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ABSTRACT

It is widely recognized that the generalization ability of neural networks can be
greatly enhanced through carefully tuning the training procedure. The current
state-of-the-art training approach involves utilizing stochastic gradient descent
(SGD) or Adam optimization algorithms along with a combination of additional
regularization techniques such as weight decay, dropout, or noise injection. Opti-
mal generalization can only be achieved by tuning a multitude of hyper-parameters
extensively, which can be time-consuming and necessitates the additional valida-
tion dataset. To address this issue, we present a nearly tuning-free PAC-Bayes
training framework that requires no extra regularization. This framework achieves
test performance comparable to that of SGD/Adam, even when the latter are opti-
mized through a complete grid search and supplemented with additional regular-
ization terms.

1 INTRODUCTION

The prevalent training methodologies for neural networks, utilizing SGD or Adam, often necessi-
tate integrating various tricks/regularization techniques to optimize generalization performance. To
understand the underlying benefits of these strategies, numerous studies have focused on studying
individual strategies. For instance, it has been shown that larger learning rates (Cohen et al., 2021;
Barrett & Dherin, 2020), momentum (Ghosh et al., 2022), smaller batch sizes (Lee & Jang, 2022)
and batch normalization (Luo et al., 2018) individually induce higher degrees of implicit regulariza-
tion on the sharpness of the loss function, yielding better generalization. Additionally, the intensity
of explicit regularization techniques such as weight decay (Loshchilov & Hutter, 2017), dropout
(Wei et al., 2020), parameter noise injection (Neelakantan et al., 2015; Orvieto et al., 2022), label
noise (Damian et al., 2021) can significantly affect generalization. Despite these observations and
explanations, it’s unclear why seeking optimal combinations of these regularizations is still crucial
in practice. Adjusting the intensity of each regularization based on different scenarios can be a te-
dious job, especially when previous research has indicated that some techniques can conflict with
each other (Li et al., 2019). We summarize this challenge for conventional training in (Q1).

Alternatively, PAC-Bayes generalization bounds provide foundational insights into generalization in
the absence of validation and testing data (Shawe-Taylor & Williamson, 1997). Jiang et al. (2019)
further suggests that PAC-Bayes bounds are among the best for evaluating generalization capabili-
ties. Although PAC-Bayes bounds were traditionally used only in the post-training stage for quality
control (Vapnik, 1998; McAllester, 1999), the recent work (Dziugaite & Roy, 2017) has opened the
door to using these bounds during the training phase. They showed that one can directly train a net-
work via optimizing the PAC-Bayes bound, a strategy we refer to as PAC-Bayes training, and obtain
reasonable performances. Ideally, the generalization performance of deep neural networks should be
enhanced by directly minimizing its quantitative measurements, specifically the PAC-Bayes bounds,
without any other regularization tricks. However, it is well-known that PAC-Bayes bounds could be-
come vacuous in highly over-parameterized regimes, making the practical use of PAC-Bayes training
challenging on highly deep neural networks. Furthermore, choosing the right prior presents another
challenge, as the quality of the prior critically affects the tightness of the bound. We summarize the
challenges of minimizing PAC-Bayes bound to improve the generalization of deep learning models
in (Q2).
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Q1 : Is it possible to reduce the reliance of the training process on hyper-parameter selection and
minimize the use of regularizations/tricks without compromising generalization?

Q2 : Can we design a training framework based on PAC-Bayes bounds minimization with trainable
priors for highly over-parameterized deep neural networks as a solution of Q1?

This paper provides affirmative answers to both questions by proposing a practical PAC-Bayes train-
ing framework with learnable priors. Using the framework, we show:

1. PAC-Bayes training can achieve state-of-the-art results for deep neural networks with various
architectures.

2. PAC-Bayes training is nearly tuning-free. This eliminates the complexities of hyper-parameter
searches and the dependency on validation data, effectively augmenting the training dataset.

3. From PAC-Bayes training, we see that among the different regularization/tricks, only weight
decay and noise injections are essential.

2 PRELIMINARIES

Throughout the paper, boldface letters denote vectors. We first introduce the basic setting of the
PAC-Bayes analysis. For any supervised-learning problem, the goal is to find a suitable model h
from some hypothesis space, h ∈ H ⊆ Rd, with the help of the training data S ≡ {zi}mi=1, where
zi is the training pair with sample xi and its label yi. The usual assumption is that the training and
testing data are i.i.d. sampled from the same unknown distribution D. For a given model h ∈ H,
the empirical and population/generalization errors are defined as:

ℓ(h;S) = 1

m

m∑
i=1

ℓ(h; zi), ℓ(h;D) = ES∼D(ℓ(h;S)),

where the loss function ℓ(h; zi) : h 7→ R+ measures the misfit between the true label yi and
the predicted label by the model h. PAC-Bayes bounds include a family of upper bounds on the
generalization error of the following type.

Theorem 2.1. Maurer (2004)Assume the loss function ℓ is bounded within the interval [0, C].
Given a preset prior distribution P over the model space H, and given a scalar δ ∈ (0, 1), for any
choice of i.i.d m-sized training dataset S according to D, and all posterior distributions Q overH,
we have

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + C

√
ln(

√
2m
δ ) + KL(Q||P)

2m
,

holds with probability at least 1− δ. Here, KL stands for the Kullback-Leibler divergence.

A PAC-Bayes bound measures the gap between the expected empirical error and the expected gen-
eralization error regarding the KL divergence between the prior P and the posterior Q. It’s worth
noting that this bound holds for any data-independent prior P and any posterior Q, which enables
one to further optimize the bound by searching for the best posterior. In practice, the posterior ex-
pectation can be the well-trained weights based on data, and the prior expectation can be the initial
model or 0. However, there are two major obstacles to using existing PAC-Bayes bound in the
literature directly to conduct training for classification tasks with deep neural networks:

Bounded loss. As the cross-entropy loss used in classification tasks is unbounded, directly applying
the bound for bounded loss in Theorem 2.1 would fail. To use Theorem 2.1 appropriately, one can
begin by converting the cross-entropy loss to a bounded version and then apply Theorem 2.1. There
are many ways to convert it to bounded loss (clipping, log-transforms), but they all tend to decrease
the variance of the loss across the inputs, making the training slow. From our experience with deep
neural networks, this will even cause the training accuracy to plateau at a very low level.

Computational elusiveness. While some PAC-Bayes bounds have been proposed for unbounded
loss, their numerical values prove challenging to estimate in practice. In Haddouche et al. (2021),
an upper bound was derived for variables that satisfy the so-called hypothesis-dependent range con-
dition, which is stated as supz ℓ(h; z) ≤ K(h), ∀h ∈ H. However, the cross entropy loss does
not satisfy this condition without putting extra assumptions on the input. Kuzborskij & Szepesvári
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(2019) proposed PAC-Bayes bound for unbounded variables using Efron-Stein type of inequalities
and obtained the following PAC-Bayes bound (adapted to our notations):

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +
√

1

m
Eh∼Q [ℓ1(h;S) + Ez′∼Dℓ(h; z′)2] KL(Q||P) + 1

m
,

where z′ ∼ D is a test sample drawn from the data distribution and ℓ1(h;S) := 1
m

∑m
i=1 ℓ(h; zi)

2,
This bound holds for any unbounded loss with a finite second-order moment. However, the term
Eh∼QEz′∼Dℓ(h; z

′)2 is almost as difficult to estimate as the generalization error itself. Germain
et al. (2016) has a PAC-Bayes bound, including a term of the loss variance. However, the variance
will be large initially, and the training accuracy will not increase properly if training with this bound.

3 RELATED WORK

The PAC-Bayes bound was first used for training of neural networks in Dziugaite & Roy (2017).
Specifically, the bound McAllester (1998) is used for training a shallow stochastic neural network
on binary MNIST classification with bounded 0-1 loss and has proven to be non-vacuous. Following
this work, many recent studies (Letarte et al., 2019; Rivasplata et al., 2019; Pérez-Ortiz et al., 2021;
Biggs & Guedj, 2021; Perez-Ortiz et al., 2021; Zhou et al., 2018) expanded the applicability of PAC-
Bayes bounds to a wider range of neural network architectures and datasets. However, most studies
are limited to training shallow networks with binary labels using bounded loss, which restricts their
broader application to deep network training. To better align with practical applications, several
PAC-Bayes bounds for unbounded loss have been established (Audibert & Catoni, 2011; Alquier
& Guedj, 2018; Holland, 2019; Kuzborskij & Szepesvári, 2019; Haddouche et al., 2021; Rivasplata
et al., 2020; Rodrı́guez-Gálvez et al., 2023). However, from the PAC-Bayes training perspective, it
is still unclear if these theoretically tight bounds can lead to better performance in training.

Along another vein, Dziugaite et al. (2021) suggested that a tighter PAC-Bayes bound could be
achieved with a data-dependent prior. They divide the data into two sets, using one to train the
prior distribution and the other to train the posterior with the optimized prior, thus making the prior
independent from the training dataset for the posterior. This, however, reduces the training data
available for the posterior. Dziugaite & Roy (2018) and Rivasplata et al. (2020) justified the ap-
proach of learning the prior and posterior with the same set of data by utilizing differential privacy.
However, their argument only holds for priors provably satisfying the so-called DP (ϵ)-condition in
differential privacy, which limits their practical application. As of now, most existing PAC-Bayes
training algorithms require hyper-parameter tuning, sometimes even more than vanilla SGD training,
making it less feasible in practice. In this work, we make a step forward in the PAC-Bayes training
regime, making it more practical and demonstrating its potential to replace the normal training of
neural networks in realistic settings.

4 PAC-BAYES BOUNDS WITH TRAINABLE PRIORS

We first provide a new extension of the PAC-Bayes bound from bounded to unbounded loss. First,
we need to define some sort of “soft” upper bound of the loss to be used in place of the hard
upper bound in the traditional PAC-Bayes bound for bounded loss. For example, in Kuzborskij &
Szepesvári (2019), the soft upper bound of the loss is set to the second-order moment. However,
the second-order moment could be much larger than the variance, leading to a vacuous bound in
practice. This matches our numerical observation on deep neural network applications, where the
bound is too large to be binding. Therefore, we propose the following definition of the “soft” bound
using the exponential moment inequality that will yield a more practical PAC-Bayes bound later.
Definition 1 (Exponential moment on finite intervals). Let X be a random variable and 0 ≤ γ1 ≤
γ2 be two real numbers. We call any K > 0 an exponential moment bound of X over the interval
[γ1, γ2], when

E[exp (γX)] ≤ exp (γ2K) (1)
holds for all γ ∈ [γ1, γ2].

Condition 1 arises naturally in various proofs 1 of traditional PAC-Bayes bounds (Theorem 2.1)
as a key property that determines whether or not the PAC-Bayes bound holds. Due to its similar-
ity to the definition of sub-Gaussian distribution, the traditional PAC-Bayes bound can be easily

1Such as the proof of Theorem 4.1 in Appendix B.1
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extended from bounded loss to unbounded sub-Gaussian losses. However, PAC-Bayes bounds for
sub-Gaussian losses are still often vacuous in deep neural network applications. We observed that the
issue lies in that the sub-Gaussian bound unnecessarily requires the exponential moment inequality
to hold on [0,∞). In most applications, we only need it to hold on a finite interval, which will yield
a much smaller K and in turn a tighter PAC-Bayes bound. This is the motivation of Definition 1.

