
Aligning Target-Aware Molecule Diffusion Models
with Exact Energy Optimization

Siyi Gu∗1, Minkai Xu∗1†, Alexander Powers1, Weili Nie2, Tomas Geffner2
Karsten Kreis2, Jure Leskovec1, Arash Vahdat2, Stefano Ermon1

1 Stanford Univeristy 2 NVIDIA
{sgu33,minkai,jure,ermon}@cs.stanford.edu lxpowers@stanford.edu

{wnie,tgeffner,kkreis,avahdat}@nvidia.com

Abstract

Generating ligand molecules for specific protein targets, known as structure-based
drug design, is a fundamental problem in therapeutics development and biological
discovery. Recently, target-aware generative models, especially diffusion models,
have shown great promise in modeling protein-ligand interactions and generating
candidate drugs. However, existing models primarily focus on learning the
chemical distribution of all drug candidates, which lacks effective steerability
on the chemical quality of model generations. In this paper, we propose a novel
and general alignment framework to align pretrained target diffusion models
with preferred functional properties, named ALIDIFF. ALIDIFF shifts the
target-conditioned chemical distribution towards regions with higher binding
affinity and structural rationality, specified by user-defined reward functions, via
the preference optimization approach. To avoid the overfitting problem in common
preference optimization objectives, we further develop an improved Exact Energy
Preference Optimization method to yield an exact and efficient alignment of
the diffusion models, and provide the closed-form expression for the converged
distribution. Empirical studies on the CrossDocked2020 benchmark show that
ALIDIFF can generate molecules with state-of-the-art binding energies with up
to -7.07 Avg. Vina Score, while maintaining strong molecular properties. Code
is available at https://github.com/MinkaiXu/AliDiff.

1 Introduction

Generating ligand molecules with desirable properties and high affinity to specific protein targets,
known as structure-based drug design (SBDD), is a fundamental problem in therapeutic design
and biological discovery. It necessitates methods that can produce realistic and diverse drug-like
molecules with stable 3D structures and high binding affinities. In the past few years, numerous deep
generative models have been proposed to generate molecules in SMILES string representation [Kusner
et al., 2017, Segler et al., 2018] or graph representations [Jin et al., 2018, Shi et al., 2020, Guan et al.,
2023]. Although these models have shown promise in generating plausible drug-like molecules, they
lack sufficient modeling of the 3D protein-ligand interaction with proteins and therefore can hardly be
adopted in target-aware molecule generation. As a result, generating ligands conditioned on protein
targets remains an open research problem.

Recently, with rapid progress in structural biology and the increasing scale of structural data [Fran-
coeur et al., 2020, Jumper et al., 2021], numerous target-aware generative models have been proposed
to directly generate molecules within the protein targets in 3D. Initial work proposed to sequentially
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place atoms within the target via autoregressive models [Luo et al., 2021, Liu et al., 2022, Peng
et al., 2022], while later work learns diffusion models to jointly design the whole ligand with state-of-
the-art results [Guan et al., 2023, Lin et al., 2022, Schneuing et al., 2023, Huang et al., 2023, Guan
et al., 2024]. Following the biological principle to model the protein-ligand complex interactions,
these methods have shown great promise in generating realistic drugs that can bind toward given
targets. However, all existing models solely focus on learning the chemical distribution of candidate
molecules and treat all training samples equally, while in practice, only the ligand molecules with
strong binding affinity and high synthesizability are preferred for real-world therapeutic development.
As a result, existing learned models generally lack sufficient steerability regarding the relative quality
of model generations and cannot generate faithful samples with the desirable properties.
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Figure 1: High-level illustration of ALIDIFF. For
a protein target, we can have multiple candidate
ligands and rank the preference by certain reward
functions, e.g., binding energy. We align the target-
aware molecule diffusion model with these prefer-
ences by adjusting the conditional likelihoods.

To bridge the gap between existing SBDD mod-
els and the necessity for designing ligands with
favorable properties, in this paper, we intro-
duce a novel and comprehensive alignment
framework to align pretrained target-aware dif-
fusion models with preferred functional prop-
erties, named ALIDIFF. ALIDIFF adjusts the
target-conditioned chemical distribution toward
regions characterized by lower binding energy
and structural rationality, as specified by a user-
defined reward function, using a preference opti-
mization approach. To this end, we derive a uni-
fied variational lower bound to align the likeli-
hoods of both discrete chemical type and contin-
uous 3D coordinate features. We further analyze
the winning data overfitting problem commonly
associated with preference optimization objec-
tives, and introduce an improved Exact Energy
Preference Optimization (E2PO) method. E2PO
analytically ensures a precise and efficient alignment of diffusion models, and we provide a closed-
form expression for the converged distribution. Our key contributions can be summarized as follows:

• We address the challenge of designing favorable target-aware molecules from the perspective
of aligning molecule generative models with desirable properties. We introduce the energy
preference optimization framework and derive variational lower bounds to align diffusion
models for generating molecules with high binding affinity to binding targets.

• We analyze the overfitting issue in the preference optimization objective, and propose an
improved exact energy optimization method to yield an exact alignment towards target
distribution shifted by reward functions.

• We conduct comprehensive comparisons and ablation studies on the CrossDocked2020 [Fran-
coeur et al., 2020] benchmark to justify the effectiveness of ALIDIFF. Empirical results
demonstrate that ALIDIFF can generate molecules with state-of-the-art binding energies
with up to -7.07 Avg. Vina Score, while maintaining strong molecular properties.

2 Related Work

Structure-Based Drug Design. With increasing amount of structural data becoming accessible,
generative models have attracted growing attention for structure-based molecule generation. Early
research [Skalic et al., 2019] proposes to generate SMILES representations from protein contexts
by sequence generative models. Inspired by the progress in 3D and geometric modeling, many
works proposed to solve the problem directly in 3D space. For instance, Ragoza et al. [2022] vox-
elizes molecules within atomic density grids and generates them through a Variational Autoencoder
framework. Luo et al. [2021], Peng et al. [2022], Liu et al. [2022], Powers et al. [2023] developed
autoregressive models to generate molecules by sequentially placing atoms or chemical groups within
the target. Following the autogressive backbone, FLAG[Zhang et al., 2023] and DrugGPS [Zhang and
Liu, 2023] take advantage of chemical priors of molecular fragments to generate ligand molecules
piece by piece, leading to more realistic substructures. More recently, diffusion models achieved
exceptional results in synthesizing high-quality images and texts, which have also been successfully
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Figure 2: Overview of ALIDIFF. This workflow can be summarized as 1) For each protein target
(pocket) p in the training set, we retrieve two candidate ligands m; 2) Label the two ligands as wining
sample mw and losing sample ml by desirable properties, e.g., binding energies; 3) Calculate the
preference optimization objective Equation (12) and update the molecule diffusion model pθ.

used for ligand molecule generation [Guan et al., 2023, Lin et al., 2022, Schneuing et al., 2023,
Huang et al., 2023, Guan et al., 2024]. These models generate molecules by progressively denoising
atom types and coordinates while maintaining physical symmetries with SE(3)-equivariant neural
networks. While the existing works focus on designing molecules using various deep generative
models, they often struggle with generating molecules that exhibit different desirable properties, e.g.,
strong binding affinity, high synthesizability, and low toxicity. Real-word drug discovery projects
almost always seek to optimize or constrain these properties [D Segall, 2012, Bickerton et al., 2012].
In this work, we aim to address the challenge with a novel and general preference optimization
framework.

