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ABSTRACT

Federated learning enables the privacy-preserving training of neural network mod-
els using real-world data across distributed clients. FedAvg has become the pre-
ferred optimizer for federated learning because of its simplicity and effectiveness.
FedAvg uses naïve aggregation to update the server model, interpolating client
models based on the number of instances used in their training. However, naïve ag-
gregation suffers from client-drift when the data is heterogenous (non-IID), leading
to unstable and slow convergence. In this work, we propose a novel aggregation
approach, elastic aggregation, to overcome these issues. Elastic aggregation in-
terpolates client models adaptively according to parameter sensitivity, which is
measured by computing how much the overall prediction function output changes
when each parameter is changed. This measurement is performed in an unsuper-
vised and online manner. Elastic aggregation reduces the magnitudes of updates
to the more sensitive parameters so as to prevent the server model from drifting
to any one client distribution, and conversely boosts updates to the less sensitive
parameters to better explore different client distributions. Empirical results on
real and synthetic data as well as analytical results show that elastic aggregation
leads to efficient training in both convex and non-convex settings, while being
fully agnostic to client heterogeneity and robust to large numbers of clients, partial
participation, and imbalanced data. Finally, elastic aggregation works well with
other federated optimizers and achieves significant improvements across the board.

1 INTRODUCTION

Unlike traditional centralized learning in which models are trained using large datasets stored in a
central server (Goyal et al., 2017), federated learning - first proposed in (McMahan et al., 2017) -
leverages data spread across many clients to learn classification tasks distributively without explicitly
sharing data (Konečnỳ et al., 2016a;b; Mohri et al., 2019; Kairouz et al., 2019), thereby ensuring a
basic level of privacy.

There are four principal characteristics of federated learning (McMahan et al., 2017):

• Unreliable links: Communication links between the server and clients are unreliable and
there may only be a small subset of clients that are active at any given time.

• Massive distribution: The number of clients is large, while the amount of data per client is
small.

• Substantial heterogeneity: Client data is heterogeneous (non-IID) (Konečnỳ et al., 2016a),
i.e., data in different clients are sampled from different regions of the sampling space.

• Imbalanced data: The amount of data per client is highly variable.

The most popular algorithm for federated learning is FedAvg (McMahan et al., 2017), which tackles
the communication bottleneck by performing multiple local updates on the available clients before
communicating the overall change to the server. FedAvg uses naïve aggregation to interpolate client
models, and has shown success in certain applications. However, its performance on heterogeneous
data is still an active area of research (Li et al., 2019b; Haddadpour and Mahdavi, 2019; Khaled
et al., 2020). According to (Khaled et al., 2020), training models on local data that minimize
local empirical loss appears to be meaningful, but yet, doing so, is fundamentally inconsistent with
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Figure 1: Illustration of naïve aggregation and elastic aggregation. The local updates of client A
and client B drive the server model θ towards their individual minima (black dots in plot). Naïve
aggregation simply averages the received model from clients A and B, yielding θ′ as the new server
model. Although θ′ minimizes the local empirical loss of clients A and B, θ′ drifts from ideal
distribution for the server model. Elastic aggregation adjusts gradient with respect to parameter
sensitivity. Parameter θx is more sensitive (has a larger gradient norm), and is restricted with ζx < 1
to reduce the magnitude of its update. Parameter θy is less sensitive (has a smaller gradient norm),
and is correspondingly boosted with ζy > 1 to better explore the parameter space. This minimizes
the loss for clients A and B, while not causing the server model to drift from its ideal distribution.
Hence, elastic aggregation results in a better update θ′′.

minimizing the global empirical loss. Client updates drive the server model away from the ideal
distribution, a phenomenon known as ’client-drift’. Naïve aggregation (McMahan et al., 2017) is
efficient in aggregating client models but does not account for distribution inconsistencies across
client data or the consequent objective inconsistency. In other words, with naïve aggregation, the
server model risks converging to a stationary point of a mismatched objective function which can be
arbitrarily different from the true objective (Wang et al., 2020).

