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Abstract:1

Robot learning is experiencing a surge in the size, diversity, and complexity of pre-2

collected datasets, paralleling trends in NLP and computer vision. Many methods3

treat these datasets as multi-task expert data to train generalist policies. However,4

while generalist policies improve average performance, they often underperform5

on individual tasks due to negative transfer, compared to specialist policies. In this6

work, we advocate for training policies during deployment by non-parametrically7

retrieving and training models on relevant data at test time, rather than relying8

on zero-shot pre-trained policies. We show that many robotics tasks share many9

low-level behaviors and that retrieval at the “sub”-trajectory granularity enables10

significantly improved data utilization, generalization, and robustness in adapting11

policies to novel problems. In contrast, existing retrieval methods tend to under-12

utilize the data and miss out on shared cross-task content. Our proposed method,13

STRAP, uses vision foundation models and dynamic time warping to retrieve sub-14

sequences from large training corpora. STRAP outperforms prior retrieval algo-15

rithms in both simulated and real-world experiments, scaling to larger datasets16

and learning robust control policies from minimal real-world demonstrations.17

Keywords: DTW, few-shot imitation learning, retrieval, foundation models18

1 Introduction19

Robot learning has increasingly shifted from manual controller design to data-driven approaches20

[1, 2]. Especially, end-to-end imitation learning with, e.g., diffusion models [3, 4] and transform-21

ers [5], have shown impressive success. However, collecting large amounts of in-domain data re-22

mains expensive and impractical, especially in dynamic environments like homes and offices. Multi-23

task policy learning attempts to generalize across tasks by training on diverse datasets. While this24

has led to successes in certain domains [6, 7], generalist policies often suffer from negative trans-25

fer, resulting in sub-optimal performance on individual tasks. This issue is exacerbated in unseen26

environments, where zero-shot generalization is difficult, and task-specific fine-tuning is costly.27

Non-parametric data retrieval has been explored as a way to mitigate the need for large fine-tuning28

datasets. Prior work on retrieval-based methods includes ”replaying” past experiences by retrieving29

based on off-the-shelf models [8, 9, 10], training encoders on the offline dataset [11], or leveraging30

abstract representation [12, 13, 14]. The key assumption of these methods is that the offline data con-31

sists of expert demonstrations collected in the test environment or that intermediate representations32

can bridge the environment gap, limiting the usage of large multi-task datasets collected in various33

domains. Retrieval for policy learning tries to mitigate these issues by learning policies from the re-34

trieved data [15, 16, 17]. However, requiring encoders trained on the offline dataset makes them not35

scale well to the increasing size of the available data while retrieving individual states underutilizes36

data sharing between tasks in multi-task datasets [18, 19].37
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Few-shot Demonstrations 

Offline Dataset 

"Put the white pen in the red plastic cup"

"Pick up the medicine and put it next to the others"

"Push the button on the toaster" "Pick up the marker and put it in the mug"

Figure 1: Overview of STRAP: 1) demonstrations Dtarget and offline datasets Dprior are encoded into
a shared embedding space using a vision foundation model, 2) automatic trajectory segmentation
generates sub-trajectories which 3) S-DTW matches to corresponding sub-trajectories in Dprior cre-
ating Dretrieval, 4) training a policy on Dtarget ∪ Dretrieval results in better performance and robustness.