Reinforcement learning from human feedback (RLHF). Recently, significant efforts have been
devoted to aligning generative models with human preferences. The use of reinforcement learning
to incorporate feedback from humans and AI into finetuning large language models is exemplified
by Reinforcement Learning from Human Feedback (RLHF) [Ziegler et al., 2020, Ouyang et al.,
2022]. Research works have incorporated human feedback to improve performance across various
domains, such as machine translation [Nguyen et al., 2017], summarization [Stiennon et al., 2020],
and also diffusion models [Uehara et al., 2024b,a]. Notably, Rafailov et al. [2023] designed a new
preference paradigm that enables training language models to satisfy human preferences directly
without reinforcement learning. This algorithm was later applied to diffusion models for text-to-image
generation tasks [Wallace et al., 2023]. Concurrent work [Zhou et al., 2024] attempts to apply DPO
for designing antibodies with rationality and functionality. To the best of our knowledge, we are the
first alignment approach for target-aware ligand design, where the conditional distribution is shifted
toward desirable properties.

3 Method

In this section we present ALIDIFF, a general framework for aligning target-aware diffusion models
with various molecular functionalities. We first provide an overview of the target-aware ligand
diffusion model and our Reinforcement Learning from Feedback formulation (section 3.1). Next, we
introduce the energy optimization approach for aligning the diffusion model and analyze the potential
limitations of the framework (section 3.2). We then further introduce an exact energy optimization
method from a distribution matching perspective to align the generative model efficiently and exactly
(section 3.3). A visualization of the framework is shown in Figure 2.

3.1 Overview

Notation. We focus on aligning molecule generative models for structure-based drug design, which
can be abstracted as generating molecules that can bind to a given protein target. Following the
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convention in the related literature [Luo et al., 2021, Guan et al., 2023], the molecule and target
protein are represented as M = {(x(i)

M ,v
(i)
M )}NM

i=1 and P = {(x(i)
P ,v

(i)
P )}NP

i=1, respectively, where
NM and NP denote the number of atoms of the molecule M and the protein P . x ∈ R3 and v ∈ RK

denote the atomic 3D position and chemical type, respectively, with K being the dimension of
atom types. For brevity, we denote the molecule as a matrix m = [xM ,vM ] where xM ∈ RNM×3

and vM ∈ RNM×K , and denote the protein as a matrix p = [xP ,vP ] where xP ∈ RNP×3 and
vP ∈ RNP×K . The task can then be formulated as modeling the conditional distribution p(m|p).
Preliminaries. Diffusion Models have been previously used to model the joint distribution of atomic
types and positions [Guan et al., 2023, Schneuing et al., 2023, Lin et al., 2022]. This approach consists
of a forward diffusion process and a reverse generative (denoising) process. Both processes are only
defined on the ligand molecules m, with fixed proteins p. In the forward process, small Gaussian and
categorical noises are gradually injected on atomic coordinates x and types v as follows:

q(mt|mt−1,p) = N (xt;
√
1− βtxt−1, βtI) · C(vt; (1− βt)vt−1 + βt/K), (1)

where N and C stand for the Gaussian and categorical distribution respectively, and βt corresponds to
a (fixed or learnable) variance schedule. Note that, in certain recent work q process can be learnable
with dependence on the conditioning p [Huang et al., 2023]. We omit the subscript M for the ligand
molecule without ambiguity here and denote the atom positions and types at time step t as xt and vt.
Using Bayes theorem, the posterior conditioned on m0 can be computed in closed form:

q(mt−1|mt,m0,p) = N (xt−1; µ̃(xt,x0), β̃tI) · C(vt−1; c̃(vt,v0)), (2)

where µ̃(xt,x0) =
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt, β̃t = 1−ᾱt−1

1−ᾱt
βt, αt = 1 − βt, ᾱt =

∏t
s=1 αs,

c̃(vt,v0) =
c∗∑K

k=1 c∗k
, and c∗(vt,v0) = [αtvt+(1−αt)/K]⊙ [ᾱt−1v0+(1− ᾱt−1)/K] [Ho et al.,

2020, Austin et al., 2021]. At timestep T , q converges to the prior with Gaussians on coordinates
and uniforms on atom types. The reverse process, also known as the generative process, learns a
neural network parameterized by θ to recover data by iterative denoising. The denoising step can be
approximated with predicted Gaussians µθ and categorical distributions cθ as follows:

pθ(mt−1|mt,p) = N (xt−1;µθ([xt,vt], t,p), β̃tI) · C(vt−1; cθ([xt,vt], t,p))

= N (xt−1; µ̃(xt, x̂0), β̃tI) · C(vt−1; c̃(vt, v̂0)),
(3)

where [x̂0, v̂0] = ϵθ([xt,vt], t,p) are predictions from a denoising network ϵθ. Importantly, the
denoising network here is specifically parameterized by equivariant neural networks, resulting in an
SE(3)-invariant likelihood pθ(m|p) on the protein-ligand complex [Xu et al., 2022].

Overview. As ligand molecules with desirable properties, e.g., high binding affinity and synthesizabil-
ity, are required for real-world therapeutic development, we aim to align the ligand diffusion model
with these preferences. Such preferences can be defined as a reward model r(·) : M×P → R calcu-
lated from various cheminformatics software, e.g., binding affinity, drug-likeness, synthesizability, or
their combinations. We fine-tune and align the pre-trained diffusion model with the reinforcement
learning framework. Specifically, given a dataset D containing given protein targets, inspired by
RLHF [Ouyang et al., 2022], this fine-tuning is achieved by maximizing the reward:

max
pθ

Ep∼D,m∼pθ
[r(m,p)]− βDKL(pθ(m|p)∥pref(m|p)), (4)

where pθ and pref are the distributions induced by the fine-tuned and pre-trained models, respectively.
In this work, pθ and pref are the fine-tuned and pre-trained molecule diffusion models, as introduced
above. β is a hyperparameter controlling the KL divergence regularization. Note that, here the reward
is a known black-box function, unlike typical RLHF where it is unknown and has to be estimated
from preferences. In the following section, we elaborate on how the alignment objective is rewritten
with diffusion forward and reverse processes defined on atomic types and coordinates.