Prior works (McMahan et al., 2017; Karimireddy et al., 2019; Reddi et al., 2016) attempt to overcome
this issue by running fewer epochs or iterations of SGD on the devices or by stabilizing server-side
updates so that the resulting models correspond to inexact minimizations and keep globally desirable
properties. In this work, we propose a novel aggregation approach, elastic aggregation, to overcome
client-drift. We measure parameter sensitivity using unlabeled samples of client data, by computing
the changes to the overall function output for a given change to the parameter in question, without
relying on the loss. This allows our method to not only avoid requiring labelled data, but importantly
also pre-empts complications that could otherwise arise from the loss being at a local minimum
with gradients close to zero. During the aggregation of client models, updates to the more sensitive
parameters can then be reduced in magnitude, preventing the server model from drifting to any client
distribution. Conversely, updates to the less sensitive parameters can be boosted to better explore
different client distributions.

Contributions. Elastic aggregation tackles distribution inconsistency across client data using the
concept of parameter sensitivity, and is simple to implement, requiring little hyper-parameter tuning.
Furthermore, parameter sensitivity is computed in an online and unsupervised manner, and thus
better utilizes the unlabeled data generated by the client during runtime. Elastic aggregation is
easily integrated into different federated optimizers, achieving substantial improvements over naïve
aggregation. The empirical results on real and synthetic data and analytical results show that elastic
aggregation leads to efficient training in both convex and non-convex settings, across all four federated
learning scenarios (unreliable links, massive distribution, substantial heterogeneity and imbalanced
data).

2 RELATED WORK

Federated learning is a fast-evolving topic. The general setup involves server and client updates;
each of these updates is associated with minimizing some local loss function. The server model
then benefits from all client data and achieves superior performance, for tasks such as next word
prediction (Hard et al., 2018; Yang et al., 2018), emoji prediction (Ramaswamy et al., 2019), decoder
models (Chen et al., 2019b), vocabulary estimation (Chen et al., 2019a), low latency vehicle-to-vehicle
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communication (Samarakoon et al., 2018) and predictive models in health (Brisimi et al., 2018).
Nevertheless, federated learning raises several issues and has been the topic of much research effort,
focusing on the issues of generalization and fairness (Mohri et al., 2019; Li et al., 2019b), the design
of more efficient communication strategies (Konečnỳ et al., 2016b;a; Suresh et al., 2017; Stich et al.,
2018; Karimireddy et al., 2019; Basu et al., 2019), the study of lower bounds (Woodworth et al., 2018),
differential privacy guarantees (Agarwal et al., 2018), security (Bonawitz et al., 2017), etc (Kairouz
et al., 2019). We focus here on relevant work that specifically address the four federated learning
characteristics noted above - massive distribution, heterogeneity, unreliable links and imbalanced
data.

Much of earlier work in this context propose optimizing for the local risk objective with SGD (Stich
et al., 2018) over mini-batches of client data, analogous to the centralized scenario, with the server
then averaging the received models. FedAvg (McMahan et al., 2017) is a generalization of local SGD,
proposing a larger number of local SGD steps per round. In the case of identical clients, it reduces
to parallel SGD for which asymptotic convergence has been proven (Zinkevich et al., 2010; Stich
et al., 2018); more recently, (Patel and Dieuleveut, 2019; Khaled et al., 2020) analyzed the same
method under the name of local SGD, also for identical functions. FedAvg inexactly solves client-side
optimization, requiring the tuning of the number of epochs and the learning rate hyper-parameters in
order to achieve a good accuracy-communication trade-off (McMahan et al., 2017; Li et al., 2020a).