To use Definition 1 in PAC-Bayes analysis, we first need to extend it to random variables
parametrized over a hypothesis space.
Definition 2 (Exponential moment over hypotheses). Let X(h) be a random variable parameterized
by the hypothesis h in some space H (i.e., h ∈ H), and fix an interval [γ1, γ2] with 0 ≤ γ1 < γ2 <
∞. Let {Pλ,λ ∈ Λ} be a family of distribution over H parameterized by λ ∈ Λ ⊆ Rk. Then, we
call any non-negative function K(λ) a uniform exponential moment bound for X(h) over the priors
{Pλ,λ ∈ Λ} and the interval [γ1, γ2] if the following holds

Eh∼Pλ
E[exp (γX(h))] ≤ exp (γ2K(λ)),

for any γ ∈ [γ1, γ2], and any λ ∈ Λ ⊆ Rk. The minimal such K(λ) is defined to be

Kmin(λ) = sup
γ∈[γ1,γ2]

1

γ2
log(Eh∼Pλ

E[exp (γX(h))]). (2)

Now, we can establish the PAC-Bayes bound for losses that satisfy Definition 2. Specifically, we will
plug into the X(h) in Definition 2 with the loss ℓ(h, zi), which is a random variable parameterized
by h with randomness coming from the input data zi.
Theorem 4.1 (PAC-Bayes bound for unbounded losses with preset priors). Given a prior distribu-
tion Pλ over the hypothesis space H, that is parametrized by a fixed λ ∈ Λ. Fix some δ ∈ (0, 1).
For any choice of i.i.d m-sized training dataset S according to D, and all posterior distributions Q
overH, we have

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +
1

γm
(ln

1

δ
+KL(Q||Pλ)) + γK(λ) (3)

holds for all γ ∈ [γ1, γ2] with probability at least 1 − δ, provided that ℓ(h, z) satisfies Definition 2
with bound K(λ).

The proof is available in Appendix B.1. Based on the PAC-Bayes bound in Theorem 4.1, we propose
the following PAC-Bayes training procedure. We first parameterize the posterior distribution as
Qσ(h), where h is the mean of the posterior and σ ∈ Rd contains the variance. Then we parametrize
the prior as Pλ with λ ∈ Rk, k ≪ m, d. For the PAC-Bayes training, we propose to optimize over
all four variables: h, γ, σ, and λ.

(ĥ, γ̂, σ̂, λ̂) = arg min
h,λ,σ,

γ∈[γ1,γ2]

Eh̃∼Qσ(h)ℓ(h̃;S) +
1

γm
(ln

1

δ
+KL(Qσ(h)||Pλ)) + γK(λ)︸ ︷︷ ︸

≡LPAC(h,γ,σ,λ)

. (P)

Optimizing the parameters in the prior will clearly help reduce the bound. However, whether it
is a valid operation is questionable at first glance, as it seemingly contradicts the traditional belief
that the prior has to be data-independent. Some previous work, such as Dziugaite & Roy (2017),
already attempted a similar idea with bounded losses. Here, we apply it to unbounded loss with
refined PAC-bayes bound, and more importantly, we provide a formal justification to validate this
approach2. To establish the theoretical guarantee for the optimization over the prior, we need the
following two assumptions.
Assumption 4.1.1 (Continuity of the KL divergence). Let Q be a family of posterior distributions,
let P = {Pλ,λ ∈ Λ ⊆ Rk} be a family of prior distributions parameterized by λ. We say the KL
divergence KL(Q||Pλ) is continuous with respect to λ over the posterior family, if there exists some
non-decreasing function η1(x) : R+ 7→ R+ with η1(0) = 0, such that |KL(Q||Pλ)−KL(Q||Pλ̃)| ≤
η1(∥λ− λ̃∥), for all pairs λ, λ̃ ∈ Λ and for all Q ∈ Q.

2Partial theoretical justification for the use of data-dependent prior was provided by using the differential
privacy (Rivasplata et al., 2020; Dziugaite & Roy, 2018). However, the restrictive requirement for the differen-
tial private priors seems to make it difficult to be applied to general settings.
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Assumption 4.1.2 (Continuity of the exponential moment bound). Let Kmin(λ) be as defined in
Definition 2. Assume it is continuous with respect to the parameter λ of the prior in the sense
that there exists a non-decreasing function η2(x) : R+ 7→ R+ with η2(0) = 0 such that |K(λ) −
K(λ̃)| ≤ η2(∥λ− λ̃∥), for all λ, λ̃ ∈ Λ.

In actual training, we will use the Gaussian family for the posterior and prior distributions. With
Gaussian families, it is sufficient to set η1(x) = C1x and η2(x) = C2x for the two assumptions to
hold, where C1, C2 are universal constants. Next, we present the main theorem that guarantees the
performance of the minimizer of P.

Theorem 4.2 (PAC-Bayes bound for unbounded losses and trainable priors). Let Q be a family of
posterior distribution, let P = {Pλ,λ ∈ Λ ⊆ Rk} be a family of prior distributions parameterized
by λ. Fix two scalars ϵ, ε > 0 to arbitrary (small) values. Let n(ε) := N (Λ, ∥ · ∥, ε) be the covering
number of the set Λ of the prior parameters. Under Assumption 4.1.1 and Assumption 4.1.2, the
following inequality holds for the minimizer (ĥ, γ̂, σ̂, λ̂) of equation P with probability as least
1− ϵ:

Eh∼Qσ̂(ĥ)ℓ(h;D) ≤ Eh∼Qσ̂(ĥ)ℓ(h;S) +
1

γ̂m

[
log

n(ε)

ϵ
+KL(Qσ̂(ĥ)||Pλ̂)

]
+ γ̂K(λ̂) + η

= LPAC(ĥ, γ̂, σ̂, λ̂) + η +
log(n(ε))

γ̂m
, (4)

where η = ( 1
γ1m

+ γ2)(η1(ε) + η2(ε)).

The proof is available in Appendix B.2. The theorem provides a generalization bound on the model
learned as the minimizer of equation P with data-dependent priors. This bound contains two parts,
the PAC-Bayes loss LPAC and two correction terms. Notably, these correction terms were absent
in the traditional PAC-Bayes bound with fixed priors. Given that (ĥ, γ̂, σ̂, λ̂) minimizes LPAC ,
evaluating LPAC at its own minimizer guarantees the first term as small as it can be. If the correction
terms are negligible, then this PAC-Bayes bound remains low. Suppose we choose a small ε, then the
first correction term η would be small provided η1 and η2 increase with a sensible rate. Regarding
the second correction term, the standard information-theoretical argument implies log(n(ε)) grows
linearly with the dimension k of Λ. Therefore, if k remains small relative to the dataset size m, the
second correction component will also stay minimal. In the next section, we will explicitly calculate
the last two correction terms when the prior and posterior are both Gaussian.

5 PAC-BAYES TRAINING ALGORITHM

5.1 GAUSSIAN PRIOR AND POSTERIOR

For the LPAC objective to have a closed-form formula, in the paper, we pick the simplest Gaus-
sian distribution family as both the prior and the posterior distributions. More specifically, we set
the posterior distribution to be centered around the training model h with trainable variance, i.e.,
Qσ(h) = N (h, diag(σ)), where σ contains the anisotropic variance of the weights and h contains
the mean. By using a diagonal covariance matrix, we assume the weights to be independent of each
other. We consider two types of priors, both centered around the initialization of the neural network
h0 (as suggested by Dziugaite & Roy (2017)), but with different assumptions on the variance.

• Scalar prior, we use a universal scalar to encode the variance of all the weights in the prior,
i.e., Pλ = N (h0, λId), where λ is a scalar. With this prior, the KL divergence in P is:

KL(Qσ(h)||Pλ(h0)) =
1

2

[
−1⊤

d ln(σ) + d(ln(λ)− 1) +
1

λ
(∥σ∥1 + ∥h− h0∥2)

]
. (5)

• Layerwise prior, weights in the ith layer share a common scalar variance λi, but different
layers have different variances. By setting λ = (λ1, ....,λk) as the vector containing all the
layerwise variances of a k layers neural network, the prior is Pλ = N (h0,BlockDiag(λ)),
where BlockDiag(λ)) is obtained by diagonally stacking all λiIdi into a d×d matrix, where
di is the size of the ith layer. The KL divergence for layerwise prior is in Appendix A.1.
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For shallow networks, it is enough to use the scalar prior; for deep neural networks, we found the
layerwise prior is better.

By plugging in the closed-form for KL(Qσ(h)||Pλ) with the Gaussian family into the PAC-Bayes
bound in Theorem 4.2, we have the following corollary that justifies the usage of PAC-Bayes bound
on large neural networks. The proof is available in Appendix B.3.
Corollary 5.0.1. Suppose the posterior and prior are Gaussian as defined above. Assume all pa-
rameters for the prior and posterior are bounded, i.e., we restrict the model h, the posterior variance
σ and the prior variance λ, all to be searched over bounded sets,H := {h ∈ Rd : ∥h∥2 ≤

√
dM},

Σ := {σ ∈ Rd
+ : ∥σ∥1 ≤ dT}, Λ =: {λ ∈ [e−a, eb]k}, respectively, with fixed M,T, a, b > 0.

Then,

• Assumption 4.1.1 holds with η1(x) = L1x, where L1 = 1
2 max{d, ea(2

√
dM + dT )}

• Assumption 4.1.2 holds with η2(x) = L2x, where L2 = 1
γ2
1

(
2dM2e2a + d(a+b)

2

)
• With high probability, the PAC-Bayes bound for the minimizer of equation P has the form

Eh∼Qσ̂(ĥ)ℓ(h;D) ≤ LPAC(ĥ, γ̂, σ̂, λ̂) + η,

where η = k
γ1m

(
1 + log CL(b+a)γ1m

2k

)
, C = 1

γ1m
+ γ2 and L = L1 + L2.

Remark 5.0.1. In the bound, the term LPAC(ĥ, γ̂, σ̂, λ̂) is inherently minimized as it evaluates
the function LPAC at its own minimizer. If the correction term η can be deemed insignificant, then
the overall bound remains low. As explained in Remark 5.0.2 and 5.0.3, the logarithm term in the
definition of η grows very mildly with the dimension, so we can treat it (almost) as a constant. Thus,
η ∼ k

γ1m
, from which we see η (and therefore the bound) would be small if prior’s degree of freedom

k is substantially less than the dataset size m3.

Remark 5.0.2. In defining the boundedness of the domainH of h in Corollary 5.0.1, we used
√
dM

as the bound. Here, the factor
√
d (where d denotes the dimension of h) is used to encapsulate the

idea that if on average, the components of the weight are bounded by M , then the ℓ2 norm would
naturally be bounded by

√
dM . The same idea applies to the definition of Σ.

