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Abstract

Dynamic Graph Neural Networks (DGNNs) have emerged as the predominant
approach for processing dynamic graph-structured data. However, the influence of
temporal information on model performance and robustness remains insufficiently
explored, particularly regarding how models address prediction tasks with different
time granularities. In this paper, we explore the impact of time granularity when
training DGNN5s on dynamic graphs through extensive experiments. We examine
graphs derived from various domains and compare three different DGNNs to
the baseline model across four varied time granularities. We mainly consider the
interplay between time granularities, model architectures, and negative sampling
strategies to obtain general conclusions. Our results reveal that a sophisticated
memory mechanism and proper time granularity are crucial for a DGNN to
deliver competitive and robust performance in the dynamic link prediction task.
We also discuss drawbacks in considered models and datasets and propose
promising directions for future research on the time granularity of temporal
graphs. Our benchmark suite and codebase are available at https://github!
com/SilenceX12138/Time-Granularity-on-Temporal-Graphs|

1 Introduction

Evolving connections and relationships pervade real-world scenarios, encompassing recommendation
systems [[1} 2], social networks [13]], transportation systems [4, |5, 6], epidemic transmission [7, 18], and
more [9]. Temporal graphs (also known as dynamic or evolutionary networks) can effectively model
these dynamics, with nodes, edges, edge types, and associated attributes continuously changing
over time due to various events. Analysing temporal evolution and its patterns can facilitate reliable
predictions and informed decisions [9, [10]. In contrast to traditional graph-based models that assume
fixed graph structures, dynamic graph neural network methods (DGNNSs) have emerged in recent
years to enable more efficient representation learning on dynamic networks [11].

Time granularity significantly influences the level of detail at which temporal information is captured,
processed, and represented in a model [[10} 12} [13]. It critically affects model performance, robustness,
computational efficiency, and transferability. However, its impact on temporal graph analysis remains
under-explored. We underscore the importance of understanding the time granularity of temporal
graphs in the following aspects: (i) Model Performance: Coarser time granularities may sacrifice
critical temporal information, whereas finer granularities could introduce noise into the training
process [14]]. Identifying the optimal choice of time granularity for a specific task can enhance model
performance. (ii) Robustness: Assessing models at various time granularities enables evaluation of
their robustness to information loss, which is crucial for determining how models generalise across
time scales [14}[10] and their sensitivity to the provided temporal information. (iii) Computational
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Efficiency: Fine-grained models can be computationally intensive and slow to train due to numerous
training instances; coarser granularities can reduce computational demands while retaining valuable
insights [15]. Balancing granularity and efficiency can expedite the temporal graph analysis process.
(iv) Transferability: Knowledge acquired at different time granularities can be transferred between
domains and tasks [[14} [16} [17]. Hence, understanding the impact of time granularity could assist
researchers in selecting and adapting models for specific problems.

In this study, we focus on a fundamental task in dynamic graph analysis: dynamic link prediction.
This task seeks to predict future connections and interactions based on prior and current information.
While state-of-the-art (SOTA) methods [18, [19, 20] can achieve near-perfect performance on this
task, previous studies [21] have shown that incorporating more challenging negative sampling
techniques significantly reduces the performance of existing SOTA models. We extend this research
by considering the impact of time granularity. Our primary objective is to provide a comprehensive
understanding of how these models process temporal information and address the link prediction
task in the absence of sufficiently fine-grained information. Our main contributions are as follows:

* We introduce a novel data-splitting approach that jointly considers durations and the coarsest
common time granularities across different dynamic graphs. This framework ensures a fair
comparison among various graphs without information leakage issues.

* We empirically investigate DGNNSs’ performance and robustness under four predetermined
time granularities. We conduct a series of controlled experiments, taking into account model
architectures, dataset domains, and negative sampling strategies.

* We perform cross-granularity evaluations on trained models across different time granular-
ities to gain a deeper understanding of the models’ mechanisms for processing temporal
information at various granularity levels.

* We provide an insightful discussion on the identified problems and innate weaknesses for
the model design and datasets.

2 Related Work

Dynamic Graph Representation Learning Over the past decade, learning effective representations
that capture both structural properties and temporal information in dynamic graphs has been exten-
sively studied, driven by the growing interest in temporal graphs. Several survey papers [22} 23] 9]
document the advancements in this research field, offering various taxonomies for classifying different
types of dynamic graphs based on network characteristics and domains. Numerous Dynamic Graph
Neural Networks (DGNNs) have been proposed to address long-standing challenges in representation
learning: (i) incorporating diverse types of events, and (ii) integrating temporal information into node,
edge, or graph embeddings. These DGNNSs can be broadly categorised into four groups: Recurrent
Neural Network (RNN)-based methods [24! [19], memory-based methods [25| 26l], attention-based
methods [27, 128} |29]], and convolution-based methods 30} [31]]. In this study, we mainly focus on
the Temporal Graph Networks (TGN5s) because they generalise Message Passing Neural Networks
(MPNN5s) to temporal graphs with effective memory mechanism [[18].

Time Granularity for Graphs Time granularity, which refers to the temporal resolution or time
intervals at which dynamic graphs are observed or analyzed, significantly impacts the effectiveness
of dynamic graph analysis by determining the level of temporal detail retained. Chapter 3 of the
Handbook of Temporal Reasoning in Al [32] delivers a comprehensive introduction to time granularity
and its applications in various domains. The authors present a mathematical formalization of the
concept and provide a thoughtful discussion on the changes in semantic meanings of objects or
concepts due to varying time granularities. In video representation learning, one pioneering work
addresses the problem of choosing temporal granularity with advanced architectures. Specifically,
Qian et al. [14]] demonstrate that proper granularity is task-dependent and coarse-grained features can
be effective for many tasks where fine-grained data are considered to be necessary.

The study of time granularity in dynamic graphs has attracted increasing attention in recent
years [33,121]]. The pioneering work of Holme and Saramaki [34] in 2012 initiated the exploration
of graph time granularity, examining the trade-offs between coarse and fine temporal resolutions.
Concurrently, Casteigts et al. [35] investigated the impact of time granularity on graph structures and
expressivity, evaluating scenarios with varying waiting times for information transition. Additionally,
Skarding et al. [23]] introduced a taxonomy for representing various temporal graphs across different



time granularities based on link duration. In recent years, several studies [36) 137, [38] 27] have
presented novel time-aware embedding methods, primarily aimed at transforming static embeddings
into continuous embeddings using temporal information with the consideration on different time
intervals. This study aims to provide some insights into the impact of time granularity on learning
representations from temporal graphs by focusing on the dynamic link prediction task.

3 Notations and Formalism

A dynamic graph Gp, also known as a temporal graph, can be perceived as a sequence of operations
guided by an ordered series of events acting upon the initial graph state Gg (a Continuous-time
Dynamic Graph Ggr), or a stream of snapshots over predetermined time slices (a Discrete-time
Dynamic Graph Gpr). A continuous-time temporal graph can be formally defined as Ger =
(Gp, O), where G represents the initial state and O = {(u;, v;, ©;, t;, Ai),i = 1,2, ...} indicates a
sequence of events occurring at arbitrary time point. In this notation, (u;, v;) represents the pair of
nodes involved in the i-th event, x; denotes any feature associated with the event, including node and
edge features, event types (communication, interaction, or other topological changes), and associated
operations such as node/edge addition or deletion, ¢; marks the event’s initiation timestamp, and A
represents the event’s duration. In contrast, a discrete-time temporal graph can be expressed as an
ordered sequence of N graph snapshots Gpt = (Go, G1, ..., Gn). Each G; in the sequence may
capture a snapshot of the graph at a specific time point ¢; or model the graph’s state during the time
interval [t — At, ¢] for a configurable At. In the latter case, G; = (EBVl-, OFE;, ®X;, (t; fti_l)) offers
an aggregated view of the dynamic graph Gp over the specified time interval, with & denoting any
possible method of combining events occurring within that time frame. The time interval may be
fixed to represent different time granularities or adjusted over time to create overlapping snapshots,
thereby facilitating more sophisticated analyses of the dynamic network.

In line with the data processing procedure in Poursafaei et al.’s work [21]], we eliminate all node
and edge features from the graph data and focus exclusively on edge additions while assuming their
permanence. This approach streamlines the events to be O = {(u;, v;,t;),4 = 1,2, ...}. Furthermore,
by permitting multiple identical edges between any pair of nodes, we can express any G; € Grp as:

EBE, = @Ei—l @] {(U,U) | E't e (ti—hti} S.t. (u, U,t) S O} (1)

eV = U{u,v | (u7v) € ®Ei}7
where W is the union operation on multisets, signifying the multiplicities of edges in G FE;; U is the
standard union operation for the set of vertices. This equation represents the aggregated view of the
graph from time ¢;_; to ¢;, making it equivalent to an instantaneous snapshot of the graph at time ¢;.

4 Methods

4.1 Datasets

In this study, we examine seven datasets of varying sizes from diverse domains, including social,
interaction, and proximity. These datasets are widely employed for training and evaluating dynamic
graph neural networks (DGNNs). Each dataset comprises directed edges listed by Unix timestamp,
without any associated node or edge features. Additionally, the number of nodes in these datasets
remains constant over time, simplifying the research scenario to focus exclusively on dynamic link
predictions.Table[A.T|in Appendix [A.T|provides detailed statistics, as well as the semantic meanings
of nodes and edges for each dataset.

To process the datasets, we first follow prior work [21]] and aggregate their edges from the finest
time granularity (second) to coarser granularities (minute, hour, day, month, year), and then adopt a
0.7-0.15-0.15 chronological split for training, validation, and test sets. The comprehensive breakdown
is available in Appendix[A.2] Our analysis reveals that "Day" represents the coarsest time granularity
in this study, as it can meaningfully split all datasets without altering the semantic meanings of
the original data. In contrast, the other coarser granularities might lead to insufficient samples of
validation/test splits, e.g., the "Month" granularity of the Wikipedia dataset.



Table 1: Datasets split by "Day" with the split rate of 2/3-1/6-1/6 with respect to the number of days
for training, validation, and testing.

Train Validation Test Total

Dataset #Days #Edges #Days #Edges #Days #Edges #Days #Edges

Wikipedia 20 99,701 5 26,697 5 26359 30 152,767
Reddit 20 432,543 5 110,004 5 126,518 30 669,075
MOOC 20 216,364 5 65815 5 63,421 30 345,610
LastFM 1,216 916,312 304 340,736 305 26,566 1,825 1,284,223
Enron 730 6,224 182 6,357 183 10,051 1,095 22,997
Social Evo. 160 268,758 40 136,849 40 160,325 240 566,012
UCI 130 55,202 32 2,402 34 1,307 196 58,977

Therefore, we choose to divide the datasets by "Day". Specifically, we first split datasets by "Day"
granularity with an approximate splitting rate equal to 2/3-1/6-1/6 for training, validation, and test
sets. Within each data split, we further aggregate the events that happen within the same time
interval according to the given granularity (second, minute, hour or day). This splitting mechanism
effectively prevents data leakage issues, as the datasets for different time granularities are split at the
identical timestamp. Simultaneously, the semantics of the edges remain unchanged, enabling fair
cross-granularity comparisons. Table [TJoutlines the specific dataset splits.

4.2 Evaluation Metrics

In order to provide a fair comparison, we employ the same evaluation metrics (AU-ROC and AP)
as the benchmark paper [21]] to assess the performance of the models. AU-ROC [39] (Area Under
the Receiver Operating Characteristic Curve) summarizes the ROC curve into a single number that
describes the performance of a model for multiple thresholds at the same time; while AP (Average
Precision) is calculated as the weighted mean of precisions at each threshold. Both metrics range
from O to 1, with higher scores indicating better performance. They are widely utilized in dynamic
link prediction tasks due to their robustness against imbalanced data distribution and their adaptability
across various classification thresholds.

4.3 The Baseline and DGNNs

As a natural extension of [21]], we retain the EdgeBank [21] as our baseline and select three Dynamic
Graph Neural Networks (DGNNs) for comparison, namely JODIE [19]], DyRep [40], and TGN [18].
Note that EdgeBank is a non-parametric approach purely based on memorization, and other ap-
proaches are specifically designed to handle dynamic graphs and have achieved state-of-the-art
performance in link prediction at the time of their release.