We introduce Sub-sequence Trajectory Retrieval for Augmented Policy Learning (STRAP), a novel38

retrieval method that leverages sub-trajectory similarity, improving test-time generalization by us-39

ing components of diverse tasks from pre-collected data. Our approach incorporates time-invariant40

alignment techniques like dynamic time warping [20], enabling the comparison of sub-trajectories41

of different lengths, further increasing flexibility across tasks and domains. We demonstrate signif-42

icant gains for few-shot learning on the LIBERO [21] benchmark in simulation, and a challenging43

Pen-in-Cup task in the real world. Our key insights are as follows:44

1. Vision foundation models offer powerful out-of-the-box representations for trajectory retrieval.45

They sufficiently encode scene semantics and offer visual robustness in contrast to brittle in-46

domain feature extractors from prior work.47

2. Sub-trajectory retrieval can enable maximal re-use of prior data while capturing temporal infor-48

mation about tasks and dynamics.49

3. Performing retrieval via subsequence dynamic time warping can find optimal sub-trajectory50

matches in offline datasets that are agnostic to segment length task horizon or fluctuations in51

demonstration frequency.52

2 STRAP: Sub-sequence Robot Trajectory Retrieval for Augmented Policy53

Training54

Retrieval-augmented Policy Learning: We consider a few-shot learning setting where we’re given55

a target dataset Dtarget of expert trajectories collected in the test environment and task. This dataset56

only contains a small set of trajectories, often insufficient to solve the task and limiting generaliza-57

tion. We posit that generalization can be accomplished by non-parametrically retrieving data from58

an offline dataset Dprior to augment the target dataset Dtarget. Dprior can contain data from different59

environments, scenes, levels of expertise, tasks, or embodiments. Notably, the set of tasks in the60

offline dataset does not need to overlap with the set of tasks in the target dataset but for the scope of61

this work we assume expert-level trajectories and shared embodiment.62

Sub-trajectories for Retrieval: To make the best use of the offline dataset Dprior, while capturing63

temporal task-specific dynamics, we expand the notion of retrieval from being able to retrieve entire64

trajectories or single states to retrieving variable-length sub-trajectories. In doing so, retrieval can65

capture the temporal dynamics of the task, while still being able to share data between seemingly66

different tasks. Most long-horizon problems observed in robotics datasets [21, 19, 18] naturally con-67

tain multiple such sub-trajectories, e.g., picking and placing, or opening and closing. Since Dprior68

is usually much larger than Dtarget, we only require segmenting the Dtarget into sub-trajectories and69
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utilize dynamic time warping (DTW) to find corresponding matches in Dprior. While this segmen-70

tation can be done manually, we propose an automatic technique for sub-trajectory segmentation in71

Appendix A.3 that yields promising empirical results.72

Vision Foundation Models for Measuring Similarity: Given the segmented sub-trajectories from73

Dtarget and our DTW based matching algorithm, we must define a measure of similarity that allows74

us to retrieve relevant sub-trajectory data from Dprior. While prior work has suggested objectives to75

train such similarity metrics through representation learning [15, 17, 13], these methods are often76

trained purely in-domain, making them particularly sensitive to visual appearance, distractors, and77

irrelevant spurious features. In this work, we will adopt the insight that vision(-language) founda-78

tion models [22, 23] offer off-the-shelf solutions to measuring the semantic and visual similarities79

between sub-trajectories. Their rich representations are robust to the aforementioned variations and80

naturally capture a notion of object-ness and semantic correspondence. Denoting a vision founda-81

tion model as F(·), we can compute the pairwise distance of two camera views oi and oj with an82

L2 norm in embedding space, i.e., ||F(oi)−F(oj)||2.83

Efficient Sub-trajectory Retrieval with S-DTW: In contrast to single states or full trajectories,84

sub-trajectories may have variable lengths and temporal positioning within a trajectory caused by85

varying tasks, platforms, or demonstrators. We employ subsequence dynamic time warping (S-86

DTW), a variant of DTW, to match the target sub-trajectories to appropriate segments in Dprior87

(c.f. Eq. 23). Since S-DTW doesn’t require the start and end points to line up it scales naturally88

with these challenges and allows for retrieval from diverse, multi-task datasets. To construct our89

retrieval dataset Dretrieval, we select the K matches with the lowest cost uniformly across the sub-90

trajectories in Dtarget, i.e., the same number of matches for each initial sub-trajectory until K matches91

are retrieved. The training dataset then contains a union of the target dataset Dtarget and the retrieved92

dataset Dretrieval, Dtarget ∪ Dretrieval. This significantly larger, retrieval-augmented dataset can then be93

used to learn policies via imitation learning, leading to robust, generalizable policies.94