Despite the strong empirical performance of FedAvg in IID settings, performance degrades in non-IID
scenarios (Zhao et al., 2018). The analysis of FedAvg for heterogeneous clients is more delicate, due
to the aforementioned client-drift, first empirically observed by (Zhao et al., 2018). Several analyses
bound this drift by assuming bounded gradients (Wang et al., 2019; Yu et al., 2019), viewing it as
additional noise (Khaled et al., 2020), or assuming that the client optima are ε-close (Li et al., 2019b;
Haddadpour and Mahdavi, 2019). (Liang et al., 2019) proposes using variance reduction to deal with
client heterogeneity but achieved slower convergence rates than SGD. Other variants include using a
decreasing learning rate (Li et al., 2020a), modifying client empirical loss dynamically (Li et al.,
2018; Acar et al., 2021), adding regularizers on local updates (Karimireddy et al., 2019; Shamir et al.,
2014; Karimireddy et al., 2020), or modifying the server side updates (Hsu et al., 2019; Reddi et al.,
2016). While these works do recognize the incompatibility of local and global stationary points, their
proposed fixes are based on inexact minimization. Additionally, in order to establish convergence for
non-IID situations, these works impose additional constraints.

Another class of work that extend the analysis of SGD type methods to federated learning settings
specifically addresses the special case of full client participation (Konečnỳ et al., 2016a; Makhdoumi
and Ozdaglar, 2017; Shamir et al., 2014; Yuan and Ma, 2020; Pathak and Wainwright, 2020; Liang
et al., 2019; Li et al., 2020b; Condat et al., 2020; Gorbunov et al., 2020; Li and Richtárik, 2020).
For example, FedSVRG (Konečnỳ et al., 2016a) and DANE (Shamir et al., 2014) need gradient
information from all clients each round, and are as such not directly applicable to partial federated
learning settings. Furthermore, it may not be trivial to extend these works to overcome the deficiency.
For example, FedDANE (Li et al., 2019a) is a version of DANE that works with partial participation.
However, with partial participation, FedDANE empirically performs worse than FedAvg (Li et al.,
2019b). Similar to these works, FedPD (Zhang et al., 2020) proposes distributed optimization with a
different notion of ’participation’. FedPD activates either all clients or no clients per round, which
again fails to satisfy the partial participation condition.

Finally, there have been earlier works aiming to decrease communication costs by compressing the
transmitted models (Dutta et al., 2020; Mishchenko et al., 2019; Alistarh et al., 2017), decreasing the
bit-rate of the transmission. These ideas are complementary to our work, and can work together with
our approach.

3 METHOD

In this section, we focus on the introduction of parameter sensitivity, which is our main innovations.
The proof of convergence is provided in the technical part of supplementary materials.
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Algorithm 1: Elastic aggregation within a single layer

A variable with a superscript i indicates the ith element of the variable. A variable with a
subscript k indicates the variable from kth client. η, η′ are learning rates of server and clients
respectively. µ, τ are the hyper-parameters. θ, θk ∈ Rn are the server’s and the kth client’s
parameters respectively. Ω ∈ Rn is the aggregated parameter sensitivity. Ωk ∈ Rn is the
parameter sensitivity on the kth client.

Initialize θ
Bk ← Sample a subset of training data Dk.
Dk ← Drop the samples of Bk from Dk.
for each round do

for each activated client k do
Initialize Ωk as zeros.
for each batch data x ∈ Bk do

g = ∇||F (θ;x)||22
for i ∈ [1, · · · , n] do

Ωik ← µΩik + (1− µ)|gi|

θk ← θ
for each epoch do

for each batch data x ∈ Dk do
θk ← θk − η′∇`k(F (θk;x))

∆k = θk − θ
wk ← |Dk|/

∑
k |Dk|; Ω =

∑
k(wk · Ωk); Ω′ = max(Ω)

for i ∈ [1, · · · , n] do
ζi = 1 + τ − Ωi/Ω′

∆i = ζi ·
∑
k(wk ·∆i

k)
θi ← θi − η ·∆i

3.1 FEDERATED LEARNING WITH NAÏVE AGGREGATION

In federated learning, we solve an optimization problem of the form:

arg min
θ∈Rn

[`(θ) ,
1

m

m∑
k=1

Lk(θ)], (1)

where Lk(θ) , E(x,y)vPk
[`k(θ; (x, y))] is the empirical loss of the kth client, Pk is the data

distribution for the kth client across K clients.