Remark 5.0.3. Due to the above remark, M , T , a, b can be treated as dimension-independent
constants that do not grow with the network size d. As a result, the constants L1, L2, L in Corollary
5.0.1, are dominated by d, and L1, L2, L = O(d). This then implies the logarithm term in η scales
as O(log d), which grows very mildly with the size. Therefore, Corollary 5.0.1 can be used as the
generalization guarantee for large neural networks.

5.2 PAC-BAYES TRAINING ALGORITHM

Estimating Kmin(λ): In practice, the function Kmin(λ) must be estimated. Since we showed in
Corollary 5.0.1 that Kmin(λ) is Lipschtiz continuous, we can approximate it using piecewise-linear
functions. Notably, since for each fixed λ ∈ Λ, the prior is independent of the data, this procedure
of estimating Kmin(λ) can be carried out before training. More details are in Appendix A.2.

Tuning-free PAC-Bayes training: Algorithm 1 describe the PAC-Bayes training procedure with
scalar prior. The one with layerwise prior can be found in Appendix A.3. Although there are sev-
eral input parameters to be specified, the generalization performance is insensitive to the choice of
parameters (Please see numerical results in Sec.6 for the stability and Appendix A.5 for more dis-
cussions), and we used the same choice of values across all the different settings. When everything
else in the PAC-Bayes loss is fixed, γ ∈ [γ1, γ2] has a closed-form solution,

γ∗ = min

max

γ1,
1

Kmin

√
ln 1

δ +KL(Qσ(h)||Pλ(h0))

m

 , γ2

 . (6)

3In all our experiments for various neural networks, we set γ1 = 0.5 and γ2 = 10. More discussions are in
Appendix C.1.
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Algorithm 1 Tuning-free PAC-Bayes training (scalar prior)

Input: initial model h0 ∈ Rd, T1 = 500, λ1 = e−7, λ2 = 1, γ1 = 0.5, γ2 = 10

Output: trained model ĥ, posterior noise level σ̂
h← h0, v← 1d · log( 1d∥h0∥1), b← log( 1d∥h0∥1)
Obtain the estimated K̂(λ) with Λ = [λ1, λ2] using equation 9 (Appendix Algorithm 2)
for epoch = 1 : T1 do ▷ Stage 1

for sampling one batch s from S do
λ← exp(b), σ ← exp(v) ▷ Ensure non-negative variances
Pλ ← N (h0;λId), Qσ(h)← h+N (0; diag(σ))
Draw one h̃ ∼ Qσ(h) and evaluate ℓ(h̃;S), ▷ Stochastic version of Eh̃∼Qσ(h)ℓ(h̃;S)
Compute the KL divergence as equation 5
Compute γ as equation 6
Compute the loss function L as LPAC in equation P
b← b+ η ∂L

∂b , v← v + η ∂L
∂v , h← h+ η ∂L

∂h ▷ Update all parameters
end for

end for
σ̂ ← exp(v) ▷ Fix the noise level from now on
while not converge do ▷ Stage 2

for sampling one batch s from S do
Draw one sample h̃ ∼ Qσ̂(h) and evaluate ℓ(h̃;S) as L̃, ▷ Noise injection
h← h+ η ∂L̃

∂h ▷ Update model parameters
end for

end while
ĥ← h

Therefore, we only need to perform gradient updates on the other three variables, h,σ,λ.

The second stage of training: Gastpar et al. (2023); Nagarajan & Kolter (2019) showed that achiev-
ing high accuracy on certain distributions precludes the possibility of getting a tight generalization
bound in overparameterized settings. This also implies that it is less possible to use reasonable gen-
eralization bound to fully train one overparameterized model on a particular dataset. By minimizing
the PAC-Bayes bound only, it is also observed in our PAC-Bayes training that the training accuracy
can not be 100%. Therefore, we add a second stage to ensure convergence of the training loss.
Specifically, in Stage 2, we continue to update the model by minimizing only Eh∼Qσ̂

ℓ(h;S) over
h, and keep all other variables (i.e., λ, σ) fixed to the solution found by Stage 1. This is essentially
a stochastic gradient descent with noise injection, the level of which has been learned from Stage 1.
At the high level, this two-stage training is similar to the idea of learning-rate scheduler (LRS). In
LRS, the initial large learning rate introduces an implicit bias that guides the solution path towards
a flat region (Cohen et al., 2021; Barrett & Dherin, 2020), and the later smaller learning rate ensures
the convergence to a local minimizer in this region. Without the large learning rate stage, it cannot
reach the flat region, and without the small learning rate, it cannot converge to a local minimizer. For
the two-stage PAC-Bayes training, Stage 1 (PAC-Bayes stage) guides the solution to flat regions by
minimizing the generalization bound, and Stage 2 is necessary for an actual convergence to a local
minimizer. The practical impacts of each stage are also very similar to those of the LRS.

Prediction: After training, we use the mean of the posterior as the trained model and perform de-
terministic prediction on the test dataset. In Appendix A.6, we provide some mathematical intuition
of why the deterministic predictor is expected to perform even better than the Bayesian predictor.

Regularizations in the PAC-Bayes training: By plugging the KL divergence (equation 5) into P,
we can see that in the case of Gaussian priors and posteriors, the PAC-Bayes loss is nothing but
the original training loss augmented by a noise injection and a weight decay, except that the weight
decay term is now centered at h0 instead of 0, the coefficients of the weight decay change from layer
to layer when using layerwise prior, and the noise injection has anisotropic variances. Since many
factors in normal training, such as mini-batch and dropout, enhance generalization by some sort of
noise injection, it is not surprising that they can be substituted by the well-calibrated noise injection
in PAC-Bayes training. More discussions are available in Appendix A.4.
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(a) VGG13 (b) ResNet34 (c) DenseNet121

Figure 1: Sorted testing accuracy of CIFAR100. ”scalar” and ”layer” represent the tuning-free PAC-
Bayes training with the scalar and layerwise prior.

6 EXPERIMENTS

Evaluation on deep convolution neural networks: We test the proposed method on CIFAR10
and CIFAR100 datasets with no data augmentation4 on various popular deep neural networks,
VGG13, VGG19 (Simonyan & Zisserman, 2014), ResNet18, ResNet34 (He et al., 2016), and
DenseNet121 (Huang et al., 2017) by comparing its performance with the normal training by SGD
and Adam with various regularizations (which we call baselines). The training of baselines in-
volves a grid search of hyper-parameters, including momentum for SGD (0.3 to 0.9), learning rate
(1e-3 to 2e-1), weight decay (1e-4 to 1e-2), and noise injection (5e-4 to 1e-2); thus, it is quite
time-consuming. We used an extensive grid search as a baseline to ensure the best achievable test
accuracy in the literature, e.g., Table 4 of Geiping et al. (2021). We compared the mean testing
accuracy of the last five epochs to determine each optimal hyper-parameter. We only applied noise
injection to Adam/AdamW, as it sometimes causes instability to SGD. We set batch size as 128,
since it usually gives the best performance from the literature. Finally, 38 searches were conducted
for each baseline model on one dataset. The testing accuracy for the optimally tuned baseline and
a single run of the PAC-Bayes training are presented in Table 1. As the CIFAR10 and CIFAR100
lack a published validation dataset, we used the test dataset to adjust hyper-parameters for baselines.
This might lead to a slightly inflated performance for baselines, offering them an unfair advantage
over our method. Nevertheless, the testing accuracy of our method with scalar and layerwise prior
matches the best testing accuracy of baselines. There is no grid search for our PAC-Bayes training,
and we use Adam as the optimizer and the learning rate as 10−4 for all models. To provide more de-
tails, we have plotted all the searched results for baselines for VGG13, ResNet34, and DenseNet121
on CIFAR100 in Figure 1. The plotted results are sorted in ascending order based on their testing
accuracy. The figure shows that our training algorithms are better than most searched settings.

Additionally, we find that the result of the tuning-free PAC-Bayes training is insensitive to the batch
size. Table 2 shows that changing the batch size from 128 to 2048 for VGG13 and ResNet18 does
not decrease the performance of the PAC-Bayes training as much as it does for the normal training.
Despite not requiring exhaustive tuning, our proposed tuning-free algorithms match the best testing
accuracy of baselines with a large batch size. This observation enables the use of large batch sizes
for the PAC-Bayes training to accelerate the convergence. Besides the batch size, our proposed
method is also insensitive to the learning rate. Please refer to Appendix C.2, C.3 C.5 for more
training details and results. Training cost is also discussed in Appendix C.6. In short, PAC-Bayes
training nearly doubles the parameters needing optimization, yet the required backpropagations per
run are comparable to baselines.

Evaluation on graph neural networks: To demonstrate the robustness of the proposed PAC-
Bayes training algorithm across different network architectures, we also test it on graph neu-
ral networks. Moreover, the number of training samples for node classification tasks is gener-
ally much smaller than CIFAR10/100, allowing us to examine the performance of the algorithm
in the data scarcity setting. Unlike CNNs, the GNN baselines find their best performance with
AdamW optimizer and with dropout turned on, while the proposed PAC-Bayes training algorithm
stays the same as in the CNN setting. To ensure the best results of baselines, we searched the
learning rate, weight decay, noise injection, and dropout of baselines. We follow the conven-
tion for graph datasets by randomly assigning 20 nodes per class for training, 500 for validation,
and the remaining for testing. We evaluated the accuracy of the validation nodes to identify the

4Result with data augmentation can be found in Appendix C.4
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Table 1: Testing accuracy of convolution neural networks on C10 (CIFAR10) and C100 (CI-
FAR100). “scalar” and “layer” denote the PAC-Bayes training with scalar and layerwise prior.

(a) VGG13

C10 C100

SGD 90.2 66.9
Adam 88.5 63.7

AdamW 88.4 61.8

scalar 88.7 67.2
layer 89.7 67.1

(b) VGG19

C10 C100

SGD 90.2 64.5
Adam 89.0 58.8

AdamW 89.0 62.3

scalar 89.2 61.3
layer 90.5 62.3

(c) Resnet18

C10 C100

SGD 89.9 64.0
Adam 87.5 61.6

AdamW 87.9 61.4

scalar 88.0 68.8
layer 89.3 68.9

(d) Resnet34

C10 C100

SGD 90.0 70.3
Adam 87.9 59.5

AdamW 88.3 59.9

scalar 89.6 69.5
layer 90.9 69.9

(e) DenseNet121

C10 C100

SGD 91.8 74.0
Adam 91.2 70.0

AdamW 91.5 70.1

scalar 91.2 71.4
layer 91.5 72.2

Table 2: The results of large batch sizes on the testing accuracy of CNNs on C10 (CIFAR10) and
C100 (CIFAR100). The number in (·) indicates how much the results differ from using a small batch
size (128). “scalar” and “layer” denote the PAC-Bayes training with scalar and layerwise prior. The
best results are highlighted.