STRAP– Sub-sequence Trajectory Retrieval for Augmented Policy Learning: We outline the95

full retrieval and policy-augmented training process in Eq. 1. 1) Encode Dtarget and Dprior: We96

encode image observations in Dtarget and Dprior using a vision foundation model, e.g., DINOv2 [22]97

or CLIP [23]. 2) Segment Dtarget into sub-trajectories: To best leverage the multi-task trajectories98

in Dprior, we segment the demonstrations in Dtarget into atomic chunks based on a low-level motion99

heuristic. 3) S-DTW matching of Dtarget to Dprior: We utilize S-DTW to generate matches between100

chunks in Dtarget and Dprior, and construct Dretrieval by selecting the top K matches uniformly across101

all chunks. 4) Augmented-policy learning: Combining Dretrieval with Dtarget forms our dataset for102

learning a policy. We use language-conditioned behavior cloning (BC) to learn a visuomotor policy103

similar to Haldar et al. [5], Nasiriany et al. [24]. We choose a transformer-based [25] architecture104

feeding in a history of the last h observations st−h:t and predicting a chunk of h future actions using105

a Gaussian mixture model action head. We sample batches from the union of Dtarget and Dretrieval,106

as in B ∼ Dtarget ∪ Dretrieval. As proposed by Haldar et al. [5] we compute the mean-squared error107

multi-step action loss and add an L2 regularization term over the model weights.108

3 Experiments and Results109

Task Definition: We demonstrate the efficacy of STRAP in simulation on the LIBERO bench-110

mark [21], and on a Pen-in-Cup manipulation task with a real world robot arm. (c.f. Eq. 10).111

• LIBERO: We evaluate on 10 long-horizon tasks (Tab. 1 and ??) (LIBERO-10) which include112

diverse objects, layouts, and backgrounds. Each task comes with 50 demonstrations from which113

we select 5 random demonstrations (Dtarget) in a few-shot imitation learning setting and retrieve114

data from all LIBERO-90 tasks, which amounts to 4500 total offline demonstrations (Dprior).115

• Franka-Pen-in-Cup: To demonstrate the efficacy of STRAP in a real-world setting, we solve a116

Pen-In-Cup task using the Franka Emika Panda robot. Dtarget contains 3 on-task demonstrations,117

and Dprior consists of 100 demonstrations across 10 tasks in the same tabletop environment col-118

lected on the DROID [19] hardware setup.119
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Table 1: Baselines: Performance of baselines, ablations and variations of STRAP on the LIBERO 10 tasks
(Eq. 10). DINOv2 and CLIP features perform similarly, making STRAP flexible in the encoder choice. Bold
indicates best and underline runner-up results.

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BC 77.33%± 4.35 71.33%± 5.68 27.33%± 2.18 38.00%± 5.66 75.33%± 1.44
MT 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 88.00%± 1.89

BR [15] 80.0%± 1.63 72.0%± 7.72 26.0%± 5.25 40.0%± 8.64 16.0%± 1.89
FR [17] 76.0%± 6.60 54.67%± 11.98 24.67%± 8.55 29.33%± 1.44 52.0%± 5.89

D-S 70.67%± 7.85 65.33%± 1.96 18.0%± 3.40 16.0%± 0.94 57.33%± 2.88
D-T 78.67%± 2.72 75.33%± 2.72 37.33%± 6.62 63.33%± 3.57 79.00%± 4.95

STRAP (CLIP) 86.00%± 4.10 90.67%± 2.18 42.00%± 0.94 54.67%± 3.31 83.33%± 3.03
STRAP (DINOv2) 85.33%± 2.18 91.33%± 2.18 42.67%± 7.20 57.33%± 7.68 85.33%± 2.81

