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Abstract

We introduce Cell2Sentence (C2S), a novel
method to directly adapt large language models to
a biological context, specifically single-cell tran-
scriptomics. By transforming gene expression
data into ”cell sentences,” C2S bridges the gap
between natural language processing and biology.
We demonstrate cell sentences enable the fine-
tuning of language models for diverse tasks in
biology, including cell generation, complex cell-
type annotation, and direct data-driven text gener-
ation. Our experiments reveal that GPT-2, when
fine-tuned with C2S, can generate biologically
valid cells based on cell type inputs, and accu-
rately predict cell types from cell sentences. This
illustrates that language models, through C2S fine-
tuning, can acquire a significant understanding of
single-cell biology while maintaining robust text
generation capabilities. C2S offers a flexible, ac-
cessible framework to integrate natural language
processing with transcriptomics, utilizing existing
models and libraries for a wide range of biological
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applications.

1. Introduction
Large language models (LLMs) such as GPT have demon-
strated powerful capabilities in natural language processing
tasks including question answering, summarization, and
text generation (Vaswani et al., 2017; Radford et al., 2018;
Devlin et al., 2019; OpenAI, 2023; Touvron et al., 2023;
Anil et al., 2023). However, their application to complex
fields like biology, especially in single-cell transcriptomics,
poses a novel challenge. Traditional methods in this domain,
largely reliant on specialized neural network architectures,
do not leverage the potential of LLMs’ pretrained knowl-
edge and linguistic understanding.

In this paper, we introduce Cell2Sentence (C2S), a method
designed to adapt LLMs for transcriptomics. C2S converts
single-cell gene expression data into textual sequences by
rank-ordering gene names in descending order of expres-
sion levels. This formatting enables LLMs to process and
interpret this information (see Figures 1 and 2) while also
maintaining the richness and complexity in single-cell data
(Figures 3 and 4). Another advantage of C2S is that it takes
advantage of the highly optimized and user-friendly open
source libraries for transformer models such as Hugging
Face (Wolf et al., 2020).

This approach not only allows the models to generate biolog-
ically relevant cells and predict cell types but also facilitates
the generation of descriptive natural language text from
single-cell data. This work demonstrates that combining
C2S with LLMs significantly enhances their performance in
transcriptomic tasks, notably outperforming models trained
solely on C2S.

In summary, our key contributions are:

1. Introducing Cell2Sentence, an effective method for
representing single-cell data as text sequences.

2. Fine-tuning language models on cell sentences to gen-
erate and perturb cells, predict combinatorial cell la-
bels, and interpret single-cell data in natural language.
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3. Providing a simple and modular framework for adapt-
ing language models to transcriptomics using popular
language model tools and libraries.

In the following sections, we detail the C2S data transforma-
tion, model fine-tuning, and evaluate our fine-tuned models
on various biological tasks. We conclude with a discus-
sion on the broader implications and future directions for
merging natural language processing with transcriptomic
data analysis through representation learning. We plan to
open-source our software and cell sentence datasets.

2. Background and Related Work
2.1. Large Language Models

LLMs have transformed natural language processing,
demonstrating versatility in tasks ranging from text clas-
sification to text generation. Pioneering architectures such
as LSTM (Hochreiter & Schmidhuber, 1997), BERT (De-
vlin et al., 2019), and RoBERTa (Liu et al., 2020) have
excelled in text classification, while models like LlaMA-2
(Touvron et al., 2023) and Falcon (Almazrouei et al., 2023)
have advanced question answering. Text generation has
seen remarkable strides with T5 (Raffel et al., 2020), GPT-3
(Brown et al., 2020), and BART (Lewis et al., 2020). For
an extensive exploration of LLMs’ evolution, refer to (Zhao
et al., 2023).

2.2. Single-Cell Foundation Models

Parallel to LLMs, deep learning in single-cell transcrip-
tomics has progressed significantly. Models like NeuCA
(Li & Feng, 2023), ACTINN (Li & Feng, 2023), and scVI
(Lopez et al., 2018) have been instrumental in cellular an-
notation. Tools such as scGen (Lotfollahi et al., 2019) and
SAUCIE (Amodio et al., 2019) have addressed batch effect
removal, while scVI and DeepImpute (Arisdakessian et al.,
2019) have pioneered data imputation. Centralized reposito-
ries like GEO (Barrett et al., 2012), CellxGene (Megill et al.,
2021), and HCA (Regev et al., 2017) further propelled the
field, leading to the development of foundation models like
scGPT (Cui et al., 2023b) and Geneformer (Theodoris et al.,
2023).