FedAvg A common approach to solving Eq. 1 in federated settings is FedAvg (McMahan et al.,
2017). At each round, a subset of clients is selected (typically randomly) and the server broadcasts its
model to each client. In parallel, the clients run SGD on their own loss function `k and then send
their updated models to the server. The server then update its model to be the average of these client
models.

Suppose that at the rth round, the server has model θ and samples a client set S. Here we use a
standard gradient descent form to update parameters:

θ ← θ − η∆, (2)

where ∆ is the aggregated clients’ gradients and η is the learning rate of server, which is typically
1.0. FedAvg uses naïve aggregation to compute ∆.

Naïve aggregation We can write naïve aggregation as:

∆ =
∑
k∈S

(wk ·∆k), (3)
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where ∆k = θ − θk is the accumulated gradients within a training round of the kth client, and
wk = |Dk|/

∑
k∈S |Dk| is the aggregated weight of the kth client across the activated clients S.

Dk, θk are the training dataset and trained parameters on the kth client, respectively.

3.2 EXPLORING PARAMETER SENSITIVITY

Due to the non-IID-ness (heterogeneity) across different clients, P can vary substantially across
different clients. Thus, the simple and efficient way to aggregate client models described in Eq. 3
cannot solve client drift and cause oscillation as well as slow convergence. We explore parameter
sensitivity as an approach to overcome these issues.

The main idea we are proposing is that less sensitive parameters can be freely updated to minimize the
loss for individual clients in S without causing the server to drift; by the same reasoning, parameters
that are more sensitive should not be updated as much. This is illustrated in Fig. 1.

At the rth round, the active clients receive the server model θr, which parameterizes the approximation
function F of the true function F̄ . F maps the input x to the output y, and our goal is to largely
maintain the same output y for the observed xwhile learning additional training instances (x, y) v Pk.
To this end, we measure how sensitive the output of function F is to changes in the network parameters.
To reduce confusion, we ignore the symbols denoting the round r and the client k for all variables
and only discuss parameter sensitivity locally.

For a given data point x, the output of the network is F (θ;x). A small perturbation δ in the parameters
θ results in a change in the function output that can be approximated by:

F (θ + δ;x)− F (θ;x) ≈ g(θ;x)δ, (4)

where g(θ;x) = ∂F (θ;x)
∂θ is the gradient of the learned function with respect to the parameter θ

evaluated at the data point x. Our goal is to maintain the output of the network (the learned function
F ) for each observed data point and thus we reduce the magnitudes of the updates to the parameters
that are more sensitive for the data point. Conversely, we boost the updates to the less sensitive
parameters to better fit client distributions.

Based on equation 4, and assuming a small constant change δ, we can measure the sensitivity of a
parameter by the magnitude of the gradient g(θ;x), i.e., how much does a small perturbation to that
parameter change the output of the learned function for data point x. There are many ways to measure
the sensitivity of a parameter by the magnitude of the gradient, such as fishing matrix. However, in
federated learning, we have to take the computation ability of each client into account, which is only
with limited computation ability. Therefore, we use the exponentially-decayed moving average1 to
obtain sensitivity Ωi for ith parameter θi:

Ωi ← µΩi + (1− µ)|g(θi;x)|, (5)

where µ is momentum and we empirical set to 0.9.