EdgeBank [21] stores observed edges in a dictionary and updates its memory at each timestamp. It
predicts a test edge as positive if this edge was seen before and negative otherwise. It has two variants:
EdgeBank,, stores all observed edges in memory and is more adept at identifying rare edges, while
EdgeBanky,, only remembers edges from the short-term past. We set the time window to be the
same size as the validation set in our experiments. EdgeBank is a simple but strong baseline in the
link prediction task; the recent work [21] argues that any valid DGNN method should outperform
EdgeBank.

JODIE [19] tackles graph dynamics by predicting the embedding trajectory in temporal interaction
networks. It captures the time-evolving nature of the interactions by jointly learning the embeddings
and their projections in time, allowing the model to adapt to changes in the graph structure. By
incorporating a recurrent architecture with a dedicated update mechanism, JODIE can efficiently
learn and update node embeddings, making it highly effective in capturing temporal dependencies
and predicting future interactions in dynamic graphs.

DyRep [40] introduces a novel framework that captures both topological and temporal dependencies
by employing a graph attention mechanism for structural information and a point process-based
approach for temporal dynamics. DyRep can learn node embeddings that effectively represent both
the graph structure and the temporal evolution, allowing the model to generalise well on various
dynamic graph tasks.



TGN [18] provides a generic, scalable and efficient framework to model dynamic graphs. It
addresses the challenges of dynamic graphs by incorporating memory modules and a message-
passing mechanism that can capture both structural and temporal information. The memory modules
store historical node embeddings, while the message-passing mechanism allows nodes to exchange
information with their neighbours. TGN can efficiently handle dynamic graphs by employing a
combination of attention mechanisms and temporal aggregators to learn node representations that
capture the local and global temporal dependencies.

4.4 Negative Sampling

In this research, we employ the three negative sampling strategies proposed in [21] to conduct
a comprehensive and robust evaluation of various methods across multiple time granularities.
Specifically, Random Negative Sampling (RandNS) involves selecting negative edges at random
from any node pairs within the graph. Historical Negative Sampling (HistNS) chooses negative
edges that are previously observed but do not recur in the current testing phase, with the aim of
assessing the model’s ability to predict recurring edges. Inductive Negative Sampling (InduNS)
evaluates the model’s capacity to handle reoccurrence patterns of unseen edges by constructing edges
not observed during training. The latter two sampling techniques address the inherent limitations
of random sampling and challenge DGNNs in more stringent settings. Furthermore, these strategies
do not interfere with time granularity, thus allowing us to maintain focus on this crucial aspect while
still benefiting from the robustness offered by the diverse negative sampling approaches.

S Experiment Results & Discussion

We conducted extensive experiments to evaluate the performance and robustness of various models for
the dynamic link prediction task under different settings. Specifically, we trained baseline models and
selected DGNN models on each dataset with four predetermined time granularities, resulting in a total
of 140 models (5 methods x 7 datasets x 4 time granularities). To differentiate the models by their
time granularity, we added a suffix (-s, -m, -h, or -d) to the model names, indicating training at the
second, minute, hour, and day time granularities, respectively. We then evaluated the trained models
across different time granularities for each of the three negative sampling settings. For example, a
TGN model trained on the Wikipedia dataset under the "second" time granularity (TGN-s) would be
compared with two baselines and two other competitive models (JODIE-s & DyRep-s) trained under
the same setting, as well as with other TGNs (TGN-m/h/d) trained at different time granularities.
Each comparison was conducted in three negative sampling settings to obtain a comprehensive view
and a comparative ranking of the given model.

We tested models trained on fine-grained time granularities (referred to as ''fine models'', while
models trained on coarse-grained time granularities are called "coarse models' in the following
text) on coarse-grained test sets to examine the significance of time granularity in message passing
and model training. We anticipated that fine models should achieve at least the same performance
as coarse models when tested on the corresponding coarse time granularity used to train the coarse
models. We also evaluated coarse models on fine-grained test sets to investigate their robustness to
changes in time granularity. We expected that the performance of coarse models would be limited by
the corresponding fine models’ performance due to the inevitable and irrecoverable information loss.
Simultaneously, we calculated the relative gain or loss in performance when a model was tested on a
time granularity different from the one used in its training.

All experiments were conducted using the same training configuration and hyperparameters to
maintain consistency and comparability across the results; for more details, refer to Appendix[A.3]
The experiments were performed on Google Colab utilizing an A100 GPU, and the reported outcomes
represent the average results obtained over three runs.

5.1 Overall Performance of Dynamic Link Prediction

Table [2| shows the average rankings for model performance on different granularities based on AU-
ROC. The model rankings for AP are consistent with the results obtained for AU-ROC. To conduct a
meticulous evaluation of models trained on diverse granularities and negative sampling strategies,
we have incorporated 24 supplementary tables presenting numerical results in Appendix [B| Each
table presents the numerical performance of different models under various time granularities for



Table 2: Average rank of AU-ROC on dynamic link prediction for different time granularities over
three negative sampling strategies. Note that the top three methods are coloured by , Second
and Third respectively. Note that the absolute difference between any two given methods can be
determined by calculating the difference in their numerical scores in Appendix B}

Granularity | Second | Minute | Hour | Day

NS | Rand Hist Indu | Rand Hist Indu | Rand Hist Indu | Rand Hist Indu
JODIE-s 3 11 9 2 11 9 3 11 10 4 12 11
DyRep-s 12 7 6 11 7 6 14 7 6 14 7 5
TGN-s 6 2 5 6 5 3 9 5 4
JODIE-m 12 14 12 12 2 13 14 13 12
DyRep-m 3 9 8§ |12 8 7|13 8 7|12 9 8
TGN-m 5 2 4 2 2 7 5 4 7 4 3
JODIE-h 2 14 11 3 14 14 14 13 2 14 14
DyRep-h 14 8 7 13 6 5 11 6 5 13 8 6
TGN-h 8 5 3 7 5 3 5 6 3 2
JODIE-d 4 13 12 13 13 4 12 11 3 11 13
DyRep-d 11 6 5 14 9 8 12 9 8 11 6 7
TGN-d 9 4 4 10 4 4 8 2 2 5

EdgeBank., 7 3 13 8 3 11 9 3 12 8 2 10
EdgeBank,, 10 10 10 9 10 10 10 10 9 10 10 9

each selected dataset, employing a specific negative sampling technique. These tables also exhibit the
corresponding variations between different runs of experiments, as measured by standard deviation EI
The performances of the models are ranked, and the average rankings are consolidated in Table 2]

We also notice that JODIE-x (including "JODIE-s", "JODIE-m", "JODIE-h", and "JODIE-d") models
surpass other models across all granularities when the test set is randomly sampled. However, under
alternative negative sampling strategies, their performance declines significantly, ranking near the
bottom. DyRep-x models maintain consistent performance across all granularities. Although they do
not have remarkable performance in any specific dataset, DyRep-x slightly outperforms JODIE-x
in HistNS and InduNS settings. TGN-x demonstrates stable, robust performance across all datasets
in any negative sampling setting and exhibits a substantial lead in challenging test environments.
EdgeBank remains a competitive baseline in our experiments, particularly in the HistNS setting,
where EdgeBank with a fixed time window, secures the top position.

5.2 Cross-granularity Comparison

It is noteworthy that certain coarse models achieve comparable or even marginally superior perfor-
mance than their fine counterparts when evaluated on fine-grained test sets. For instance, JODIE-m
and JODIE-h achieve similar performance to JODIE-s when tested on the "second" time granularity
for all datasets. Likewise, TGN-s and TGN-m demonstrate no significant performance discrepancies
in both the "second" and "minute" granularities. In fact, TGN-m yields marginally higher scores on
the MOOC and LastFM datasets. These counter-intuitive instances indicate that training on the finest
granularity may not always be the optimal choice, as fine-grained timestamps may not provide useful
information for the underlying task and could introduce additional noise during training.

Another important observation is that the distance between the target time granularity and the current
time granularity used in training has a considerable impact on model performance. For example,
when handling predictions in the "day" time interval, a model trained in "day" or "hour" granularities
typically outperforms models trained at finer granularities ("second" and "minute"), despite the coarse
model experiencing information loss.

5.3 Model Design and Performance

To investigate the reasons behind performance gaps among the selected DGNNs, we explored their
internal architectures for memorization and message passing. TGN selectively stores the memory for
previously encountered edges through the forget gates in Gated Recurrent Units (GRUSs), allowing it
to remember crucial interactions over long distances while mitigating memory strain due to repeated
updates. In contrast, JODIE and DyRep employ vanilla RNNs to memorize previous edges, with each

2Some standard deviations reported in the Appendixare rounded to 0.000 due to their extremely small
magnitudes (< le — 3), aiming to maintain a neat and uniform format across all tables.
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Figure 1: An example of "hairball" graph due to repetitive edge additions and aggregation. (a)
Original Wikipedia graph used in our experiment (no edge repetition); (b) The "hairball" visualisation
of the Wikipedia graph under our edge aggregation method; (c) A synthetic example of a globally
sparse but locally dense graph, containing multiple "black holes". (a) and (b) are visualised using the
Backbone layout [41]] in Visone [42]] without edge sparsification. The width of the edge indicates
the number of communications between two designated edges. (c) is visualised using the Organic
layout [43]] in yEd [44].

update potentially diluting their memory. This explains why TGN-x models consistently achieve
strong and robust performance across various time granularities under different testing environments.
DyRep-x models consistently rank lower in performance within the scope of our experiment. One
plausible explanation for this is that when computing new messages for newly occurring events,
DyRep disregards the interactions between the event and the destination node, while the other two
approaches thoroughly consider both the involved nodes’ embeddings, interactions and previous
memory. To summarize, although JODIE and DyRep can be conceptualized as special cases of TGN,
our experimental insights underscore that TGN offers a highly adaptable framework for addressing a
wide range of dynamic network-related tasks across various domains.

All selected DGNNSs update their node embeddings and memories for each batch during training.
Given that no edge merging or de-duplication operations occur, the total number of training instances
remains consistent for all models trained at different time granularities (refer to Section [3| for the
edge aggregation method used in our experiments). This suggests that all models share the same
complexity, and differences in training time can be disregarded. In our experiments, no trade-off exists
between computational costs and model performance. Instead, we purely focus on evaluating whether
the model can effectively address the problem at finer time granularities when the corresponding
time information is eliminated. However, one could argue that these models, particularly the TGN-x
models, capture superficial patterns from training instances, akin to "short-cut" learning observed in
other research domains. As the total training instances remain unchanged, the model may attempt
to recover lost timestamp information from the input sequence, leveraging the learned ordering
information to predict link existence at finer granularities.

5.4 Drawbacks of Benchmark Datasets

In all cases except for the RandNS setting, where test samples are too simplistic to differentiate be-
tween various methods, we observe a model’s performance ranking on one dataset to be approximately
consistent with its rankings on other datasets. This observation can be reasonably attributed to the fact
that all selected datasets are large, complex networks extracted from the real world. Despite classifying
them into different domains based on their associated meanings, these scale-free networks, which ex-
hibit a power-law degree distribution, share many topological characteristics. It limits our capabilities
in evaluating the model’s robustness over varied time granularities across different network structures.

In our experiments, we consider dynamic graphs without edge or node deletion events and with
edges added sequentially, resulting in a high prevalence of duplicated edges. Table 1 illustrates that,
in extreme cases, over 90% of the edges are duplicated. In addition, our edge aggregation method
ensures that each snapshot of the dynamic graph contains all edges present in the previous steps.
Consequently, although the original graph in our datasets is sparse, as demonstrated in Fig. [T[a),
the addition of numerous repeated edges transforms it into a complex "hairball" graph, shown in
Fig.[T|b). Hairball graphs [43]], characterized by overlapping and entangled vertices and edges, hinder
the identification of meaningful patterns or structures and impede graph analysis.



Under our assumptions and simplifications, the aggregated view of the dynamic graph over time
becomes a globally sparse but locally dense graph, containing multiple "black holes" due to repeated
edge addition, as illustrated in Fig.[T[c). The majority of the edges reside in these "black holes,"
leading to biased link prediction. This could partially explain the decent performance of all selected
models in the RandNS setting. These models may not require any understanding of temporal
information; instead, for any sampled edge within a "black hole," the models can confidently predict
it as Positive, otherwise as Negative. The InduNS approach mitigates this issue to some extent,
resulting in a noticeable decrease in model performance. We question whether the selected models
can truly capture temporal information under our edge aggregation method and RandNS setting, let
alone manage time granularities. More experiments are needed to verify our conjecture.