2.3. Prompt Fine-Tuning

Prompting, a technique that has been popularized since the
introduction of GPT-2 (Radford et al., 2019), has become
key to eliciting specific behaviors from LLMs (Lester et al.,
2021; Gao et al., 2021; Li & Liang, 2021). The availability
of datasets such as Alpaca (Taori et al., 2023a) and tools like
Flan (Wei et al.; Longpre et al., 2023; Chung et al., 2022),
along with parameter-efficient tuning methods (Hu et al.,
2022), has enabled the customization of LLMs for specific

tasks. A comprehensive survey of these methods is available
in (Liu et al., 2023).

2.4. Multimodal Training and Cross-Modality Encoding

Our C2S approach uniquely integrates multimodal learning
by transforming single-cell data into text prior to the em-
bedding step (Baltrušaitis et al., 2018; Barua et al., 2023),
diverging from traditional schemes that encode modalities
separately. This strategy parallels the visual language mod-
eling of (Wu et al., 2007), but uniquely applies to single-cell
transcriptomics using modern embedding techniques, mark-
ing a novel direction in multimodal machine learning.

3. Methods
Cell2Sentence transforms single-cell expression data into
sentences of gene names rank ordered by decreasing tran-
script abundance as shown in Figure 2. While the expression
is no longer explicitly contained in the transformed data,
we show in Section 3.2 and Figures 3, 4, and 7 that the
expression values can be recovered with minimal loss of
information. Thus, our method allows for analysis in both
rank-order and gene expression formats.

3.1. Data transformation

Single-cell RNA sequencing produces transcript count ma-
trices that represent the genetic profiles of individual cells.
Most current computational models in single-cell biology
handle data in Rc×n, posing scalability challenges with
larger datasets. We propose transforming expression ma-
trices into gene sequences as a solution to enable the use
of LLMs (Cui et al., 2023a; Hou & Ji, 2023) and other
transformer-based architectures (Yang et al., 2022) for
single-cell data analysis.

Let C denote a matrix with n rows and k columns corre-
sponding to cells and genes respectively, with Ci,j denoting
the number of RNA molecules observed for gene j in cell
i. We filter cells with fewer than 200 genes expressed and
genes expressed in less than 200 cells. Cell-wise quality con-
trol metrics are then calculated based on mitochondrial gene
counts using the Scanpy Python library (Wolf et al., 2018).
Cells with over 2500 counts or more than 20% mitochon-
drial transcript counts are excluded. The count matrix is then
row-normalized (summing to 10,000) and log-normalized
(Haque et al., 2017), yielding the preprocessed transcript
count matrix C ′. We summarize this normalization step as:

C ′
i,j = log10

(
1 + 104 × Ci,j∑k

j=1 Ci,k

)
(1)

We denote the rank-order transformation applied on C ′ as S,
and the sequence of gene names resulting from S(Ci) as cell
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Figure 1. Overview of the Cell2Sentence framework. Input single-cell data, including metadata, are converted into cell sentences for
language model fine-tuning. At inference, new cell sentences are generated and can be converted back to gene expression space.

sentence si for each cell i in the preprocessed count matrix.
In practice, we apply the preprocessing and rank-order trans-
formation S on each individual single-cell dataset, providing
a flexible process for converting traditional single-cell gene
expression count matrices to cell sentences.

While genes are not intrinsically ordered in transcript ma-
trices, their expression patterns have been shown to follow
inverse-rank frequency patterns (Furusawa & Kaneko, 2003;
Qiu et al., 2013), thus establishing a steady relationship
between a gene’s expression level within a cell and its rank
among the genes expressed in that cell. We model this
inverse-rank relationship with a log-linear distribution and
approximate it in log-log space using a linear regression
(Dhodapkar, 2022).

Given single-cell dataset which underwent rank-order trans-
formation S, let ri denote the log of the rank of gene i in
C ′, and ei the original expression of gene i. We fit a linear
model to predict ei from ri during the initial conversion to
cell sentence format, resulting in a fitted slope and intercept
value which are saved for each converted dataset (see Fig-
ures 7). The linear model has form ei = ad × ri + bi, given
dataset d and {ad, bd} ∈ R2.