Baselines and Ablation: We compare STRAP to Behavior Cloning (BC), Multi-task Policy (MT),120

BehaviorRetrieval (BR), FlowRetrieval (FR) and ablate DINOv2 features in a state-based (D-S)121

and full-trajectory (D-T) retrieval setting. We refer the reader to Appendix A.1 for implementation122

details and Appendix A.5 for extensive ablations.123

Pen-in-Cup base OOD
Pick Place Pick Place

BC 100% 100% 0% 0%
STRAP 100% 90% 100% 100%

Table 2: Real-world results: Franka-
Pen-in-Cup task

Does sub-trajectory retrieval improve performance in124

few-shot imitation learning? STRAP outperforms the125

retrieval baselines BR and FR on average by +12.20%126

and +12.47% across all 10 tasks (Tab. 1). These results127

demonstrate the policy’s robustness to varying object128

poses. BC represents a strong baseline on the LIBERO129

task as the benchmark’s difficulty comes from pose vari-130

ations during evaluation. By memorizing the demonstrations, BC achieves high success rates, out-131

performing BR and FR by +4.53% and +4.80% across all 10 tasks. The multi-task baseline trained132

on LIBERO-90 struggles to generalize to unseen language instructions, failing on 9/10 tasks, only133

succeeding on the one with an almost exact match in LIBERO-90 (c.f. Tab. 1). To prove that the134

robustness benefits are not unique to the LIBERO benchmark we perform a real-world evaluation in135

Tab. sec. 3. While BC and STRAP solve the Franka-Pen-in-Cup demonstrated in Dtarget (base), BC136

lacks robustness to out-of-distribution (OOD) scenarios. The policy replays the trajectories observed137

in Dtarget. STRAP retrieves relevant sub-trajectories from Dprior, e.g., the robot putting the screwdriver138

in the cup or picking up pens in various poses. Augmented policy learning then distills this knowl-139

edge into a policy, resulting in generalization to an OOD scenario. To investigate the efficacy of140

sub-trajectories, we compare sub-trajectory retrieval with (STRAP) to retrieving full trajectories (D-141

T) – both using S-DTW – in Tab. 1. We find sub-trajectory retrieval to improve performance by142

+4.17% across all 10 tasks. We hypothesize that full trajectories can contain segments irrelevant to143

the task, effectively hurting performance and matching accuracy.144

How effective are the representations from vision-foundation models for retrieval? We ablate145

the choice of foundation model representation in STRAP by comparing CLIP, trained through super-146

vised learning on image-text pairs, with DINOv2, trained in a self-supervised fashion on unlabeled147

images. We don’t find any representation to significantly outperform the other with DINOv2 sep-148

arated from CLIP by only +0.73% across all 10 tasks. To show the efficacy of vision-foundation149

models for retrieval, we replace the in-domain feature extractors from prior work (BR, FR) trained150

on Dprior with an off-the-shelf DINOv2 encoder model (D-S). Tab. 1 shows the choice of represen-151

tation to depend on the task with no method outperforming the others on all tasks. Since D-S has152

no notion of dynamics and task semantics due to single-state retrieval, BR and FR outperform it by153

+5.00% and +4.73%, respectively. We highlight that vision foundation models are not trained on154

Dprior and scale much better with increasing amounts of trajectory data and on unseen tasks.155

Conclusion We introduce STRAP as an innovative approach for leveraging visual foundation models156

in few-shot robotics manipulation, eliminating the need to train on the entire retrieval dataset and157

allowing it to scale with minimal compute overhead. By focusing on sub-trajectory retrieval using158

S-DTW, STRAP improves data utilization and captures dynamics more effectively.159
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A Appendix288

Stove-Pot Bowl-Drawer Soup-Cheese Mug-Mug Book-Caddy

LIBERO-90 (Dprior)

Franka-Pen-in-Cup

DROID-10 (Dprior)
Figure 10: Simulation and real-world tasks: Dtarget tasks from LIBERO-10 and real-world Franka-
Pen-in-Cup (top) and retrieval dataset Dprior (bottom).