Our experimental results highlight significant differences in model performance with the benchmark
paper [21], particularly for HistNS and InduNS settings. Given that each method converges within 20
epochs and the performance standard deviations among different runs are minimal, we attribute these
discrepancies in model performance primarily to different data splitting mechanisms and unbalanced
distribution of edge occurrence over time shown in Table [T}

Limitations This research inherits several limitations from previous relevant study [21]]. Firstly,
all datasets were partitioned at a single point, which is a common practice but potentially weakens
the influence of temporal information on the underlying task. Secondly, all models were evaluated
in a transductive setting where all nodes were seen during training. Thirdly, our evaluation only
focused on a narrow aspect of dynamic network analysis, specifically dynamic link prediction, thereby
limiting the scope of our findings to this particular area. Our research also uncovered new limitations.
We observed that all selected DGNNs share a similar training pipeline, and all datasets are structurally
analogous. These factors restricted our ability to conduct a more comprehensive analysis of model
performance. Therefore, our conclusions are limited to a specific type of graph and a specific category
of GNNs. Another huge barrier lies in the high demand for computation resources. The number
of experiments grows four times compared with the previous work, and each model requires an
enormous amount of time for training and evaluation.

6 Conclusion & Future Work

In this study, we explored the influence of time granularity on dynamic link prediction tasks. Our
methodology encompassed comprehensive experiments using EdgeBank as the baseline model, along
with three dynamic graph neural networks (DGNNs) - JODIE, DyRep, and TGN - trained across
seven datasets at four distinct time granularities (second, minute, hour, and day). The evaluation
included three negative sampling strategies and extensive cross-granularity testing to assess the
models’ robustness against varying time information. Our findings revealed that TGN consistently
outperformed other models across different settings, attributable to its sophisticated memorization
mechanism and message-passing pipeline. Notably, we observed that models with coarser granularity
sometimes matched or even exceeded the performance of finer-grained models, suggesting that
fine-grained time information is not always beneficial and might introduce noise.

Our research marks a foundational step in understanding the role of time granularity in dynamic
graph analysis, and there is significant potential for further investigation. Recent advancements in
sophisticated models, including TREND [46], NAT [47], and CAWSs [20]], present opportunities for
future exploration. Extending our experimental framework to different types of dynamic graphs
across various domains and incorporating diverse model architectures would enrich our understanding
of this field. Furthermore, conducting node-level or graph-level experiments could offer a more
holistic view of time granularity’s impact on dynamic graph analysis.

Some innovative modifications of our pipeline, such as avoiding fixed point split for datasets [48]],
modifying edge aggregation methods, or eliminating negative sampling for graphs with smaller
scales [48]], are promising directions for future research. Another intriguing possibility is to aggregate
events within coarser time intervals, remove duplicate edges, and record occurrence frequencies or
probabilities. This approach could reduce computational demands and enable more sophisticated
prediction tasks, such as estimating the number of events (e.g., number of flights between cities)
within a specified timeframe. Finally, considering the uneven distribution of edge occurrences, there
is scope for designing models that aggregate events in a data-driven manner. Employing learnable
time granularity, as opposed to deterministic aggregation at pre-set timestamps, could lead to more
nuanced and effective dynamic graph analyses.
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Appendix for submission “Exploring Time Granularity on Temporal Graphs
for Dynamic Link Prediction in Real-world Networks”

A Reporducibility
A.1 Real-word Datasets

Table A.1: Datasets Statistics with associated semantic meanings.

Dataset Domain Node # Nodes Edge Total Edges Unique Edges Unique Steps Duration
Wikipedia |19 Social Editors & Wiki Pages 9,227 Editing Request 157,474 18,257 152,757 1 Month
Reddit [19 Social Uers & Posts 10,984 Posting Request 672,447 78,516 588,918 1 Month
MOOC [19 Interaction  Students & Online Courses 7,144 Accessing a online course 411,749 178,443 345,600 1 Month
LastFM [19 Interaction Users & Songs 1,980 Listening a song 1,293,103 154,993 1,283,614 4 Years
Enron [49 Social Employees 184 Email communication 125,235 3,125 22,632 3 Years
Social Evo. [50 Proximity Students T4 Cellphone calls 2,099,519 4,486 565,932 1 Year
UCI |5l Social Students 1,899 Online Chats 59,835 20,296 58,911 196 Days

A.2 Data Distribution

Table A.2: Data distribution in a 0.7-0.15-0.15 chronological split for different time granularities.

Granularity Wikipedia Reddit MOOC

Train Val Test Train Val Test Train Val Test

Second 110,232 23,621 23,621 | 470,713 100,667 100,867 288,224 61,762 61,763

Minute 110,237 23,620 23,617 | 470,722 100,858 100,867 288,224 61,770 61,755

Hour 110,368 23,754 23,352 | 470,815 101,296 100,336 288,480 62,271 60,998

Day 112,937 22,904 21,633 | 475,299 114,325 82,823 301,509 62,868 47,372

Month 153,823 0 3,651 | 650,442 0 22,005 411,749 0 0

Year 157,474 0 0 | 672,447 0 0 411,749 0 0
Granularity ] LastFM ] Enron ] Social Evo. ] UCI

Train Val Test Train Val Test Train Val Test Train Val Test

Second 905,172 193,965 193,966 | 87,664 18,786 18,785 | 1,469,665 314,930 314,924 | 41,884 8,975 8976
Minute 905,174 193,963 193,966 | 87,664 18,786 18,785 | 1,469,671 314,924 314,924 | 41,885 8,974 8976
Hour 905,232 193,919 193,952 | 87,665 18,808 18,762 | 1,470,682 314,396 314,441 | 41,895 8,964 8976
Day 905,232 194,399 193,472 | 87,743 18,971 18,521 | 1,474,123 317,858 307,538 | 42,079 8,790 8,966
Month 936,951 182,053 174,099 | 89,523 24,162 11,550 | 1,668,041 424,508 6,970 | 49,409 3,323 7,103
Year 1,159,991 0 133,112 | 105,631 19,604 0 | 2,099,519 0 0 | 59,835 0 0

A.3 Hyperparameters in Model Training

Table A.3: Training Configuration & Hyperparameter Setting for Experiments.

Hyperparameter Value
Learning Rate 0.0001
Optimizer Adam
Batch Size 200
Number of Epoches 20
Tolerance for Eearly Stopping 5 Epoches
Dropout Rate 0.1
Attention Heads 2
Node Embeddings 100
Time Embeddings 100
Memory Dimension (TGN) 172
Message Dimension (TGN) 100
Number of Runs 3




B Numerical Results of Cross-granularity Evaluation

Table B.4: AU-ROC of dynamic link prediction on the "second" granularity data across three negative
sampling strategies. Note that we report the mean AU-ROC over three runs with the standard
deviations in parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. ucCI Rank
JODIE-s 0.992 (0.001)  0.999 (0.000) 0.857 (0.015)  0.999 (0.000) 0.930 (0.005) 0.996 (0.000) 0.994 (0.001) 3
DyRep-s 0.681 (0.010)  0.566 (0.000) 0.606 (0.005) 0.505 (0.009) 0.643 (0.011) 0.679 (0.053) 0.833(0.001) 12
TGN-s 0.979 (0.001) 0.961 (0.000) 0.789 (0.012) 0.694 (0.013) 0.808 (0.019) 0.923 (0.001) 0.901 (0.006) 6
JODIE-m 0.993 (0.000)  0.999 (0.000) 0.865 (0.007) 0.999 (0.000) 0.926 (0.002) 0.995 (0.001)  0.995 (0.000) 1
DyRep-m 0.677 (0.011)  0.561 (0.000) 0.588 (0.010)  0.495 (0.005) 0.634 (0.019) 0.696 (0.015) 0.837 (0.008) 13
TGN-m 0.978 (0.001)  0.955 (0.000) 0.805 (0.029) 0.695 (0.016) 0.807 (0.020) 0.869 (0.007)  0.903 (0.039) 5
JODIE-h 0.992 (0.001)  0.996 (0.000) 0.845 (0.018) 0.997 (0.000) 0.923 (0.017) 0.914 (0.000) 0.995 (0.001) 2
DyRep-h 0.640 (0.011)  0.496 (0.000) 0.590 (0.012)  0.503 (0.000) 0.593 (0.057) 0.701 (0.000) 0.829 (0.016) 14
TGN-h 0.960 (0.001)  0.928 (0.000) 0.688 (0.000) 0.684 (0.000) 0.764 (0.027) 0.562 (0.000) 0.813 (0.023) 8
JODIE-d 0.976 (0.005)  0.886 (0.000) 0.623 (0.000) 0.928 (0.000)  0.920 (0.004) 0.633 (0.000) 0.994 (0.001) 4
DyRep-d 0.582(0.032)  0.462 (0.000) 0.591 (0.000) 0.505 (0.000) 0.649 (0.006) 0.513 (0.000) 0.835 (0.009) 11
TGN-d 0.944 (0.005)  0.923 (0.000) 0.570 (0.000) 0.602 (0.000) 0.795 (0.016) 0.595 (0.000) 0.836 (0.024) 9
EdgeBank,, 0.888(0.000) 0.924(0.000) 0.607 (0.000) 0.840 (0.000) 0.867 (0.000) 0.600 (0.000) 0.733 (0.000) 7
EdgeBank,, 0.911(0.000) 0.954(0.000) 0.548 (0.000) 0.827 (0.000) 0.858 (0.000) 0.538 (0.000) 0.749 (0.000) 10

(b) Historical Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.360 (0.006) 0.373 (0.007) 0.147 (0.010) 0.415 (0.006) 0.443 (0.002) 0.621 (0.020) 0.431 (0.037) 11
DyRep-s 0.386 (0.003)  0.421 (0.000) 0.408 (0.008) 0.481 (0.017) 0.590 (0.018) 0.715 (0.064) 0.441 (0.016) 7
TGN-s 0.815(0.014)  0.765 (0.000)  0.695 (0.042) 0.589 (0.008) 0.657 (0.003) 0.885 (0.009) 0.755 (0.011) 2
JODIE-m 0.364 (0.002) 0.372(0.011) 0.138 (0.010) 0.410 (0.010)  0.445 (0.002) 0.606 (0.023) 0.386 (0.006) 12
DyRep-m 0.370 (0.014)  0.463 (0.000) 0.387 (0.003) 0.464 (0.011) 0.591 (0.011) 0.736 (0.010) 0.425 (0.031) 9
TGN-m 0.809 (0.003) 0.735(0.000) 0.714 (0.049) 0.641 (0.031) 0.656 (0.004) 0.846 (0.044) 0.714 (0.063) 1
JODIE-h 0.360 (0.010) 0.315(0.000) 0.119 (0.002) 0.328 (0.001) 0.444 (0.002) 0.528 (0.000) 0.383 (0.042) 14
DyRep-h 0.386 (0.008) 0.550 (0.000) 0.431 (0.034) 0.464 (0.001) 0.555 (0.046) 0.763 (0.000) 0.450 (0.031) 8
TGN-h 0.734 (0.023)  0.742 (0.000) 0.634 (0.001) 0.618 (0.001) 0.604 (0.017) 0.613 (0.000) 0.648 (0.031) 5
JODIE-d 0.403 (0.016)  0.381 (0.000)  0.223 (0.000) 0.195 (0.000) 0.441 (0.001) 0.521 (0.000) 0.339 (0.024) 13
DyRep-d 0.379 (0.001)  0.449 (0.000)  0.402 (0.000) 0.498 (0.000) 0.590 (0.011) 0.467 (0.000) 0.465 (0.017) 6
TGN-d 0.731 (0.014)  0.739 (0.000)  0.702 (0.000) 0.624 (0.000) 0.648 (0.030) 0.629 (0.000) 0.634 (0.079) 4
EdgeBanky, 0.754 (0.000) 0.748 (0.000) 0.564 (0.000) 0.694 (0.000) 0.606 (0.000) 0.710 (0.000) 0.717 (0.000) 3
EdgeBank,, 0.492(0.000) 0.508 (0.000) 0.293 (0.000) 0.493 (0.000) 0.451 (0.000) 0.523 (0.000) 0.381 (0.000) 10