(a) VGG13

C10 C100

SGD 87.7 (-2.5) 60.1 (-6.8)
Adam 90.7 (+2.2) 66.2 (+2.5)

AdamW 87.2 (-1.1) 61.0 (-0.8)

scalar 88.9 (0.2) 66.0 (-1.2)
layer 89.4 (-0.3) 67.1 (-0.0)

(b) ResNet18

C10 C100

SGD 85.4 (-4.5) 61.5 (-2.6)
Adam 87.7 (+0.2) 65.4 (+3.8)

AdamW 84.9 (-2.9) 58.9 (-2.5)

scalar 88.9 (0.9) 68.7 (-0.1)
layer 89.2 (-0.1) 69.3 (+0.3)

(c) ResNet34

C10 C100

SGD 87.0 (-3.0) 61.5 (-8.8)
Adam 89.5 (+1.6) 67.1 (+7.6)

AdamW 86.8 (-1.5) 58.8 (-1.1)

scalar 90.2 (0.6) 67.5 (-2.0)
layer 90.6 (-0.3) 69.1 (-0.8)

best hyper-parameters and report the corresponding testing accuracy. We tested GCN (Kipf &
Welling, 2016), GAT (Veličković et al., 2017), SAGE (Hamilton et al., 2017), and APPNP (Gasteiger
et al., 2018) on CoraML, Citeseer, PubMed, Cora and DBLP (Bojchevski & Günnemann, 2017).

Table 3: Testing accuracy of GNNs. ”AdW” is AdamW, the
baseline, and ”scalar” is our algorithm with a scalar prior.

CoraML Citeseer PubMed Cora DBLP

GCN AdW 85.7±0.7 90.3±0.4 85.0±0.6 60.7±0.7 80.6±1.4
scalar 86.1±0.7 90.0±0.4 84.9±0.8 62.0±0.4 80.5±0.6

GAT AdW 85.7±1.0 90.8±0.3 84.0±0.4 63.5±0.4 81.8±0.6
scalar 85.9±0.8 90.6±0.5 84.4±0.5 60.9±0.6 81.0±0.5

SAGE AdW 85.7±0.5 90.5±0.5 83.5±0.4 60.6±0.5 80.7±0.6
scalar 86.5±0.5 90.0±0.5 84.4±0.6 61.2±0.2 79.9±0.5

APPNP AdW 86.6±0.7 91.0±0.4 85.1±0.5 62.5±0.4 80.6±2.8
scalar 87.1±0.6 90.4±0.5 85.7±0.4 63.5±0.4 81.8±0.5

There are only two convolution layers
for GNNs, so we only test our algo-
rithm with the scalar prior. We added
one dropout layer between two graph
convolution layers for baselines only,
except keeping the dropout in the at-
tention layers of GAT for both our al-
gorithm and baselines since it essen-
tially drops the input graph’s edges.
In Table 3, for each GNN architec-
ture, the rows of AdamW and scalar,
respectively, record the performance
of baselines and the PAC-Bayes train-
ing with early stopping determined
by the validation dataset. We see that
our algorithm’s results match the best
baseline testing accuracy. Appendix C.7 provides additional training information and evaluation
outcomes. Extra analysis on few-shot text classification with transformers is in Appendix C.8.

7 CONCLUSION AND FUTURE WORK

This paper demonstrated that the PAC-Bayes bound can go beyond a purely theoretical bound and
prove valuable during training. It not only attains a state-of-the-art performance level but also
achieves auto-tuning. Moreover, an intriguing observation in this paper is that PAC-Bayes train-
ing did not seem to suffer from the curse of dimensionality, a phenomenon traditionally believed as
a significant limitation of the generalization bounds. The PAC-Bayes framework can also provide
the posterior variance of the weights, which can potentially be used to determine the importance of
the weights. These may lead to new algorithm designs for network pruning and adversarial training.
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beyond the usual bounds. Advances in Neural Information Processing Systems, 33:16833–16845,
2020.

Borja Rodrı́guez-Gálvez, Ragnar Thobaben, and Mikael Skoglund. More pac-bayes bounds:
From bounded losses, to losses with general tail behaviors, to anytime-validity. arXiv preprint
arXiv:2306.12214, 2023.

John Shawe-Taylor and Robert C Williamson. A pac analysis of a bayesian estimator. In Proceedings
of the tenth annual conference on Computational learning theory, pp. 2–9, 1997.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regulariza-
tion in stochastic gradient descent. In International Conference on Learning Representations.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Vladimir Vapnik. Statistical learning theory wiley. New York, 1(624):2, 1998.
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APPENDIX A ALGORITHM DETAILS

A.1 KL DIVERGENCE OF THE GAUSSIAN PRIOR AND POSTERIOR

For a k-layer network, the prior is written as Pλ(h0), where h0 is the random initialized model and
λ ∈ Rk

+ is the vector containing the variance for each layer. The set of all such priors is denoted by
P := {Pλ(h0),λ ∈ Λ ⊆ Rk,h0 ∈ H}. In the PAC-Bayes training, we select the posterior distribu-
tion to be centered around the trained model h, with independent anisotropic variance. Specifically,
for a network with d trainable parameters, the posterior is Qσ(h) := N (h, diag(σ)), where h (the
current model) is the mean and σ ∈ Rd

+ is the vector containing the variance for each trainable pa-
rameter. The set of all posteriors is Q := {Qσ(h),σ ∈ Σ,h ∈ H}, and the KL divergence between
all such prior and posterior in P and Q is:

KL(Qσ(h)||Pλ(h0)) =
1

2

k∑
i=1

[
−1⊤

di
ln(σi) + di(ln(λi)− 1) +

∥σi∥1 + ∥(h− h0)i∥2)
λi

]
, (7)

where σi, (h − h0)i are vectors denoting the variances and weights for the i-th layer, respectively,
and λi is the scalar variance for the i-th layer. di = dim(σi), and 1di

denotes an all-ones vector of
length di

5.

Scalar prior is a special case of the layerwise prior by setting all entries of λ to be equal, for which
the KL divergence reduces to

KL(Qσ(h)||Pλ(h0)) =
1

2

[
−1⊤

d ln(σ) + d(ln(λ)− 1) +
1

λ
(∥σ∥1 + ∥h− h0∥2)

]
. (8)

A.2 ALGORITHMS TO ESTIMATE K(λ)

For a discrete set, {λ1,....,λs} ⊆ Λ, we estimate the corresponding K1,....Ks using the empirical
version of equation 2, that is for any i = 1, ..., s, we solve

Kmin(λi) = arg min
K>0

K

s.t. exp (γ2K) ≥ 1

nm

n∑
l=1

m∑
j=1

exp(γ(ℓ(hl;S)− ℓ(hl; zj))), ∀ γ ∈ [γ1, γ2],
(9)

where hl ∼ Pλi(h0), l = 1, ..., n, are samples from the prior distribution and are fixed when solving
equation 9 for Kmin(λi). This optimization problem can be solved by a bisection search. From the
pairs (λi,Kmin(λi)), we construct Kmin(λ) using piecewise-linear interpolation.

Algorithm 2 Compute K(λ) given a set of query priors

Input: γ1 and γ2, s query prior variances V = {λi ∈ Λ ⊆ Rk, i = 1, ..., s}, the initial neural
network weight h0, the training dataset S = {zi}mi=1, model sampling time n = 10

Output: the piece-wise linear interpolation K̃(λ) for Kmin(λ)
for λi ∈ V do

Set up a discrete grid Γ for the interval [γ1, γ2] of γ.
for l = 1 : n do

Sampling weights from the Gaussian distribution hl ∼ N (h0,λi)
Use hl, Γ and S to compute one term in the sum in equation 9

Solve K̂i using equation 9
Fit a piece-wise linear function K̃(λ) to the data {(λi, K̂i)}si=1

It is simple to evaluate λ when k = 1 using the algorithm above. When using the layerwise prior
version of our method, the exponential moment bound Kmin(λ) is a k-dimensional function, and

5Note that with a little ambiguity, the λi here has a different meaning from that in equation 9 and Algo-
rithm 2, here λi means the ith element in λ, whereas in equation 9 and Algorithm 2, λi means the ith element
in the discrete set.
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estimating it accurately requires a large number of samples. In this paper, we adopt a simple em-
pirical approach to address this issue. We assume that the original function Kmin(λ) can be well-
approximated by a one-dimensional function K̃ that solely depends on the mean value of the input.
That is, we assume there is a one-dimensional function K̃ such that Kmin(λ) ≈ K̃(λ̄), where λ̄

denotes the mean of λ. Then we only need to estimate this one-dimensional function K̃ through
function interpolation. We note that one can always choose to directly interpolate the k-dimensional
function Kmin(λ) directly, but at the expense of increased sampling complexity and computational
time.

A.3 PAC-BAYES TRAINING WITH LAYERWISE PRIOR

Similar to Algorithm 1, the PAC-Bayes training with layerwise prior is stated here in Algorithm 3.

Algorithm 3 Tuning-free PAC-Bayes training (layerwise prior)

Input: initial model h0 ∈ Rd, the number of layers k, T1, λ1 = e−7, λ2 = 1, γ1 = 0.5, γ2 = 10

Output: trained model ĥ, posterior noise level σ̂
h← h0, v← 1d · log( 1d

∑d
i=1 |h0,i|), b← 1k · log( 1d

∑d
i=1 |h0,i|) ▷ Initialization

Obtain the estimated K̃(λ̄) with Λ = [λ1, λ2]
k using equation 9 and Appendix A.2

for epoch = 1 : T1 do ▷ Stage 1
for sampling one batch s from S do

λ← exp(b), σ ← exp(v) ▷ Ensure non-negative variances
Construct the covariance of Pλ from λ ▷ Setting the variance of the weights in layer-i all

to the scalar λ(i)
Draw one h̃ ∼ Qσ(h) and evaluate ℓ(h̃;S), ▷ Stochastic version of Eh̃∼Qσ(h)ℓ(h̃;S)
Compute the KL-divergence as equation 7
Compute γ as equation 6
Compute the loss function L as LPAC in equation P
b← b+ η ∂L

∂b , v← v + η ∂L
∂v , h← h+ η ∂L

∂h ▷ Update all parameters
end for

end for
σ̂ ← exp(v) ▷ Fix the noise level from now on
while not converge do ▷ Stage 2

for sampling one batch s from S do
Draw one sample h̃ ∼ Qσ̂(h) and evaluate ℓ(h̃;S) as L̃, ▷ Noise injection
h← h+ η ∂L̃

∂h ▷ Update model parameters
end for

end while
ĥ← h

A.4 REGULARIZATIONS IN PAC-BAYES BOUND

Only noise injection and weight decay are essential from our derived PAC-Bayes bound. Like most
commonly used implicit regularizations (large lr, momentum, small batch size), dropout and batch-
norm are also known to penalize the loss function’s sharpness indirectly. Wei et al. (2020) studies
that dropout introduces an explicit regularization that penalizes sharpness and an implicit regular-
ization that is analogous to the effect of stochasticity in small mini-batch stochastic gradient descent.
Similarly, it is well-studied that batch-norm Luo et al. (2018) allows the use of a large learning rate
by reducing the variance in the layer batches, and large allowable learning rates regularize sharp-
ness through the edge of stability Cohen et al. (2020). As shown in the equation below, the first term
(noise-injection) in our PAC-Bayes bound explicitly penalizes the Trace of the Hessian of the loss,
which directly relates to sharpness and is quite similar to the regularization effect of batch-norm and
dropout. During training, suppose the current posterior isQσ̂(ĥ) = N (ĥ, diag(σ̂)), then the training
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loss expectation over the posterior is:

Eh∼Qσ̂(ĥ)
ℓ(h;D) = E∆h∼Qσ̂(0)ℓ(ĥ+∆h;D)

≈ ℓ(ĥ,D) + E∆h∼Qσ̂(0)(ℓ(ĥ;D)∆h+
1

2
∆h⊤∇2ℓ(ĥ;D)∆h)

= ℓ(ĥ;D) + 1

2
Tr(diag(σ̂)∇2ℓ(ĥ;D)).

The second regularization term (weight decay) in the bound additionally ensures that the minimizer
found is close to initialization. Although the relation of this regularizer to sharpness is not very
clear, empirical results suggest that weight decay may have a separate regularization effect from
sharpness. So in brief, we state that the effect of sharpness regularization from dropout and batch
norm can also be well emulated by noise injection with the additional effect of weight decay.