3.2 Energy Preference Optimization

Though the reward function is known, evaluating reward values such as binding affinity is com-
putationally expensive and we instead resort to aligning with a labeled offline dataset. We start
with a dataset D = {(p,mw,ml)} where p denotes the protein condition and mw ≻ ml is a
pair of winning and losing ligands with respect to certain specified energy, e.g., binding energy.
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The optimal solution to the RLHF objective from Equation (4) can be written in closed-form
p∗θ(m|p) ∝ pref(m|p) exp( 1β r(m,p)) [Peters and Schaal, 2007]. Following the preference opti-
mization algorithm [Rafailov et al., 2023], we use the Bradley Terry (BT, [Bradley and Terry, 1952])
model p(m0

1 ≻ m0
2|p) = σ(r(m0

1,p)− r(m0
2,p)) to reformulate the RLHF objective as:

LDPO(θ) = −E(p,mw,ml)∼D

[
log σ

(
β log

pθ(m
w
0 |p)

pref(mw
0 |p)

− β log
pθ(m

l
0|p)

pref(ml
0|p)

)]
. (5)

Due to the intractability of pθ(m|p) for diffusion models, we instead follow recent work on diffusion-
based preference optimization [Wallace et al., 2023] to align the whole reverse process and utilize
Jensen’s inequality to optimize its negative evidence lower bound optimization (ELBO):

LDPO-Diffusion(θ) = −E(p,mw
0 ,ml

0)∼D,(mw
1:T ,ml

1:T )∼pθ

[
log σ

(
β log

pθ(m
w
0:T )

pref(mw
0:T )

− β log
pθ(m

l
0:T )

pref(ml
0:T )

)]
,

(6)
where we omit the conditioning on the protein target p for compactness. We further approximate the
reverse process pθ(m1:T |m0) with the forward process q(m1:T |m0) for efficient sampling of m1:T ,
and obtain the following expression after some derivations [Wallace et al., 2023]:

L̃DPO-Diffusion(θ) = −E(p,mw
0 ,ml

0)∼D,t∼[0,T ],mw
t ∼q,ml

t∼q

[
log σ

(
− βT

(
DKL(q(m

w
t−1|mw

0,t)∥pθ(mw
t−1|mw

t ))− DKL(q(m
w
t−1|mw

0,t)∥pref(m
w
t−1|mw

t ))

− DKL(q(m
l
t−1|ml

0,t)∥pθ(ml
t−1|ml

t)) + DKL(q(m
l
t−1|ml

0,t)∥pref(m
l
t−1|ml

t))
))]

(7)
Let [x̂0, v̂0] be the predicted atom position and type, which are fed into Equation (3) to obtain the
posterior distributions. With the joint diffusion processes Equations (1) to (3) on both continuous x
and discrete v features, the above KL divergences can be decomposed and calculated as:

DKL(q(mt−1|m0,t)∥p(mt−1|mt)) = Dx,t−1
KL (q(xt−1|x0,t)∥p(xt−1|xt)) + Dv,t−1

KL (q(ct−1|c0,t)∥p(ct−1|ct)),

Dx,t−1
KL (q(xt−1|x0,t)∥p(xt−1|xt)) =

1

β̃t
∥µ̃(xt,x0)− µ̃(xt, x̂0)∥2 + C = γt∥x0 − x̂0∥2 + C,

Dv,t−1
KL (q(ct−1|c0,t)∥p(ct−1|ct)) =

∑
k

c̃(vt,v0)k log
c̃(vt,v0)k
c̃(vt, v̂0)k

,

(8)
where γt =

ᾱt−1β
2
t

2σ2
t (1−ᾱt)2

and C is a constant. Let x̂0,θ, v̂0,θ and x̂0,ref, v̂0,ref be the predictions from
the fine-tuned and from the original pretrained model, respectively. Then, we can further obtain the
preference optimization loss on x and v, respectively, as follows:

Lx
t−1(θ) = −E

[
log σ

(
− βTγt(||xw

0 − x̂w
0,θ||2 − ||xw

0 − x̂w
0,ref||2 − ||xl

0 − x̂l
0,θ||2 + ||xl

0 − x̂l
0,ref||2)

)]
Lv
t−1(θ) = −E

[
log σ

(
− βT

(
DKL(c̃(v

w
t ,v

w
0 )||c̃(vw

t , v̂
w
0,θ))− DKL(c̃(v

w
t ,v

w
0 )||c̃(vw

t , v̂
w
0,ref))

− DKL(c̃(v
l
t,v

l
0)||c̃(vl

t, v̂
l
0,θ)) + DKL(c̃(v

l
t,v

l
0)||c̃(vl

t, v̂
l
0,ref))

))]
(9)

With Jensen’s inequality and the convexity of − log σ, we can derive the final objective as a (weighted)
sum of atom coordinate and type preference losses Lx

t−1 + Lv
t−1, which turns the sum of the KL

terms outside − log σ and serves as an upper bound of Equation (7):

LALIDIFF(θ) = −E(p,mw
0 ,ml

0)∼D,t∼[0,T ],mw
t ∼q,ml

t∼q

[
Lx
t−1 + Lv

t−1

]
≥ L̃DPO-Diffusion(θ), (10)

where the preference is assigned separately to atom types v and coordinates x. The loss decomposition
imposes a fine-grained preference assignment on chemical elements and geometric strcutures and
enables us to choose weights to balance the training of the two variables [Guan et al., 2023, 2024].
The overall training and sampling algorithms of ALIDIFF are summarized in Appendix B.

3.3 Exact Energy Optimization

Although DPO enjoys the advantage of efficient fine-tuning without fitting a reward function, recent
theoretical investigations reveal that it is highly vulnerable to overfitting by pushing all the probability
mass on the winning sample [Azar et al., 2024]. Specifically, the non-linear transformation log σ
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of Equation (5) pushes the log pθ(m
w|p) − log pθ(m

l|p) towards infinity, completely removing
the likelihood for the losing sample regardless of any regularization in the original RLHF setup
Equation (4) [Azar et al., 2024, Tang et al., 2024]. Let us analyze the problem with an example
consisting of two ligand molecules mw and ml with their rewards measured as rw and rl (e.g.,
calculated from binding energy). The DPO objective in Equation (10) tends to just greedily maximize
towards p(mw ≻ ml|p) → 1. However, the optimal preference probability can be calculated by
the BT model [Bradley and Terry, 1952] as p̂(mw ≻ ml|p) = σ(rw − rl), and our alignment
goal is to shift the distribution to align with this p̂ instead of greedy maximization. To address
the over-optimization issue, we introduce an improved objective with regularization on preference
maximization, named Exact Energy Preference Optimization (E2PO). Let L̄x

t (θ) and L̄v
t (θ) denote

terms for reverse preference optimization:

L̄x
t−1(θ) = 1− Lx

t−1(θ), L̄v
t−1(θ) = 1− Lv

t−1(θ). (11)

Our E2PO objective function takes a cross-entropy form to align the distributions pθ(mw ≻ ml|p)
towards p̂(mw ≻ ml|p). Formally, it is given by:

LALIDIFF-E2PO(θ) = −E(p,mw
0 ,ml

0)∼D,t∼[0,T ],mw
t ∼q,ml

t∼q

[
(σ(rw − rl))(Lx

t−1 + Lv
t−1) + (1− σ(rw − rl))(L̄x

t−1 + L̄v
t−1)

]
,

(12)

where the second term L̄x
t−1 + L̄v

t−1 weighted by 1− σ(rw − rl) helps to alleviate the overfitting
on the winning data sample. Notably, for rw >> rl, we have σ(rw − rl) ≈ 1, indicating that the
regularized objective in Equation (12) will still change back to the original objective in Equation (10),
where overfitting on the extremely better data is expected. In principle, with the regularization
objective, we have:
Theorem 3.1. The objective function in Equation (12) optimizes a variational upper bound of the KL-
divergence DKL

(
p̂∗(m|p)||p̂θ(m|p)

)
, where p̂∗(m|p) ∝ pref(m|p) exp(r(m,p)) and p̂θ(m|p) ∝

pref(m|p)
(

pθ(m|p)
pref(m|p)

)β

.