(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.324 (0.004)  0.391 (0.005) 0.325 (0.030) 0.465 (0.004) 0.502 (0.001) 0.626 (0.020) 0.513 (0.020) 9
DyRep-s 0.607 (0.009) 0.448 (0.000) 0.561 (0.003) 0.505 (0.001) 0.586 (0.014) 0.712(0.053) 0.480 (0.018) 6
TGN-s 0.803 (0.008) 0.802 (0.000) 0.654 (0.029) 0.557 (0.005) 0.691 (0.009) 0.880 (0.010) 0.746 (0.024) 1
JODIE-m 0.323 (0.002) 0.390 (0.008) 0.308 (0.026) 0.463 (0.006) 0.501 (0.002) 0.610 (0.025) 0.479 (0.007) 14
DyRep-m 0.584 (0.034) 0.493 (0.000) 0.521 (0.013) 0.499 (0.008) 0.583 (0.017) 0.729 (0.012) 0.471 (0.027) 8
TGN-m 0.783 (0.006)  0.790 (0.000) 0.632 (0.014) 0.597 (0.025)  0.690 (0.010) 0.837 (0.046) 0.741 (0.030) 2
JODIE-h 0.327 (0.001)  0.366 (0.000) 0.248 (0.018)  0.422 (0.001) 0.501 (0.005) 0.526 (0.000) 0.480 (0.036) 11
DyRep-h 0.590 (0.016)  0.577 (0.000)  0.546 (0.000) 0.497 (0.001) 0.561 (0.036) 0.751 (0.000) 0.490 (0.016) 7
TGN-h 0.701 (0.010)  0.743 (0.000) 0.518 (0.000) 0.543 (0.001) 0.657 (0.014) 0.593 (0.000) 0.648 (0.009) 3
JODIE-d 0.442 (0.013)  0.460 (0.000)  0.458 (0.000) 0.339 (0.000) 0.496 (0.001) 0.515 (0.000) 0.455 (0.011) 12
DyRep-d 0.576 (0.027) 0.438 (0.000) 0.534 (0.000) 0.514 (0.000) 0.593 (0.011) 0.468 (0.000) 0.507 (0.014) 5
TGN-d 0.706 (0.011)  0.724 (0.000)  0.468 (0.000) 0.527 (0.000) 0.672 (0.017) 0.602 (0.000) 0.642 (0.019) 4

EdgeBank,, 0.417 (0.000) 0.439 (0.000) 0.189 (0.000) 0.447 (0.000) 0.484 (0.000) 0.677 (0.000) 0.491 (0.000) 13
EdgeBank., 0.435(0.000) 0.465(0.000) 0.219(0.000) 0.463 (0.000) 0.468 (0.000) 0.566 (0.000) 0.515(0.000) 10




Table B.5: AU-ROC of dynamic link prediction on the "minute” granularity data across three negative
sampling strategies. Note that we report the mean AU-ROC over three runs with the standard
deviations in parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.992 (0.001)  0.999 (0.000) 0.856 (0.015) 0.999 (0.000) 0.930 (0.005) 0.996 (0.000) 0.994 (0.001) 2
DyRep-s 0.679 (0.009) 0.568 (0.000) 0.603 (0.007) 0.508 (0.008) 0.634 (0.015) 0.678 (0.055) 0.830 (0.002) 11
TGN-s 0.977 (0.001)  0.961 (0.000) 0.752 (0.026) 0.694 (0.013) 0.809 (0.017) 0.847 (0.004) 0.893 (0.009) 5
JODIE-m 0.993 (0.000)  0.999 (0.000) 0.864 (0.007) 0.999 (0.000) 0.927 (0.002) 0.995 (0.001)  0.995 (0.000) 1
DyRep-m 0.676 (0.010)  0.559 (0.000) 0.587 (0.008) 0.499 (0.004) 0.629 (0.009) 0.697 (0.016) 0.837 (0.010) 12
TGN-m 0.977 (0.001)  0.955 (0.000) 0.802 (0.027) 0.695 (0.015) 0.810(0.017) 0.875 (0.007) 0.892 (0.034) 4
JODIE-h 0.992 (0.001)  0.996 (0.000) 0.844 (0.020) 0.997 (0.000) 0.923 (0.016) 0.909 (0.000)  0.995 (0.001) 3
DyRep-h 0.639 (0.012)  0.498 (0.000) 0.592 (0.014) 0.501 (0.000) 0.590 (0.058) 0.692 (0.000) 0.829 (0.017) 13
TGN-h 0.960 (0.001)  0.929 (0.000) 0.688 (0.000) 0.683 (0.000) 0.764 (0.027) 0.601 (0.000) 0.811 (0.022) 7
JODIE-d 0.976 (0.005)  0.884 (0.000) 0.629 (0.000) 0.930 (0.000) 0.921 (0.002) 0.633 (0.000) 0.994 (0.001) 6
DyRep-d 0.585(0.032)  0.464 (0.000) 0.595 (0.000) 0.498 (0.000) 0.637 (0.013) 0.513 (0.000) 0.834 (0.009) 14
TGN-d 0.944 (0.005)  0.922 (0.000) 0.570 (0.000) 0.602 (0.000) 0.795 (0.015) 0.595 (0.000) 0.836 (0.023) 10
EdgeBank, 0.888 (0.000) 0.924 (0.000) 0.607 (0.000) 0.840 (0.000) 0.867 (0.000) 0.600 (0.000) 0.733 (0.000) 8
EdgeBank,, 0.911(0.000) 0.954 (0.000) 0.548 (0.000) 0.827 (0.000) 0.858 (0.000) 0.538 (0.000) 0.749 (0.000) 9
(b) Historical Sampling
Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.363 (0.007)  0.373 (0.007) 0.148 (0.011) 0.415 (0.006) 0.442 (0.001) 0.620 (0.021) 0.431 (0.036) 11
DyRep-s 0.385(0.005) 0.423 (0.000) 0.404 (0.010) 0.480 (0.019) 0.576 (0.024) 0.714 (0.065) 0.441 (0.017) 7
TGN-s 0.808 (0.015)  0.763 (0.000) 0.685 (0.043) 0.589 (0.007) 0.661 (0.001) 0.845 (0.013) 0.745 (0.013) 1
JODIE-m 0.366 (0.003) 0.372 (0.011) 0.139(0.010) 0.410 (0.011) 0.443 (0.002) 0.603 (0.022) 0.386 (0.006) 12
DyRep-m 0.367 (0.012)  0.455 (0.000) 0.387 (0.003) 0.454 (0.007) 0.584 (0.011) 0.734 (0.015) 0.423 (0.032) 8
TGN-m 0.805 (0.002)  0.732 (0.000) 0.704 (0.052) 0.640 (0.030) 0.661 (0.002) 0.883 (0.021) 0.696 (0.062) 2
JODIE-h 0.362 (0.011) 0.316 (0.001) 0.119(0.002) 0.327 (0.001) 0.443 (0.002) 0.526 (0.000) 0.384 (0.041) 14
DyRep-h 0.384 (0.011)  0.548 (0.000)  0.429 (0.033) 0.466 (0.001) 0.565 (0.050) 0.754 (0.000) 0.450 (0.032) 6
TGN-h 0.736 (0.022)  0.745 (0.000)  0.623 (0.001) 0.614 (0.002) 0.603 (0.017)  0.664 (0.000) 0.644 (0.028) 5
JODIE-d 0.404 (0.016)  0.381 (0.001)  0.220 (0.000) 0.197 (0.000) 0.441 (0.001) 0.521 (0.000) 0.339 (0.024) 13
DyRep-d 0.377 (0.003)  0.454 (0.000) 0.410 (0.000) 0.498 (0.000) 0.580 (0.015) 0.467 (0.000) 0.463 (0.018) 9
TGN-d 0.731 (0.016)  0.739 (0.000)  0.700 (0.000) 0.625 (0.000) 0.647 (0.031) 0.629 (0.000) 0.634 (0.078) 4
EdgeBank,, 0.754 (0.000) 0.748 (0.000) 0.570 (0.000) 0.700 (0.000) 0.606 (0.000) 0.710 (0.000) 0.717 (0.000) 3
EdgeBank,, 0.492(0.000) 0.508 (0.000) 0.293 (0.000) 0.493 (0.000) 0.451 (0.000) 0.523 (0.000) 0.381 (0.000) 10
(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCl Rank
JODIE-s 0.324 (0.004)  0.391 (0.005) 0.326 (0.030) 0.466 (0.004) 0.501 (0.001) 0.627 (0.021) 0.512 (0.020) 9
DyRep-s 0.608 (0.008) 0.450 (0.000) 0.556 (0.005) 0.510(0.014) 0.577 (0.017) 0.712 (0.054) 0.479 (0.020) 6
TGN-s 0.795 (0.009)  0.801 (0.000) 0.631(0.012) 0.557 (0.005) 0.695 (0.007) 0.837 (0.013) 0.734 (0.025) 1
JODIE-m 0.323 (0.002)  0.390 (0.008) 0.308 (0.027) 0.463 (0.006) 0.500 (0.002) 0.609 (0.025) 0.479 (0.007) 12
DyRep-m 0.583 (0.034) 0.485 (0.000) 0.520(0.012) 0.485 (0.006) 0.577 (0.014) 0.727 (0.016)  0.470 (0.028) 7
TGN-m 0.779 (0.004)  0.789 (0.000) 0.622 (0.013) 0.596 (0.024) 0.694 (0.007) 0.875 (0.022) 0.722 (0.030) 2
JODIE-h 0.328 (0.001)  0.366 (0.000) 0.249 (0.018) 0.422 (0.001) 0.501 (0.004) 0.525 (0.000) 0.480 (0.035) 14
DyRep-h 0.589 (0.014)  0.575 (0.000)  0.544 (0.006) 0.485 (0.002) 0.566 (0.040) 0.741 (0.000) 0.489 (0.015) 5
TGN-h 0.702 (0.010)  0.749 (0.000) 0.514 (0.001) 0.542 (0.000) 0.656 (0.011) 0.644 (0.000) 0.643 (0.007) 3
JODIE-d 0.441 (0.014)  0.459 (0.001)  0.456 (0.000) 0.339 (0.000) 0.497 (0.001) 0.515 (0.000) 0.454 (0.011) 13
DyRep-d 0.581 (0.031)  0.445 (0.000)  0.540 (0.000) 0.516 (0.000) 0.585(0.018) 0.468 (0.000) 0.504 (0.019) 8
TGN-d 0.705 (0.011)  0.725 (0.000)  0.461 (0.000) 0.528 (0.000) 0.673 (0.017) 0.602 (0.000) 0.642 (0.019) 4
EdgeBanky,, 0.417(0.000) 0.439 (0.000) 0.189 (0.000) 0.447 (0.000) 0.484 (0.000) 0.677 (0.000) 0.491 (0.000) 11
EdgeBank,, 0.435(0.000) 0.465 (0.000) 0.219 (0.000) 0.463 (0.000) 0.468 (0.000) 0.566 (0.000) 0.515 (0.000) 10