A.5 LIMITATIONS OF THE PROPOSED PAC-BAYES TRAINING

We’ve showcased the significant potential of PAC-Bayes training. However, it’s important to note
its limitations to inspire future works:

1. In conventional training, the weights of the neural network h is the only parameter to be stored
and updated. In PAC-Bayes training, we have four parameters h,λ,σ, γ. Among these variables,
γ can be computed on the fly or whenever needed. We need to store h,λ,σ, where σ has
the same size as h and λ is much smaller. Hence the total storage is approximately doubled.
Likewise, we now need to compute the gradient for h,λ,σ. However, since we need to do only
one backpropagation and use the result to compute the gradients for both h and σ, the cost of
automatic differentiation in each iteration is also approximately the same. In the inference stage,
the complexity is the same as in conventional training. The real training complexity is discussed
in Appendix C.6, showing that the PAC-Bayes training needs a much shorter time to achieve
the best generalization with the comparable average number of backpropagation compared with
baselines, although a single run of the baseline is faster.

2. The additional parameters to be optimized in PAC-Bayes training inevitably increase the diffi-
culty of the optimization, and the most direct consequence is that there are more parameters to
be initialized. In most of the experiments we ran, the recommended initialization of v and b
work well. Rarely is it necessary to modify this setup. But if it occurs (i.e., in some settings,
the recommended noise initializations are too large or too small), then the convergence of the
algorithm would usually be affected immediately after the training started. So, if one observes a
stall in the training accuracy in the early iterations, it usually indicates that the noise initialization
requires adjustment, and a simple adjustment of multiplying the noise level by a global scalar
often suffices. The tuning of initialization for PAC-Bayes training (most of the time unnecessary)
can be performed much more efficiently than the hyper-parameter tuning for the baseline, as in-
appropriate noise initializations lead to convergence problems appearing right after the training
starts, whereas for the hyper-parameter turning, one needs to wait until the completion of the
entire training process to evaluate the effectiveness of the current parameter configuration, which
is much more time-consuming.

A.6 DETERMINISTIC PREDICTION

Recall that for any h ∈ Rd and σ ∈ Rd
+, we used Qσ(h) to denote the multivariate normal distribi-

tion with mean h and covariance matrix diag(σ). If we rewrite the left-hand side of the PAC-Bayes
bound by Taylor expansion, we have:

Eh∼Qσ̂(ĥ)ℓ(h;D) = E∆h∼Qσ̂(0)ℓ(ĥ+∆h;D)

≈ ℓ(ĥ,D) + E∆h∼Qσ̂(0)(ℓ(ĥ;D)∆h+
1

2
∆h⊤∇2ℓ(ĥ;D)∆h)

= ℓ(ĥ;D) + 1

2
Tr(diag(σ)∇2ℓ(ĥ;D)) ≥ ℓ(ĥ,D). (10)

Recall here ĥ and σ̂ are the minimizers of the PAC-Bayes loss, obtained by solving the optimiza-
tion problem equation P. Equation equation 10 states that the deterministic predictor has a smaller
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prediction error than the Bayesian predictor. However, note that the last inequality in equation 10 is
derived under the assumption that the term ∇2ℓ(ĥ,D) is positive-semidefinite. This is a reasonable
assumption as ĥ is the local minimizer of the PAC-Bayes loss and the PAC-Bayes loss is close to
the population loss when the number of samples is large. Nevertheless, since this assumption does
not holds for all cases, the presented argument can only serve only as an intuition that shows the
potential benefits of using the deterministic predictor.

APPENDIX B PROOFS

B.1 PROOFS OF THEOREM 4.1

Theorem B.1. Given a prior Pλ parametrized by λ ∈ Λ over the hypothesis set H. Fix λ ∈ Λ,
δ ∈ (0, 1) and γ ∈ [γ1, γ2]. For any choice of i.i.d m-sized training dataset S according to D, and
all posterior distributions Q overH, we have

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +
1

γm
(ln

1

δ
+KL(Q||Pλ)) + γK(λ) (11)

holds with probability at least 1− δ when ℓ(h, ·) satisfies Definition 2 with bound K(λ).

Proof. Firstly, in the bounded interval γ ∈ [γ1, γ2], we bound the difference of the expected loss
over the posterior distribution evaluated on the training dataset S and D with the KL divergence
between the posterior distributionQ and prior distribution Pλ evaluated over a hypothesis spaceH.

For γ ∈ [γ1, γ2],

ES∼D[exp (γm(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S))−KL(Q||Pλ))]

=ES∼D[exp (γm(Eh∼Qℓ(h;D)− Eh∼Qℓ(h;S))− Eh∼Q log
dQ
dPλ

(h))] (12)

≤ES∼DEh∼Q[exp (γm(ℓ(h;D)− ℓ(h;S))− log
dQ
dPλ

(h))] (13)

=ES∼DEh∼Q[exp(γm(ℓ(h;D)− ℓ(h;S)))dPλ

dQ
(h)]

=ES∼DEh∼Pλ
[exp(γm(ℓ(h;D)− ℓ(h;S)))dPλ

dQ
(h)

dQ
dPλ

(h)] (14)

=Eh∼Pλ
ES∼D[exp(γm(ℓ(h;D)− ℓ(h;S)))], (15)

where dQ/dP denotes the Radon-Nikodym derivative.

In equation 12, we use KL(Q||Pλ) = Eh∼Q log dQ
dPλ

(h). From equation 12 to equation 13, Jensen’s
inequality is used over the convex exponential function. And in equation 14, the expectation is
changed to the prior distribution from the posterior.

Let X = ℓ(h;D)− ℓ(h;S), then X is centered with E[X] = 0. Then, by Definition 2,

∃K(λ), Eh∼Pλ
ES∼D[exp (γmX)] ≤ exp (mγ2K(λ)). (16)

Using Markov’s inequality, equation 17 holds with probability at least 1− δ.

exp (γmX) ≤ exp (mγ2K(λ))

δ
. (17)

Combining equation 15 and equation 17, the following inequality holds with probability at least
1− δ.

exp (γm(Eh∼Qℓ(h;D)− Eh∼Qℓ(h;S))−KL(Q||Pλ)) ≤
exp (mγ2K(λ))

δ

⇒γm(Eh∼Qℓ(h;D)− Eh∼Qℓ(h;S))−KL(Q||Pλ) ≤ ln
1

δ
+mγ2K(λ)

⇒Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +
1

γm
(ln

1

δ
+KL(Q||Pλ)) + γK(λ) (18)
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The bound 18 is exactly the statement of the Theorem.

B.2 PROOF OF THEOREM 4.2

Theorem B.2. Let n(ε) := N (Λ, ∥ · ∥, ε) be the covering number of the set of the prior parameters
Λ. Under Assumption 4.1.1 and Assumption 4.1.2, the following inequality holds for the minimizer
(ĥ, γ̂, σ̂, λ̂) of upper bound in equation 3 with probability as least 1− ϵ:

Eh∼Qσ̂(ĥ)ℓ(h;D) ≤ Eh∼Qσ̂(ĥ)ℓ(h;S) +
1

γ̂m

[
log

n(ε)

ϵ
+KL(Qσ̂(ĥ)||Pλ̂)

]
+ γ̂K(λ̂) + η

= LPAC(ĥ, γ̂, σ̂, λ̂) + η +
log(n(ε))

γ̂m
(19)

holds for any ϵ, ε > 0, where η = ( 1
γ1m

+ γ2)(η1(ε) + η2(ε)).

Proof: In this proof, we extend the PAC-Bayes bound 3 with data-independent priors to data-
dependent ones that accommodate the error when the prior distribution is parameterized and opti-
mized over a finite set of parameters P = {Pλ,λ ∈ Λ ⊆ Rk} with a much smaller dimension than
the model itself. Let T(Λ, ∥ · ∥, ε) be an ε-cover of the set Λ, which states that for any λ ∈ Λ, there
exists a λ̃ ∈ T(Λ, ∥ · ∥, ε) , such that ||λ− λ̃|| ≤ ε.

Now we select the posterior distribution as Qσ(h) := h + Qσ , where h is the current model and
Qσ is a zero mean distribution parameterized by σ ∈ Rd. Assuming the prior P is parameterized
by λ ∈ Rk (k ≪ m, d).

Then the PAC-Bayes bound 3 holds already for any (ĥ, γ̂, σ̂,λ), with fixed λ ∈ Λ, i.e.,

Eh̃∼Qσ̂(ĥ)ℓ(h̃;D) ≤ Eh̃∼Qσ̂(ĥ)ℓ(h̃;S) +
1

γ̂m
(ln

1

δ
+KL(Qσ̂(ĥ)||Pλ)) + γ̂K(λ) (20)

with probability over 1− δ.

Now, for the collection of λs in the ε-net T(Λ, ∥ · ∥, ε), by the union bound, the PAC-Bayes bound
uniformly holds with probability at least 1− |T|δ = 1− nδ. For an arbitrary λ ∈ Λ, its distance to
the ε-net is at most ε. Then under Assumption 4.1.1 and Assumption 4.1.2, we have:

min
λ̃∈T
|KL(Q||Pλ)−KL(Q||Pλ̃)| ≤ η1(∥λ− λ̃∥) ≤ η1(ε),

and
min
λ̃∈T
|K(λ)−K(λ̃)| ≤ η2(∥λ− λ̃∥) ≤ η2(ε).