When the output function F is multi-dimensional, as is the case for most neural networks, equation 5
involves computing the gradients for each output, which requires as many backward passes as the
dimensionality of the output. As a more efficient alternative, we propose to use the gradients of the
squared L2 norm of the learned function output, i.e. g(θ;x) = ∇||F (θ;x)||22. Hence, we only need
to compute one backward pass in order to estimate the parameters’ sensitivity.

3.3 ELASTIC AGGREGATION WITH RESPECT TO PARAMETER SENSITIVITY

The elastic aggregation for ith parameter can be written as:

∆i = ζi ·
∑
k∈S

(wk ·∆i
k), (6)

1While a Polyak-style average has more theoretical guarantees for accumulating Ω over batches, our
results match the claim that “an exponentially-decayed moving average typically works much better in prac-
tice" (Martens, 2014). Thus, we use the exponentially-decayed moving average to accumulate Ω over batches.
Refer to supplementary materials for more discussion.
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τ Naïve 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Train Acc.(%) 58.36 57.21 58.33 58.76 60.66 60.47 61.44 60.66 60.55 61.01 59.27 58.96
Test Acc.(%) 60.74 58.30 59.76 61.17 61.91 63.39 62.74 63.39 63.23 63.22 60.83 61.37
Boosted(%) - 0.0 11.45 27.24 43.75 59.74 74.43 84.57 89.93 93.53 96.26 97.38

Table 1: The effect of τ . Using an unsuitable τ for elastic aggregation with cause it to even under-
perform naïve aggregation. The last row shows the percentage of parameters that are boosted for
different τ .

where ζi is the adaptive coefficient with respect to the parameter sensitivity. The definition of ζi is:
ζi = 1 + τ − Ωi/Ω′, (7)

where Ω′ = max(Ω) is the maximum of parameter sensitivities in each layer, and Ωi =∑
k∈S(wk · Ωik) is the aggregated sensitivity of ith parameter across activated clients. The server

is able to boost updates (ζi > 1.0) to parameters which have low sensitivity (low Ωi). Meanwhile,
sensitive parameters (high Ωi) have their updates restricted with a penalty (ζi < 1.0). τ is a hyper-
parameter determining the ratio of boosted or restricted parameters. FedAvg with elastic aggregation
is formalized in Algorithm 1.

Discussion on τ In Eq. 6, ζi ∈ (1, 1 + τ ] is applied to the less sensitive parameters, and ζi ∈ [τ, 1)
is applied to the more sensitive parameters. Thus, τ determines the portion of parameter to be
restricted or boosted. Generally, a larger τ indicates that a larger proportion of parameters will be
boosted, as shown in Tab. 1, and vice versa.

If a large proportion of parameters is restricted (τ is small, such as 0.1), the server model will not
be updated much and exiting local minima becomes difficult. However, with a large τ such as 0.9,
optimization of the server model becomes unstable, and this also causes performance degradation.
It is therefore critical to maintain a balance between these extremes with a suitable τ and we find
that τ = 0.5 generalizes well to various experiments. At this value of τ , roughly three quarters of
parameters are boosted.

4 EXPERIMENTS SETTINGS

Inconsistent usage of models, datasets and non-IID partition methods make it difficult to compare the
performances of federated learning algorithms fairly. To enforce fair comparison, we explicitly specify
the combinations of datasets, models, and non-IID partition methods to be used for experiments,
which mostly consists of those used in existing work published at top tier machine learning venues (He
et al., 2020). Note that although the reported precisions are state-of-the-art for the models we have
chosen, higher-capacity models can achieve higher performances on these datasets. Therefore,
we compare the relative performance of elastic aggregation against naïve aggregation for various
federated learning scenarios.

