and n is a dimension

of the input context parameter. Then, CAVIA computes the gradient of the meta-loss dF
dθ of the outer

level problem by approximating the meta-loss function F as 1
B

B∑
i=1

L
(
θ, ϕ̂i (θ) ;Dtest

i

)
.

TR-MAML (Collins et al., 2020) learns task-robust meta-parameter. That is, the meta-parameter
minimizes the worst-case loss. Thus, the target problem of TR-MAML can be modeled as following
SLMF game:

Leader: min
θ∈Rd

F (θ,ϕ) := min
θ∈Rd

max
i∈[N ]

L
(
θ, ϕi;Dtest

i

)
(21)

Follower: min
ϕi∈Rd

L
(
θ, ϕi;Dtr

i

)
(22)

To compute a Stackelberg equilibrium of the SLMF game, TR-MAML with a one-step gradient up-
date first approximates the optimal task-specific parameter ϕ∗

i (θ) = argminϕi∈Rd L (θ, ϕi,Dtr
i )

of the inner level problem as the one SGD update from the meta-parameter ϕ̂i (θ) = θ −
α d

dϕL (ϕi;Dtr
i ) |ϕ=θ. Then, TR-MAML computes the gradient of the meta-loss dF

dθ of the outer
level problem by approximating the meta-loss function F as minθ∈Rd maxi∈[B] L (ϕi (θ) ;Dtest

i ).

B PRELIMINARIES OF GAME THEORY

The optimal meta-parameter θ∗ is a general Stackelberg equilibrium of the SLMF game described in
equations (10)-(11). At each meta-gradient update, the target problem of Nash-GBML is modeled
as the following SLMF game Γ =

〈
{1} , [B] , F, (fi)i∈[B] ,Rd, (Ωi)i∈[B]

〉
:

θ∗ = arg min
θ∈Rd

F (θ,ϕ (θ)) (23)

ϕi (θ) = arg min
ϕi∈Ωi

fi (θ, ϕi, ϕ−i (θ)) (24)

12
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where F is the outer level objective function, fi is the task loss function, and B is a batch size.
First, we compute the joint task-specific parameter ϕ through the well-known algorithm such as
the proximal-decomposition algorithm (Scutari et al., 2012; Atzeni et al., 2013), regularized NI-
function type method (Facchinei & Kanzow, 2010; Jo & Park, 2020), or the projected reflected
gradient descent (PRGD) method (Malitsky, 2015). Next, we compute the meta-gradient d

dθF to
update the meta-parameter.

PRGD method effectively computes a solution of variational inequality for the inner level of Nash-
GBML. Because the inner level of Nash-GBML is the Nash equilibrium problem (NEP) (Nash,
1950; 1951), we have to compute a Nash equilibrium of the meta-training tasks. Here, we discuss
the relation between a Nash equilibrium and a solution of variational inequality. First, we make the
following assumption in order to discuss the existence and uniqueness of Nash equilibrium.

Assumption B.1 Suppose the following holds:

• Task i’s strategy set Ωi is closed and convex.

• Task i’s inner level loss function fi (θ, ϕi, ϕ−i) is L-smooth for all task i, i.e.∥∥∥∥ ∂

∂ϕi
fi
(
ϕ1
i , ϕ−i, θ

)
− ∂

∂ϕi
fi
(
ϕ2
i , ϕ−i, θ

)∥∥∥∥ ≤ L
∥∥ϕ1

i − ϕ2
i

∥∥ ,∀ϕ1
i , ϕ

2
i (25)

• Task i’s inner level loss function fi (θ, ϕi, ϕ−i) is strongly convex for all task i. It means
that fi (θ, ϕi, ϕ−i) is convex, and the partial gradient of loss function ∂

∂ϕi
fi (θ, ϕi, ϕ−i) is

µ-strongly monotone for all task i with condition number κ = L/µ. µ-strongly monotonic-
ity of the gradient of the task i’s loss function is represented as〈

∂

∂ϕi
fi
(
θ, ϕ1

i , ϕ−i

)
− ∂

∂ϕi
fi
(
θ, ϕ2

i , ϕ−i

)
, ϕ1

i − ϕ2
i

〉
≥ µ

∥∥ϕ1
i − ϕ2

i

∥∥2 ,∀ϕ1
i , ϕ

2
i (26)

Now, we discuss the existence and uniqueness of the solution for the variational inequality of equa-
tion (24), and it is also the unique Nash equilibrium. Then, we prove that the PRGD method always
converges to the unique Nash equilibrium under Assumption B.1.

Lemma B.2 Let G (θ) =
〈
[B] , (fi)i∈[B] , (Ωi)i∈[B]

〉
be an inner level problem of the SLMF game

Γ =
〈
{1} , [B] , F, (fi)i∈[B] ,Rd, (Ωi)i∈[B]

〉
modeling the Nash-GBML algorithm when meta-

parameter is θ. Then, there is the unique variational equilibrium of G (θ), and it is also the unique
Nash equilibrium of G (θ).

Proof. By Assumption B.1, G (θ) has the unique variational equilibrium by Theorem 2.3.3 of
(Facchinei & Pang, 2003), and it is also the unique Nash equilibrium by Proposition 1.4.2 of
(Facchinei & Pang, 2003).

Lemma B.3 Let G (θ) =
〈
[B] , (fi)i∈[B] , (Ωi)i∈[B]

〉
be an inner level problem of the SLMF game

Γ =
〈
{1} , [B] , F, (fi)i∈[B] ,Rd, (Ωi)i∈[B]

〉
modeling the Nash-GBML algorithm when meta-

parameter is θ. Then, the PRGD method always converges to the unique Nash equilibrium of G (θ)
under Assumption B.1.

Proof. By Theorem 3.3 of (Malitsky, 2015), the PRGD method always converges to the unique
variational equilibrium of G (θ). By Lemma B.2, the variational equilibrium computed by the PRGD
method is also the unique Nash equilibrium of G (θ).

We compute the implicit gradient for the Stackelberg equilibrium of the SLMF game Γ =〈
{1} , [B] , F, (fi)i∈[B] ,Rd, (Ωi)i∈[B]

〉
by transforming it into the 1 − 1 − 1 Stackelberg game

Γ̂ =
〈
f1, f2, f3,Ω1,Ω2,Ω3

〉
(Jo et al., 2023).
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Lemma B.4 Let Γ =
〈
{1} , [B] , F, (fi)i∈[B] ,Rd, (Ωi)i∈[B]

〉
be the SLMF game modeling the

Nash-GBML algorithm. The inner level loss function fi is defined as the sum of training loss function
L and penalty term p, that is, fi (θ, ϕi, ϕ−i) = L (ϕi;Dtr

i ) + p (θ, ϕi, ϕ−i). Assume that Ωi = Rd.
Then, the implicit gradient dϕ∗(θ)

dθ is as follows:

dϕ∗ (θ)

dθ
= −P (θ,ϕ∗ (θ))

−1
Q (θ,ϕ∗ (θ)) (27)

where

P (θ,ϕ∗ (θ)) =

[
∂

∂ϕ

[
∂L (ϕ∗

i (θ) ;Dtr
i )

∂ϕi

]T
i∈[B]

+
∂2p (θ,ϕ∗ (θ))

∂ϕ2

]

Q (θ,ϕ∗ (θ)) =
∂

∂θ

[
∂p (θ,ϕ∗ (θ))

∂ϕ

]T
(28)

Proof. Let Γ̂ =
〈
f1, f2, f3,Ω1,Ω2,Ω3

〉
be a 1 − 1 − 1 Stackelberg game where f1 = F

is a first leader’s utility function and its decision variable θ in strategy set Ω1 = Rd, f2 =∑
i∈[B]

(
∂fi
∂ϕi

)(
ϕi − ϕ̂i

)
is a second leader’s utility function and its decision variable ϕ in strat-

egy set Ω2 =
∏

i∈[B] Ωi, and f3 = −
∑

i∈[B]

(
∂fi
∂ϕi

)(
ϕi − ϕ̂i

)
is a follower’s utility function

and its decision variable ϕ̂ in strategy set Ω3 =
∏

i∈[B] Ωi. Then, the Stackelberg equilibrium(
θ∗,ϕ∗ (θ) , ϕ̂

∗
(θ∗,ϕ∗ (θ))

)
of 1− 1− 1 Stackelberg game Γ̂ that satisfies equations (29) - (31) is

also a Stackelberg equilibrium (θ∗,ϕ∗ (θ)) of the SLMF game Γ (Jo et al., 2023).