The theorem provides an analytical guarantee for the optimal shifted distribution after alignment
that avoids over-optimization. Assuming we achieve convergence on the KL divergence, we
have that pref(m|p) exp(r(m,p)) ∝ p1−β

ref (m|p)pβθ (m|p) which further gives us pθ(m|p) ∝
pref(m|p) exp( 1β r(m,p)), where a smaller β encourages a sharper shift towards the user-defined
reward function. We give the full derivations in Appendix C, and analyze the empirical effect on
generation quality in Section 4.

4 Experiment

4.1 Experiment Setup

Dataset. We train and evaluate ALIDIFF using the CrossDocked2020 dataset [Francoeur et al., 2020].
Following the common setup in this field [Luo et al., 2021, Guan et al., 2023], we refined the initial
22.5 million docked protein binding complexes by selecting docking poses with RMSD lower than
1Å with the ground truth and diversifying proteins with a sequence identity below 30%. To apply
ALIDIFF, we further preprocess our data and construct a dataset of the form D = {(p,mw,ml)},
where p denotes the protein, mw denotes the preferred molecules, and ml denotes rejected molecules
based on the user-defined reward. In our setting, we choose two ligand molecules per pocket site and
label the preference by a certain reward, e.g. binding energy for our main benchmark. We provide
ablations with more reward functions in Section 4.3. Details of preference pair selection are presented
in Appendix E. The final dataset uses a train and test split of 65K and 100.

Baselines. We compare our model with the following baselines: liGAN [Ragoza et al., 2022] is a
conditional VAE model that utilizes a 3D CNN architecture to both encode and generate voxelized
representations of atomic densities; AR [Luo et al., 2021], Pocket2Mol [Peng et al., 2022] and
GraphBP [Liu et al., 2022] are autoregressive models that learn graph neural networks to generate
3D molecules atom by atom sequentially; TargetDiff [Guan et al., 2023] and DecompDiff [Guan
et al., 2024] are diffusion-based approaches for generating atomic coordinates and types via a joint
denoising process; IPDiff [Huang et al., 2023] is the most recent state-of-the-art diffusion-based
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Table 1: Summary of binding affinity and molecular properties of reference molecules and molecules
generated by ALIDIFF and baselines. (↑) / (↓) denotes whether a larger / smaller number is preferred.
Top 2 results are bolded and underlined, respectively.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity(↑) QED(↑) SA(↑) Diversity(↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

liGAN* - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP* - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78
AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68
IPDiff -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.61 0.59 0.74 0.73
ALIDIFF -7.07 -7.95 -8.09 -8.17 -8.90 -8.81 73.4% 81.4% 0.50 0.50 0.57 0.56 0.73 0.71
Reference -6.36 -6.41 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -
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Figure 3: Median Vina energy for different generated molecules (TargetDiff, IPDiff, ALIDIFF) across
100 testing samples, sorted by the median Vina energy of molecules generated from ALIDIFF.

approach that further integrates the interactions between the target protein and the molecular ligand
into the generation process.

Evaluation metrics. We evaluate the generated molecules by comparing binding affinity with the
target and critical molecular properties. We analyze the generated molecules across 100 test proteins,
reporting the mean and median for affinity-based metrics (Vina Score, Vina Min, Vina Dock, and High
Affinity) and molecular property metrics (drug-likeness QED [Bickerton et al., 2012], synthesizability
SA [Ertl and Schuffenhauer, 2009], and diversity). We use AutoDock Vina [Eberhardt et al., 2021] to
estimate binding affinity scores, using the common setup described by Luo et al. [2021], Ragoza et al.
[2022]. Specifically, Vina Score estimates binding affinity from the generated 3D structures, Vina
Min refines the structure through local minimization before estimation, Vina Dock uses a re-docking
procedure to reflect the optimal binding affinity, and High Affinity gauges the percentage of generated
molecules that bind better than reference molecules per protein.

4.2 Results

Binding Affinity and Molecular Properties. We compare the performance of our proposed method
ALIDIFF against the above baseline methods. Our model is fine-tuned from IPDiff, the ligand
generative model. We report the results in Table 1, and leave more implementation details in
Appendix D. As shown in the results, ALIDIFF significantly outperforms all non-diffusion-based
models in binding-related metrics, and also surpasses our base model IPDiff in all binding affinity
related metrics by a notable margin. In particular, ALIDIFF increases the binding-related metrics
Avg. Vina Score, Vina Min, and Vina Dock by 10.1%, 8.56%, and 3.9% compared with IPDiff. Our
superior performance in binding-related metrics demonstrates the effectiveness of energy preference

TargetDiff IPDiff OursReference

Vina: -12.8 QED: 0.61 SA: 0.74 Vina: -15.1 QED: 0.74 SA: 0.59Vina: -7.5 QED: 0.77 SA: 0.65Vina: -8.2 QED: 0.41 SA: 0.72 

TargetDiff IPDiff OursReference

Vina: -9.9 QED: 0.71 SA: 0.51 Vina: -11.0 QED: 0.59 SA: 0.50Vina: -5.3 QED: 0.57 SA: 0.61Vina: -5.4 QED: 0.41 SA: 0.62 

Figure 4: Visualizations of reference molecules and generated ligands for protein pockets (1l3l,
2e24) generated by TargetDiff, IPDiff, and ALIDIFF. Vina score, QED, and SA are reported below.
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Table 2: Effect of combining multiple reward objectives. Affinity denotes ALIDIFF, whereas
Affinity+SA denotes combining both synthetic accessibility and affinity as reward function.

Choice of reward Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity(↑) QED(↑) SA(↑) Diversity(↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Affinity -7.07 -7.95 -8.09 -8.17 -8.90 -8.81 73.4% 81.4% 0.50 0.50 0.57 0.56 0.73 0.71
Affinity+SA -6.87 -7.76 -8.00 -8.08 -8.81 -8.72 72.7% 80.8% 0.52 0.55 0.60 0.59 0.74 0.73
Affinity+QED -7.11 -8.02 -8.01 -7.99 -8.17 -8.72 73.7% 82.0% 0.51 0.52 0.57 0.57 0.73 0.73

Table 3: Comparison of DPO and E2PO with pretrained and supervised fine-tuned models. ALIDIFF
with DPO takes energy ranking, and with E2PO uses exact energy for preference optimization.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity(↑) QED(↑) SA(↑) Diversity(↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