We postprocess generated cell sentences by ignoring invalid
gene names and averaging the rank of duplicate genes. The
fitted linear model is then applied to the log-rank of gen-
erated genes to convert back to expression. Any gene not
present in a cell sentence is considered to have zero expres-
sion. We define the average rank of a generated gene ggen

i

belonging to the set of unique genes GU ⊆ S as follows:

rgen
i =

1

|G|

|G|∑
j=1

rank(ggen
j ) (2)

where G = {ggen
1 , ggen

2 , . . . , ggen
n } ⊆ S is the set of duplicate

generated genes for ggen
i , and rgen

i denotes the average rank
of gene ggen

i in the generated cell sentence. This yields the
following formulation for expression value vector for the

generated cell

egen
i =

{
ad × log(rgen

i ) + bd if ggen
i ∈ G

0 otherwise
(3)

In practice, we consider a global dictionary of all gene
names seen in single-cell datasets, which dictates the size
of the resulting gene expression vector of the cell.

Next, we consider the robustness of the C2S transformation
when converting cells to sentences and reverting back to
expression.

3.2. Transformation robustness

We find that transforming expression data to cell sentences
is a robust and reversible operation, and cells converted to
text and back to expression incur minimal information loss,
with over 81% of the variation in the gene expression be-
ing captured by the linear regression on an immune tissue
dataset (see Figures 3 and 4). Relationships between normal-
ized gene expression and rank on a variety of human tissue
datasets are shown in Figures 6 and 7 (see Appendix A).
As the linear model only requires the log-rank of a gene to
approximate its expression level, any gene sequence can be
converted to expression, including generated cell sentences.

3.3. Tasks

The objective of this work is to train language models to
generate single-cell data and derive biological insights from
single-cells in natural language. We summarize the tasks
implemented in our experiments (see Section 4):

• Generate cell sentences: C2S models are trained to
generate gene sequences from prompts, optionally con-
ditioned on additional metadata.

• Predict cell labels: biological experiments often in-
volve combinatorial labels (e.g., patient and sample
metadata) which C2S models can learn to predict from
cell sentences directly in text.
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Figure 2. Detailed overview of the Cell2Sentence framework. Single-cell gene expression profiles are transformed into cell sentences
through expression rank ordering of gene names. These cell sentences can be annotated with biological metadata, including cell type,
tissue, or disease. Subsequently, language models are fine-tuned using the cell sentences. At inference, cell sentences are generated
both conditionally (e.g., given a cell or tissue type) and unconditionally, and natural language is produced from text (e.g., cell type label,
abstract summary). The generated cell sentences can then be converted back into gene expression profiles.

• Derive natural language insights: C2S analyzes single-
cell data to extract high-level information on expres-
sion dynamics by pairing relevant natural language
with cell sentences.

Examples of prompts and responses for each of these tasks
are shown in Figure 5. For the cell generation and natural
language tasks, the models were trained using the standard
causal language modeling loss:

L(x) = − 1

N

N∑
i=1

log

(
exp

(
zivi
)∑

v∈V exp (ziv )

)
,

where x = {x0, x1, . . . , xN} is the input sentence with
N + 1 tokens, the model output at position i is zi ∈ R|V|,
and V is the vocabulary of the language model with vi the
ground truth token at position i in the tokenization of x. The
loss is averaged over each batch.

4. Experiments
In this section we benchmark Cell2Sentence on conditional
cell generation, combinatorial cell label prediction, and ab-
stract generation from cell sentences. These experiments are
conducted using models fine-tuned either with an immune

tissue dataset (Domı́nguez Conde et al., 2022) or with a
large scale multi-tissue dataset (Megill et al., 2021). In both
cases, we fine-tune GPT-2 (small, medium and large) (Rad-
ford et al., 2019) using cell sentences truncated to 100 genes
due to resource constraints. We also fine-tune Pythia-160m
(Biderman et al., 2023), which is based on the GPT-NeoX
architecture (Black et al., 2022) and uses rotary embeddings
(Su et al., 2024). For the latter, we set the model’s maximum
input sequence length to 9200 tokens during fine-tuning, per-
mitting manipulation of full cell sentences. We structure our
experiments by first fine-tuning language models on large
single-cell datasets, and optionally continuing training for
downstream evaluation tasks (see Appendix B.2).