θ∗ = arg min
θ∈Rd

f1 (θ,ϕ∗ (θ)) (29)

ϕ∗ (θ) = arg min
ϕ∈Ω2(θ)

f2
(
θ,ϕ, ϕ̂

∗
(θ,ϕ)

)
(30)

ϕ̂
∗
(θ,ϕ) = arg min

ϕ̂∈Ω3(θ)
f3
(
θ,ϕ, ϕ̂

)
(31)

Now we compute the implicit gradient when every follower of Γ has an unconstrained strategy set,
i.e., Ωi = Rd. The derivative of f3 with respect to ϕ̂ is a zero vector regardless of ϕ̂ if the following
holds.

d

dϕ̂
f3
(
θ,ϕ, ϕ̂

∗
(θ,ϕ)

)
=

[
∂L (ϕi;Dtr

i )

∂ϕi
+

∂p (ϕ, θ)

∂ϕi

]T
i∈[B]

= 0Bd×1 (32)

The optimal ϕ∗ (θ) should satisfy equation (32). That is, the derivative of equation (32) with respect
to θ is 0Bd×d.

d

dθ

df3

dϕ̂
=

d

dθ

[
∂L (ϕ∗

i (θ) ;Dtr
i )

∂ϕi
+

∂p (θ,ϕ∗ (θ))

∂ϕi

]T
i∈[B]

=
∂

∂ϕ

[
∂L (ϕ∗

i (θ) ;Dtr
i )

∂ϕi

]T
i∈[B]

dϕ∗ (θ)

dθ

+
∂

∂θ

[
∂p (θ,ϕ∗ (θ))

∂ϕ

]T
+

∂2p (θ,ϕ∗ (θ))

∂ϕ2

dϕ∗ (θ)

dθ

= 0Bd×d (33)

Therefore, the implicit gradient is as follows.

dϕ∗ (θ)

dθ
=−

[
∂

∂ϕ

[
∂L (ϕ∗

i (θ) ;Dtr
i )

∂ϕi

]T
i∈[B]

+
∂2p (θ,ϕ∗ (θ))

∂ϕ2

]−1
∂

∂θ

[
∂p (θ,ϕ∗ (θ))

∂ϕ

]T
(34)
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The rest of our study focuses on proving the convergence of Nash-GBML where Ωi = Rd for all
task i. Even if there are constraints on the strategy set, convergence is guaranteed using the implicit
gradient computed by Lemma B.4 in a similar manner. To prove the convergence of Nash-GBML,
we first define the approximated gradient of the outer level objective function F using Lemma B.4.

d̂

dθ
F
(
θ, ϕ̂

)
=

∂

∂θ
F
(
θ, ϕ̂

)
+

dϕ̂

dθ
× ∂

∂ϕ
F
(
θ, ϕ̂

)
(35)

where ϕ̂ is joint estimated task-specific parameter and

dϕ̂

dθ
= −P

(
θ, ϕ̂

)−1

Q
(
θ, ϕ̂

)
P
(
θ, ϕ̂

)
=

 ∂

∂ϕ

∂L
(
ϕ̂i;Dtr

i

)
∂ϕi

T

i∈[B]

+
∂2g

(
θ, ϕ̂

)
∂ϕ2


Q
(
θ, ϕ̂

)
=

∂

∂θ

∂g
(
θ, ϕ̂

)
∂ϕ

T

(36)

C TIME AND SPACE COMPLEXITY

We define a δ-accurate estimation of the optimal joint task-specific parameter ϕ∗ and an ϵ-accurate
estimation of the approximated gradient of the outer level objective function d̂

dθF .

Definition C.1 Let the joint task-specific parameter ϕ̂ be a solution estimated by the well-known
computing algorithm (Facchinei & Kanzow, 2010; Scutari et al., 2012; Atzeni et al., 2013; Malit-
sky, 2015; Jo & Park, 2020). Then, ϕ̂ is a δ-accurate estimation of the optimal joint task-specific
parameter ϕ∗ if it satisfies the following: ∥∥∥ϕ̂− ϕ∗

∥∥∥ ≤ δ (37)

Definition C.2 Let d̂
dθF be an approximated gradient of the outer level objective function. Then,

ĥθ is an ϵ-accurate estimation of the outer level objective function if it satisfies the following:∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥ ≤ ϵ (38)

Note that the joint convergent task-specific parameter ϕ̂ of the Nash-GBML algorithm is a δ-
accurate estimation of the unique solution of variational inequality because the PRGD method
computes the solution of the variational inequality (Malitsky, 2015). We show that ϕ̂ com-
puted by the PRGD method is also a δ-accurate estimation of the unique Nash equilibrium by
Lemma B.3. Now we prove the convergence of the inner level problem of the SLMF game
Γ =

〈
{1} , [B] , F, (fi)i∈[B] ,Rd, (Ωi)i∈[B]

〉
which model the Nash-GBML algorithm.

Theorem C.3 Let D be the diameter of search space of the joint task-specific parameter ϕ =
(ϕi)i∈[B] in the inner level problem (i.e. ∥ϕ − ϕ∗∥ ≤ D). Suppose that the projected reflected
gradient descent (PRGD) method (Malitsky, 2015) is used to compute δ-accurate estimation of the
optimal joint task-specific parameter ϕ̂ =

(
ϕ̂i

)
i∈[B]

of the Nash equilibrium, which is the conver-

gent point of the inner level of Nash-GBML algorithm. Under Assumption B.1, Nash-GBML algo-
rithm computes ϕ̂ with O (κ log (D/δ)) number of iterations, and only O (Mem (∇Li)κ log (D/δ))
memory is required throughout where κ is the condition number.
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Proof. By Theorem 3.3 of (Malitsky, 2015), the PRGD method converges to the δ-accurate estima-
tion of the optimal joint task-specific parameter in n steps, described as follows:∥∥∥ϕ̂− ϕ∗ (θ)

∥∥∥2 ≤ γnD2 (39)

where γ =
1−2aµ+

√
1+4a2µ2

2 . Under Assumption B.1, the number of gradient updates to compute
δ-accurate estimation of the optimal joint task-specific parameter ϕ̂ is − 2

log γ log (D/δ). Since a

is proportional to 1/L, and − 2
log γ is proportional to 1

aµ , the number of gradient computations to

compute ϕ̂ is bounded as κ log (D/δ). Because we compute the implicit gradient of the Nash-
GBML algorithm independently for each task-specific parameter, the memory usage is the same as
that of the other GBML algorithms (Rajeswaran et al., 2019).

D CONVERGENCE ANALYSIS

We introduce assumptions regarding the outer level objective function F and task i’s loss function
fi.

Assumption D.1 We denote the optimal training loss function of task i as L∗ (θ) = L (θ,ϕ∗ (θ)).
Suppose the following holds:

• For any θ, ∂
∂θF is Lipschitz continuous with respect to ϕ with constant L1 > 0, i.e.∥∥∥∥ ∂

∂θ
F
(
θ,ϕ1

)
− ∂

∂θ
F
(
θ,ϕ2

)∥∥∥∥ ≤ L1

∥∥ϕ1 − ϕ2
∥∥ ,∀ϕ1,ϕ2 (40)

• For any ϕ, ∂
∂θF is Lipschitz continuous with respect to θ with constant L̄1 > 0, i.e.∥∥∥∥ ∂

∂θ
F
(
θ1,ϕ

)
− ∂

∂θ
F
(
θ2,ϕ

)∥∥∥∥ ≤ L̄1

∥∥θ1 − θ2
∥∥ ,∀θ1, θ2 (41)

• For any θ, ∂
∂ϕF is Lipschitz continuous with respect to ϕ with constant L2 > 0, i.e.∥∥∥∥ ∂

∂ϕ
F
(
θ,ϕ1

)
− ∂

∂ϕ
F
(
θ,ϕ2

)∥∥∥∥ ≤ L2

∥∥ϕ1 − ϕ2
∥∥ ,∀ϕ1,ϕ2 (42)

• For any ϕ, ∂
∂ϕF is Lipschitz continuous with respect to θ with constant L̄2 > 0, i.e.∥∥∥∥ ∂

∂ϕ
F
(
θ1,ϕ

)
− ∂

∂ϕ
F
(
θ2,ϕ

)∥∥∥∥ ≤ L̄2

∥∥θ1 − θ2
∥∥ ,∀θ1, θ2 (43)

• For any θ, any ϕ, we have
∥∥∥∂F

∂ϕ

∥∥∥ ≤ C1 for some constant C1 > 0.

• For any θ, any ϕ, we have
∥∥∂F

∂θ

∥∥ ≤ C̄1 for some constant C̄1 > 0.