IPDiff -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.61 0.59 0.74 0.73
IPDiffSFT -6.53 -6.62 -7.27 -7.09 -8.14 -8.09 67.5% 72.5% 0.48 0.48 0.61 0.59 0.72 0.69
ALIDIFF-DPO -6.81 -7.62 -7.75 -7.79 -8.58 -8.55 69.7% 71.1% 0.50 0.51 0.56 0.56 0.74 0.72
ALIDIFF-E2PO -7.07 -7.95 -8.09 -8.17 -8.90 -8.81 73.4% 81.4% 0.50 0.50 0.57 0.56 0.73 0.71

optimization. Figure 3 shows the median Vina energy of the proposed model, compared with
TargetDiff and IPDiff, two diffusion-based state-of-the-art models in target-aware molecule generation.
We observe that ALIDIFF surpasses these baseline models and generates molecules with the highest
binding affinity for 49% of the protein targets in the test set. In property-related metrics, we
observe only a slight decrease in QED, SA, and diversity, compared with IPDiff. Specifically, with
approximately 10.1% improvement on Avg. Vina Score, we observe a minor decrease in Avg. SA
(-6.5%), Avg. QED (-3.8%), and diversity(-1.4%). Figure 4 presents examples of ligand molecules
generated by ALIDIFF, TargetDiff, and IPDiff. The figure shows that our generated molecules
maintain reasonable structures and high binding affinity compared with all baselines, indicating their
potential as promising candidate ligands. Additional experimental results and visualized examples of
these molecules are in Appendices E and F.

We also notice a trade-off between binding affinity and property-related metrics. While we achieve
state-of-the-art performance on all binding affinity metrics, the performance on QED and SA metrics
slightly decreases. This phenomenon has been commonly observed in previous studies where
achieving high binding affinity can often sacrifice other molecular metrics [Guan et al., 2023, Huang
et al., 2023]. This is because the highest affinity can potentially only be achieved by rather specific and
unique molecules, which are harder to synthesize than simple molecules, and hence these trade-offs
are expected. Besides, in real-world drug discovery, binding affinity is typically a more critical metric
as molecules with more stable interaction with the pocket site are important, whereas QED and SA
work mainly as rough filters [Guan et al., 2023]. For these reasons, we believe the deterioration in
molecular properties is well compensated by the improvement in binding affinity, especially with
such little deterioration in property metrics. In addition, in the following section (Table 2), we further
discuss incorporating molecular properties into the reward, which shows slightly lower performance
gain on affinity but archives improvements also on molecular properties.

4.3 Ablation Studies

Effect of reward objectives. To further explore the potential of ALIDIFF, we evaluate the effect of
combining optimization objectives (r = raffinity + rSA; r = raffinity + rQED) and investigate whether
such a combined reward function can lead to better molecular properties to counter the trade-off we
discussed before. As shown in Table 2, the results indicate that finetuning solely with binding affinity
apparently achieves better performance in terms of binding affinity metrics. However, ALIDIFF-
Affinity+SA generates compounds with better drug-likeness (QED) and synthetic accessibility (SA).
Both models exhibit similar performance in terms of structural diversity. This suggests that while
ALIDIFF-Affinity is superior for binding affinity, incorporating synthetic accessibility considerations
(Affinity + SA) results in compounds that are more drug-like and easier to synthesize, enabling
more efficient multi-objective drug development. Moreover, ALIDIFF-Affinity+QED achieves better
binding affinity compared with ALIDIFF-Affinity, while the improvement in QED is relatively
minimal. Thus, balancing these objectives highlights the potential for overcoming trade-offs in
molecular optimization.
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Figure 5: Ablation analysis of ALIDIFF under different β. Vina Score, High Affinity, QED, and
diversity are reported, where blue lines represent ALIDIFF-DPO, and orange lines represent ALIDIFF.
The dotted lines represent the baseline IPDiff.

Comparison with Supervised Fine-Tuning. Supervised Fine-Tuning (SFT) serves as an alternative
method for generating molecules with user-defined optimization objectives. We select the top 50%
protein-ligand samples with higher quality in user-defined reward from the training dataset and
fine-tune the baseline model with the same training and sampling setting. The results in Table 3
show that SFT did not show improvement over the baseline, and ALIDIFF demonstrates significantly
superior results compared to SFT.

Effect of preference optimization methods. As discussed in Section 3.3, the original DPO objective
is vulnerable to overfitting and we propose to avoid it with regularization by weighting preference
losses with the user-defined rewards. We compare the direct use of energy preference optimization
by ranking molecule pairs (ALIDIFF-DPO) and exact energy optimization with user-defined reward
function (ALIDIFF-E2PO) in Table 3. The results show that ALIDIFF-E2PO achieves superior
performance over ALIDIFF-DPO in all binding affinity metrics (Vina Score, Vina Min, and Vina
Dock) while maintaining competitive scores in QED, SA and diversity. In terms of drug-likeness
and structural diversity, ALIDIFF-E2PO performs competitively, indicating that while it prioritizes
binding affinity, it still maintains favorable drug-like properties and diversity. This further supports
our previous hypothesis regarding the trade-off between binding affinity and molecular properties.
An additional ablation study on the effect of exact energy optimization is presented in Appendix E.

Table 4: Finetuning TargetDiff with
ALIDIFF. ALIDIFF-T denotes our fine-
tuned model with the same reward objec-
tive on TargetDiff.

Metric TargetDiff ALIDIFF-T
Avg. Med. Avg. Med.

Vina Score -5.47 -6.30 -5.81 -6.51
Vina Min -6.64 -6.83 -6.94 -7.01
Vina Dock -7.80 -7.91 -7.92 -7.97
QED 0.48 0.48 0.56 0.56
SA 0.58 0.58 0.62 0.60
Diversity 0.72 0.71 0.74 0.75

General applicability to ligand diffusion models. We
further justify the general applicability of the proposed ap-
proach by finetuning another diffusion-based SBDD model,
TargetDiff [Guan et al., 2023], with exact energy optimiza-
tion (ALIDIFF-T), As shown in Table 4, ALIDIFF-T sur-
passes TargetDiff on all binding affinity and molecular
properties, with a 6.2%, 16.6%, 6.9%, 2.8% increase in
Avg. Vina Score, QED, SA, and diversity, respectively. The
results further justify that our approach is generally applica-
ble to diffusion-based SBDD models. Notably, ALIDIFF-T
archives even better QED and SA compared with ALIDIFF,
which allows users to choose the model based on the spe-
cific purpose for molecular properties. Also, we notice the
percentage of improvement of binding affinity from Target-
Diff to ALIDIFF-T is slightly lower than that from IPDiff to ALIDIFF. This can be explained as
preference optimization is more effective when the model distribution is more similar to the prefer-
ence data distribution, and IPDiff is shown to fit CrossDocked data better than TargetDiff [Huang
et al., 2023].