With these two inequalities, we can control the PAC-Bayes loss at the given λ as follows:

min
λ̃∈T
|LPAC(ĥ, γ̂, σ̂,λ)− LPAC(ĥ, γ̂, σ̂, λ̃)| ≤

1

γ̂m
η1(ε) + γ̂η2(ε)

≤ 1

γ1m
η1(ε) + γ2η2(ε)

≤ C(η1(ε) + η2(ε))

where C = 1
γ1m

+ γ2 and γ ∈ [γ1, γ2]. Now, since this inequality holds for any λ ∈ Λ, it certainly

holds for the optima λ̂. Combining this with equation 20, we have

Eh∼Qσ̂(ĥ)ℓ(h;D) ≤ LPAC(ĥ, γ̂, σ̂, λ̂) + C(η1(ε) + η2(ε))

where C := 1
γ1m

+ γ2.
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Now taking ϵ := n(ε)δ, we get, with probability 1− ϵ, it holds that

Eh∼Qσ̂(ĥ)ℓ(h;D) ≤ Eh∼Qσ̂(ĥ)ℓ(h;S) +
1

γ̂m

[
ln

n(ε)

ϵ
+KL(Qσ̂(ĥ)||Pλ̂)

]
+ γ̂K(λ̂) + η

= LPAC(ĥ, γ̂, σ̂, λ̂) + η +
ln(n(ε))

γ̂m
(21)

and the proof is completed.

B.3 PROOF OF COROLLARY 5.0.1

Recall for the training, we proposed to optimize over all four variables: h, γ, σ, and λ.

(ĥ, γ̂, σ̂, λ̂) = arg min
h,λ,σ,

γ∈[γ1,γ2]

Eh̃∼Qσ(h)ℓ(h̃;S) +
1

γm
(ln

1

δ
+KL(Qσ(h)||Pλ)) + γK(λ)︸ ︷︷ ︸

≡LPAC(h,γ,σ,λ)

. (22)

Corollary B.2.1. Assume all parameters for the prior and posterior are bounded, i.e., we restrict
the model h, the posterior variance σ and the prior variance λ, all to be searched over bounded
sets, H := {h ∈ Rd : ∥h∥2 ≤

√
dM}, Σ := {σ ∈ Rd

+ : ∥σ∥1 ≤ dT}, Λ =: {λ ∈ [e−a, eb]k},
respectively, with fixed M,T, a, b > 0. Then,

• Assumption 4.1.1 holds with η1(x) = L1x, where L1 = 1
2 max{d, ea(2

√
dM + dT )}

• Assumption 4.1.2 holds with η2(x) = L2x, where L2 = 1
γ2
1

(
2dM2e2a + d(a+b)

2

)
• With high probability, the PAC-Bayes bound for the minimizer of equation P has the form

Eh∼Qσ̂(ĥ)ℓ(h;D) ≤ LPAC(ĥ, γ̂, σ̂, λ̂) + η,

where η = k
γ1m

(
1 + ln CL(b+a)γ1m

2k

)
, C = 1

γ1m
+ γ2 and L = L1 + L2.

Proof: We first prove the two assumptions are satisfied by the Gaussian family with bounded pa-
rameter spaces. To prove Assumption 4.1.1 is satisfied, let vi = log 1/λi, i = 1, ..., k and per-
form a change of variable from λi to vi. The prior for the ith layer now becomes P̃vi

:= Pλi
=

N (0, λiIdi
)) = N (0, e−viIdi

)), where di is the number of trainable parameters in the ith layer. It
is straightforward to compute

∂KL(Qσ||P̃v)

∂vi
=

1

2
[−di + evi(∥σi∥1 + ∥hi − h0,i∥2)],

where σi, hi, h0,i are the blocks of σ, h, h0, containing the parameters associated with the ith layer,
respectively. Now, given the assumptions on the boundedness of the parameters, we have:

∥∇vKL(Qσ||P̃v)∥2 ≤ ∥∇vKL(Qσ||P̃v)∥1 ≤
1

2
max{d, ea(2

√
dM + dT )} ≡ L1(d,M, T, a),

(23)

where we used the assumption ∥σ∥1 ≤ dT and ∥h0∥2, ∥h∥2 ≤
√
dM .

Equation 23 says L1(d,M, T, a) is a valid Lipschitz bound on the KL divergence and therefore
Assumption 4.1.1 is satisfied by setting η1(x) = L1(d,M, T, a)x.
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Next, we prove Assumption 4.1.2 is satisfied. We use Kmin(λ) defined in Definition 2 as the K(λ)
in the PAC-Bayes training, and verify that it makes Assumption 4.1.2 hold.

|Kmin(λ1)−Kmin(λ2)|

=

∣∣∣∣∣ sup
γ∈[γ1,γ2]

1

γ2
log(Eh∼Pλ1

Ez∼D[exp (γℓ(h, z))])− sup
γ∈[γ1,γ2]

1

γ2
log(Eh∼Pλ2

Ez∼D[exp (γℓ(h, z))])

∣∣∣∣∣
≤ sup

γ∈[γ1,γ2]

1

γ2

∣∣log(Eh∼Pλ1
Ez∼D[exp (γℓ(h, z))])− log(Eh∼Pλ2

Ez∼D[exp (γℓ(h, z))])
∣∣

= sup
γ∈[γ1,γ2]

1

γ2

∣∣∣∣log(Eh∼Pλ2
Ez∼D[exp (γℓ(h, z))]

pλ1(h)

pλ2
(h)

)− log(Eh∼Pλ2
Ez∼D[exp (γℓ(h, z))])

∣∣∣∣
≤ sup

γ∈[γ1,γ2]

1

γ2
sup
h∈H

∣∣∣∣log pλ1
(h)

pλ2
(h)

∣∣∣∣
≤ 1

γ2
1

sup
h∈H

∣∣∣∣log pλ1
(h)

pλ2
(h)

∣∣∣∣
≤ 1

γ2
1

(
2dM2e2a +

d(a+ b)

2

)
∥λ1 − λ2∥,

where the first inequality used the property of the supremum, the pλ1(h), pλ2(h) in the fourth line
denote the probability density function of Gaussian with mean h0 and variance parametrized by λ1,
λ2 (i.e., λ1,i, λ2,i are the variances for the ith layer), the second inequality use the fact that if X(h)
is a non-negative function of h and Y (h) is a bounded function of h, then

|Eh(X(h)Y (h))| ≤ (sup
h∈H
|Y (h)|) · EhX(h).

The last inequality used the formula of the Gaussian density

p(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
and the boundedness of the parameters. Therefore, Assumption 4.1.2 is satisfied by setting η2(x) =

L2(d,M, γ1, a)x, where L2(d,M, γ1, a) =
1
γ2
1

(
2dM2e2a + d(a+b)

2

)
.

Let L(d,M, T, γ1, a) = L1(d,M, T, a) + L2(d,M, γ1, a). Then we can apply Theorem 4.2, to get
with probability 1− ϵ,

Eh∼Qσ̂(ĥ)
ℓ(h;D)

≤ Eh∼Qσ̂(ĥ)ℓ(h;S) +
1

γ̂m

[
ln

n(ε)

ϵ
+KL(Qσ̂(ĥ)||Pλ)

]
+ γ̂Kmin(λ̂) + CL(d,M, T, γ1, a))ε.

(24)

Here, we used η1(x) = L1x and η2(x) = L2x. Note that for the set [−b, a]k, the covering number
n(ε) = N ([−b, a]k, | · |, ε) is

(
b+a
2ε

)k
. Introducing a new variable ρ > 0, letting ε = ρ

CL(d,M,T,γ1,a))

and inserting them to the above, we obtain with probability 1− ϵ:

Eh∼Qσ̂(ĥ)ℓ(h;D)

≤ Eh∼Qσ̂(ĥ)
ℓ(h;S) + 1

γ̂m

[
ln

1

ϵ
+KL(Qσ̂(ĥ)||Pλ)

]
+ γ̂Kmin(λ̂) + ρ+

k

γ1m
ln

C · L(d,M, T, γ1, a)(b+ a)

2ρ
.
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Further making the upper bound tighter by optimizing over ρ, we obtain
Eh∼Qσ̂(ĥ)ℓ(h;D)

≤ Eh∼Qσ̂(ĥ)ℓ(h;S) +
1

γ̂m

[
ln

1

ϵ
+KL(Qσ̂(ĥ)||Pλ)

]
+ γ̂Kmin(λ̂) +

k

γ1m

(
1 + ln

C · L(d,M, T, γ1, a)(b+ a)γ1m

2k

)
= LPAC(ĥ, γ̂, σ̂, λ̂) +

k

γ1m

(
1 + ln

C · L(d,M, T, γ1, a)(b+ a)γ1m

2k

)
.

APPENDIX C EXTENDED EXPERIMENTAL DETAILS

We conducted experiments using eight A5000 GPUs that were powered by four AMD EPYC 7543
32-Core Processors. To speed up the training process for posterior and prior variance, we utilized a
warmup method that involved updating the noise level in the posterior of each layer as a scalar for
the first 50 epochs and then proceeding with normal updates after the warmup period. This method
only affects the convergence speed, not the generalization, and it was only used for large models in
image classification.

C.1 INITIALIZATION

Recall that the exponential momentum bound K(λ) is estimated over a range [γ1, γ2] of γ as per
Definition 2. It means that we need the inequality

Eh∼Pλ
E[exp (γX(h))] ≤ exp (γ2K(λ))

to hold for any γ in this range. One needs to be a little cautious when choosing the upper bound
γ2, because if it is too large, then the empirical version of Eh∼PE[exp (γX(h))] would be a very
poor approximation to the true expectation due to the fact that the variable X is on the exponent,
unless a large amount of samples h is drawn, which would then be extremely time-consuming and
unrealistic in the deep neural network setting. Therefore, we recommended γ2 to be set to 10, or 20
at most, to avoid this issue. Even though in some cases, this means the optimal γ that minimizes the
PAC-Bayes bound is ruled out, we found that a more accurate estimation of K resulting from using
the recommended γ2 is more crucial to obtaining the best performance of the PAC-Bayes training.
The choice of γ1 is not as critical as the choice of γ2. But a smaller γ1 usually means a larger value
of K(λ) for any given λ, and therefore a looser PAC-Bayes bound and worse performance.

Typically, the training dataset for a graph neural network is quite small. As a result, the KL diver-
gence term in the PAC-Bayes loss gets large, easily provided the initialization of the noise is not
sufficiently good. This poses a challenge in initializing the PAC-Bayes training process. Although
the proposed initialization in Algorithm 1 works well for most GNN networks and datasets, it may
fail on some occasions. To address this issue, we modify the initialization by adding a clipping of
the noise levels σ and λ at a lower bound of − log(10). For GNN, this operation increases the noise
level. Please refer to Remark C.0.1 for the theoretical reason of the clipping and to Appendix A.5
(second item) for how the value − log 10 is found in practice.
Remark C.0.1. For large datasets (like in MNIST or CIFAR10), we can set M,T, a, b to be rela-
tively large little increase of the bound, then during training the parameters would not exceed these
bounds. Hence, no effort needs to be made to ensure the boundedness assumption in Corollary 5.0.1
holds. But When the dataset size m is small compared to log d or k, we should choose smaller
M,T, a, b to make the PAC-Bayes bound in Corollary 5.0.1 small. Consequently, in the training
algorithm, we need to ensure the parameters stay in the sets H, Σ, and Γ by projecting onto these
sets after each gradient update.