• For any θ, ∂
∂ϕ

[
∂LTi

∂ϕi

]T
i∈[B]

is Lipschitz continuous with respect to ϕ with constant L3 > 0

where ϕ = (ϕi)i∈[B], i.e.∥∥∥∥∥∥ ∂

∂ϕ

[
∂LTi

(
ϕ1
i

)
∂ϕi

]T
i∈[B]

− ∂

∂ϕ

[
∂LTi

(
ϕ2
i

)
∂ϕi

]T
i∈[B]

∥∥∥∥∥∥ ≤ L3

∥∥ϕ1 − ϕ2
∥∥ ,∀ϕ1,ϕ2 (44)

• For any θ, ∂2p
∂θ∂ϕ is Lipschitz continuous with respect to ϕ with constant L4 > 0, i.e.∥∥∥∥ ∂2

∂θ∂ϕ
p
(
θ,ϕ1

)
− ∂2

∂θ∂ϕ
p
(
θ,ϕ2

)∥∥∥∥ ≤ L4

∥∥ϕ1 − ϕ2
∥∥ ,∀ϕ1,ϕ2 (45)
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• For any θ, ∂2p
∂ϕ2 is Lipschitz continuous with respect to ϕ with constant L5 > 0, i.e.∥∥∥∥ ∂2

∂ϕ2 p
(
θ,ϕ1

)
− ∂2

∂ϕ2 p
(
θ,ϕ2

)∥∥∥∥ ≤ L5

∥∥ϕ1 − ϕ2
∥∥ ,∀ϕ1,ϕ2 (46)

• The optimal loss function of task i, L∗
Ti
(θ) is L6-smooth for all task i, i.e.

L∗
Ti

(
θ1
)
≤ L∗

Ti

(
θ2
)
+

〈
θ1 − θ2,

d

dθ
L∗
Ti

(
θ2
)〉

+
L6

2

∥∥θ1 − θ2
∥∥2 ,∀θ1, θ2 (47)

• For any θ, LTi
is strongly convex with respect to ϕi with parameter µ1 > 0, i.e.

µ1I ⪯
∂2LTi

∂ϕ2
i

(48)

• For any θ, p is strongly convex with respect to ϕ with parameter µ2 > 0, i.e.

µ2I ⪯
∂2p

∂ϕ2 (49)

• For any θ, LTi
(θ,ϕ∗ (θ)) is strongly convex on θ.

• For any θ, any ϕ, we have
∥∥∥ ∂2p
∂θ∂ϕ

∥∥∥ ≤ C2 for some constant C2 > 0.

• Assumption B.1 is satisfied.

The second main result is that the error between the estimated gradient ĥθ computed through back-
propagation and dF

dθ . The error is bounded by a weighted sum of the error in estimating ϕ and the
error in estimating gradient through back-propagation.

Lemma D.2 Let θ be a given meta-parameter, ϕ∗ be an optimal task-specific parameter, and ϕ̂ be
an estimated task-specific parameter. Under Assumption D.1, the following statements hold.

• For the same sampling tasks, ϕ∗ (θ) is Lipschitz continuous with respect to θ with constant
C2

µ1+µ2
> 0, i.e. ∥∥ϕ∗ (θ1)− ϕ∗ (θ2)∥∥ ≤ C2

µ1 + µ2

∥∥θ1 − θ2
∥∥ ,∀θ1, θ2 (50)

• The difference between the approximated gradient d̂F
dθ and dF

dθ is bounded by the error in
estimating ϕ∗. That is,∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥∥ ≤ C
∥∥∥ϕ∗ (θ)− ϕ̂ (θ)

∥∥∥ (51)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

• The gradient of the optimal F with respect to θ is Lipschitz continuous in θ with constant
LF > 0, i.e. ∥∥∥∥ d

dθ
F
(
θ1,ϕ∗ (θ1))− d

dθ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥ ≤ LF

∥∥θ1 − θ2
∥∥ (52)

where LF = L̄1 +
C2

µ1+µ2

(
L̄2 + C

)
.

Proof. First, we prove the implicit gradient is bounded. The implicit gradient dϕ∗(θ)
dθ is computed as

follows by Lemma B.4.

dϕ∗ (θ)

dθ
= −P (ϕ∗ (θ) , θ)

−1
Q (ϕ∗ (θ) , θ) (53)
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Under Assumption D.1, P−1 and Q is bounded as follows.∥∥∥P (ϕ∗ (θ) , θ)
−1
∥∥∥ ≤ 1

µ1 + µ2

∥Q (ϕ∗ (θ) , θ)∥ ≤ C2 (54)

Thus, the implicit gradient is bounded as C2

µ1+µ2
.∥∥∥∥dϕ∗ (θ)

dθ

∥∥∥∥ =
∥∥∥−P (ϕ∗ (θ) , θ)

−1
Q (ϕ∗ (θ) , θ)

∥∥∥
≤
∥∥∥P (ϕ∗ (θ) , θ)

−1
∥∥∥× ∥Q (ϕ∗ (θ) , θ)∥

≤ C2

µ1 + µ2
(55)

Now we can prove ϕ∗ (θ) is Lipschitz continuous. The following holds for all θ1, θ2.

∥∥ϕ∗ (θ1)− ϕ∗ (θ2)∥∥ ≤ ∥∥∥∥dϕ∗ (θ)

dθ

∥∥∥∥∥∥θ1 − θ2
∥∥

≤ C2

µ1 + µ2

∥∥θ1 − θ2
∥∥ (56)

Next, we prove the difference between the approximated gradient d̂F
dθ and dF

dθ is bounded.∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥∥ = ∥M1 +M2∥

= ∥M1 +M3 +M4∥

=

∥∥∥∥M1 +M3 + (M5 +M6)
∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥ (57)

where

M1 =
∂

∂θ
F (θ,ϕ∗ (θ))− ∂

∂θ
F
(
θ, ϕ̂ (θ)

)
M2 =

dϕ∗ (θ)

dθ

∂

∂ϕ
F (θ,ϕ∗ (θ))− dϕ̂ (θ)

dθ

∂

∂ϕ
F
(
θ, ϕ̂ (θ)

)
M3 =

dϕ̂ (θ)

dθ

(
∂

∂ϕ
F (θ,ϕ∗ (θ))− ∂

∂ϕ
F
(
θ, ϕ̂ (θ)

))
M4 =

(
dϕ∗ (θ)

dθ
− dϕ̂ (θ)

dθ

)
∂

∂ϕ
F (θ,ϕ∗ (θ))

M5 =

(
P
(
ϕ̂ (θ) , θ

)−1

−P (ϕ∗ (θ) , θ)
−1

)
Q (ϕ∗ (θ) , θ)

M6 =P
(
ϕ̂ (θ) , θ

)−1 (
Q
(
ϕ̂ (θ) , θ

)
−Q (ϕ∗ (θ) , θ)

)
(58)

Under Assumption D.1, each term of equation (57) satisfies the following inequalities. Because
∂
∂θF is Lipschitz continuous,

∥M1∥ ≤ L1

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (59)
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Because ∂
∂ϕF is Lipschitz continuous,

∥M3∥ ≤

∥∥∥∥∥dϕ̂ (θ)

dθ

∥∥∥∥∥
∥∥∥∥ ∂

∂ϕ
F (θ,ϕ∗ (θ))− ∂

∂ϕ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥
≤
∥∥∥∥−P(ϕ̂ (θ) , θ

)−1

Q
(
ϕ̂ (θ) , θ

)∥∥∥∥× L2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥

≤ C2L2

µ1 + µ2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (60)

Because P is Lipschitz continuous,

∥M5∥ ≤
∥∥∥∥P(ϕ̂ (θ) , θ

)−1

−P (ϕ∗ (θ) , θ)
−1

∥∥∥∥∥∥∥∥ ∂2p

∂θ∂ϕ

∥∥∥∥
=

∥∥∥∥P (ϕ∗ (θ) , θ)
−1
(
P (ϕ∗ (θ) , θ)−P

(
ϕ̂ (θ) , θ

))
P
(
ϕ̂ (θ) , θ

)−1
∥∥∥∥∥∥∥∥ ∂2p

∂θ∂ϕ

∥∥∥∥
≤
∥∥∥P (ϕ∗ (θ) , θ)

−1
∥∥∥∥∥∥P (ϕ∗ (θ) , θ)−P

(
ϕ̂ (θ) , θ

)∥∥∥∥∥∥∥P(ϕ̂ (θ) , θ
)−1

∥∥∥∥∥∥∥∥ ∂2p

∂θ∂ϕ

∥∥∥∥
≤ C2

(µ1 + µ2)
2

∥∥∥∥∥∥∥
∂

∂ϕ

[
∂LTi

(ϕ∗
i (θ))

∂ϕi

]T
i∈[B]

− ∂

∂ϕ

∂LTi

(
ϕ̂i (θ)

)
∂ϕi

T

i∈[B]

∥∥∥∥∥∥∥
+

C2

(µ1 + µ2)
2

∥∥∥∥∥∥∂
2p (ϕ∗ (θ) , θ)

∂ϕ2 −
∂2p

(
ϕ̂ (θ) , θ

)
∂ϕ2

∥∥∥∥∥∥
≤ C2 (L3 + L5)

(µ1 + µ2)
2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (61)

Because ∂2p
∂θ∂ϕ is Lipschitz continuous,∥∥∥∥(M5 +M6)

∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥ ≤ (∥M5∥+ ∥M6∥)
∥∥∥∥ ∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥
≤ C1C2 (L3 + L5)

(µ1 + µ2)
2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥

+
L4C1

µ1 + µ2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (62)

Thus, the equation (57) is expanded as follows.∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥∥ ≤
∥∥∥∥M1 +M3 + (M5 +M6)

∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥
≤ ∥M1∥+ ∥M3∥+

∥∥∥∥(M5 +M6)
∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥
≤ C

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (63)

where

C = L1 +
C1L4 + C2L2

µ1 + µ2
+

C1C2 (L3 + L5)

(µ1 + µ2)
2 (64)
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Finally, we prove the gradient of the optimal F with respect to θ is Lipschitz continuous in θ.∥∥∥∥ d

dθ
F
(
θ1,ϕ∗ (θ1))− d

dθ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥ ≤

∥∥∥∥∥ d

dθ
F
(
θ1,ϕ∗ (θ1))− d̂

dθ
F
(
θ1,ϕ∗ (θ2))∥∥∥∥∥

+

∥∥∥∥∥ d̂

dθ
F
(
θ1,ϕ∗ (θ2))− d

dθ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥∥ (65)

The first term of equation (65) is expanded as follows using equations (50), (51).∥∥∥∥∥ d

dθ
F
(
θ1,ϕ∗ (θ1))− d̂

dθ
F
(
θ1,ϕ∗ (θ2))∥∥∥∥∥ ≤ C

∥∥ϕ∗ (θ1)− ϕ∗ (θ2)∥∥
≤ CC2

µ1 + µ2

∥∥θ1 − θ2
∥∥ (66)

Under Assumption D.1, the second term of equation (65) is expanded as∥∥∥∥∥ d̂

dθ
F
(
θ1,ϕ∗ (θ2))− d

dθ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥∥ ≤

∥∥∥∥ ∂

∂θ
F
(
θ1,ϕ∗ (θ2))− ∂

∂θ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥

+

∥∥∥∥∥dϕ∗ (θ2)
dθ

∥∥∥∥∥
∥∥∥∥ ∂

∂ϕ
F
(
θ1,ϕ∗ (θ2))− ∂

∂ϕ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥

≤ L̄1

∥∥θ1 − θ2
∥∥+ C2

µ1 + µ2
L̄2

∥∥θ1 − θ2
∥∥ (67)

Now we prove the optimal F ∗ is Lipschitz continuous with respect to θ with constant LF by equa-
tions (66) and (67).∥∥∥∥ d

dθ
F
(
θ1,ϕ∗ (θ1))− d

dθ
F
(
θ2,ϕ∗ (θ2))∥∥∥∥ ≤ LF

∥∥θ1 − θ2
∥∥ (68)

where LF = L̄1 +
C2

µ1+µ2

(
L̄2 + C

)
.

Theorem D.3 Let θ be a given meta-parameter, ϕ∗ be an optimal task-specific parameter, ϕ̂ be a
δ-accurate estimated task-specific parameter, and ĥθ be an ϵ-accurate estimated gradient of F with
respect to θ computed through back-propagation. Under Assumption D.1, the difference between
the ϵ-accurate estimated gradient ĥθ and the gradient of the optimal outer level objective function
F with respect to θ, dF

dθ , is bounded by the weighted sum of the error in estimating ϕ∗ and the error
in estimating the gradient through back-propagation. That is,∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ ≤ C
∥∥∥ϕ∗ (θ)− ϕ̂

∥∥∥+ ∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤ Cδ + ϵ (69)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. Because the triangle inequality ∥a+ b∥ ≤ ∥a∥+ ∥b∥ holds,∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ =

∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)
+

d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤

∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)∥∥∥∥∥+
∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤

∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)∥∥∥∥∥+ ϵ (70)
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By Lemma D.2, equation (70) is expanded as follows.∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ ≤
∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)∥∥∥∥∥+ ϵ

≤ C
∥∥∥ϕ∗ (θ)− ϕ̂

∥∥∥+ ϵ

≤ Cδ + ϵ (71)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

For the rest of our paper, we discuss the expected utility function with respect to task sampling in
order to prove the convergence of the Nash-GBML algorithm, and its convergent point is an optimal
solution of the stochastic optimization problem described in equations (10) and (11). First, we
describe the assumptions and lemmas required to prove the convergence. We denote ETi∼p(T ) [·] as
E [·] in the remaining part.

Assumption D.4 (Convexity assumption) Let θ(t) be a meta-parameter, ϕ∗ (θ(t)) be an optimal
joint task-specific parameter, and ϕ̂

(
θ(t)
)

be an estimated joint task-specific parameter of the t-th
updated meta-parameter. For any k ≥ 0, there exists a non-increasing sequence {bk}k≥0, {σk}k≥0,
and {σ̄k}k≥0 which converge to 0 that satisfies the following.

• Let ϕ̂ be an estimated joint task-specific parameter. Then, the expectation of an estimated
gradient ĥθ

(
θ, ϕ̂ (θ)

)
is as follows.

E
[
ĥθ

(
θ(t), ϕ̂

(
θ(t)
))]

= E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]

+Bt, ∥Bt∥ ≤ bt (72)

• The norm-variance of an estimated gradient ĥθ

(
θ, ϕ̂ (θ)

)
is bounded, i.e.

E
[∥∥∥ĥθ

(
θ(t), ϕ̂

(
θ(t)
))
− E

[
ĥθ

(
θ(t), ϕ̂

(
θ(t)
))]∥∥∥2] ≤ σ2

t (73)

• The norm-variance of an optimal gradient d
dθF

(
θ(t),ϕ∗ (θ(t))) is bounded, i.e.

E

[∥∥∥∥ d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))
− E

[
d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))]∥∥∥∥2

]
≤ σ̄2

t (74)

• Assumption D.1 is satisfied.

Lemma D.5 Under Assumption D.4, the expectation of the square norm of an estimated gradient
ĥθ

(
θ, ϕ̂ (θ)

)
is bounded, i.e.

E
[∥∥∥ĥθ

(
θ(t), ϕ̂

(
θ(t)
))∥∥∥2] ≤ 4C2E

[∥∥∥ϕ̂(θ(t))− ϕ∗
(
θ(t)
)∥∥∥]2

+ σ2
t + 2b2t + 4

(
C̄1 +

C1C2

µ1 + µ2

)2

(75)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .
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Proof. We denote ĥθ

(
θ, ϕ̂ (θ)

)
as ĥθ (θ). Then, the expectation of the square norm of the estimated

gradient ĥθ (θ) is as follows.

E
[∥∥∥ĥθ (θ)

∥∥∥2] = E
[∥∥∥ĥθ (θ)

∥∥∥2]+ 2
∥∥∥E [ĥθ (θ)

]∥∥∥2 − 2
〈
E
[
ĥθ (θ)

]
,E
[
ĥθ (θ)

]〉
= E

[∥∥∥ĥθ (θ)
∥∥∥2]+ 2

∥∥∥E [ĥθ (θ)
]∥∥∥2 − 2E

〈
ĥθ (θ) ,E

[
ĥθ (θ)

]〉
= E

[∥∥∥ĥθ (θ)− E
[
ĥθ (θ)

]∥∥∥2]+ ∥∥∥E [ĥθ (θ)
]∥∥∥2 (76)

Substituting θ with θ(t) of equation (76). Because ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, equation (76) is
expanded as follows Under Assumption D.4.

E
[∥∥∥ĥθ

(
θ(t)
)∥∥∥2] = E

[∥∥∥ĥθ

(
θ(t)
)
− E

[
ĥθ

(
θ(t)
)]∥∥∥2]+ ∥∥∥E [ĥθ

(
θ(t)
)]∥∥∥2

≤ σ2
t +

∥∥∥∥∥E
[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]

+Bt

∥∥∥∥∥
2

≤ σ2
t + 2b2t + 2

∥∥∥∥∥E
[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]∥∥∥∥∥

2

≤ σ2
t + 2b2t + 4

∥∥∥∥E [ d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))]∥∥∥∥2

+ 4

∥∥∥∥∥E
[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]
− E

[
d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))]∥∥∥∥∥

2

(77)

Because the norm is convex, ∥E [·]∥2 ≤ E [∥·∥]2 by Jensen’s inequality.

E
[∥∥∥ĥθ

(
θ(t)
)∥∥∥2] ≤ σ2

t + 2b2t + 4

∥∥∥∥E [ d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))]∥∥∥∥2

+ 4

∥∥∥∥∥E
[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))
− d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))]∥∥∥∥∥

2

≤ σ2
t + 2b2t + 4E

[∥∥∥∥ d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥]2

+ 4E

[∥∥∥∥∥ d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))
− d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥∥

]2
(78)

Because dF
dθ (θ,ϕ∗ (θ)) = ∂

∂θF (θ,ϕ∗ (θ)) + dϕ∗(θ)
dθ × ∂

∂ϕF (θ,ϕ∗ (θ)), the third term and fourth
term of equation (78) are expanded as follows by Lemma D.2 and Assumption D.1.