Implementation We measure our algorithm against the most comprehensive and representative
suite of federated datasets and modeling tasks to date. For this purpose, we carry out simulations on
five diverse and representative experiments on several datasets. In order to facilitate the experiments,
we use the cosine annealing scheduler (Loshchilov and Hutter, 2016) for the client learning rate η′r at
the rth round, which is given by η′r = (1+cos( rRπ))η′. For all tasks, we measure the performance on
the entire test set throughout training. Clients are sampled uniformly at random, without replacement
within a given round, but with replacement across rounds. There are a variety of federated optimizers
that improve the performance of federated learning. Here, we use the most basic and widely used
federated optimization algorithm, i.e., FedAvg (McMahan et al., 2017), as the default baseline in
our experiments. With reference to (Reddi et al., 2020), we implement all experiments with two
important characteristics. First, instead of doing K training steps per client, we do E epochs of
training over each client’s data. Second, to account for varying numbers of gradient steps per client,
we weight the average of the client outputs ∆k

t by the number of training samples. This also follows
the approach of (McMahan et al., 2017) and often outperforms uniform weighting (Reddi et al.,
2018). We set µ = 0.95 for the accumulation of the parameter sensitivity over batches in each client.
τ = 0.5, η = 1.0 is used for all experiments. While computing Eq. 7, we normalize the parameter
sensitivity layer by layer, which means that the parameter sensitivity is divided by the maximum value
within the same layer. Aside from experiments 5.1, we set E = 1 for each client for all experiments.
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Figure 2: Performances across different partitioning distributions, participation rates and numbers of
local epochs. Compared with naïve aggregation, elastic aggregation achieves significant improve-
ments across these settings.

Generate synthetic federated datasets Differences in distribution have an enormous influence on
the performance of federated optimization. The Dirichlet distribution is used on the label ratios to
ensure uneven label distributions among clients for non-IID splits, as in (Yurochkin et al., 2019).
To generate imbalanced data, we sample the number of data points from a log-normal distribution.
The degree of imbalance depends on the variance of the log-normal distribution, which is controlled
by the hyper-parameter α. A smaller α indicates a stronger non-IID-ness in partitions, as shown in
Fig. 2.

5 EXPERIMENTS

Under all experiments, the samples used for computing parameter sensitivities at each client will be
randomly sampled training data, and these sampled data will not be used for supervised training any
more. For fair comparison, these sampled data will not be used in the baseline methods either.

5.1 COMPARISON WITH NAIVE AGGREGATION

MNIST As our baseline, we conduct a convex optimization experiment on MNIST (LeCun et al.,
1998) with logistic regression (Li et al., 2018; 2019b; McMahan et al., 2017). In this experiment,
we generate a synthetic federated dataset of MNIST with α = 100.0 and split the dataset into 1000
partitions. At each round of training, we randomly choose 100 clients without repeat in the partition.
As shown in Tab. 3, elastic aggregation has a large advantage over naïve aggregation even with a
large number of participating clients.

Federated EMNIST Due to resource constraints of edge devices, existing works commonly use
shallow neural networks for experiments. Similarly, we include Federated EMNIST (Reddi et al.,
2020) with a shallow neural network consisting of two convolution layers followed by two linear
layers (Reddi et al., 2020). Notably, Fed-EMNIST (Reddi et al., 2020) has a natural client partitioning
that is highly representative of real-world federated learning problems. It contains 3,400 users (clients)
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Optimizer FedAvg FedAvgM FedProx SCAFFOLD AdaOpt PFNM Per-FedAvg pFedMe
w/o Elastic. 49.34 62.52 51.52 72.10 78.003 71.23 50.44 83.20
w/ Elastic. 52.37 64.48 53.64 75.42 80.34 73.64 53.24 85.63
Improvement. 3.03 1.96 2.12 3.32 2.34 2.41 2.80 2.43

Table 2: Elastic aggregation can be easily integrated with different federated optimizers, achieving
performance improvements. (Notes that the comparison across different federated optimizers is
meaningless since they are under different experiment settings. )

and 62 label classes. The dataset is split into 671,585 training examples and 77,483 testing examples.
Rather than holding out specific users, we split each user’s examples across train and test so that all
users have at least one example in train and one example in test. Users with fewer than 2 examples
are excluded from the data set. As shown in Tab. 3, elastic aggregation generalizes well to real-world
federated learning problems.