Strength of β. We further evaluate ligand molecules generated by ALIDIFF trained with varying
β values in Figure 5. Recall that β influences the scale of energy preference optimization and
regularization with respect to the reference model. The results indicate a clear trade-off between
binding affinity and molecular properties with varying β. Lower β values (e.g., 0.01) significantly
enhance binding affinity metrics (Vina Score, Vina Min, Vina Dock), but at the cost of lower
drug-likeness (QED) and diversity. Conversely, higher β values improve QED, suggesting that
these configurations generate more drug-like compounds while maintaining consistent synthetic
accessibility and diversity. We believe β reaches an equilibrium around β = 1, where binding
affinity is maximized without sacrificing too much loss in molecular properties. This ablation study
demonstrates that the parameter β can offer a useful tool to train ALIDIFF models with different
desired trade-offs between binding affinity and useful molecular properties, which can vary for
different drug development use cases.
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5 Conclusion

In this paper, we present ALIDIFF, a novel framework to align pretrained target-aware molecule
diffusion models with desired functional properties via preference optimization. Our key innovation
is the Exact Energy Preference Optimization method, which enables efficient and exact alignment
of the diffusion model towards regions of lower binding energy and structural rationality specified
by user-defined reward functions. Extensive experiments on the CrossDocked2020 benchmark
demonstrate the strong performance of ALIDIFF. By incorporating user-defined reward functions
and an improved Exact Energy Preference Optimization method, ALIDIFF successfully achieves
state-of-the-art performance in binding affinity while maintaining competitive molecular properties.
In the future, we plan to explore more expressive molecular reward function classes within our
framework and extend ALIDIFF to real-world prospective drug design settings by integrating it into
online drug discovery pipelines.
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A Limitations and Future Work

While ALIDIFF exhibits promising performance, there are still potential limitations to our current
approach. For example, ALIDIFF takes binding affinity as our reward function which is computed
by AutoDock Vina [Eberhardt et al., 2021] in this work. However, computing binding energy via
software is an approximation and sometimes can be very inaccurate. In the future, we plan to
explore experiment-measured energy or ensemble different binding affinity calculation software,
e.g., GlideScore [Friesner et al., 2004] In addition, in this work, we focus on an offline learning
setting where the preference pairs are off-the-shelf. This is because computing binding affinity is
computationally expensive. An important future direction to extend the work toward real-world drug
discovery scenarios could be incorporating the online setting but with a limited number of query.

B Algorithm

The pseudo-code for ALIDIFF and ALIDIFF-T are provided below. Sampling procedures are the
same as Guan et al. [2023] and Huang et al. [2023].

Algorithm 1 Training Procedure ALIDIFF

1: Input: Protein-ligand binding dataset {P,Mw,Ml}N1 , pre-trained neural network ϕθ, reference
network ϕref, learnable neural network ψθ2 and pretrained interaction prior network ψIP.

2: while ϕθ and ψθ2 not converge do
3: [[p0,m

w
0 ,m

l
0]] ∼ {P,Mw,Ml}Ni=1 where mw

0 = {xw
0 ,v

w
0 },ml

0 = {xl
0,v

l
0}

4: Obtain rw, rl for mw,ml, respectively.
5: t ∼ U(0, . . . , T )
6: Move the complex to make CoM of protein atoms zero
7: Obtain shifts [[sMw

0 , sMl
0 ]] and interactions [[fMw

0 , fMl
0 , fP0 ]]from ψIP and ψθ2 according to

[Huang et al., 2023].
8: Perturb xw

0 ,x
l
0 to obtain xw

t ,x
l
t with shifts sMw

0 , sMl
0

9: ϵ ∼ N (0, I)
10: xw

t =
√
ᾱtx

w
0 + sMw

t +
√
1− ᾱtϵ,x

l
t =

√
ᾱtx

l
0 + sMl

t +
√
1− ᾱtϵ

11: Perturb vw
0 ,v

l
0 to obtain vw

t ,v
l
t

12: g ∼ Gumbel(0, 1)
13: log cw = log(ᾱtv

w
0 + (1− ᾱt/K), log cl = log(ᾱtv

l
0 + (1− ᾱt/K)

14: vw
t = onehot(argmaxi(gi + log cwi )),v

l
t = onehot(argmaxi(gi + log cli))

15: Embed vw
t ,v

l
t into h̃w,0

t , h̃Ml,0
t , and embed vP

0 into h̃P,0
t

16: Obtain features [[hw,0
t ,hMl,0

t ,hP,0
t ]] through prior-conditioning

17: Predict (x̂w
0|t, v̂

w
0|t) from ϕθ([[h

Mw,0
t ,hP,0

t ]], [[fMw
0 , fP0 ]])

18: Predict (x̂l
0|t, v̂

l
0|t) from ϕθ([[h

Ml,0
t ,hP,0

t ]], [[fMl
0 , fP0 ]])

19: Predict (x̂w
0|t,ref, v̂

w
0|t,ref) from ϕref([[h

Mw,0
t ,hP,0

t ]], [[fMw
0 , fP0 ]])

20: Predict (x̂l
0|t,ref, v̂

l
0|t,ref from ϕref([[h

Ml,0
t ,hP,0

t ]], [[fMl
0 , fP0 ]])

21: Compute loss L with (x̂w
0|t, v̂

w
0|t), (x

l
0,v

l
0), (x̂

w
0|t,ref, v̂

w
0|t,ref), (x̂

l
0|t,ref,and v̂l

0|t,ref)

according to Equation (12)
22: Update θ and θ2 by minimizing L
23: end while
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Algorithm 2 Training Procedure for ALIDIFF-T
1: Input: Protein-ligand binding dataset {P,Mw,Ml}N1 , pre-trained neural network ϕθ, reference

network ϕref
2: while ϕθ not converge do
3: [[p,mw

0 ,m
l
0]] ∼ {P,Mw,Ml}Ni=1 where mw

0 = {xw
0 ,v

w
0 },ml

0 = {xl
0,v

l
0}

4: Sample diffusion time t ∼ U(0, . . . , T )
5: Move the complex to make CoM of protein atoms zero
6: Perturb xw

0 ,x
l
0 to obtain xw

t ,x
l
t: x

w
t =

√
αtxw

0 + (1− αt)ϵ, xl
t =

√
αtxl

0 + (1− αt)ϵ,
where ϵ ∼ N (0, I)

7: Perturb vw
0 ,v

l
0 to obtain vwt , v

l
t:

8: logcw = log(αtv
w
0 + (1− αt)/K)

9: logcl = log(αtv
l
0 + (1− αt)/K)

10: vw
t = one_hot(argmax[gi + logcwi ])

11: vl
t = one_hot(argmax[gi + logcli]), where g ∼ Gumbel(0, 1)

12: Predict [x̂w
0 , v̂

w
0 ] from [xw

t ,v
w
t ] with ϕθ: [x̂w

0 , v̂
w
0 ] = ϕθ([x

w
t ,v

w
t ], t,p)

13: Predict [x̂l
0, v̂

l
0] from [xl

t,v
l
t] with ϕθ: [x̂l

0, v̂
l
0] = ϕθ([x

l
t,v

l
t], t,p)

14: Predict [x̂w
0 , v̄

w
0 ] from [xw

t ,v
w
t ] with ϕref: [x̂w

0 , v̂
w
0 ] = ϕref([x

w
t ,v

w
t ], t,p)

15: Predict [x̄l
0,ref, v̄

l
0,ref] from [xl

t,v
l
t] with ϕref: [x̄l

0,ref, v̄
l
0,ref] = ϕref([x

l
t,v

l
t], t,p)

16: Compute L(θ) = Lx(θ) + αLv(θ) according to Equation (10)
17: Update θ by minimizing L
18: end while

C Proof

Theorem 3.1. The objective function Equation (12) optimizes a variational upper bound of the KL-
divergence DKL

(
p̂∗(m|p)||p̂θ(m|p)

)
, where p̂∗(m|p) ∝ pref(m|p) exp(r(m,p)) and p̂θ(m|p) ∝

pref(m|p)
(

pθ(m|p)
pref(m|p)

)β

.