C.2 IMAGE CLASSIFICATION

There is no data augmentation in our experiments. The implementation is based on the GitHub
repo Liu (2021). For the layerwise prior, we treated each parameter in the PyTorch object
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model.parameters() as an independent layer, i.e., the weights and bias of one convolution/batch-
norm layer were treated as two different layers. The number of training epochs of Stage 1 is 500
epochs for PAC-Bayes training. Moreover, a learning rate scheduler was added to both our method
and the baseline to make the training fully converge. Specifically, the learning rate will be reduced
by 0.1 whenever the training accuracy does not increase for 20 epochs. For PAC-Bayes training, the
scheduler is only activated in Stage 2. The training will be terminated when the training accuracy is
above 99.9% for 20 epochs or when the learning rate decreases to below 1e−5.

We also add label smoothing (0.1) (Szegedy et al., 2016) to all models because minimizing the loss
and maximizing the accuracy are two separate though related tasks. In the image or node classifi-
cation task, the goal is to increase the classification accuracy, while in PAC-Bayes training, the goal
is to minimize the population loss. However, in cases when accuracy and loss are perfectly nega-
tively correlated, these two goals coincide. With label-smoothing, we observed a larger correlation
between the loss and accuracy than without, and therefore we reported results with label-smoothing
turned on for both the PAC-Bayes training and baselines in image classification tasks. When the
label smoothing is turned off, the performances of the two methods will decrease by comparable
amounts.

The detailed searched values of hyper-parameters include momentum for SGD (0.3, 0.6, 0.9), learn-
ing rates (1e−3, 5e−3, 1e−2, 5e−2, 1e−1, 2e−1), weight decay (1e−4, 5e−4, 1e−3, 5e−3, 1e−2),
and noise injection (5e−4, 1e−3, 5e−3, 1e−2). The best learning rate for Adam and AdamW is the
same since weight decay is the only difference between the two optimizers. We adjusted one hyper-
parameter at a time while keeping the others fixed to accelerate the search. To determine the optimal
hyper-parameter for a variable, we compared the mean testing accuracy of the last five epochs. We
then used this selected hyper-parameter to tune the next one.

The testing accuracy from all experiments with batch size 128 with the learning rate 1e−4 is shown
in Figure 2 and Figure 3. We also visualize the sorted testing accuracy of baselines and our proposed
PAC-Bayes training with large batch sizes and a larger learning rate 5e−4 (used only to obtain faster
convergence) in Figure 4 and Figure 5. These figures demonstrate that our PAC-Bayes training
algorithm achieves better testing accuracy than most searched settings. For models VGG13 and
ResNet18, the large batch size is 2048, and for large models VGG19 and ResNet34, the large batch
size is set to 1280 due to the GPU memory limitation.

To best demonstrate the sensitivity of the hyper-parameter selection of baselines and motivate our
PAC-Bayes training, we organized the test accuracy below for ResNet18. Considering the search
efficiency, we searched the hyper-parameter one by one. For SGD, we first searched the learning
rate, set the momentum and the weight decay as 0 (both are default values for SGD), and then
used the best learning rate to search for the momentum. At last, the best-searched learning rate and
momentum are used to search for weight decay. For Adam, we searched the learning rate, weight
decay, and noise injection in an order similar to SGD. Since AdamW and Adam are the same when
setting the weight decay as 0, we searched for the best weight decay based on the best learning rate
obtained from searching on Adam.

The tables 4,5,6,7 show that the standard deviation when searching different hyper-parameters can
be significant. We can also see the increase of the maximum test accuracy when adding a new
regularization (both learning rate and momentum are implicit regularizations Smith et al.; Ghosh
et al. (2022)), showing that all hyper-parameters are necessary to search for better generalization.
Compared with Adam/AdamW, SGD is more sensitive to different hyper-parameters, but we need
SGD to achieve the best test accuracy when using the small batch size (128). The sensitivity of
the search shows the advantages of our proposed PAC-Bayes training. Note that for CIFAR10 and
CIFAR100, we use the testing dataset to search hyper-parameters of baselines. PAC-Bayes training
can match the test accuracy directly without any information on the test data.

We also compared PAC-Bayes training with SGD/Adam/AdamW on CIFAR10, using a batch size of
128, and allocated 10% of the training data for training and the remaining 90% for hyper-parameter
searching in SGD/Adam/AdamW. With ResNet18, the test accuracy of PAC-Bayes is 67.8%, while
the best test accuracies for SGD, Adam, and AdamW, after hyper-parameter searching, are 64.00%,
64.96%, and 65.59%, respectively. When training ResNet18 with all the training data using a batch
size of 128, SGD typically achieves the best test accuracy among the baselines. However, AdamW
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Table 4: Test accuracy for ResNet18 on CIFAR10 with the batch size 128 when tuning different
hyper-parameters.

Optimizer Parameter Max Min Mean Std
SGD learning rate (1e-3 to 0.2) 84.8 59.8 75.3 10.2
SGD momentum (0.3 to 0.9) 85.6 84.1 85.0 0.8
SGD weight decay (1e-4 to 1e-2) 89.9 85.9 88.2 1.6

Adam learning rate (1e-3 to 0.2) 87.5 82.5 84.5 1.7
Adam weight decay (1e-4 to 1e-2) 86.7 82.8 85.5 1.6
Adam noise injection (5e-4 to 1e-2) 87.3 85.6 86.5 0.9

AdamW weight decay (1e-4 to 1e-2) 87.9 86.6 87.4 0.5
AdamW noise injection (5e-4 to 1e-2) 87.2 86.0 86.8 0.6

Table 5: Test accuracy for ResNet18 on CIFAR10 with the batch size 2048 when tuning different
hyper-parameters.

Optimizer Parameter Max Min Mean Std
SGD learning rate (1e-3 to 0.2) 72.0 56.5 62.8 6.2
SGD momentum (0.3 to 0.9) 75.0 72.3 74.0 1.4
SGD weight decay (1e-4 to 1e-2) 85.4 72.0 77.8 6.2

Adam learning rate (1e-3 to 0.2) 85.1 70.0 78.4 6.1
Adam weight decay (1e-4 to 1e-2) 86.4 77.4 83.7 3.8
Adam noise level (5e-4 to 1e-2) 87.7 85.1 86.4 1.2

AdamW weight decay (1e-4 to 1e-2) 84.8 84.5 84.7 0.1
AdamW noise level (5e-4 to 1e-2) 84.9 82.7 83.9 0.9

outperforms SGD when using only 10% of the training data. This demonstrates the necessity of both
hyper-parameter searching and choosing the appropriate optimizer.

C.3 ABLATION STUDY ON IMAGE CLASSIFICATION

We conducted an ablation study to showcase some extra benefits of the proposed PAC-Bayes training
algorithm besides its ability to achieve auto-tuning. Specifically, we tested the effect of different
learning rates on ResNet18 and VGG13 models trained with layerwise prior. Learning rate has long
been known as an important impact factor of the generalization for baseline training. Within the
stability range of gradient descent, the larger the learning rate is, the better the generalization has
been observed (Lewkowycz et al., 2020). In contrast, the generalization of the PAC-Bayes trained
model is less sensitive to the learning rate. We do observe that due to the newly introduced noise
parameters, the stability of the optimization gets worse, which in turn requires a smaller learning
rate to achieve stable training. But as long as the stability is guaranteed by setting the learning rate
small enough, our results, as Table 8 and 9, indicated that the testing accuracy remained stable across
various learning rates for VGG13 and Resnet18. The dash in the table means that the learning rate
for that particular setting might be too large to main the stability of the algorithm. For learning rates
below 1e−4, we trained the model in Stage 1 for more epochs (700) to fully update the prior and
posterior variance.

We also demonstrate that the warmup iterations (as discussed at the beginning of this section) do not
affect generalization. As shown in Table 10, the testing accuracy is insensitive to different numbers
of warmup iterations.

C.4 COMPATIBILITY WITH DATA AUGMENTATION

We didn’t include data augmentation in most experiments for rigorousness considerations. Because
with data augmentation, there is no rigorous way of choosing the sample size m that appears in the
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Table 6: Test accuracy for ResNet18 on CIFAR100 with the batch size 128 when tuning different
hyper-parameters.

Optimizer Parameter Max Min Mean Std
SGD learning rate (1e-3 to 0.2) 58.7 33.7 48.5 10.3
SGD momentum (0.3 to 0.9) 59.0 51.8 56.6 4.1
SGD weight decay (1e-4 to 1e-2) 64.0 56.6 61.8 3.0

Adam learning rate (1e-3 to 0.2) 61.5 27.1 44.6 14.4
Adam momentum (0.3 to 0.9) 58.4 43.1 53.0 6.3
Adam weight decay (1e-4 to 1e-2) 61.6 61.0 61.2 0.3

AdamW weight decay (1e-4 to 1e-2) 61.1 57.3 59.3 1.8
AdamW noise level (5e-4 to 1e-2) 61.4 58.8 59.8 1.1

Table 7: Test accuracy for ResNet18 on CIFAR100 with batch size 2048 when tuning different
hyper-parameters.

Optimizer Parameter Max Min Mean Std
SGD learning rate (1e-3 to 0.2) 44.2 27.8 35.8 6.8
SGD momentum (0.3 to 0.9) 52.2 45.9 49.2 3.1
SGD weight decay (1e-4 to 1e-2) 61.5 54.5 57.3 3.2

Adam learning rate (1e-3 to 0.2) 56.3 31.0 42.9 11.8
Adam weight decay (1e-4 to 1e-2) 59.4 56.0 57.6 1.4
Adam noise level (5e-4 to 1e-2) 65.4 59.0 62.0 3.3

AdamW weight decay (1e-4 to 1e-2) 56.5 55.9 56.1 0.2
AdamW noise level (5e-4 to 1e-2) 58.9 57.1 58.3 0.8

Table 8: Testing accuracy of ResNet18 trained with different learning rates.

lr 3e−5 5e−5 1e−4 2e−4 3e−4 5e−4
CIFAR10 88.4 88.8 89.3 88.6 88.3 89.2

CIFAR100 69.2 69.0 68.9 69.1 69.1 69.6

Table 9: Testing accuracy of VGG13 trained with different learning rates.

lr 3e−5 5e−5 1e−4 2e−4 3e−4 5e−4
CIFAR10 88.6 88.9 89.7 89.6 89.6 89.5

CIFAR100 67.7 68.0 67.1 - - -

Table 10: Testing accuracy of ResNet18 trained with warmup epochs of σ.