4.1. Fine-Tuning Datasets

We focus our experiments on three datasets with extensive
natural language metadata and labels, allowing to leverage
the capabilities of base models.

Immune tissue (Domı́nguez Conde et al., 2022) proposes
a large human immune tissue single-cell dataset with cell
type annotations. After transformation, we obtain 273,502
cell sentences, each paired with one of 35 cell type labels.
We hold out 20% of cell sentences for validation (10%) and
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Figure 3. Reconstruction of original gene expression from gene
rank by a linear model. Each point in the scatterplot represents one
gene sampled from a randomly chosen cell of the PBMC dataset
(Domı́nguez Conde et al., 2022), with 10, 000 genes sampled in
total across the dataset for visualization. A linear model accu-
rately reconstructs gene expression from rank across the dataset,
with 0.815 R2 and Spearman correlation against original gene
expression, showing that much of the expression information is
conserved in the rank-ordered cell sentences.

testing (10%). We derive three tasks for this dataset:

• Unconditional cell generation (generate a random cell
without any specified cell label).

• Cell type generation (generate a cell sentence given a
specific cell type).

• Cell type prediction (predict the cell type in natural
language given a cell sentence prompt).

We create 20 prompt templates to embed cell sentences and
labels in natural language.

Cytokine stimulation (Dong et al., 2023) is a single-cell
dataset that applies 9 cytokine stimulation combinations to
immune tissue and with 2 different exposures. Cells are
split into 7 cell types for a total of 140 combinatorial labels
including unstimulated control cells. This dataset is used in
2 tasks:

• Perturbed cell generation (generate a perturbation
given only the labels in text format).

• Cell label classification (classify the cell type, pertur-
bation, and exposure based on the input cell).

In the perturbed cell generation task, 10 out of 140 combi-
natorial labels were held out during training to be used at
test time. For cell label classification, all combinations were

Figure 4. UMAP of ground-truth expression (blue) and recon-
structed expression (orange) from cell sentences overlaid. The
ground truth cells with their preprocessed expression values from
Equation 1 are taken from the PBMC dataset (Domı́nguez Conde
et al., 2022). All 35 cell types with up to 500 cells of each cell type
were sampled without replacement for a total of 10350 plotted
cells. The reconstructed cells are the ground truth cells whose
expression values are reconstructed as follows: first we rank-order
the genes and then we reassign the expression values using the
learned linear regression parameters from the data. The UMAP
qualitatively shows that much of the geometric structure present in
the original data remains in the reconstructed data.

used during training, but a limited amount of data was used
during training.

Multi-tissue (Megill et al., 2021) provides access to hun-
dreds of human and mouse single-cell datasets. We select
99 human single-cell datasets and convert each of them to
cell sentences (see Section 3), yielding a total of 37M cells
(including 19 held out studies, representing 2.7% of all cell
sentences). Every cell sentence is paired with a tissue la-
bel derived from the study’s metadata (e.g., the tissue label
for a dataset containing ”Brain” and ”Liver” cells will be
”Brain, Liver”). We find a total of 11 unique tissues, and
42 unique tissue combinations across this dataset. Addition-
ally, we generate synthetic abstract summaries to augment
original abstracts for the multi-tissue dataset (see Appendix
B.1). We derive the following five tasks for this multi-tissue
dataset:

• Tissue type prediction and conditional generation (sim-
ilarly to the previous cell type prediction and condi-
tional generation prompts).

• Generate abstract summaries from cell sentences
(prompted with a cell sentence, the model generates an
abstract summary for the corresponding study).

• Generate a cell sentence given an abstract summary
(similar to generating from tissue or cell type, but in-
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Cell Type Generation
Prompt: Generate the 100 highest expressed genes
listed in descending order for a long-lived plasma
cell
Response: MT-V1 RPS9 [...] RPS9 RPL8

Cell Label Prediction
Prompt: Identify the cell type most likely associ-
ated with these 100 highly expressed genes listed in
descending order: DIF3 RPS11 [. . . ] RPP4 RPS22
Response: The cell type corresponding to these
genes is a CD4-T cell.

Natural Language Insights from Data
Prompt: Extract and summarize biological in-
sights given this cell’s 100 highest expressed genes:
MALAT1 VIM [. . . ] RPL10A S100A6
Response: This study used single-nucleus RNA
sequencing to comprehensively map the cell types
in the adult human brain.