A.1 Simulation Experiments289

Table 3: Baselines (sim): Performance of different methods on LIBERO-10 tasks in simulation
Method Mug-Microwave Moka-Moka Soup-Sauce Cream-Cheese-Butter Mug-Pudding

BC 28.00%± 0.94 0.00%± 0.00 17.33%± 4.46 26.67%± 4.25 18.00%± 2.49
MT 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00

BR [15] 28.67%± 3.93 0.0%± 0.0 13.33%± 3.81 32.0%± 4.32 26.0%± 1.89
FR [17] 27.33%± 1.44 0.0%± 0.0 11.33%± 3.03 41.33%± 5.52 14.67%± 1.09

D-S 30.0%± 3.4 0.0%± 0.0 4.67%± 0.54 16.0%± 5.66 6.0%± 0.94
D-T 34.67%± 1.96 0.0%± 0.0 4.67%± 1.09 27.33%± 4.46 14.0%± 3.4

STRAP (CLIP) 30.00%± 2.49 0.00%± 0.00 8.67%± 6.28 29.33%± 10.51 24.00%± 4.32
STRAP (DINO) 29.33%± 2.72 0.00%± 0.00 16.67%± 1.97 29.33%± 11.34 18.67%± 1.44

Task Description The tasks descriptions for Tab. 1 are as follows: Stove-Moka combines290

knob-turning and Pick&Place, Bowl-Cabinet combines Pick&Place with cabinet closing, Soup-291

Cheese and Mug-Mug both contain two consecutive Pick&Place tasks, and Book-Caddy involves292

Pick&Place and insertion.293

Remaining results on LIBERO-10 Tab. 3 shows the results for the remaining LIBERO-10 task294

not reported in the main sections. Both FR and BR outperform STRAP on the Cream-Cheese-Butter295

task. We hypothesize that our chunking heuristic generates sub-optimal sub-trajectories (too long)296

causing them to contain multiple different semantic tasks, leading to worse matches in our retrieval297

datasets and eventually in decreasing downstream performance.298

Hyperparameters for sim results: We use the agent view (exocentric) observations for the re-299

trieval and train policies on both agent view and in-hand observations. All results are reported over300

3 training and evaluation seeds (1234, 42, 4325). We fixed both the number of segments retrieved to301

100, the camera viewpoint to the agent view image for retrieval, and the number of expert demon-302

strations to 5. Our transformer policy was trained over all input images for 300 epochs with batch303

size 32 and an epoch every 200 gradient steps.304

Baseline implementation details:305

• Behavior Cloning (BC) behavior cloning using a transformer-based policy trained on Dtarget;306

• Multi-task Policy (MT) transformer-based policy trained on Dprior;307

• BR (BehaviorRetrieval) [15] prior work that trains a VAE on state-action pairs for retrieval and308

uses cosine similarity to retrieve single state-action pairs;309

• FR (FlowRetrieval) [17] same setup as BR but VAE is trained on pre-computed optical flow from310

GMFlow [26];311
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• D-S (DINO state) same as BR and FR but uses off-the-shelf DINOv2 [22] features instead of312

training a VAE;313

• D-T (DINO trajectory) retrieves full trajectories (rather than sub-trajectories) with S-DTW and314

DINOv2 features;315

Following Lin et al. [17], we retrieve single-state action pairs for the state-based retrieval baselines316