We prove the theorem with Lemmas C.1 and C.2. Lemma C.1 justifies the least square objective
is the variational upper bound for preference optimization, and Lemma C.2 shows that regularized
preference optimization corresponds to exact KL divergences between the optimal and parameterized
distributions. A version of similar proof can be found in Wallace et al. [2023] and Ji et al. [2024],
Chen et al. [2024] respectively, and to be self-contained we incorporate these proofs here. Compared
with Wallace et al. [2023], we introduce an additional term into the diffusion optimization. And
compared with Ji et al. [2024], Chen et al. [2024], we explicitly drop the assumption for drawing
infinite samples m for each pocket p.

Lemma C.1. The objective function Equation (12) LALIDIFF-E2PO(θ) =
−E(p,mw

0 ,ml
0)∼D,t∼[0,T ],mw

t ∼q,ml
t∼q

[
(σ(rw−rl))(Lx

t−1+Lv
t−1)+(1−σ(rw−rl))(L̄x

t−1+L̄v
t−1)

]
is a variational upper bound of:

LE2PO(θ) =− E(p,mw,ml)∼D

[(
σ(rw − rl)

)(
log σ

(
β log

pθ(m
w|p)

pref(mw|p)
− β log

pθ(m
l|p)

pref(ml|p)
))

+
(
1− σ(rw − rl)

)(
log σ

(
β log

pθ(m
w|p)

pref(mw|p)
− β log

pθ(m
l|p)

pref(ml|p)
))]

.

(13)

We refer readers to Appendix S2 of Diffusion-DPO [Wallace et al., 2023] for the full proof. The
bound is derived from Jensen’s inequality and the convexity of the function − log σ.

Lemma C.2. The objective function Equation (13) optimizes the KL-divergence
DKL

(
p̂∗(m|p)||p̂θ(m|p)

)
, where p̂∗(m|p) ∝ pref(m|p) exp(r(m,p)) and p̂θ(m|p) ∝

pref(m|p)
(

pθ(m|p)
pref(m|p)

)β

.
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Proof. First of all, we can rewrite the objective Equation (13) in the following form, expanding the
sigmoid function:

LE2PO(θ) = Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)∑2
j=1 e

r(p,mj)
log

e
β log

pθ(mi|p)

pref(mi|p)∑2
j=1 e

β log
pθ(mj |p)

pref(mj |p)

]

= Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)∑2
j=1 e

r(p,mj)
log

e
log

(
pθ(mi|p)

pref(mi|p)

)β

∑2
j=1 e

log
(

pθ(mj |p)

pref(mj |p)

)β

]

= Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)∑2
j=1 e

r(p,mj)
log

( pθ(mi|p)
pref(mi|p)

)β∑2
j=1

( pθ(mj |p)
pref(mj |p)

)β
]

(14)

By the definition p̂θ(m|p) ∝ p1−β
ref (m|p)pβθ (m|p), we have p̂θ(m|p)

pref(m|p) ∝
(

pθ(m|p)
pref(m|p)

)β

(by dividing
both sides with pref(m|p)). Then we can substitute this equation and rewrite LE2PO(θ):

LE2PO(θ) = Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)∑2
j=1 e

r(p,mj)
log

( pθ(mi|p)
pref(mi|p)

)β∑2
j=1

( pθ(mj |p)
pref(mj |p)

)β
]

= Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)∑2
j=1 e

r(p,mj)
log

p̂θ(mi|p)
pref(mi|p)∑2

j=1
p̂θ(mj |p)
pref(mj |p)

]
(15)

Since pref(·|p) is supervised fine-tuned on samples {mi}2i=1, we can assume {mi}2i=1 takes most of
the probability mass and thus Epref(m|p) ≈ Epref(m1:2|p). Then we have the following approximation:

2∑
j=1

p̂θ(mj |p)
pref(mj |p)

≈ 2Epref(m|p)

[
p̂θ(m|p)
pref(m|p)

]
= 2

∑
m∈M

pref(m|p) p̂θ(m|p)
pref(m|p)

= 2
∑

m∈M
p̂θ(m|p) = 2,

2∑
j=1

er(p,mj) ≈ 2Epref(m|p)

[
er(p,m)

]
= 2

∑
m∈M

pref(m|p)er(p,m) = 2Z(p).

Then we can plug the above results into Equation (15) and further simplify LE2PO:

LE2PO(θ) = Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)

2Z(p)
log

p̂θ(mi|p)
2pref(mi|p)

]

= Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)

2Z(p)
log

(
p̂θ(mi|p)

pref(mi|p) e
r(p,mi)

Z(p)

er(p,mi)

2Z(p)

)]

= Ep∼DEpref(m1:2|p)

[
−

2∑
i=1

er(p,mi)

2Z(p)
log

(
p̂θ(mi|p)

pref(mi|p) e
r(p,mi)

Z(p)

)
−

2∑
i=1

er(p,mi)

2Z(p)
log

(
er(p,mi)

2Z(p)

)]
,

where the second term remains constant C to θ, and thus can be omitted when analyzing the
optimization for θ. Notice the normalized form of p̂∗(m|p) = 1

Z(p)pref(m|p)er(p,m), we replace
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1
Z(p)pref(m|p)er(p,m) with p̂∗ and further simplify the above equation:

LE2PO(θ) = Ep∼D

[
− 1

2

2∑
i=1

[
er(p,mi)

Z(p)
log

p̂θ(mi|p)
p̂∗(mi|p)

]
+ C

]

= Ep∼D

[
− Epref(m|p)

[
er(p,m)

Z(p)
log

p̂θ(m|p)
p̂∗(m|p)

]
+ C

]

= Ep∼D

[
−

∑
m∈M

pref(m|p)e
r(p,m)

Z(p)
log

p̂θ(m|p)
p̂∗(m|p)

+ C

]

= Ep∼D

[
−

∑
m∈M

p̂∗(m|p) log p̂θ(m|p)
p̂∗(m|p)

+ C

]
= Ep∼D

[
DKL(p̂

∗(·|p)∥p̂θ(·|p)) + C
]
,

which completes the proof of Lemma C.2.

D Implementation Details

Data. Following [Guan et al., 2023], proteins and ligands are expressed with atom coordinates
and a one-hot vector containing the atom types. For proteins, each atom type is represented by a
one-hot vector covering 20 distinct amino acids. Ligand atoms are encoded using a one-hot vector
that discriminates among several elements, specifically H, C, N, O, F, P, S, Cl. Additionally, a
one-dimensional binary flag is incorporated to differentiate whether atoms are part of the protein or
the ligand. We further apply two separate single-layer Multi-Layer Perceptrons (MLPs) to transform
the input data into 128-dimensional latent spaces, providing a compact and informative representation
for subsequent computational stages.

Preference Pair Generation. For each synthetic molecule, we first locate its corresponding protein
binding site and compute reward according to user-defined reward function for all synthetic molecules
of the corresponding the binding site. We select a losing sample with lower reward and construct the
preference. The selection process is detailed in Appendix E.