E
[∥∥∥∥ d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥] ≤ E

[∥∥∥∥ ∂

∂θ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥]

+ E

[∥∥∥∥∥dϕ∗ (θ(t))
dθ

∥∥∥∥∥
∥∥∥∥ ∂

∂ϕ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥

]

≤ C̄1 +
C1C2

µ1 + µ2
(79)

E

[∥∥∥∥∥ d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))
− d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥∥

]
≤ CE

[∥∥∥ϕ̂(θ(t))− ϕ∗
(
θ(t)
)∥∥∥] (80)
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where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . Combining equations (78), (79) and (80), we derive

the bound of the expectation of the estimated gradient.

E
[∥∥∥ĥθ

(
θ(t)
)∥∥∥2] ≤ σ2

t + 2b2t + 4E
[∥∥∥∥ d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥]2

+ 4E

[∥∥∥∥∥ d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))
− d

dθ
F
(
θ(t),ϕ∗

(
θ(t)
))∥∥∥∥∥

]2

≤ σ2
t + 2b2t + 4

(
C̄1 +

C1C2

µ1 + µ2

)2

+ 4C2E
[∥∥∥ϕ̂(θ(t))− ϕ∗

(
θ(t)
)∥∥∥]2

(81)

In this study, we prove the case where the outer level objective function is the average loss (Finn
et al., 2017; Li et al., 2017; Rajeswaran et al., 2019; Zintgraf et al., 2019). We can similarly prove
the case where the outer level objective function is the worst-case loss (Collins et al., 2020).

Lemma D.6 Let L (θ) be an expected optimal outer level objective function, that is, L (θ) =
E [F (θ,ϕ∗ (θ))]. Under Assumption D.4, L satisfies the following equation.

L
(
θ(t+1)

)
−L

(
θ(t)
)
≤
(
L6

2
− 1

2β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
+ 4βC2E

[∥∥∥ϕ∗
(
θ(t)
)
− ϕ̂

(
θ(t)
)∥∥∥]2 + 4βσ̄2

t + 2βb2t + βσ2
t (82)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. Under Assumption D.1, the task i’s optimal loss function L∗
Ti
(θ) = LTi

(θ,ϕ∗ (θ)) is L6-
smooth.

L∗
Ti

(
θ(t+1)

)
≤ L∗

Ti

(
θ(t)
)
+

〈
θ(t+1) − θ(t),

d

dθ
L∗
Ti

(
θ(t)
)〉

+
L6

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2 (83)

Summing up equation (83) for all tasks i ∈ [B] and divide it by B, we obtain

F ∗
(
θ(t+1)

)
≤ F ∗

(
θ(t)
)
+

〈
θ(t+1) − θ(t),

d

dθ
F ∗
(
θ(t)
)〉

+
L6

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2 (84)

where F ∗ (θ) = F (θ,ϕ∗ (θ)) is the optimal outer level objective function. Then, the difference of
the optimal outer level objective function F ∗ (θ(t+1)

)
− F ∗ (θ(t)) is as follows.

F ∗
(
θ(t+1)

)
− F ∗

(
θ(t)
)
≤
〈
θ(t+1) − θ(t),

d

dθ
F ∗
(
θ(t)
)〉

+
L6

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2

=

〈
θ(t+1) − θ(t),

d

dθ
F ∗
(
θ(t)
)
− E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]
−Bt

〉

+

〈
θ(t+1) − θ(t),E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]

+Bt

〉

+
L6

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2 (85)

Because the meta-parameter of the Nash-GBML algorithm is updated as θ(t+1) = θ(t) −
βĥθ

(
θ(t), ϕ̂

(
θ(t)
))

, that is the difference is θ(t+1) − θ(t) = −βĥθ

(
θ(t), ϕ̂

(
θ(t)
))

. Multiplying

both sides by θ(t+1) − θ(t) and simplifying, we get〈
θ(t+1) − θ(t), ĥθ

(
θ(t), ϕ̂

(
θ(t)
))〉

= − 1

β

∥∥∥θ(t+1) − θ(t)
∥∥∥2 (86)
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By combining equations (85) and (86),

F ∗
(
θ(t+1)

)
− F ∗

(
θ(t)
)
≤

〈
θ(t+1) − θ(t),

d

dθ
F ∗
(
θ(t)
)
− E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]

−Bt

〉

+

〈
θ(t+1) − θ(t),E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]

+Bt − ĥθ

(
θ(t), ϕ̂

(
θ(t)
))〉

− 1

β

∥∥∥θ(t+1) − θ(t)
∥∥∥2 + L6

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2 (87)

Because ⟨a, b⟩ ≤ 1
2c ∥a∥

2
+ c

2 ∥b∥
2 for some constant c, the following equation holds under the

definition of ĥθ

(
θ(t), ϕ̂

(
θ(t)
))

.

F ∗
(
θ(t+1)

)
− F ∗

(
θ(t)
)
≤ 1

2c1

∥∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]
−Bt

∥∥∥∥∥
2

+
1

2c2

∥∥∥E [ĥθ

(
θ(t), ϕ̂

(
θ(t)
))]
− ĥθ

(
θ(t), ϕ̂

(
θ(t)
))∥∥∥2

+

(
c1 + c2 + L6

2
− 1

β

)∥∥∥θ(t+1) − θ(t)
∥∥∥2 (88)

Under Assumption D.4, the expectation of equation (88) is as follows.

L
(
θ(t+1)

)
−L

(
θ(t)
)
= E

[
F
(
θ(t+1),ϕ∗

(
θ(t+1)

))]
− E

[
F
(
θ(t),ϕ∗

(
θ(t)
))]

= E
[
F ∗
(
θ(t+1)

)
− F ∗

(
θ(t)
)]

≤ 1

2c1
E

∥∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]
−Bt

∥∥∥∥∥
2


+
σ2
t

2c2
+

(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
≤ 2

c1
E

[∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− E

[
d

dθ
F ∗
(
θ(t)
)]∥∥∥∥2

]

+
2

c1
E

∥∥∥∥∥E
[
d

dθ
F ∗
(
θ(t)
)]
− E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]∥∥∥∥∥

2


+
b2t
c1

+
σ2
t

2c2
+

(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2] (89)
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Let d̂
dθF

(
θ(t)
)
= d̂

dθF
(
θ(t), ϕ̂

(
θ(t)
))

. By Lemma D.2 and Jensen’s inequality, the first term and
second term of equation (89) is as follows Under Assumption D.4.

E

[∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− E

[
d

dθ
F ∗
(
θ(t)
)]∥∥∥∥2

]
≤ σ̄2

t (90)

E

∥∥∥∥∥E
[
d

dθ
F ∗
(
θ(t)
)]
− E

[
d̂

dθ
F
(
θ(t)
)]∥∥∥∥∥

2
 = E

∥∥∥∥∥E
[
d

dθ
F ∗
(
θ(t)
)
− d̂

dθ
F
(
θ(t)
)]∥∥∥∥∥

2


≤ E

E[∥∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− d̂

dθ
F
(
θ(t)
)∥∥∥∥∥
]2

= E

[∥∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− d̂

dθ
F
(
θ(t)
)∥∥∥∥∥
]2

≤ C2E
[∥∥∥ϕ∗

(
θ(t)
)
− ϕ̂

(
θ(t)
)∥∥∥]2 (91)

Combining equations (89), (90), and (91), the difference of optimal outer level objective function is
expanded as follows.

L
(
θ(t+1)

)
−L

(
θ(t)
)
≤ 2

c1
E

[∥∥∥∥ d

dθ
F ∗
(
θ(t)
)
− E

[
d

dθ
F ∗
(
θ(t)
)]∥∥∥∥2

]

+
2

c1
E

∥∥∥∥∥E
[
d

dθ
F ∗
(
θ(t)
)]
− E

[
d̂

dθ
F
(
θ(t), ϕ̂

(
θ(t)
))]∥∥∥∥∥

2


+
b2t
c1

+
σ2
t

2c2
+

(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
≤
(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
+

2C2

c1
E
[∥∥∥ϕ∗

(
θ(t)
)
− ϕ̂

(
θ(t)
)∥∥∥]2 + 2σ̄2

t + b2t
c1

+
σ2
t

2c2
(92)

where C = L1 + C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . Let c1 = c2 = 1

2β . Then, the expectation of the
difference of outer level objective function is simplified.