Table B.6: AU-ROC of dynamic link prediction on the "hour" granularity data across three negative
sampling strategies. Note that we report the mean AU-ROC over three runs with the standard
deviations in parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.991 (0.001)  0.987 (0.001) 0.765 (0.012)  0.993 (0.000) 0.932 (0.005) 0.781 (0.052) 0.994 (0.001) 3
DyRep-s 0.561 (0.011)  0.483 (0.000) 0.585(0.011) 0.504 (0.007) 0.636 (0.013) 0.679 (0.057) 0.829 (0.003) 14
TGN-s 0.949 (0.005)  0.909 (0.000) 0.616 (0.012)  0.659 (0.015) 0.802 (0.025) 0.677 (0.018)  0.854 (0.005) 6
JODIE-m 0.993 (0.001)  0.986 (0.000) 0.760 (0.002) 0.993 (0.000) 0.928 (0.003) 0.783 (0.040)  0.995 (0.000) 2
DyRep-m 0.619 (0.027)  0.531 (0.000) 0.560 (0.033) 0.503 (0.009) 0.644 (0.002) 0.687 (0.023) 0.835(0.013) 13
TGN-m 0.953 (0.001)  0.850 (0.000) 0.618 (0.041) 0.667 (0.013) 0.802 (0.025) 0.657 (0.045) 0.848 (0.057) 7
JODIE-h 0.992 (0.001)  0.992 (0.000) 0.785(0.009) 0.993 (0.000) 0.926 (0.015) 0.898 (0.000) 0.995 (0.001) 1
DyRep-h 0.668 (0.016)  0.659 (0.000) 0.612(0.013) 0.510 (0.000) 0.607 (0.052) 0.699 (0.000) 0.833 (0.013) 11
TGN-h 0.956 (0.001)  0.969 (0.000) 0.708 (0.000) 0.682 (0.000) 0.770 (0.025) 0.810 (0.000) 0.839 (0.019) 5
JODIE-d 0.978 (0.004)  0.929 (0.000)  0.709 (0.000) 0.939 (0.000) 0.922 (0.006) 0.770 (0.000)  0.994 (0.001) 4
DyRep-d 0.590 (0.020)  0.539 (0.000) 0.618 (0.000) 0.504 (0.000) 0.647 (0.014) 0.482 (0.000) 0.838 (0.008) 12
TGN-d 0.943 (0.004) 0.932 (0.000) 0.618 (0.000) 0.590 (0.000) 0.797 (0.017)  0.664 (0.000) 0.836 (0.024) 8
EdgeBank, 0.888 (0.000) 0.924 (0.000) 0.607 (0.000) 0.840 (0.000) 0.867 (0.000) 0.600 (0.000) 0.733 (0.000) 9
EdgeBank,, 0.911(0.000) 0.954 (0.000) 0.548 (0.000) 0.827 (0.000) 0.858 (0.000) 0.538 (0.000) 0.749 (0.000) 10
(b) Historical Sampling
Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.362 (0.005) 0.401 (0.000) 0.133(0.006) 0.417 (0.005) 0.444 (0.004) 0.451 (0.033) 0.431 (0.029) 11
DyRep-s 0.392 (0.010)  0.504 (0.000) 0.461 (0.035) 0.478 (0.021) 0.590 (0.016) 0.716 (0.068) 0.437 (0.014) 7
TGN-s 0.703 (0.023)  0.689 (0.000) 0.597 (0.049) 0.564 (0.015) 0.656 (0.011) 0.750 (0.058) 0.624 (0.019) 5
JODIE-m 0.364 (0.002)  0.401 (0.000) 0.125(0.004) 0.410 (0.014) 0.446 (0.001) 0.441 (0.018) 0.385(0.014) 13
DyRep-m 0.399 (0.013)  0.384 (0.000) 0.499 (0.082) 0.463 (0.002) 0.596 (0.007) 0.738 (0.013) 0.425 (0.037) 8
TGN-m 0.717 (0.004)  0.665 (0.000) 0.633 (0.022) 0.601 (0.035) 0.656 (0.011) 0.644 (0.068) 0.587 (0.102) 5
JODIE-h 0.360 (0.008) 0.319 (0.000) 0.116 (0.003) 0.326 (0.000) 0.446 (0.002) 0.517 (0.000) 0.382 (0.050) 14
DyRep-h 0.390 (0.002)  0.531 (0.000) 0.418 (0.032) 0.463 (0.000) 0.576 (0.042) 0.754 (0.000) 0.447 (0.041) 6
TGN-h 0.726 (0.014)  0.752 (0.000)  0.579 (0.001)  0.605 (0.001) 0.604 (0.023) 0.885 (0.000) 0.697 (0.022) 1
JODIE-d 0.402 (0.018)  0.425 (0.000) 0.128 (0.000) 0.195 (0.000) 0.441 (0.001) 0.493 (0.000) 0.338 (0.024) 12
DyRep-d 0.377 (0.009)  0.481 (0.000) 0.408 (0.000) 0.492 (0.000) 0.593 (0.016) 0.462 (0.000) 0.457 (0.025) 9
TGN-d 0.716 (0.019)  0.723 (0.000)  0.634 (0.000) 0.599 (0.000) 0.645(0.037) 0.781 (0.000) 0.638 (0.077) 2
EdgeBank,, 0.754 (0.000) 0.748 (0.000) 0.564 (0.000) 0.694 (0.000) 0.606 (0.000) 0.710 (0.000) 0.717 (0.000) 3
EdgeBank,, 0.492(0.000) 0.508 (0.000) 0.293 (0.000) 0.493 (0.000) 0.451 (0.000) 0.523 (0.000) 0.381 (0.000) 10
(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCl Rank
JODIE-s 0.317 (0.003)  0.411 (0.000) 0.261 (0.028) 0.463 (0.004) 0.503 (0.001) 0.450 (0.035) 0.510 (0.020) 10
DyRep-s 0.604 (0.012)  0.535 (0.000)  0.530(0.002) 0.508 (0.005) 0.584 (0.010) 0.715 (0.062) 0.478 (0.021) 6
TGN-s 0.680 (0.011)  0.675 (0.000) 0.497 (0.018) 0.530 (0.019)  0.690 (0.015) 0.744 (0.055) 0.628 (0.033) 3
JODIE-m 0.316 (0.002) 0.411 (0.001) 0.243 (0.012)  0.460 (0.009) 0.502 (0.003) 0.439 (0.020) 0.476 (0.007) 14
DyRep-m 0.634 (0.024)  0.425 (0.000) 0.516(0.011) 0.512(0.013) 0.587 (0.004) 0.729 (0.011) 0.472 (0.030) 7
TGN-m 0.681 (0.006) 0.663 (0.000) 0.524 (0.019) 0.553 (0.026) 0.690 (0.015) 0.641 (0.066) 0.633 (0.056) 4
JODIE-h 0.321 (0.001)  0.362 (0.001) 0.226 (0.013)  0.418 (0.002) 0.502 (0.003) 0.519 (0.000) 0.476 (0.036) 13
DyRep-h 0.598 (0.009)  0.596 (0.000) 0.554 (0.006) 0.509 (0.001) 0.571(0.036) 0.746 (0.000) 0.485 (0.023) 5
TGN-h 0.692 (0.007)  0.800 (0.000) 0.586 (0.001) 0.531 (0.000) 0.658 (0.007) 0.878 (0.000) 0.688 (0.003) 1
JODIE-d 0.438 (0.015)  0.546 (0.001)  0.264 (0.000) 0.333 (0.000) 0.495 (0.001) 0.491 (0.000) 0.451 (0.010) 11
DyRep-d 0.569 (0.024)  0.469 (0.000) 0.551 (0.000) 0.507 (0.000) 0.595(0.015) 0.468 (0.000) 0.495 (0.025) 8
TGN-d 0.700 (0.016)  0.731 (0.000)  0.454 (0.000) 0.513 (0.000) 0.671 (0.013) 0.762 (0.000) 0.642 (0.022) 2
EdgeBanky,, 0.417(0.000) 0.439 (0.000) 0.189 (0.000) 0.447 (0.000) 0.484 (0.000) 0.677 (0.000) 0.491 (0.000) 12
EdgeBank,, 0.435(0.000) 0.465 (0.000) 0.219 (0.000) 0.463 (0.000) 0.468 (0.000) 0.566 (0.000) 0.515 (0.000) 9




Table B.7: AU-ROC of dynamic link prediction on the "day" granularity data across three negative
sampling strategies. Note that we report the mean AU-ROC over three runs with the standard
deviations in parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.954 (0.006) 0.931 (0.014)  0.697 (0.003) 0.851 (0.009) 0.908 (0.001) 0.628 (0.057) 0.993 (0.001) 4
DyRep-s 0.582(0.048) 0.500 (0.000) 0.583(0.023) 0.510(0.013) 0.624 (0.027) 0.582 (0.023) 0.828 (0.010) 14
TGN-s 0.916 (0.006)  0.876 (0.000) 0.607 (0.042) 0.631(0.019) 0.738 (0.037) 0.581 (0.061) 0.846 (0.019) 9
JODIE-m 0.993 (0.002)  0.986 (0.001) 0.760 (0.006) 0.993 (0.005) 0.928 (0.006) 0.600 (0.040)  0.995 (0.000) 1
DyRep-m 0.619 (0.036)  0.531 (0.000) 0.560 (0.030) 0.503 (0.007) 0.644 (0.010) 0.611 (0.017) 0.835(0.018) 12
TGN-m 0.953 (0.003)  0.850 (0.000) 0.618 (0.035) 0.667 (0.011) 0.802 (0.038) 0.534 (0.025) 0.848 (0.058) 7
JODIE-h 0.962 (0.004)  0.965 (0.000) 0.700 (0.008) 0.857 (0.000) 0.897 (0.014) 0.731 (0.053) 0.994 (0.001) 2
DyRep-h 0.641 (0.015)  0.524 (0.000) 0.592 (0.000) 0.501 (0.000) 0.590 (0.070) 0.615 (0.033) 0.831 (0.016) 13
TGN-h 0.923 (0.012)  0.952 (0.000)  0.703 (0.000) 0.631 (0.000) 0.766 (0.040) 0.625 (0.039)  0.800 (0.025) 6
JODIE-d 0.979 (0.002)  0.942 (0.000) 0.692 (0.000) 0.868 (0.000) 0.914 (0.001) 0.692 (0.003) 0.993 (0.001) 3
DyRep-d 0.692 (0.005) 0.610 (0.000) 0.615 (0.000) 0.519 (0.000) 0.654 (0.010) 0.532 (0.014) 0.834 (0.007) 11
TGN-d 0.947 (0.001)  0.963 (0.000) 0.638 (0.000) 0.636 (0.000) 0.783(0.029) 0.761 (0.032) 0.843 (0.026) 5
EdgeBank,, 0.890 (0.000) 0.920 (0.000) 0.610 (0.000) 0.840 (0.000) 0.870 (0.000) 0.600 (0.000) 0.730 (0.000) 8
EdgeBank,, 0.910(0.000) 0.950 (0.000) 0.550 (0.000) 0.830 (0.000) 0.860 (0.000) 0.540 (0.000) 0.750 (0.000) 10
(b) Historical Sampling
Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.361 (0.002)  0.366 (0.008) 0.153(0.003) 0.372(0.001) 0.432(0.003) 0.402 (0.043) 0.430 (0.030) 12
DyRep-s 0.408 (0.004)  0.476 (0.000) 0.479 (0.048) 0.463 (0.015) 0.580(0.021) 0.613 (0.034) 0.440 (0.022) 7
TGN-s 0.688 (0.014)  0.684 (0.000)  0.590 (0.056) 0.533 (0.032) 0.633(0.010) 0.657 (0.055) 0.637 (0.028) 5
JODIE-m 0.364 (0.003)  0.401 (0.005) 0.125(0.006) 0.410 (0.001) 0.446 (0.001) 0.380 (0.030) 0.385 (0.023) 13
DyRep-m 0.399 (0.013)  0.384 (0.000) 0.499 (0.050) 0.463 (0.003) 0.596 (0.008) 0.645 (0.011) 0.425 (0.028) 9
TGN-m 0.717 (0.014)  0.665 (0.000) 0.633 (0.048) 0.601 (0.036) 0.656 (0.011) 0.583 (0.061) 0.587 (0.100) 4
JODIE-h 0.358 (0.001)  0.385 (0.001) 0.142 (0.011) 0.368 (0.000) 0.431 (0.001) 0.480 (0.046) 0.387 (0.040) 14
DyRep-h 0.383 (0.008) 0.576 (0.000) 0.461 (0.005) 0.441 (0.001) 0.570(0.039) 0.651 (0.034) 0.448 (0.035) 8
TGN-h 0.692 (0.042)  0.739 (0.000)  0.494 (0.002) 0.618 (0.000) 0.603 (0.047) 0.721 (0.053) 0.646 (0.007) 3
JODIE-d 0.383(0.010) 0.431 (0.001) 0.144 (0.000) 0.209 (0.000) 0.433 (0.001) 0.452 (0.013) 0.337 (0.020) 11
DyRep-d 0.391 (0.003)  0.485 (0.001)  0.404 (0.000) 0.500 (0.000) 0.599 (0.015) 0.489 (0.016) 0.452 (0.020) 6
TGN-d 0.702 (0.024)  0.764 (0.000) 0.627 (0.000) 0.588 (0.000) 0.637 (0.044) 0.830(0.022) 0.637 (0.071) 1
EdgeBank,, 0.754 (0.000) 0.748 (0.000) 0.564 (0.000) 0.694 (0.000) 0.606 (0.000) 0.710 (0.000) 0.717 (0.000) 2
EdgeBank,, 0.492(0.000) 0.508 (0.000) 0.293 (0.000) 0.493 (0.000) 0.451 (0.000) 0.523 (0.000) 0.381 (0.000) 10
(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCl Rank
JODIE-s 0.310 (0.001)  0.433 (0.009) 0.209 (0.017)  0.426 (0.001)  0.490 (0.003) 0.414 (0.040)  0.500 (0.020) 11
DyRep-s 0.566 (0.015)  0.519 (0.000)  0.534 (0.050) 0.508 (0.008) 0.584 (0.017) 0.606 (0.026) 0.488 (0.025) 5
TGN-s 0.665 (0.009) 0.673 (0.000) 0.515(0.039) 0.508 (0.027) 0.645(0.030) 0.637 (0.043) 0.640 (0.024) 4
JODIE-m 0.316 (0.003) 0.411 (0.007) 0.243 (0.008) 0.460 (0.001) 0.502 (0.001) 0.389 (0.026) 0.476 (0.019) 12
DyRep-m 0.634 (0.010)  0.425 (0.000) 0.516 (0.032) 0.512(0.009) 0.587 (0.014) 0.632 (0.008) 0.472 (0.024) 8
TGN-m 0.681 (0.011)  0.663 (0.000) 0.524 (0.009) 0.553 (0.009) 0.690 (0.031) 0.595 (0.068) 0.633 (0.063) 3
JODIE-h 0.306 (0.001)  0.453 (0.001) 0.191 (0.007) 0.424 (0.001) 0.484 (0.004) 0.494 (0.052) 0.472(0.029) 14
DyRep-h 0.532(0.017)  0.606 (0.000) 0.498 (0.014) 0.487 (0.002) 0.566 (0.037) 0.632 (0.040) 0.492 (0.017) 6
TGN-h 0.649 (0.017)  0.796 (0.000)  0.489 (0.001) 0.529 (0.001) 0.656 (0.014) 0.691 (0.046)  0.650 (0.004) 2
JODIE-d 0.338 (0.009) 0.562 (0.001) 0.212(0.000) 0.321 (0.000) 0.489 (0.002) 0.461 (0.008) 0.439 (0.016) 13
DyRep-d 0.467 (0.011)  0.522 (0.000) 0.513 (0.000) 0.510 (0.000) 0.595(0.011) 0.489 (0.019) 0.492 (0.019) 7
TGN-d 0.689 (0.015)  0.825 (0.001) 0.527 (0.000) 0.563 (0.000) 0.672 (0.020) 0.809 (0.027) 0.647 (0.021) 1
EdgeBanky,, 0.417(0.000) 0.439 (0.000) 0.189 (0.000) 0.447 (0.000) 0.484 (0.000) 0.677 (0.000) 0.491 (0.000) 10
EdgeBank,, 0.435(0.000) 0.465 (0.000) 0.219 (0.000) 0.463 (0.000) 0.468 (0.000) 0.566 (0.000) 0.515 (0.000) 9