CIFAR-100 In this experiment, we conduct a balanced but non-IID partition on Fed-CIFAR100 2,
which was introduced by TensorFlow Federated (Hsieh et al., 2020) with ResNet-20 (He et al.,
2016) as the baseline model. As shown in Tab. 3, elastic aggregation significantly speeds up training.
Furthermore, the final accuracy is improved by over 20% compared with the naïve baseline, which
demonstrates the effectiveness of elastic aggregation.

CIFAR-10 and CINIC-10 To further demonstrate the performance improvement resulting from
elastic aggregation, we generate two synthetic federated datasets for CIFAR-10 (Hsieh et al., 2020)
and CINIC-10 (Darlow et al., 2018) with α = 100.0. CINIC-10 extends CIFAR-10 with the addition
of down-sampled ImageNet images, making for a more challenging dataset. This also enables
measuring the performance of models trained on CIFAR images on ImageNet images for the same
classes. As shown in Tab. 3, elastic aggregation achieves superior performances on both the CIFAR-10
and the more difficult CINIC-10 datasets, confirming that our method generalizes well to large scale
datasets.

Natural language processing on Shakespeare dataset We maintain the same experimental setup
as (McMahan et al., 2017) on the most commonly used natural language processing tasks: Shake-
speare LSTM. The epoch in each round is 1, the batch size is 10 and both elastic and naive aggregation
are trained for 2k rounds. We get the final accuracy as 62.14% for naive aggregation and 64.73% for
elastic aggregation. The results show that elastic aggregation not only has a significant improvement
in CV related tasks, but also has an positive effect on NLP related tasks.

Imbalanced and non-IID We are also interested in understanding how parameter sensitivity can
help improve convergence, particularly in cross-device and non-IID scenarios. Given the resource
constraints of edge devices, large DNN models are usually trained under the cross-organization (also
known as cross-silo) federated learning settings. Across the following experiments, we use CIFAR-
10 (Krizhevsky et al., 2009) with ResNet-20 (He et al., 2016). We study three different parameters
here: non-IID-ness, participation rate, and number of epochs. We explore the effects of varying
non-IID-ness with α = 100.0, 50.0, 10.0, 1.0, 0.5 across 1000 partitions. For participation rate, we
test sampling 5%, 10%, 20%, 40% of the clients at each round. Finally, we test having 1, 5 epochs
of local updates, to better show the robustness of elastic aggregation. As shown in Fig. 2, elastic
aggregation is especially superior for situations with massive distribution, substantial heterogeneity,
and imbalanced data.

5.2 INTEGRATION WITH MODERN OPTIMIZER

Federated optimizer with elastic aggregation To illustrate the generalizability of elastic aggre-
gation, we integrate elastic aggregation into FedAvg (McMahan et al., 2017), FedAvgM (Reddi et
al., 2020) and FedProx (Li et al., 2018). FedAvgM is an enhancement of FedAvg on the server-side,
making use of the momentum strategy to update the server model. FedProx is an enhancement of
FedAvg on the client-side, adding a penalty to the client updates. We have presented the details of
FedAvg with elastic aggregation in Algorithm 1. Please refer to supplementary materials for more

2https://github.com/tensorflow/federated
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details about the other federated optimizers with elastic aggregation. As shown in the left part of
Tab. 2, elastic aggregation works well with other complementary approaches whether designed for
client-side or server-side. In order to further verify the generality of elastic aggregation, we did
further experiments on the stat-of-the-art methods in FL, i.e. SCAFFOLD (Karimireddy et al., 2020),
AdaOpt (Reddi et al., 2020) and PFNM (Yurochkin et al., 2019). Since these methods target on
different aspect of federated learning, we conducted experiments based on their original experimental
settings. As shown in middle part of Tab. 2, elastic aggregation plays a positive effect in most
federated optimizers.