L
(
θ(t+1)

)
−L

(
θ(t)
)
≤
(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
+

2C2

c1
E
[∥∥∥ϕ∗

(
θ(t)
)
− ϕ̂

(
θ(t)
)∥∥∥]2 + 2σ̄2

t + b2t
c1

+
σ2
t

2c2

≤
(
L6

2
− 1

2β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
+ 4βC2E

[∥∥∥ϕ∗
(
θ(t)
)
− ϕ̂

(
θ(t)
)∥∥∥]2 + 4βσ̄2

t + 2βb2t + βσ2
t (93)

Using the lemmas we proved earlier, we present that the Nash-GBML algorithm always converges.
Moreover, we prove that the convergent point of the Nash-GBML algorithm is the Stackelberg equi-
librium of the stochastic optimization problem described in equations (10) and (11). First, let’s
discuss the convergence of the Nash-GBML algorithm.

Theorem D.7 Let (θ∗,ϕ∗ (θ∗)) be a convergent point of the Nash-GBML algorithm, and L (θ) be
an expected optimal meta loss function, that is, L (θ) = ETi∼p(T ) [F (θ,ϕ∗ (θ))]. We denote δ as
the convergence criterion of the inner level and δ̄ as the convergence criterion of the outer level.
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That is, the inner level is converged when
∥∥∥ϕ∗ (θ)− ϕ̂

∥∥∥ ≤ δ and the outer level is converged when∥∥θ(t+1) − θ(t)
∥∥ ≤ δ̄. Under Assumption D.4, the following statements hold.

• The expected difference of the meta-parameter θ is bounded as follows.

ETi∼p(T )

[∥∥∥θ(t+1) − θ(t)
∥∥∥2] ≤ 4β2C2E

[∥∥∥ϕ̂(θ(t))− ϕ∗
(
θ(t)
)∥∥∥]2

+ β2σ2
t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

≤ 4β2C2δ2 + β2σ2
t + 2β2b2t

+ 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

(94)

• The expected difference of the optimal meta loss function F ∗ (θ) is bounded as follows.

L
(
θ(t+1)

)
−L

(
θ(t)
)
≤ 4β2C2

(
L6

2
+

1

2β

)
E
[∥∥∥ϕ̂(θ(t))− ϕ∗

(
θ(t)
)∥∥∥]2

+

(
L6

2
− 1

2β

)(
β2σ2

t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
t + 2βb2t + βσ2

t

≤
(
L6

2
− 1

2β

)(
β2σ2

t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
t + 2βb2t + βσ2

t + 4β2C2δ2
(
L6

2
+

1

2β

)
(95)

• We denote the convergence speed of each non-increasing sequence {bk}k≥0, {σk}k≥0, and
{σ̄k}k≥0, which is defined in Assumption D.4, as O (kb), O (kσ), and O (kσ̄), respectively.
After we choose the step size

β ≤ δ̄√
4C2δ2 + 4

(
C̄1 +

C1C2

µ1+µ2

)2 (96)

, the iteration complexity of the Nash-GBML algorithm’s outer level is
O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
and the expected error of the optimal meta loss function of

the convergent point is

L (θ∗)−L
(
θ(t)
)
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√
C2δ2 +

(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (97)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. The gradient update procedure of the meta-parameter for the Nash-GBML algorithm is
θ(t+1) = θ(t) − βĥθ

(
θ(t), ϕ̂

(
θ(t)
))

. Thus, the expectation of the meta-parameter is as follows
by Lemma D.5. ∥∥∥θ(t+1) − θ(t+1)

∥∥∥ = β
∥∥∥ĥθ

(
θ(t+1), ϕ̂

(
θ(t+1)

))∥∥∥ (98)

E
[∥∥∥θ(t+1) − θ(t+1)

∥∥∥2] = β2E
[∥∥∥ĥθ

(
θ(t+1), ϕ̂

(
θ(t+1)

))∥∥∥2]
≤ 4β2C2E

[∥∥∥ϕ̂(θ(t+1)
)
− ϕ∗

(
θ(t+1)

)∥∥∥]2
+ β2σ2

t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

(99)
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where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

By Theorem C.3, δ-accurate estimation of the optimal joint task-specific parameter is computed with
O (κ log (D/δ)) number of iterations Under Assumption B.1.

∥∥∥ϕ̂(θ(t))− ϕ∗
(
θ(t)
)∥∥∥ ≤ δ, ∀k (100)

Now we derive the expected difference of the optimal meta-parameter and its loss function by equa-
tions (99) and (82).

E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2] ≤ 4β2C2E
[∥∥∥ϕ̂(θ(t))− ϕ∗

(
θ(t)
)∥∥∥]2

+ β2σ2
t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

≤ 4β2C2δ2 + β2σ2
t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

(101)

L
(
θ(t+1)

)
−L

(
θ(t)
)
≤
(
L6

2
− 1

2β

)
E
[∥∥∥θ(t+1) − θ(t)

∥∥∥2]
+ 4βC2E

[∥∥∥ϕ∗
(
θ(t)
)
− ϕ̂

(
θ(t)
)∥∥∥]2 + 4βσ̄2

t + 2βb2t + βσ2
t

≤ 4β2C2

(
L6

2
+

1

2β

)
E
[∥∥∥ϕ̂(θ(t))− ϕ∗

(
θ(t)
)∥∥∥]2

+

(
L6

2
− 1

2β

)(
β2σ2

t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
t + 2βb2t + βσ2

t

≤
(
L6

2
− 1

2β

)(
β2σ2

t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
t + 2βb2t + βσ2

t + 4β2C2δ2
(
L6

2
+

1

2β

)
(102)

The convergence of the Nash-GBML algorithm is guaranteed while the meta-parameter satisfies the
convergence criterion of the outer level. Thus, the following equation holds by equation (101)

4β2C2δ2 + β2σ2
t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

≤ δ̄2

β2

(
4C2δ2 + σ2

t + 2b2t + 4

(
C̄1 +

C1C2

µ1 + µ2

)2
)
≤ δ̄2 (103)

Because the convergence speed of σ2
t + 2b2t is O

(
max

{
k2b , k

2
σ

})
, step size β should be less than

β ≤ δ̄√
4C2δ2 + 4

(
C̄1 +

C1C2

µ1+µ2

)2 (104)
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and the difference of expected optimal meta loss L
(
θ(t+1)

)
−L

(
θ(t)
)

holds by equation (102)

L
(
θ(t+1)

)
−L

(
θ(t)
)
≤
(
L6

2
− 1

2β

)(
β2σ2

t + 2β2b2t + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
t + 2βb2t + βσ2

t + 4β2C2δ2
(
L6

2
+

1

2β

)
≤ 4β2

(
L6

2
− 1

2β

)(
C̄1 +

C1C2

µ1 + µ2

)2

+ 4β2C2δ2
(
L6

2
+

1

2β

)
≤ L6δ̄

2

2
− δ̄2

2β
+ 4βC2δ2

≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (105)

at the convergent point (θ∗,ϕ∗ (θ∗)) with convergent speed O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
. That is, the

error of the expected meta loss at the convergent point is less than

L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√
C2δ2 +

(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (106)

Next, we discuss the convergent point of the Nash-GBML algorithm is a Stackelberg equilibrium
of the target stochastic optimization problem of the Nash-GBML algorithm described in equations
(10) and (11).

Lemma D.8 The optimal expected meta loss function L (θ) is always equal to the task i’s expected
loss function ETi∼p(T ) [LTi

(θ)].

Proof. Because the sampling task is done through replacement sampling, the following holds.

L (θ) = ETi∼p(T ) [F (θ,ϕ∗ (θ))]

=
1

B

B∑
i=1

ETi∼p(T ) [LTi (θ,ϕ
∗ (θ))]

= ETi∼p(T ) [LTi (θ,ϕ
∗ (θ))] (107)

Theorem D.9 Let (θ∗,ϕ∗ (θ∗)) be an optimal solution of the following stochastic optimization
problem which is the target problem of the Nash-GBML algorithm.

θ∗ = arg min
θ∈Rd

ETi∼p(T ) [LTi (θ, ϕ
∗
i (θ))] (108)

ϕ∗
i (θ) = arg min

ϕi∈Ωi

fi
(
ϕi, ϕ

∗
−i (θ) , θ

)
(109)

We denote the expected meta loss function of the stochastic optimization problem
ETi∼p(T ) [LTi

(θ,ϕ∗ (θ))] as E
[
L∗
Ti
(θ)
]
. Let δ and δ̄ be the convergence criterion of the

inner level and the outer level, respectively. Then, under Assumption D.4, the Nash-GBML
algorithm with step size β ≤ δ̄√

4C2δ2+4
(
C̄1+

C1C2
µ1+µ2

)2
compute the optimal solution of the stochas-

tic optimization problem described in equations (108) and (109) with the convergence speed
O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
and error

E
[
L∗
Ti
(θ∗)

]
− E

[
L∗
Ti

(
θ(t)
)]
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (110)
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where C = L1 + C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . That is, the convergent point of the Nash-GBML

algorithm is also the general Stackelberg equilibrium of the SLMF game described in equations
(108) and (109).