10 20 50 80 100 150

CIFAR10 88.5 88.5 89.3 89.5 89.5 88.9
CIFAR100 69.4 69.6 68.9 69.1 69.0 68.1

PAC-Bayes bound. More specifically, for the PAC-Bayes bound to be valid, the training data has to
be i.i.d. samples from some underlying distribution. However, most data augmentation techniques
would break the i.i.d. assumption. As a result, if we have 10 times more samples after augmentation,
the new information they bring in would be much less than those from 10 times i.i.d. samples. In
this case, how to determine the effective sample size m to be used in the PAC-Bayes bound is a
problem.
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Since knowing whether a training method can work well with data augmentation is important, we
carried out the PAC-Bayes training with an ad-hoc choice of m, that is, we set m to be the size
of the augmented data. We compared the grid-search result of SGD and Adam versus PAC-Bayes
training on CIFAR10 with ResNet18. The augmentation is achieved by random flipping and random
cropping. The data augmentation increased the size of the training sample by 128 times. The grid
search is the same as in Appendix C.2. The testing accuracy for SGD is 95.2%, it is 94.3% for
Adam, it is 94.4% for AdamW, and it is 94.3% for PAC-Bayes training with the layerwise prior.
In contrast, the testing accuracy without data augmentation is lower than 90% for all methods. It
suggests that data augmentation does not conflict with the PAC-Bayes training in practice.

C.5 MODEL ANALYSIS

We examined the learning process of PAC-Bayes training by analyzing the posterior variance σ
for different layers in models trained by Algorithm 3. Typically, batch norm layers have smaller
σ values than convolution layers. Additionally, shadow convolution and the last few layers have
smaller σ values than the middle layers. We also found that skip-connections in ResNet18 have
smaller σ values than nearby layers, suggesting that important layers with a greater impact on the
output have smaller σ values.

In Stage 1, the training loss is higher than the testing loss, which means the adopted PAC-Bayes
bound is able to bound the generalization error throughout the PAC-Bayes training stage. Addition-
ally, we observed that the final value of K is usually very close to the minimum of the sampled
function values. The average value of σ experienced a rapid update during the initial 50 warmup
epochs but later progressed slowly until Stage 2. The details can be found in Figure 11-15. Based
on the figures, shadow convolution and the last few layers have smaller σ values than the middle
layers for all models. We also found that skip-connections in ResNet18 and ResNet34 have smaller
σ values than nearby layers on both datasets, suggesting that important layers with a greater impact
on the output have smaller σ values.

C.6 TRAINING COMPLEXITY

When running ResNet18 on CIFAR10 with a GTX 3090, it takes around 16 mins to pre-compute K.
The reported average searching cost is over all searched settings in Section 6, including various batch
sizes, learning rates, weight decay coefficients, and noise injection levels (only for Adam/AdamW).
For PAC-Bayes training, we compute the time for batch size 2048, since the test result is insensitive
to the batch size. As shown in Table 11-13, our method requires a much shorter total running time
than a grid search of the baseline, where ”scalar” and ”layer” denote the PAC-Bayes training with
scalar and layerwise prior. While a single run of the baseline is currently much faster than ours,
the average number of backpropagation is comparable. Since backpropagation is the computation
bottleneck in each iteration, having a similar number of backpropagation suggests our algorithm
has the potential to achieve a similar running time to a single run of the baseline with some code
optimization. More explicitly, for SGD/Adam/AdamW, the total number of backpropagation is
calculated as

size of the training dataset

batch size
× number of epochs. (25)

Table 11: Total running time
of searching (hours).

C10 C100

SGD 4.27 7.48
Adam 13.91 12.52
AdamW 9.50 3.73
scalar 2.03 1.94
layer 2.22 2.11

Table 12: Average time for
one search (seconds).

C10 C100

SGD 549 962
Adam 1670 1503
AdamW 1899 746
scalar 7293 6974
layer 7980 7584

Table 13: Average backprop-
agation based on equation 25.

C10 C100

SGD 11501 17095
Adam 28508 28335
AdamW 24761 9560
scalar 15912 15216
layer 15960 15168
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When we search the hyper-parameters, the total number of backpropagations for SGD/Adam is
computed as the average over all runs. For PAC-Bayes training, each iteration also only needs 1
backpropagation because we can backpropagate once and use the result to compute the gradient of
both the model and the noise. So the above formula is also used to compute the total number of
backpropagations for PAC-Bayes training. Although PAC-Bayes training requires more epochs to
converge, each epoch is faster since it allows the use of large batch sizes. That is why the total
number of iterations/backpropagations is similar to a single run of the baseline. However, the wall
time of our current PAC-Bayes code in the submitted package is much larger than this estimate be-
cause we wrote the for-loops in Python instead of C/C++ for the noise injection part, and Pytorch
is not optimized for the PAC-Bayes training. We expect a code optimization would bring down the
wall time of PAC-Bayes training to be close to that of baselines. Moreover, further acceleration
of our algorithm could be achieved by improving the optimization algorithm, e.g., optimizing the
variance and weights alternatively. The memory usage of PAC-Bayes training is roughly twice of
normal training, as discussed in the appendix. More concretely, when using a batch size of 128, es-
timating K requires 4384MB of GPU memory, and PAC-Bayes training with layerwise prior utilizes
4424MB of GPU memory. In contrast, memory usage is 2876MB when using SGD, 2950MB when
using Adam without noise injection, and 3190MB with noise injection with Adam.

C.7 NODE CLASSIFICATION BY GNNS

We test the PAC-Bayes training algorithm on the following popular GNN models, tuning
the learning rate (1e−3, 5e−3, 1e−2), weight decay (0, 1e−2, 1e−3, 1e−4), noise injection
(0, 1e−3, 1e−2, 1e−3), and dropout (0, 0.4, 0.8).

• GCN (Kipf & Welling, 2016): the number of filters is 32.

• SAGE (Hamilton et al., 2017): the number of filters is 32.

• GAT (Veličković et al., 2017): the number of filters is 8, the number of heads is 8, and the
dropout rate of the attention coefficient is 0.6.

• APPNP (Gasteiger et al., 2018): the number of filters is 32, K = 10 and α = 0.1.

We set the number of layers to 2, which achieves the best performance for the baseline. A ReLU
activation and a dropout layer are added in between the two convolution layers. Since GNNs are
faster to train than convolutional neural networks, we tested all possible combinations of the above
parameters for the baseline, conducting 144 searches per model on one dataset. We use Adam as the
optimizer with the learning rate as 1e−2 for all models using both training and validation nodes for
PAC-Bayes training.

We also did a separate experiment by disabling the early stopping and using the training and val-
idation nodes both for training. For baselines, we need first to train the model to detect the best
hyper-parameters as before and then train the model again on the combined data. Our PAC-Bayes
training can also match the best generalization of baselines in this setting.

All search details are visualized in Figure 6-9. The AdamW+val and scalar+val record the perfor-
mances of the baseline and the PAC-Bayes training, respectively, with both training and validation
datasets for training. We can see that testing accuracy after adding validation nodes increased sig-
nificantly for both methods but still, the results of our algorithm match the best testing accuracy
of baselines. Our proposed PAC-Bayes training with the scalar prior is better than most of the set-
tings during searching and achieved comparable testing accuracy when adding validation nodes to
training.

C.8 FEW-SHOT TEXT CLASSIFICATION WITH TRANSFORMERS

The proposed method is also observed to work on transformer networks. We conducted experiments
on two text classification tasks of the GLUE benchmark as shown in Table 14. SST is the sentiment
analysis task, whose performance is evaluated as the classification accuracy. Sentiment analysis is
the process of analyzing the sentiment of a given text to determine if the emotional tone of the text
is positive, negative, or neutral. QNLI (Question-answering Natural Language Inference) focuses
on determining the logical relationship between a given question and a corresponding sentence. The
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objective of QNLI is to determine whether the sentence contradicts, entails, or is neutral with respect
to the question.

We use classification accuracy as the evaluation metric. The baseline method uses grid
search over the hyper-parameter choices of the learning rate (1e−1, 1e−2, 1e−3), batch size
(2, 8, 16, 32, 80), dropout ratio (0, 0.5), optimization algorithms (SGD, AdamW), noise injection
(0, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1), and weight decay (0, 1e−1, 1e−2, 1e−3, 1e−4). The learn-
ing rate and batch size of our method are set to 1e−3 and 100 (i.e., full-batch), respectively. In this
task, the number of training samples is small (80). As a result, the preset γ2 = 10 is a bit large and
thus prevents the model from achieving the best performance with PAC-Bayes training. We use the
refined procedure described in Appendix C.16.

We adopt BERT (Devlin et al., 2018) as our backbone and added one fully-connect layer to be
the classification layer. Only the added classification layer is trainable, and the pre-trained model
is frozen without gradient update. To simulate a few-shot learning scenario, we randomly sample
100 instances from the original training set and take the whole development set to evaluate the
classification performance. We split the training set into 5 splits, taking one split as the validation
data and the rest as the training set. Each experiment was conducted five times, and we report the
average performance. We used the PAC-Bayes training with the scalar prior in this experiment.
According to Table 14, our method is competitive to the baseline method on the SST task, the
performance gap is only 0.4 points. On the QNLI task, our method outperforms the baseline by a
large margin, and the variance of our proposed method is less than that of the baseline method.

Table 14: Testing accuracy on the development sets of 2 GLUE benchmarks.

SST QNLI
baseline 72.9±0.99 62.6±0.10
scalar 72.5±0.99 64.2±0.02

6The refined procedure can be also applied to the CNN and GNN experiments but with smaller improve-
ments than the transformers.
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(a) VGG13 (b) VGG19

(c) ResNet18 (d) ResNet34

(e) Desnse121

Figure 2: Sorted testing accuracy of CIFAR10. The x-axis represents the experiment index.
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(a) VGG13 (b) VGG19

(c) ResNet18 (d) ResNet34

(e) Desnse121

Figure 3: Sorted testing accuracy of CIFAR100. The x-axis represents the experiment index.
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(a) VGG13 (batch: 2048) (b) ResNet18 (batch: 2048)

(c) VGG19 (batch: 1280) (d) ResNet34 (batch: 1280)

Figure 4: Sorted testing accuracy of CIFAR10 with large batch sizes. The x-axis represents the
experiment index.

(a) VGG13 (batch: 2048) (b) ResNet18 (batch: 2048)

(c) VGG19 (batch: 1280) (d) ResNet34 (batch: 1280)

Figure 5: Sorted testing accuracy of CIFAR100 with large batch sizes. The x-axis represents the
experiment index.
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(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 6: Testing accuracy of GCN. The interval is constructed by the first and third quartiles over
the ten random splits. {+val} denotes the performance with both training and validation dataset for
training.

(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 7: Testing accuracy of SAGE. The interval is constructed by the first and third quartiles over
the ten random splits. {+val} denotes the performance with both training and validation dataset for
training.
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(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 8: Testing accuracy of GAT. The interval is constructed by the first and third quartiles over
the ten random splits. {+val} denotes the performance with both training and validation dataset for
training.

(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 9: Testing accuracy of APPNP. The interval is constructed by the first and third quartiles over
the ten random splits. {+val} denotes the performance with both training and validation dataset for
training.
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(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 10: Training details of ResNet18 on CIFAR10. The red star denotes the final K.

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 11: Training details of ResNet18 on CIFAR100. The red star denotes the final K.
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(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 12: Training details of ResNet34 on CIFAR10. The red star denotes the final K.

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 13: Training details of ResNet34 on CIFAR100. The red star denotes the final K.
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(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 14: Training details of VGG13 on CIFAR10. The red star denotes the final K.

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 15: Training details of VGG13 on CIFAR100. The red star denotes the final K.
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