Architecture. We follow the same architecture as IPDiff [Huang et al., 2023], which includes a
learnable diffusion denoising model ϕθ1, learnable neural network ϕθ2 and pretrained interaction
prior network IPNET. The architecture of all models used in our method is the same as IPDiff.

Pretraining Details. Following existing work, we adopted the Adam optimizer with a learning rate
of 0.001 and parameters β values of (0.95, 0.999). The training was conducted with a batch size of 4
and a gradient norm clipping value of 8. To balance the losses for atom type and atom position, we
applied a scaling factor λ of 100 to the atom type loss. Additionally, we introduced Gaussian noise
with a standard deviation of 0.1 to the protein atom coordinates as a form of data augmentation. Our
parameterized diffusion denoising model, IPDiff was trained on a single NVIDIA A6000 GPU and
achieved convergence within 200k steps.

Training Details. For finetuning, the pre-trained diffusion model is further fine-tuned via the gradient
descent method Adam with init learning rate=5e-6, betas=(0.95,0.999). We keep other setting the
same as pretraining. We use β = 5 in Equation (5). We trained our model with one NVIDIA GeForce
GTX A100 GPU, and it could converge within 30k steps.

E More Experimental Results

Effect of diffusion steps. In fig. 6, we present a comprehensive ablation study examining the impact
of diffusion steps on the optimization of molecular properties using our novel ALIDIFF framework.
The visualizations at the top of the figure showcase the progressive refinement of molecular structures
across increasing diffusion steps (t = 200 to t = 1000). These images clearly illustrate how our
model gradually enhances the molecular fitting within the target binding site, which is critical for
improving drug efficacy. The plotted data below provides a quantitative analysis of QED, SA, Vina
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Figure 6: Ablation study on diffusion steps. The top shows a visualization of the generated molecule
(4aua) under different time step. The bottom reports QED, SA and Vina Dock are reported under
different diffusion steps(200, 400, 600, 800 and 1000). Blue lines represent ALIDIFF-DPO and Red
lines represent ALIDIFF-E2PO.

Dock across all test targets. Notably, both ALIDIFF (P) and ALIDIFF (R) demonstrate significant
improvements in QED and SA scores as the number of diffusion steps increases and exhibit a notable
decrease in Vina Dock. Particularly, ALIDIFF-E2PO model have shown better performance across all
three metrics, with significant improvement on binding affinity across the diffusion steps.

Table 5: Lipinski results for all methods.
Methods ALIDIFF IPDiff TargetDiff AR Pocket2Mol Reference
Avg. Lipinski (↑) 4.48 4.52 4.51 4.75 4.88 4.27

Lipinski. We further compared Lipin-
ski’s Rule of Five [Lipinski et al., 2012]
across all comparison methods. Lipin-
ski’s Rule of Five is another measure-
ment for assessing drug-likeness besides QED, and we would like to incorporate this metric to validate
our performance in generating drug-like molecules. The results of Lipinski’s scores are reported
in Table 5. The results are consistent with our evaluation using QED score, as all diffusion-based
models are not achieving high drug-likeness. We maintain similar drug-likeness as our backbone
models targetDiff and IPDiff.

Table 6: Ablation study results with different choice of ml.

Choice of ml Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity(↑) QED(↑) SA(↑) Diversity(↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

worst -7.07 -7.95 -8.09 -8.17 -8.90 -8.81 73.4% 81.4% 0.50 0.50 0.57 0.56 0.73 0.71
best -6.80 -7.66 -7.83 -7.69 -8.64 -8.05 70.2% 76.8% 0.50 0.52 0.56 0.55 0.74 0.71
random -6.96 -7.82 -8.03 -8.00 -8.77 -8.20 72.1% 77.8% 0.50 0.51 0.56 0.55 0.74 0.72
median -6.96 -7.85 -8.01 -7.96 -8.80 -8.24 72.5% 78.9% 0.50 0.51 0.57 0.55 0.74 0.72

Choice of ml. Our generated dataset is obtained by directly transforming a standard labeled dataset
into a pairwise preference dataset. Yet the binding affinity labels are continuous values where
sometimes the difference between preferred and dispreferred is minimal. Therefore, the effect of
energy preference optimization is highly sensitive to the overall data quality. Table 6 compares the
performance of applying different strategies for selecting the dispreferred samples. "worst" indicates
that the losing sample has the worst score from the user-defined reward function (lowest binding
affinity). "best" suggests that the losing sample has the second-to-highest binding affinity(besides
the preferred one). "random" and "median" mean that the losing samples are extracted randomly or
from the median. Vina Score, Vina Min, Vina Dock, QED, SA, and Diversity are reported as average
(Avg.) and median (Med.) values. Overall, the "worst" strategy, selecting the least favorable sample
based on optimization objectiveness, consistently achieves the best performance in binding affinity
metrics (Vina Score, Vina Min, and Vina Dock), while maintaining competitive drug-likeness (QED)
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and synthetic accessibility (SA). The "best" strategy, which may involve selecting the most favorable
samples, performs poorly overall, which implies that energy preference optimization works better
when there exists a larger discrepancy between rw and rl. This allows the model to learn how to
favor to mw and avoid ml during the finetuning process. The "random" and "median" strategies show
intermediate performance, suggesting that a strategic approach to sample selection can significantly
impact the efficacy of the resulting models.

F More Visualizations

TargetDiff IPDiff OursReference

Vina: -12.4 QED: 0.45 SA: 0.44 Vina: -14.1 QED: 0.52 SA: 0.51Vina: -8.1 QED: 0.52 SA: 0.54Vina: -8.9 QED: 0.28 SA: 0. 65

Vina: -12.4 QED: 0.65 SA: 0.59 Vina: -14.3 QED: 0.65 SA: 0.53Vina: -8.3 QED: 0.62 SA: 0.64Vina: -8.4 QED: 0.18 SA: 0.57 

Vina: -9.9 QED: 0.71 SA: 0.51 Vina: -11.0 QED: 0.59 SA: 0.50Vina: -5.3 QED: 0.57 SA: 0.61Vina: -5.4 QED: 0.41 SA: 0.62 

Vina: -4.3 QED: 0.54 SA: 0.58 Vina: -4.9 QED: 0.57 SA: 0.58Vina: -3.4 QED: 0.76 SA: 0.58Vina: -3.6 QED: 0.80 SA: 0.67 
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Figure 7: More visualizations of generated ligands for protein pockets generated by TargetDiff,
IPDiff, and ALIDIFF.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claim is reflected through comprehensive experiments and theoretical
proofs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes we have provided proof in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided all the codes needed to reproduce the results presented.
Pseudo code is also included in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided all the codes needed to reproduce the results presented.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided implementation details in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Since our diffusion model sample 100 samples for each pocket, we believe reporting median
and mean will be well reflected of the overall performance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided computer resources details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: General machine learning method without specific concern in our mind.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: General machine learning method without specific concern in our mind.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: General machine learning method without specific concern in our mind.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets get credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided the code along with files to run the training process directly
in the supplementary.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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