Proof. By Theorem D.7 and Lemma D.8, the difference of the expected meta loss function of
the stochastic problem at the convergent point of the Nash-GBML algorithm is converged with
convergent speed O

(
max

{
k2b , k

2
σ, k

2
σ̄

})
.

E
[
L∗
Ti

(
θ(t+1)

)]
− E

[
L∗
Ti

(
θ(t)
)]

= L
(
θ(t+1)

)
−L

(
θ(t)
)

≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (111)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . That is, the error of the expected meta loss function

E
[
L∗
Ti
(θ)
]

at the convergent point of the Nash-GBML algorithm is less than

L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√
C2δ2 +

(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (112)

Because the difference of the expected meta loss function E
[
L∗
Ti
(θ)
]

is converged in equation (111),
the convergent point of the Nash-GBML algorithm is also the optimal solution of the stochastic
optimization problem described in equations (108) and (109). That is,

E
[
L∗
Ti
(θ∗)

]
− E

[
L∗
Ti

(
θ(t)
)]
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (113)

So far, we show that the Nash-GBML algorithm converges, and its convergent point is the Stackel-
berg equilibrium of the stochastic SLMF game, which is the target problem of Nash-GBML algo-
rithm. Now, we prove that the Nash-GBML algorithm always converges to the same point regardless
of the initial meta-parameter or initial task-specific parameter, and irrespective of the order in which
task-specific parameters are updated in the inner level.

Theorem D.10 Under Assumption D.4, the Nash-GBML algorithm converges to the same optimal
solution of the stochastic optimization problem described in equations (108) and (109) regardless
of the order of the task-specific parameters’ gradient update in the inner level. Moreover, the Nash-
GBML algorithm converges to the optimal solution of the stochastic optimization problem described
in equations (108) and (109) regardless of the initial meta-parameter and initial task-specific pa-
rameters.

Proof. Let G (θ) be the N -player normal-form game modeling an inner level of the Nash-GBML
algorithm. Because there is the unique convergent point of G (θ) by Lemma B.3, the Nash-GBML
algorithm converges to the same convergent point regardless of the order of the task-specific param-
eters’ gradient update.

G (θ) has the unique Nash equilibrium under Assumption B.1. Thus, there is the unique Nash
equilibrium ϕ∗ (θ) of equation (109) under Assumption D.4. Because the optimal task-specific loss
function is convex on θ, ETi∼p(T ) [LTi (θ,ϕ

∗ (θ))] is convex on θ. Therefore, there is the unique
optimal solution (θ∗,ϕ∗ (θ∗)) of the stochastic optimization problem described in equations (108)
and (109). That is, the Nash-GBML algorithm converges to the optimal solution of the stochastic
optimization problem regardless of the initial meta-parameter and initial task-specific parameters.
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E PENALTY TERM

The penalty term pC is designed to minimize the distance between meta-parameter θ and the center

of task-specific parameters 1
N

N∑
i=1

ϕi. To scale it to the task-specific parameters in the batch, the

distance is represented as follows approximately:∥∥∥∥∥θ − 1

N

N∑
k=i

ϕk

∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

N

N∑
k=i

(θ − ϕk)

∥∥∥∥∥
2

2

≈

∥∥∥∥∥BN 1

B

B∑
k=i

(θ − ϕk)

∥∥∥∥∥
2

2

=

(
B

N

)2
∥∥∥∥∥ 1

B

B∑
k=i

(θ − ϕk)

∥∥∥∥∥
2

2

=

(
B

N

)2
∥∥∥∥∥θ − 1

B

B∑
k=i

ϕk

∥∥∥∥∥
2

2

(114)

Because θ − ϕk is proportional to the inner learning rate in Nash-GBML with the one-step gradient
update. Thus, we divide equation (114) by α2. That is, the proportional constant is defined as(

B
αN

)2
. We set α = 0.05 instead of the inner learning rate for Meta-SGD and set θ = ϕ0 for

CAVIA.
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F ALGORITHM DETAIL AND ADDITIONAL EXPERIMENT

For all models, we perform experiments with Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz,
16.0GB RAM, and a single NVIDIA GeForce RTX 2060 GPU.

Every algorithm for sinusoid regression (Collins et al., 2020) uses the same fully connected network
architecture described in (Finn et al., 2017). We evaluate models with three-step gradient update
where a fixed learning rate (α, β) = (0.001, 0.001) and train for 70000 iterations with a meta batch
of 25 tasks. We set the task-probability learning rate as 0.00001 for TR-MAML and use 4 context
parameters for CAVIA.

For image completion task (Garnelo et al., 2018), we use the same fully connected network archi-
tecture described in (Zintgraf et al., 2019). We use 128 context parameters for CAVIA. We evaluate
models with five-step gradient update where a fixed learning rate (α, β) = (0.001, 0.1) and train for
50000 iterations with a meta batch of 25 tasks. We use 128 context parameters for CAVIA.

For MiniImageNet task (Ravi & Larochelle, 2017), we use the same convolutional network architec-
ture described in (Finn et al., 2017). The number in parentheses after CAVIA indicates the number of
filters. We use 100 context parameters for CAVIA. Every models are trained using five-step gradient
update and train for 60000 iterations with a meta batch of 2 tasks. We set to (α, β) = (0.0001, 0.01)
for MAML, Meta-SGD, and set to (α, β) = (0.001, 1) for CAVIA(32), CAVIA(128).

F.1 ROBUSTNESS OF THE HYPERPARAMETER

Obviously, if the weight of the penalty term is too small, Nash-GBML is similar to GBML, and if it is
too large, Nash-GBML does not work. In this section, we demonstrate how robust the performance
of the centroid penalty term pC (w) and the robust penalty term pR (w, r) is with respect to the
weight w.

In Table 5 and 6, we present the quantitative results of Nash-GBML for different hyparpa-
rameters for sinusoid regression. We evaluate the robustness of the first penalty term pC (w)
where w ∈ {10x|x ∈ Z,−6 ≤ x ≤ −1}, and the second penalty term pR (w, r) where w ∈
{10x|x ∈ Z,−5 ≤ x ≤ −2} and r ∈ {1, 2}. We validate that Nash-GBML outperforms GBML
in most settings.

Table 5: MSE for MAML on 5-shot 3-step sinusoid regression with 95% confidence intervals over
5 random trials depending on the hyperparameters. Red color means the better performance than
MAML, and the bold means the best value for each penalty terms.

Algorithm Mean Worst Std. Dev.
MAML (Finn et al., 2017) 0.59± 0.01 3.18± 0.86 0.57± 0.04
MAML +pC (0.1) 0.54± 0.01 3.00± 0.79 0.55± 0.03
MAML +pC (0.01) 0.63± 0.02 3.29± 0.83 0.62± 0.03
MAML +pC (0.001) 0.64± 0.02 3.38± 0.85 0.61± 0.04
MAML +pC (0.0001) 0.55± 0.02 3.56± 0.75 0.73± 0.04
MAML +pC (0.00001) 0.54± 0.01 2.88± 0.62 0.52± 0.03
MAML +pC (0.000001) 0.54± 0.02 2.71± 0.58 0.49± 0.03
MAML +pR (0.01, 1) 0.51± 0.02 2.98± 0.77 0.51± 0.03
MAML +pR (0.001, 1) 0.58± 0.02 3.06± 0.28 0.56± 0.03
MAML +pR (0.0001, 1) 0.56± 0.02 3.06± 0.78 0.54± 0.04
MAML +pR (0.00001, 1) 0.53± 0.01 2.83± 0.47 0.52± 0.03
MAML +pR (0.01, 2) 0.56± 0.01 2.81± 0.59 0.51± 0.02
MAML +pR (0.001, 2) 0.55± 0.01 2.90± 0.84 0.53± 0.02
MAML +pR (0.0001, 2) 0.51± 0.01 2.81± 0.81 0.50± 0.03
MAML +pR (0.00001, 2) 0.58± 0.02 3.18± 0.86 0.57± 0.04
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Table 6: MSE for Meta-SGD, CAVIA, and TR-MAML on 5-shot 3-step sinusoid regression with
95% confidence intervals over 5 random trials depending on the hyperparameters. Red color means
the better performance than GBML, and the bold means the best value for each penalty terms.