Table B.8: AP of dynamic link prediction on the "second" granularity data across three negative
sampling strategies. Note that we report the mean AP over three runs with the standard deviations in
parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.993 (0.001)  0.999 (0.000) 0.840 (0.018) 1.000 (0.000) 0.931 (0.006) 0.995 (0.000) 0.993 (0.001) 3
DyRep-s 0.682 (0.008) 0.563 (0.000) 0.614 (0.005) 0.527 (0.003) 0.642(0.014) 0.728 (0.032) 0.832 (0.002) 12
TGN-s 0.981 (0.001)  0.963 (0.000) 0.764 (0.014) 0.697 (0.014)  0.790 (0.021)  0.902 (0.001)  0.903 (0.005) 6
JODIE-m 0.994 (0.000)  1.000 (0.000) 0.848 (0.010) 0.999 (0.000) 0.926 (0.003) 0.995 (0.001) 0.994 (0.001) 1
DyRep-m 0.684 (0.005)  0.565 (0.000) 0.597 (0.008) 0.518 (0.004) 0.629 (0.020) 0.679 (0.034) 0.831 (0.006) 13
TGN-m 0.980 (0.001)  0.954 (0.000) 0.779 (0.024) 0.699 (0.015) 0.789 (0.022) 0.821 (0.008) 0.907 (0.036) 5
JODIE-h 0.994 (0.001)  0.996 (0.000) 0.847 (0.018) 0.998 (0.000) 0.925(0.018) 0.861 (0.000) 0.994 (0.001) 2
DyRep-h 0.656 (0.014)  0.514 (0.000) 0.602 (0.007) 0.526 (0.000) 0.600 (0.042) 0.679 (0.000) 0.818 (0.020) 14
TGN-h 0.962 (0.001)  0.923 (0.000)  0.660 (0.000) 0.685 (0.000) 0.727 (0.029) 0.533 (0.000) 0.790 (0.019) 8
JODIE-d 0.978 (0.006)  0.884 (0.000) 0.643 (0.000) 0.936 (0.000) 0.920 (0.004) 0.611 (0.000) 0.994 (0.001) 4
DyRep-d 0.605 (0.027)  0.490 (0.000)  0.608 (0.000) 0.526 (0.000) 0.650 (0.003) 0.506 (0.000) 0.834 (0.006) 11
TGN-d 0.944 (0.004)  0.918 (0.000) 0.557 (0.000) 0.602 (0.000) 0.760 (0.014) 0.543 (0.000) 0.836 (0.027) 9
EdgeBank, 0.887(0.000) 0.921 (0.000) 0.576 (0.000) 0.784 (0.000) 0.826 (0.000) 0.556 (0.000) 0.730 (0.000) 7
EdgeBank,, 0.908 (0.000) 0.949 (0.000) 0.529 (0.000) 0.761 (0.000) 0.811 (0.000) 0.520 (0.000) 0.739 (0.000) 10
(b) Historical Sampling
Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.417 (0.002)  0.435 (0.003) 0.336 (0.002) 0.454 (0.003) 0.440 (0.001) 0.517 (0.012) 0.457 (0.021) 11
DyRep-s 0.418 (0.001)  0.437 (0.000) 0.427 (0.003) 0.476 (0.011) 0.585(0.021) 0.717 (0.040)  0.440 (0.007) 7
TGN-s 0.827 (0.019)  0.746 (0.000)  0.644 (0.043) 0.628 (0.010) 0.649 (0.014) 0.916 (0.010) 0.777 (0.013) 2
JODIE-m 0.419 (0.001)  0.434 (0.005) 0.334 (0.003) 0.451 (0.006) 0.441 (0.001) 0.508 (0.013) 0.430 (0.005) 12
DyRep-m 0.411 (0.006) 0.457 (0.000) 0.417 (0.002) 0.463 (0.006) 0.588 (0.011) 0.698 (0.029) 0.435 (0.016) 9
TGN-m 0.804 (0.016)  0.704 (0.000) 0.644 (0.046) 0.684 (0.034) 0.649 (0.014) 0.820 (0.060) 0.748 (0.056) 1
JODIE-h 0.416 (0.004)  0.403 (0.000) 0.329 (0.001) 0.407 (0.000) 0.441 (0.001) 0.469 (0.000) 0.429 (0.023) 14
DyRep-h 0.419 (0.004) 0.519 (0.000) 0.434 (0.012) 0.463 (0.001) 0.558 (0.032) 0.725 (0.000) 0.445 (0.014) 8
TGN-h 0.721 (0.023)  0.713 (0.000)  0.565 (0.001) 0.644 (0.001) 0.588 (0.011) 0.579 (0.000) 0.623 (0.036) 5
JODIE-d 0.417 (0.007)  0.409 (0.000) 0.354 (0.000) 0.347 (0.000) 0.440 (0.000) 0.471 (0.000) 0.405 (0.011) 13
DyRep-d 0.414 (0.001)  0.455 (0.000) 0.421 (0.000) 0.471 (0.000) 0.590 (0.005) 0.454 (0.000) 0.459 (0.013) 6
TGN-d 0.709 (0.037)  0.716 (0.000)  0.633 (0.000) 0.622 (0.000) 0.627 (0.029) 0.549 (0.000) 0.614 (0.091) 4
EdgeBank, 0.689 (0.000) 0.676 (0.000) 0.541 (0.000) 0.627 (0.000) 0.568 (0.000) 0.633 (0.000) 0.701 (0.000) 3
EdgeBank,, 0.496 (0.000) 0.504 (0.000) 0.432(0.000) 0.497 (0.000) 0.483 (0.000) 0.512(0.000) 0.455 (0.000) 10
(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCl Rank
JODIE-s 0.412(0.002) 0.443 (0.003) 0.444 (0.028) 0.477 (0.002) 0.473 (0.000) 0.519 (0.012) 0.501 (0.013) 9
DyRep-s 0.626 (0.005) 0.481 (0.000) 0.599 (0.002) 0.519 (0.002) 0.586(0.018) 0.714 (0.036)  0.491 (0.005) 6
TGN-s 0.840 (0.007)  0.833 (0.000) 0.658 (0.027) 0.601 (0.008) 0.693 (0.011) 0.910 (0.010) 0.782 (0.025) 1
JODIE-m 0.411(0.001) 0.443 (0.004) 0.430(0.014) 0.476 (0.004) 0.473(0.001) 0.510(0.015) 0.480 (0.006) 14
DyRep-m 0.614 (0.025)  0.509 (0.000) 0.558 (0.015) 0.511 (0.006) 0.582(0.017) 0.691 (0.032) 0.499 (0.017) 8
TGN-m 0.807 (0.005)  0.807 (0.000) 0.628 (0.022) 0.640 (0.029) 0.692 (0.011) 0.808 (0.061) 0.779 (0.024) 2
JODIE-h 0.414 (0.000)  0.429 (0.000) 0.411(0.018) 0.453 (0.000) 0.473 (0.002) 0.467 (0.000) 0.482 (0.020) 11
DyRep-h 0.617 (0.009)  0.584 (0.000) 0.586 (0.005) 0.510 (0.001) 0.563 (0.025) 0.712 (0.000) 0.500 (0.010) 7
TGN-h 0.704 (0.009)  0.764 (0.000) 0.532(0.000) 0.576 (0.000) 0.641(0.014) 0.565 (0.000) 0.633 (0.019) 3
JODIE-d 0.487 (0.012)  0.499 (0.000) 0.518 (0.000) 0.418 (0.000) 0.471 (0.000) 0.471 (0.000) 0.466 (0.004) 12
DyRep-d 0.608 (0.018)  0.472 (0.000) 0.561 (0.000) 0.524 (0.000) 0.595 (0.006) 0.458 (0.000) 0.516 (0.009) 5
TGN-d 0.716 (0.023)  0.744 (0.000) 0.487 (0.000) 0.538 (0.000) 0.659 (0.017) 0.533 (0.000) 0.644 (0.038) 4
EdgeBankg,, 0.469 (0.000) 0.473 (0.000) 0.417 (0.000) 0.481 (0.000) 0.506 (0.000) 0.609 (0.000) 0.566 (0.000) 13
EdgeBank,, 0.477 (0.000) 0.485(0.000) 0.417 (0.000) 0.487 (0.000) 0.497 (0.000) 0.536 (0.000) 0.570 (0.000) 10