Figure 5. Example of Cell2Sentence prompts and responses for
generating cell sentences from text, predicting complex natural
language labels, and generating biological insight from a single
cell sentence.

stead leveraging natural language from abstract sum-
maries).

We also include an unconditional generation prompt tem-
plate, where models are only prompted to generate a cell
sentence.

4.2. Experiment 1: conditional cell generation

Objective: Accurate generation of different cell types is
crucial for generative approaches on single-cell data, as it
enables downstream analysis. Our aim is to establish the
quality of several cell generation methods by using distri-
butional, correlation, and classification metrics. We show
that C2S models outperform state-of-the-art baselines in
generating synthetic single-cell data given cell type and
perturbation conditions.

Methodology:

• Cell type generation We train C2S on the immune
tissue dataset from (Domı́nguez Conde et al., 2022).
Cell sentences are appended to text prompts indicating
its cell type in order for the model to learn cell type
generation (Figure 5). Our approach was compared

against several established generative single-cell meth-
ods, including scVI, scGen, scDiffusion, and scGPT
(Lopez et al., 2018; Lotfollahi et al., 2019; Luo et al.,
2024; Cui et al., 2023a). For scGen, we randomly split
our training data in half and artificially set one group as
control and the other as stimulation, and we randomly
pair cells of the same cell type. scGPT’s unique condi-
tional generation method was described in (Cui et al.,
2023a), but no code for this method was made publicly
available as of this writing. We mimic their method by
adding an embedding layer for cell type labels and add
the embedding to all tokens while generating random
samples of 1000 genes until 36000 genes are gener-
ated. A held out test dataset of 500 cells per cell type
(17,500 cells in total) with 36,503 genes was used to
evaluate all models. We run our experiments 5 times
using 5 different samples of our test dataset and report
the mean score and standard deviation. Further details
on training and data are supplied in Appendices B.3
C.0.3 and Table 6.

• Perturbed cell generation We use the single-cell cy-
tokine stimulation dataset from (Dong et al., 2023).
The prompts are constructed similarly to the cell type
generation task except with additional cytokine stim-
ulation and exposure labels for a total of 3 labels per
cell sentence. The C2S and scGen models were trained
on all 21710 genes remaining after standard filtering
using the scanpy library (Wolf et al., 2018). scGPT
was trained on only the 5000 highly variable genes
reported in Table 2. Further details on methodology
can be found in Appendices B.3.

Evaluation:

• Cell type generation The performance of C2S was
quantitatively evaluated using k-NN (K-Nearest Neigh-
bors) accuracy and Gromov-Wasserstein distance, mea-
sured against the original ground truth cells. The k-NN
classifier was fit on the test dataset, and we used the
values k = 3, 5, 10, and 25. Gromov-Wasserstein dis-
tance was used to compare the similarity and structural
alignment between generated outputs, which is not al-
ways captured by k-NN accuracy due to its local nature.
In order to generate the cells, we used the same text
prompts from our training dataset. A comparison of
metrics when using unseen but similar prompts can be
found in Table 10. Overall, our evaluation metrics give
a well-rounded assessment of each model’s ability to
generate biologically plausible cells.

• Perturbed cell generation All models were evaluated
using Pearson R and Spearman R correlation metrics.
The correlations are computed between mean gene
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expression values in the test dataset and the data gen-
erated by the model. We select the top 5000 highly
variable genes from the training dataset for evaluation.
From those highly variable genes, we select the top
20 differentially expressed genes between exposures
of the same cell type and perturbation. We also com-
pute the same metrics by differencing with the mean
gene expression of the opposite exposure (chronic vs
acute) in the training dataset. Out of 140 possible
combinations of labels, 10 test cell type/perturbation
combinations with different exposures from those seen
during training were used to evaluate the models.

Results:

• Cell type generation As shown in Table 1, our C2S
model outperformed all other methods. Notably, our
C2S-trained Pythia-160m model outperforms the foun-
dation model scGPT and also scDiffusion, which re-
quires over 900 million parameters in its standard im-
plementation for the immune tissue dataset. The perfor-
mance of scVI and scGEN was similar due to their sim-
ilar architectures, both being variational autoencoders.
Our results show that causal language modeling can be
adapted to single cell generation and outperform other
commonly used generative architectures.