(BR, FR, D-S) and pad them by also retrieving the states from t−h to t+h−1 to make the samples317

compatible with our transformer-based policy. We refer the reader to Appendix A.5 for extensive318

ablation.319

A.2 Real-world Experiments320

Figure 11:
chess

Figure 12:
cube stacking

Figure 13:
hotdog

Figure 14:
knock over box

Figure 15:
marker in mug

Figure 16:
medicine pnp

Figure 17:
dispense soap

Figure 18:
pull cable right

Figure 19:
pen next to pens

Figure 20:
screwdriver

Figure 21: Real-world tasks in Dprior

Table 4: Task/language instructions for the real-world dataset Dprior

Environment Name Language Instruction

chess Move the king to the top right of the chess board
cube stacking Stack the blue cube on top of the tower

hotdog Put the hotdog in the bun
knock over box Knock over the box
marker in mug Put the marker in the mug
medicine pnp Pick up the medicine box on the right and put it next to the other medicine boxes
dispense soap Press the soap dispenser

pull cable right Pull the cable to the right
pen next to pens Put the pen next to the markers

screwdriver Pick up the screwdriver and put it in the cup

Hyperparameters for real results: For task details please refer to Appendix A.2. For retrieval,321

we average the embeddings per time-step across the left, right, and in-hand camera observations322

while training the policies on all three image observations.323

A.3 Automatic Sub-trajectory Segmentation324

We propose a simple proprioception-based segmentation technique that optimizes for changes in325

the robot’s end-effector motion indicating the transition between two chunks. For example, a326

9



0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)

BehaviorRetrieval FlowRetrieval STRAP (ours)
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others

Figure 22: Tasks distribution in Dretrieval for different retrieval methods with target task “put the
black bowl in the bottom drawer of the cabinet and close it”.

Pick&Place task can be split into picking and placing separated by a short pause when grasping the327

object. Let xt be a vector describing the end-effector position at timestep t. We define ”transition328

states” where the absolute velocity drops below a threshold: ∥ẋ∥ < ϵ 1. We empirically find that329

this proprioception-driven segmentation can perform reasonable temporal segmentation of target330

trajectories into sub-components. This procedure can certainly be improved further via techniques331

in action recognition using vision-foundation models [27], or information-theoretic segmentation332

methods [28].333

A.4 Qualitative Analysis of Retrieval334

What types of matches are identified by S-DTW? To understand what data STRAP retrieves, we335

visualize the distribution over tasks as a function of Dretrieval proportion in Figure 22. The figure336

visualizes the top five tasks retrieved and accumulates the rest into the “others” category. It becomes337

clear that STRAP retrieves semantically relevant data – each task shares at least one sub-task with338

the target task. For example, ”put the black bowl in the bottom drawer of the cabinet”, ”close the339

bottom drawer of the cabinet ...” (Eq. 23). Furthermore, STRAP’s retrieval is sparse, only selecting340

data from 5/90 semantically relevant tasks and ignoring irrelevant ones. We observe that DINOv2341

features are surprisingly agnostic to different environment textures, retrieving data from the same342

task but in a different environment (c.f. Eq. 22, ”put the black bowl in the bottom drawer of the343

cabinet and close it”). Furthermore, DINOv2 is robust to object poses retrieving sub-trajectories344

that ”close the drawer” with the bowl either on the table or in the drawer (c.f. Eq. 24, ”close the345

bottom drawer of the cabinet and open the top drawer”). Trained on optical flow, FR has no notion346

of visual appearance, failing to retrieve most of the semantically relevant data.347

What Sub-trajectories are identified by S-DTW?

"Put the black bowl in the bottom drawer of the cabinet and close it"

"Put the black bowl on top of the cabinet" "Close the bottom drawer of the cabinet and open the top drawer"

S-DTW Matching

Figure 23: Sub-trajectory matching: S-DTW matches the sub-trajectories of Dtarget (top) to the
relevant segments in Dprior. A feature of S-DTW is that the start and end of the trajectories do not
have to align, finding optimal matches for each pairing.