Table B.9: AP of dynamic link prediction on the "minute" granularity data across three negative
sampling strategies. Note that we report the mean AP over three runs with the standard deviations in
parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.993 (0.001)  0.999 (0.000) 0.840 (0.018) 1.000 (0.000) 0.931 (0.006) 0.995 (0.000) 0.993 (0.001) 2
DyRep-s 0.680 (0.006)  0.565 (0.000) 0.611 (0.007) 0.529 (0.005) 0.635(0.014) 0.731(0.033) 0.827 (0.003) 11
TGN-s 0.979 (0.001)  0.963 (0.000) 0.725(0.023) 0.697 (0.013)  0.790 (0.020) 0.784 (0.011)  0.895 (0.009) 5
JODIE-m 0.994 (0.000)  1.000 (0.000) 0.848 (0.009) 0.999 (0.000) 0.928 (0.003) 0.994 (0.001) 0.994 (0.001) 1
DyRep-m 0.683 (0.004) 0.562 (0.000) 0.596 (0.007) 0.523 (0.002) 0.628 (0.010) 0.677 (0.032) 0.832 (0.008) 12
TGN-m 0.979 (0.001)  0.954 (0.000) 0.777 (0.024) 0.697 (0.016) 0.791 (0.020)  0.832 (0.009)  0.897 (0.033) 4
JODIE-h 0.994 (0.001)  0.996 (0.000) 0.846 (0.020) 0.998 (0.000) 0.924 (0.017)  0.853 (0.000)  0.994 (0.001) 3
DyRep-h 0.655 (0.016)  0.515 (0.000) 0.603 (0.007) 0.522 (0.000) 0.601 (0.042) 0.668 (0.000) 0.817 (0.022) 13
TGN-h 0.962 (0.001)  0.925 (0.000)  0.660 (0.000) 0.682 (0.000) 0.728 (0.029) 0.562 (0.000) 0.791 (0.018) 7
JODIE-d 0.979 (0.006)  0.882 (0.000) 0.648 (0.000) 0.939 (0.000) 0.921 (0.002) 0.607 (0.000) 0.994 (0.001) 6
DyRep-d 0.607 (0.026)  0.491 (0.000)  0.609 (0.000) 0.521 (0.000) 0.640 (0.011) 0.516 (0.000) 0.832 (0.008) 14
TGN-d 0.945 (0.004)  0.918 (0.000)  0.559 (0.000) 0.601 (0.000) 0.760 (0.014) 0.536 (0.000) 0.836 (0.027) 10
EdgeBank, 0.887(0.000) 0.921 (0.000) 0.576 (0.000) 0.784 (0.000) 0.826 (0.000) 0.556 (0.000) 0.730 (0.000) 8
EdgeBank,, 0.908 (0.000) 0.949 (0.000) 0.529 (0.000) 0.761 (0.000) 0.811 (0.000) 0.520 (0.000) 0.739 (0.000) 9
(b) Historical Sampling
Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.418 (0.002)  0.435(0.003) 0.337 (0.002) 0.454 (0.003) 0.440 (0.000) 0.516 (0.012) 0.456 (0.021) 11
DyRep-s 0.417 (0.002)  0.438 (0.000) 0.425(0.004) 0.476 (0.013) 0.575(0.024) 0.719 (0.041)  0.440 (0.007) 7
TGN-s 0.821 (0.020)  0.742 (0.000)  0.629 (0.043) 0.626 (0.008) 0.651 (0.012) 0.838 (0.017) 0.767 (0.014) 1
JODIE-m 0.420 (0.001)  0.434 (0.005) 0.335(0.002) 0.451 (0.006) 0.440 (0.001) 0.507 (0.013)  0.430 (0.005) 12
DyRep-m 0.410 (0.005)  0.453 (0.000) 0.417 (0.001) 0.460 (0.004) 0.584 (0.011) 0.694 (0.027) 0.434 (0.016) 8
TGN-m 0.802 (0.020)  0.702 (0.000) 0.636 (0.047) 0.683 (0.033) 0.651(0.012) 0.881 (0.039) 0.732 (0.056) 2
JODIE-h 0.417 (0.004)  0.403 (0.000) 0.330 (0.001) 0.407 (0.000) 0.440 (0.001) 0.467 (0.000) 0.429 (0.023) 14
DyRep-h 0.418 (0.005) 0.516 (0.000) 0.432(0.011) 0.464 (0.000) 0.572 (0.038) 0.714 (0.000) 0.445 (0.015) 6
TGN-h 0.725 (0.022)  0.716 (0.000)  0.557 (0.001)  0.639 (0.002) 0.586 (0.012) 0.628 (0.000) 0.623 (0.035) 5
JODIE-d 0.418 (0.006)  0.409 (0.001) 0.354 (0.000) 0.347 (0.000) 0.439 (0.001) 0.484 (0.000) 0.405 (0.011) 13
DyRep-d 0.414 (0.002)  0.458 (0.000) 0.424 (0.000) 0.473 (0.000) 0.582 (0.006) 0.458 (0.000) 0.458 (0.014) 9
TGN-d 0.709 (0.038)  0.714 (0.000)  0.633 (0.000) 0.624 (0.000) 0.627 (0.030) 0.575 (0.000) 0.616 (0.090) 4
EdgeBank, 0.688 (0.000) 0.675(0.000) 0.541(0.000) 0.627 (0.000) 0.567 (0.000) 0.634 (0.000) 0.701 (0.000) 3
EdgeBank,, 0.496 (0.000) 0.504 (0.000) 0.432(0.000) 0.497 (0.000) 0.483 (0.000) 0.512(0.000) 0.455 (0.000) 10
(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCl Rank
JODIE-s 0.412(0.002) 0.443 (0.003) 0.445(0.028) 0.478 (0.002) 0.473 (0.000) 0.520 (0.013) 0.500 (0.013) 9
DyRep-s 0.625 (0.004)  0.483 (0.000) 0.594 (0.003) 0.527 (0.011) 0.579 (0.018) 0.716 (0.037)  0.491 (0.005) 6
TGN-s 0.833(0.008) 0.832 (0.000) 0.630(0.012) 0.601 (0.008) 0.695 (0.009) 0.825 (0.019) 0.771 (0.025) 1
JODIE-m 0.411(0.001) 0.443 (0.004) 0.431(0.015) 0.476 (0.004) 0.472(0.001) 0.510(0.015) 0.480 (0.006) 12
DyRep-m 0.611 (0.025) 0.504 (0.000) 0.557 (0.010) 0.502 (0.008) 0.580 (0.014) 0.688 (0.029) 0.498 (0.016) 7
TGN-m 0.805 (0.000)  0.807 (0.000) 0.620 (0.015) 0.640 (0.028) 0.695 (0.010) 0.870 (0.039) 0.763 (0.025) 2
JODIE-h 0.415(0.001)  0.429 (0.000) 0.412(0.018) 0.453 (0.000) 0.473 (0.002) 0.466 (0.000) 0.483 (0.020) 14
DyRep-h 0.615(0.011)  0.579 (0.000)  0.586 (0.004) 0.501 (0.001) 0.572(0.031) 0.699 (0.000) 0.499 (0.010) 5
TGN-h 0.708 (0.011)  0.771 (0.000)  0.531 (0.001) 0.572 (0.000) 0.640 (0.012) 0.612 (0.000) 0.630 (0.016) 3
JODIE-d 0.487 (0.012)  0.498 (0.000) 0.518 (0.000) 0.418 (0.000) 0.472 (0.000) 0.481 (0.000) 0.466 (0.005) 13
DyRep-d 0.614 (0.022)  0.479 (0.000) 0.566 (0.000) 0.524 (0.000) 0.589 (0.012) 0.461 (0.000) 0.514 (0.014) 8
TGN-d 0.715(0.023)  0.746 (0.000)  0.483 (0.000) 0.539 (0.000) 0.659 (0.017) 0.558 (0.000) 0.644 (0.041) 4
EdgeBankg,, 0.469 (0.000) 0.473 (0.000) 0.417 (0.000) 0.481 (0.000) 0.506 (0.000) 0.609 (0.000) 0.566 (0.000) 11
EdgeBank,, 0.477 (0.000) 0.485(0.000) 0.417 (0.000) 0.487 (0.000) 0.497 (0.000) 0.536 (0.000) 0.570 (0.000) 10




Table B.10: AP of dynamic link prediction on the "hour" granularity data across three negative
sampling strategies. Note that we report the mean AP over three runs with the standard deviations in
parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.992 (0.001) 0.989 (0.001) 0.779 (0.010) 0.994 (0.000) 0.933 (0.006) 0.760 (0.042) 0.993 (0.001) 3
DyRep-s 0.573 (0.013)  0.515 (0.000) 0.599 (0.006) 0.528 (0.004) 0.636 (0.014) 0.730 (0.037)  0.823 (0.002) 14
TGN-s 0.952 (0.005)  0.895 (0.000) 0.594 (0.015) 0.660 (0.012) 0.775(0.031) 0.613 (0.024)  0.837 (0.003) 6
JODIE-m 0.994 (0.000) 0.988 (0.000) 0.778 (0.005) 0.994 (0.000) 0.929 (0.004) 0.772 (0.031)  0.994 (0.001) 2
DyRep-m 0.639 (0.018)  0.540 (0.000) 0.576 (0.028) 0.525 (0.004) 0.643 (0.004) 0.671 (0.047) 0.830 (0.015) 13
TGN-m 0.956 (0.002)  0.830 (0.000) 0.602 (0.035) 0.664 (0.015) 0.775(0.031) 0.592 (0.048) 0.830 (0.070) 7
JODIE-h 0.993 (0.001) 0.993 (0.000) 0.802 (0.006) 0.994 (0.000) 0.927 (0.017) 0.882 (0.000) 0.994 (0.001) 1
DyRep-h 0.676 (0.006) 0.631 (0.000) 0.629 (0.002) 0.528 (0.000) 0.612(0.038) 0.670 (0.000) 0.824 (0.015) 11
TGN-h 0.960 (0.001)  0.967 (0.000) 0.682 (0.000) 0.687 (0.000) 0.739 (0.023) 0.787 (0.000) 0.833 (0.015) 5
JODIE-d 0.981 (0.004) 0.926 (0.000) 0.738 (0.000) 0.946 (0.000) 0.922 (0.007) 0.738 (0.000) 0.994 (0.001) 4
DyRep-d 0.616 (0.022)  0.535 (0.000)  0.626 (0.000) 0.523 (0.000) 0.652 (0.012) 0.490 (0.000) 0.837 (0.008) 12
TGN-d 0.946 (0.003)  0.925 (0.000)  0.609 (0.000) 0.597 (0.000) 0.765 (0.016) 0.596 (0.000) 0.835 (0.027) 8
EdgeBank,, 0.887(0.000) 0.921 (0.000) 0.576 (0.000) 0.784 (0.000) 0.826 (0.000) 0.556 (0.000) 0.730 (0.000) 9
EdgeBank,, 0.908 (0.000) 0.949 (0.000) 0.529 (0.000) 0.761 (0.000) 0.811 (0.000) 0.520 (0.000) 0.739 (0.000) 10
(b) Historical Sampling
Method ‘Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.421 (0.002)  0.449 (0.000) 0.334 (0.002) 0.455(0.002) 0.441(0.002) 0.441 (0.013) 0.457 (0.017) 11
DyRep-s 0.424 (0.006)  0.486 (0.000) 0.450 (0.014) 0.474 (0.012) 0.583(0.019) 0.720 (0.047)  0.437 (0.006) 7
TGN-s 0.689 (0.034) 0.638 (0.000) 0.551(0.036) 0.588 (0.012) 0.635(0.025) 0.658 (0.073) 0.587 (0.034) 5
JODIE-m 0.422 (0.001)  0.449 (0.000) 0.332(0.001) 0.451 (0.007) 0.442 (0.000) 0.436 (0.006) 0.431 (0.009) 13
DyRep-m 0.424 (0.006) 0.416 (0.000) 0.478 (0.054) 0.465 (0.003) 0.592 (0.002) 0.695 (0.036) 0.436 (0.018) 8
TGN-m 0.704 (0.008)  0.638 (0.000) 0.571(0.016) 0.627 (0.036) 0.635(0.024) 0.552 (0.056) 0.572(0.114) 5
JODIE-h 0.420 (0.003)  0.405 (0.000)  0.330 (0.001) 0.407 (0.000) 0.442(0.001) 0.466 (0.000) 0.430 (0.027) 14
DyRep-h 0.422 (0.002)  0.496 (0.000) 0.430(0.016) 0.461 (0.000) 0.575(0.034) 0.705 (0.000) 0.445 (0.019) 6
TGN-h 0.728 (0.008)  0.712 (0.000) 0.516 (0.001)  0.643 (0.000) 0.591 (0.022) 0.854 (0.000) 0.695 (0.021) 1
JODIE-d 0.421 (0.007)  0.426 (0.000)  0.333 (0.000) 0.347 (0.000) 0.440 (0.001) 0.458 (0.000) 0.406 (0.010) 12
DyRep-d 0.415 (0.004) 0.471 (0.000) 0.426 (0.000) 0.470 (0.000) 0.593 (0.013) 0.461 (0.000) 0.456 (0.017) 9
TGN-d 0.707 (0.043)  0.689 (0.000) 0.573 (0.000) 0.609 (0.000) 0.627 (0.034) 0.678 (0.000) 0.619 (0.087) 2
EdgeBank:, 0.689 (0.000) 0.676 (0.000) 0.541 (0.000) 0.627 (0.000) 0.568 (0.000) 0.633 (0.000) 0.701 (0.000) 3
EdgeBank,, 0.496 (0.000) 0.504 (0.000) 0.432(0.000) 0.497 (0.000) 0.483 (0.000) 0.512(0.000) 0.455 (0.000) 10
(c) Inductive Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.412 (0.002) 0.454 (0.000) 0.421(0.029) 0.477 (0.002) 0.474 (0.001) 0.441 (0.013) 0.500 (0.013) 10
DyRep-s 0.606 (0.009)  0.555 (0.000) 0.572(0.004) 0.519 (0.002) 0.584 (0.013) 0.720 (0.045) 0.488 (0.006) 6
TGN-s 0.686 (0.020)  0.649 (0.000) 0.519 (0.012) 0.560 (0.015) 0.679 (0.019) 0.654 (0.069) 0.620 (0.047) 3
JODIE-m 0.411(0.001) 0.454 (0.000) 0.406 (0.010) 0.475 (0.005) 0.474 (0.001) 0.436 (0.007) 0.479 (0.005) 14
DyRep-m 0.650 (0.017)  0.460 (0.000) 0.545(0.023) 0.524 (0.010) 0.587 (0.008) 0.689 (0.036) 0.493 (0.014) 7
TGN-m 0.691 (0.005) 0.675(0.000) 0.539(0.017) 0.581(0.024) 0.679 (0.019) 0.551 (0.054) 0.625 (0.075) 4
JODIE-h 0.415(0.001)  0.426 (0.000) 0.403 (0.016) 0.452 (0.001) 0.474 (0.002) 0.467 (0.000) 0.481 (0.020) 13
DyRep-h 0.623 (0.005)  0.576 (0.000) 0.584 (0.000) 0.516 (0.001) 0.572(0.028) 0.696 (0.000) 0.496 (0.015) 5
TGN-h 0.710 (0.007)  0.820 (0.000)  0.589 (0.000) 0.576 (0.001) 0.643 (0.006) 0.847 (0.000) 0.692 (0.006) 1
JODIE-d 0.489 (0.013)  0.552 (0.000) 0.446 (0.000) 0.416 (0.000) 0.471 (0.000) 0.458 (0.000) 0.466 (0.003) 11
DyRep-d 0.606 (0.013)  0.482 (0.000) 0.587 (0.000) 0.511 (0.000) 0.597 (0.010) 0.466 (0.000) 0.509 (0.020) 8
TGN-d 0.719 (0.029)  0.731 (0.000) 0.484 (0.000) 0.537 (0.000) 0.659 (0.014) 0.661 (0.000) 0.646 (0.042) 2
EdgeBank,, 0.469 (0.000) 0.473 (0.000) 0.417 (0.000) 0.481 (0.000) 0.506 (0.000) 0.609 (0.000) 0.566 (0.000) 12
EdgeBank,, 0.477 (0.000) 0.485(0.000) 0.417 (0.000) 0.487 (0.000) 0.497 (0.000) 0.536 (0.000) 0.570 (0.000) 9