Algorithm Mean Worst Std. Dev.
Meta-SGD (Li et al., 2017) 0.19± 0.01 1.48± 0.68 0.18± 0.03
Meta-SGD +pC (0.1) 0.14± 0.00 1.32± 0.67 0.17± 0.02
Meta-SGD +pC (0.01) 0.28± 0.01 1.78± 0.52 0.28± 0.02
Meta-SGD +pC (0.001) 0.22± 0.01 1.85± 0.50 0.24± 0.02
Meta-SGD +pC (0.0001) 0.22± 0.01 1.52± 0.58 0.23± 0.02
Meta-SGD +pC (0.00001) 0.20± 0.01 1.49± 0.49 0.22± 0.02
Meta-SGD +pC (0.000001) 0.18± 0.01 1.45± 0.64 0.20± 0.02
Meta-SGD +pR (0.01, 1) 0.19± 0.00 1.60± 0.34 0.21± 0.01
Meta-SGD +pR (0.001, 1) 0.17± 0.01 1.32± 0.58 0.17± 0.02
Meta-SGD +pR (0.0001, 1) 0.19± 0.00 1.44± 0.52 0.20± 0.01
Meta-SGD +pR (0.00001, 1) 0.14± 0.00 1.07± 0.37 0.16± 0.01
Meta-SGD +pR (0.01, 2) 0.17± 0.00 1.30± 0.37 0.18± 0.01
Meta-SGD +pR (0.001, 2) 0.14± 0.00 1.30± 0.39 0.16± 0.01
Meta-SGD +pR (0.0001, 2) 0.24± 0.02 3.42± 3.67 0.31± 0.01
Meta-SGD +pR (0.00001, 2) 0.15± 0.01 1.21± 0.67 0.17± 0.02
CAVIA (Zintgraf et al., 2019) 0.14± 0.01 1.29± 0.62 0.14± 0.02
CAVIA +pC (0.1) 0.15± 0.01 1.50± 1.11 0.16± 0.04
CAVIA +pC (0.01) 0.15± 0.01 1.21± 0.69 0.16± 0.04
CAVIA +pC (0.001) 0.13± 0.00 1.15± 0.59 0.14± 0.02
CAVIA +pC (0.0001) 0.13± 0.01 1.20± 0.75 0.15± 0.03
CAVIA +pC (0.00001) 0.15± 0.01 1.55± 1.10 0.16± 0.03
CAVIA +pC (0.000001) 0.14± 0.01 1.19± 0.55 0.15± 0.03
CAVIA +pR (0.01, 1) 0.25± 0.01 1.98± 0.71 0.25± 0.01
CAVIA +pR (0.001, 1) 0.16± 0.01 1.39± 0.69 0.18± 0.02
CAVIA +pR (0.0001, 1) 0.22± 0.01 1.64± 0.72 0.21± 0.02
CAVIA +pR (0.00001, 1) 0.12± 0.01 1.26± 0.96 0.15± 0.04
CAVIA +pR (0.01, 2) 0.26± 0.02 1.76± 0.15 0.28± 0.03
CAVIA +pR (0.001, 2) 0.13± 0.01 1.28± 0.36 0.15± 0.02
CAVIA +pR (0.0001, 2) 0.14± 0.00 1.37± 0.64 0.15± 0.02
CAVIA +pR (0.00001, 2) 0.13± 0.01 1.18± 0.46 0.15± 0.02
TR-MAML (Collins et al., 2020) 0.62± 0.02 2.35± 0.46 0.29± 0.02
TR-MAML +pC (0.1) 0.62± 0.02 2.77± 1.32 0.32± 0.04
TR-MAML +pC (0.01) 0.51± 0.02 2.33± 1.23 0.28± 0.04
TR-MAML +pC (0.001) 0.54± 0.02 2.31± 0.87 0.28± 0.03
TR-MAML +pC (0.0001) 0.54± 0.02 2.38± 0.95 0.28± 0.03
TR-MAML +pC (0.00001) 0.55± 0.02 2.23± 0.53 0.28± 0.03
TR-MAML +pC (0.000001) 0.55± 0.02 2.30± 0.55 0.29± 0.03
TR-MAML +pR (0.01, 1) 0.52± 0.01 2.20± 1.12 0.26± 0.04
TR-MAML +pR (0.001, 1) 0.60± 0.02 2.32± 1.03 0.28± 0.03
TR-MAML +pR (0.0001, 1) 0.63± 0.02 2.58± 1.28 0.33± 0.04
TR-MAML +pR (0.00001, 1) 0.63± 0.02 2.40± 1.03 0.30± 0.04
TR-MAML +pR (0.01, 2) 0.51± 0.02 2.42± 1.18 0.28± 0.03
TR-MAML +pR (0.001, 2) 0.61± 0.02 2.45± 0.54 0.31± 0.04
TR-MAML +pR (0.0001, 2) 0.54± 0.02 2.25± 1.14 0.28± 0.04
TR-MAML +pR (0.00001, 2) 0.52± 0.02 2.56± 1.12 0.31± 0.05

F.2 ROBUSTNESS OF THE BATCH SIZE

We validate the performance of Nash-GBML depending on the batch size B ∈ {5, 10, 15, 20, 25}.
In Figure F.2, F.2, F.2, and F.2, we show that Nash-GBML outperforms the traditional GBML in
most settings. In particular, Nash-GBML algorithms consistently outperform GBML algorithms
when the batch-size is large enough.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 3: Test MSE statistics with 95% confidence intervals depends on the batch size for 5-shot
sinusoid regression. The leftmost plot shows the average MSE loss and the center plot shows the
worst MSE loss for MAML and the Nash-GBML that combines MAML with penalty terms. The
statistics are empirical averages over 5000 samples.

Figure 4: Test MSE statistics with 95% confidence intervals depends on the batch size for 5-shot
sinusoid regression. The left plot shows the average MSE loss and the right plot shows the worst
MSE loss for Meta-SGD and the Nash-GBML that combines Meta-SGD with penalty terms. The
statistics are empirical averages over 5000 samples.

F.3 ROBUSTNESS OF THE STEP SIZE

We validate the performance of Nash-GBML depending on the batch size B ∈ {5, 10, 15, 20, 25}.
In Figure F.3, F.3, F.3, and F.3, we show that Nash-GBML outperforms the traditional GBML in
most settings. Note that, you should use a small weight when the step size is large.

F.4 CONVERGENCE TRAJECTORY

The convergence trajectory of Meta-SGD, CAVIA, TR-MAML, and its Nash-GBML is demon-
strated in Figure F.4, F.4, and F.4.
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Figure 5: Test MSE statistics with 95% confidence intervals depends on the batch size for 5-shot
sinusoid regression. The left plot shows the average MSE loss and the right plot shows the worst
MSE loss for CAVIA and the Nash-GBML that combines CAVIA with penalty terms. The statistics
are empirical averages over 5000 samples.

Figure 6: Test MSE statistics with 95% confidence intervals depends on the batch size for 5-shot
sinusoid regression. The left plot shows the average MSE loss and the right plot shows the worst
MSE loss for TR-MAML and the Nash-GBML that combines TR-MAML with penalty terms. The
statistics are empirical averages over 5000 samples.

Figure 7: Test MSE statistics with 95% confidence intervals depends on the step size for 5-shot
sinusoid regression. The leftmost plot shows the average MSE loss and the center plot shows the
worst MSE loss for MAML and the Nash-GBML that combines MAML with penalty terms. The
statistics are empirical averages over 5000 samples.
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Figure 8: Test MSE statistics with 95% confidence intervals depends on the step size for 5-shot
sinusoid regression. The left plot shows the average MSE loss and the right plot shows the worst
MSE loss for Meta-SGD and the Nash-GBML that combines Meta-SGD with penalty terms. The
statistics are empirical averages over 5000 samples.

Figure 9: Test MSE statistics with 95% confidence intervals depends on the step size for 5-shot
sinusoid regression. The left plot shows the average MSE loss and the right plot shows the worst
MSE loss for CAVIA and the Nash-GBML that combines CAVIA with penalty terms. The statistics
are empirical averages over 5000 samples.

Figure 10: Test MSE statistics with 95% confidence intervals depends on the step size for 5-shot
sinusoid regression. The left plot shows the average MSE loss and the right plot shows the worst
MSE loss for TR-MAML and the Nash-GBML that combines TR-MAML with penalty terms. The
statistics are empirical averages over 5000 samples.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 11: Test MSE statistics with 95% confidence intervals over 5 random trials of Meta-SGD and
its Nash-GBML. The leftmost plot shows the average MSE loss, the middle plot shows the worst
MSE loss, and the rightmost plot shows the standard deviation. The statistics are empirical averages
over 5000 samples.

Figure 12: Test MSE statistics with 95% confidence intervals over 5 random trials of CAVIA and its
Nash-GBML. The leftmost plot shows the average MSE loss, the middle plot shows the worst MSE
loss, and the rightmost plot shows the standard deviation. The statistics are empirical averages over
5000 samples.

Figure 13: Test MSE statistics with 95% confidence intervals over 5 random trials of TR-MAML
and its Nash-GBML. The leftmost plot shows the average MSE loss, the middle plot shows the worst
MSE loss, and the rightmost plot shows the standard deviation. The statistics are empirical averages
over 5000 samples.
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