348

1For trajectories involving “stop-motion”, this heuristic returns many short chunks as the end-effector idles,
waiting for the gripper to close. To ensure a minimum length, we merge neighboring chunks until all are ≥ 20.
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Figure 24: Match distribution Dprior for STRAP with target task: ”put the black bowl in the bottom
drawer of the cabinet and close it”. S-DTW finds the best matches regardless of start and end points
or trajectory length. This results in a distribution over start and end points as well as a variety of
trajectory lengths retrieved.

A.5 Ablations349

Table 5: Ablations - Retrieval Method: We explore different approaches for trajectory-based retrieval. Be-
sides the heuristic reported in the main paper, we experiment with a sliding window approach that segments
a trajectory into sub-trajectories of equal length (here: 30). We use S-DTW for both sliding window sub-
trajectories and full trajectories.

Method Stove-Moka Bowl-Cabenet Mug-Microwave Moka-Moka Soup-Cream-Cheese

Sub-traj (sliding window) 76.0%± 4.71 75.33%± 2.72 26.0%± 1.89 0.0%± 0.0 37.33%± 6.62
Full traj 78.67%± 2.72 68.67%± 1.44 34.67%± 1.96 0.0%± 0.0 28.67%± 3.81

Method Soup-Sauce Cream-Cheese-Butter Mug-Mug Mug-Pudding Book-Caddy

Sub-traj (sliding window) 40.00%± 0.94 27.33%± 2.18 63.33%± 3.57 30.00%± 3.40 79.0%± 4.95
Full traj 4.67%± 1.09 27.33%± 4.46 43.33%± 1.09 14.0%± 3.4 68.0%± 5.66

Table 6: Ablations - Retrieval Seeds: We run STRAP on different retrieval seeds on a subset of LIBERO-10
tasks. We report results over all possible combinations of 3 training and 3 retrieval seeds

Method Stove-Moka Mug-Cabinet Book-Caddy

BC Baseline 93.11%± 1.57 83.11%± 2.69 93.11%± 1.57
STRAP 98.0%± 1.04 88.67%± 2.11 98.0%± 1.04

Table 7: Ablations - amount data retrieved: We explore the effect of increasing the size of Dretrieval. We
evaluate performance on LIBERO-10 tasks in simulation on 2 different retrieval and 3 training seeds. We
randomly sample 10 demos from Dtarget and retrieve 1500 segments. This demonstrates STRAP’s robustness
over multiple seeds, as well as scalability to more data even leading to performance gains

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BC 86.33%± 2.18 76.0%± 3.97 41.67%± 3.72 59.0%± 2.25 92.67%± 1.81
STRAP (DINO) 88.67%± 3.42 95.67%± 1.19 45.67%± 7.41 67.67%± 1.59 93.71%± 1.87

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

BC 47.67%± 4.75 0.00%± 0.00 23.0%± 3.42 57.33%± 0.77 32.0%± 1.33
STRAP (DINO) 31.33%± 3.73 0.00%± 0.00 45.0%± 5.09 58.67%± 9.58 38.33%± 3.38
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Table 8: Ablations - Diffusion Policies: Performance on LIBERO-10 tasks using diffusion policies without
language conditioning for BR and FR. These experiments replicate the training setup for BR and FR. Both
methods fall short of the baselines reported in the rest of the paper.

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

Diffusion Behavior Retrieval 36.67%± 1.44 68.0%± 2.49 34.0%± 2.49 55.33%± 1.44 42.0%± 1.63
Diffusion Flow Retrieval 68.67%± 2.37 56.0%± 4.32 18.0%± 3.4 56.0%± 3.4 35.33%± 6.28

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

Diffusion Behavior Retrieval 30.67%± 0.54 0.00%± 0.00 10.67%± 1.96 24.0%± 0.94 9.33%± 1.44
Diffusion Flow Retrieval 32.67%± 3.31 68.0%± 2.49 6.0%± 0.0 35.33%± 0.54 8.0%± 1.89
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