Influence on personalization Personalization in federated learning is also a topic of great concern.
Specifically, we equipped Per-FedAvg (Fallah et al., 2020), pFedMe (Dinh et al., 2020) – both focus
on the model personalization (local model performance) in federated learning with elastic aggregation
and found that elastic aggregation is also do a favour in learning a better personalized model, as
shown in the right part of Tab. 2.

Dataset Rounds(Epochs) Total Sampled Batch Init. LR Model Naïve(%) Elastic(%)
Balanced data across clients

CIFAR-100 4000(∼80) 500 10 10 0.05 ResNet-20 32.31 56.64
Unbalanced data across clients

MNIST 20(∼2) 1000 100 100 0.1 Logistic Regression 70.14 73.64
EMNIST 1000(∼2.5) 3400 10 100 0.1 2Conv+2Linear 88.71 89.82
CIFAR-10 4000(∼40) 1000 10 10 0.05 ResNet-20 66.84 68.74
CINIC-10 200(∼20) 1000 100 10 0.05 ResNet-20 35.81 36.29
CINIC-10 4000(∼40) 1000 10 10 0.05 ResNet-20 68.68 69.25

Table 3: Test accuracies for various datasets. Along with rounds, we list a more intuitive measure,
i.e., epochs, to better reflect the total training computation.
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Figure 3: Convergence speeds on different datasets.

6 CONCLUSION

Our work studied the impact of heterogeneity on optimization methods for federated learning. We
then proposed a new aggregation method, elastic aggregation, to overcome gradient dissimilarity
by making use of parameter sensitivity. To the best of our knowledge, we are the first to use
unlabeled client data to improve federated learning performances. Our empirical evaluations across
a suite of federated datasets have validated our theoretical analysis and showed that the elastic
aggregation approach significantly improves the convergence behavior of federated learning in
realistic heterogeneous scenarios. Future directions include extending the elastic aggregation approach
to adaptive optimization methods or gossip-based training methods.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021.

Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H Brendan Mcma-
han. cpsgd: Communication-efficient and differentially-private distributed sgd. arXiv preprint
arXiv:1805.10559, 2018.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in Neural Information Processing
Systems, 30:1709–1720, 2017.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd
with quantization, sparsification, and local computations. arXiv preprint arXiv:1906.02367, 2019.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1175–1191, 2017.

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis, and Wei
Shi. Federated learning of predictive models from federated electronic health records. International
journal of medical informatics, 112:59–67, 2018.

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated learning of
out-of-vocabulary words. arXiv preprint arXiv:1903.10635, 2019.

Mingqing Chen, Ananda Theertha Suresh, Rajiv Mathews, Adeline Wong, Cyril Allauzen, Françoise
Beaufays, and Michael Riley. Federated learning of n-gram language models. arXiv preprint
arXiv:1910.03432, 2019.

Laurent Condat, Grigory Malinovsky, and Peter Richtárik. Distributed proximal splitting algorithms
with rates and acceleration. arXiv preprint arXiv:2010.00952, 2020.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

C. T. Dinh, N. H. Tran, and T. D. Nguyen. Personalized federated learning with moreau envelopes.
2020.

Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu, Marco
Canini, and Panos Kalnis. On the discrepancy between the theoretical analysis and practical
implementations of compressed communication for distributed deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, number 04, pages 3817–3824, 2020.

A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning: A meta-learning approach.
2020.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of sgd: Variance reduc-
tion, sampling, quantization and coordinate descent. In International Conference on Artificial
Intelligence and Statistics, pages 680–690. PMLR, 2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

10



Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library and benchmark
for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire
of decentralized machine learning. In International Conference on Machine Learning, pages
4387–4398. PMLR, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252–3261. PMLR, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pages
4519–4529. PMLR, 2020.
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