Table B.11: AP of dynamic link prediction on the "day" granularity data across three negative
sampling strategies. Note that we report the mean AP over three runs with the standard deviations in
parenthesis, and the rank is computed by averaging the ranks over all datasets.

(a) Random Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. ucl Rank
JODIE-s 0.958 (0.006)  0.934 (0.013) 0.717 (0.001)  0.882(0.007) 0.909 (0.001) 0.587 (0.056) 0.991 (0.002) 4
DyRep-s 0.587 (0.047)  0.522 (0.000) 0.592 (0.015) 0.531(0.004) 0.630(0.023) 0.621 (0.037) 0.814 (0.009) 14
TGN-s 0.922 (0.005)  0.847 (0.000) 0.584 (0.034) 0.635(0.017) 0.699 (0.044) 0.532 (0.046) 0.835 (0.026) 9
JODIE-m 0.969 (0.002)  0.936 (0.003) 0.711 (0.007) 0.876 (0.004) 0.898 (0.008) 0.556 (0.037) 0.993 (0.001) 1
DyRep-m 0.616 (0.033)  0.546 (0.000) 0.575 (0.025) 0.526 (0.006) 0.633 (0.010) 0.612(0.031) 0.813(0.021) 12
TGN-m 0.941 (0.004)  0.857 (0.000) 0.599 (0.027) 0.643 (0.008) 0.700 (0.044) 0.493 (0.016) 0.820 (0.070) 7
JODIE-h 0.966 (0.004)  0.965 (0.000) 0.724 (0.006) 0.888 (0.000) 0.897 (0.014) 0.682 (0.052) 0.993 (0.001) 2
DyRep-h 0.648 (0.005)  0.539 (0.000) 0.600 (0.003) 0.518 (0.000) 0.599 (0.053) 0.649 (0.019) 0.818 (0.015) 13
TGN-h 0.929 (0.010)  0.947 (0.000)  0.676 (0.000) 0.645 (0.000) 0.730 (0.033) 0.568 (0.045) 0.788 (0.025) 6
JODIE-d 0.982(0.002)  0.933 (0.000) 0.720 (0.000) 0.894 (0.000) 0.913 (0.001) 0.642 (0.015) 0.993 (0.001) 3
DyRep-d 0.691 (0.002) 0.592 (0.000) 0.615 (0.000) 0.539 (0.000) 0.655 (0.009) 0.538 (0.015) 0.828 (0.007) 11
TGN-d 0.951 (0.000)  0.961 (0.000) 0.620 (0.000) 0.655 (0.000) 0.752(0.029) 0.704 (0.036) 0.840 (0.029) 5

EdgeBank,, 0.887(0.000) 0.921 (0.000) 0.576 (0.000) 0.784 (0.000) 0.826 (0.000) 0.556 (0.000) 0.730 (0.000) 8
EdgeBank,, 0.908 (0.000) 0.949 (0.000) 0.529 (0.000) 0.761 (0.000) 0.811 (0.000) 0.520 (0.000) 0.739 (0.000) 10

(b) Historical Sampling

Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.421 (0.001) 0.411(0.002) 0.339 (0.001) 0.432(0.000) 0.438 (0.001) 0.418 (0.016) 0.457 (0.017) 12
DyRep-s 0.434 (0.002) 0.465 (0.000) 0.459 (0.022) 0.464 (0.008) 0.582(0.022) 0.621(0.033) 0.440 (0.009) 7
TGN-s 0.690 (0.027)  0.633 (0.000) 0.552 (0.041) 0.559 (0.029) 0.601 (0.014) 0.565 (0.045) 0.603 (0.034) 5
JODIE-m 0.421 (0.001) 0.412 (0.002) 0.337 (0.002) 0.431 (0.000) 0.438 (0.000) 0.409 (0.011) 0.436(0.012) 13
DyRep-m 0.427 (0.006)  0.476 (0.000)  0.502 (0.057) 0.451 (0.001) 0.589 (0.011) 0.631(0.023) 0.435(0.014) 9
TGN-m 0.679 (0.005)  0.699 (0.000) 0.564 (0.042) 0.626 (0.033) 0.601 (0.015) 0.512(0.044) 0.553 (0.106) 4
JODIE-h 0.420 (0.000) 0.417 (0.000) 0.336 (0.003) 0.430 (0.000) 0.437 (0.000) 0.450 (0.022) 0.432(0.023) 14
DyRep-h 0.419 (0.003) 0.531 (0.000) 0.449 (0.012) 0.449 (0.001) 0.573 (0.036) 0.656 (0.027) 0.445 (0.016) 8
TGN-h 0.688 (0.047)  0.693 (0.000) 0.467 (0.001) 0.648 (0.001) 0.581 (0.033) 0.631 (0.063) 0.627 (0.008) 3
JODIE-d 0.415 (0.004)  0.426 (0.000)  0.337 (0.000) 0.353 (0.000) 0.438 (0.000) 0.436 (0.006) 0.407 (0.009) 11
DyRep-d 0.421 (0.001)  0.467 (0.000) 0.420 (0.000) 0.485 (0.000) 0.604 (0.016) 0.488 (0.008) 0.455 (0.015) 6
TGN-d 0.690 (0.044)  0.725 (0.001)  0.562 (0.000) 0.591 (0.000) 0.620 (0.044) 0.776 (0.036) 0.619 (0.089) 1
EdgeBankg, 0.689 (0.000) 0.676 (0.000) 0.541 (0.000) 0.627 (0.000) 0.568 (0.000) 0.633 (0.000) 0.701 (0.000) 2

EdgeBank,, 0.496 (0.000) 0.504 (0.000) 0.432(0.000) 0.497 (0.000) 0.483 (0.000) 0.512(0.000) 0.455 (0.000) 10
EdgeBank., 0.908 (0.000) 0.949 (0.000) 0.529 (0.000) 0.761 (0.000) 0.811 (0.000) 0.520 (0.000) 0.739 (0.000) 10
(c) Inductive Sampling
Method Wikipedia Reddit MOOC LastFM Enron Social Evo. UCI Rank
JODIE-s 0.400 (0.000)  0.441 (0.003) 0.377 (0.024) 0.458 (0.000) 0.469 (0.001) 0.423 (0.015) 0.497 (0.012) 11
DyRep-s 0.589 (0.014)  0.522 (0.000) 0.565 (0.037) 0.523 (0.003) 0.586(0.017) 0.617 (0.034)  0.492 (0.009) 5
TGN-s 0.667 (0.019)  0.644 (0.000) 0.532(0.029) 0.543 (0.029) 0.631 (0.032) 0.555(0.035) 0.637 (0.023) 4
JODIE-m 0.401 (0.001)  0.442 (0.003) 0.363 (0.011)  0.458 (0.000) 0.469 (0.000) 0.413 (0.009) 0.482 (0.010) 12
DyRep-m 0.602 (0.010)  0.522 (0.000) 0.544 (0.024) 0.507 (0.008) 0.582(0.013) 0.620 (0.023) 0.486 (0.011) 8
TGN-m 0.675 (0.013)  0.709 (0.000) 0.542 (0.009) 0.558 (0.007) 0.631(0.032) 0.527 (0.050) 0.605 (0.080) 3
JODIE-h 0.399 (0.000)  0.448 (0.000) 0.366 (0.015) 0.457 (0.001) 0.467 (0.002) 0.457 (0.026) 0.480 (0.017) 14
DyRep-h 0.572 (0.009)  0.592 (0.000) 0.537 (0.015) 0.501 (0.001) 0.570 (0.033) 0.644 (0.026) 0.498 (0.011) 6
TGN-h 0.654 (0.011)  0.797 (0.000)  0.503 (0.000) 0.565 (0.001) 0.633(0.016) 0.610 (0.056) 0.656 (0.003) 2
JODIE-d 0.426 (0.007)  0.527 (0.001)  0.402 (0.000) 0.408 (0.000) 0.469 (0.001) 0.440 (0.004) 0.463 (0.005) 13
DyRep-d 0.530 (0.009)  0.507 (0.000)  0.545 (0.000) 0.520 (0.000) 0.599 (0.010) 0.490 (0.004) 0.504 (0.015) 7
TGN-d 0.702 (0.020)  0.832 (0.001) 0.529 (0.000) 0.591 (0.000) 0.662 (0.024) 0.749 (0.036) 0.649 (0.040) 1
EdgeBank:,, 0.469 (0.000) 0.473 (0.000) 0.417 (0.000) 0.481 (0.000) 0.506 (0.000) 0.609 (0.000) 0.566 (0.000) 10
EdgeBank., 0.477 (0.000) 0.485(0.000) 0.417 (0.000) 0.487 (0.000) 0.497 (0.000) 0.536 (0.000) 0.570 (0.000) 9
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