• Perturbed cell generation Table 2 shows our C2S
model produces more accurate unseen perturbations
than scGen and scGPT. These results potentially in-
dicate that C2S models are able to leverage semantic
representations of labels in a way non-language models
like scGPT and scGen cannot.

4.3. Experiment 2: cell label prediction

Objective: The second experiment evaluate C2S’s capac-
ity for cell label classification with complex, combinatorial
cell labels involing multiple metadata information about
cells. We hypothesize that the natural language generation
capabilities of C2S from pretraining will transfer well to
complex label classification compared to baseline methods.

Methodology: We compared C2S against several single-
cell analysis methods, including two state-of-the-art (SOTA)
single-cell foundational models, scGPT (Cui et al., 2023a)
and Geneformer (Cui et al., 2022), as well as two non-
single cell baseline classifiers. To evaluate the generalization
ability of the model to out-of-distribution data, we utilized
two bulk datasets - L1000 (Subramanian et al., 2017) and
GTEx (Consortium, 2020) - as benchmark datasets, which
follow a different data distribution compared to the single-
cell datasets which comprised the pretraining datasets for
each foundation model. We also evaluate all models on

a human PBMC single-cell dataset treated with various
combinatorial cytokine stimulations (Dong et al., 2023), as
a third benchmark dataset.

For each dataset, metadata associated with the cell - cell
type, tissue, drug perturabtions, dosage information, stimu-
lations, etc. - was gathered to create information-rich multi-
part labels for each cell/bulk sample in each dataset. Predict-
ing combinations of labels is expected to be a challenging
task, particular in a limited data scenario. We constrained
the number of training samples for each dataset to roughly
give a few samples per combinatorial class, resulting in a
dataset where there are few examples per class. A compari-
son of compute resources for each of the foundation models
can be found in Table 5.

Evaluation: We report the classification accuracy and
Area Under the Receiver Operating Characteristic Curve
(AUROC) metrics across 3 experiment repeats on each
dataset, as reported in Table 3. Exact combinatorial la-
bel matching was calculated for each dataset, in addition
to another set of metrics giving models partial credit for
getting individual parts of the combinatorial label correct.

Results: As indicated in Table 3, C2S outperformed base-
line methods in both exact and partial label accuracy, demon-
strating its capability in complex label prediction through
natural language. The experiment particularly highlights
C2S’s adaptibility to out-of-distribution data, which was
not present anywhere in its training distribution, while also
learning to predict complex multi-part labels. We addition-
ally provide attention visualizations for highly-attended to
genes in Section F of the Appendix, giving insight into
which genes receive high attention by the LLM for predic-
tions of specific drug compounds and cell lines.

4.4. Experiment 3: abstract summary generation

Objective: We demonstrate the ability for C2S models to
generate meaningful text carrying biological insight given
a single cell sentence. Additionally, we show that C2S
performance cannot be achieved by large language models
without fine-tuning despite their extensive pretraining.

Methodology: We use GPT-2 small fine-tuned on cell sen-
tences truncated to the top-100 most expressed genes from
the multi-tissue dataset (see Appendix 4.1). At inference,
we prompt C2S models with a natural language prompt and
a single truncated cell sentence sampled from one of 19 held
out evaluation studies. We generate abstract summaries with
30 cell sentences sampled from each evaluation study. This
approach allows for a direct comparison of the generated ab-
stracts with the ground-truth abstracts from associated eval-
uation publications. We benchmark against large language
models in a 10-shot prompting setting. Each baseline model
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Table 1. Results on immune cell conditional generation quality. For each measure we sample 500 cells with replacement from each cell
type in our held out immune dataset for comparison. The k-nearest neighbors (k-NN) classifier is fit on the held out immune cells with
their cell types used as labels. The true label of a generated cell is the cell type used for its conditional generation. Gromov-Wasserstein
(GW) distance is measured between all generated and all held out cells. Our full cell generation C2S model outperforms all models.

MODEL
k-NN (↑) GW (↓)3 5 10 25

SCGEN 0.2376 ± 0.0112 0.2330 ± 0.0093 0.2377 ± 0.0053 0.2335 ± 0.0041 315.9505 ± 1.2431
SCVI 0.2436 ± 0.0062 0.2400 ± 0.0064 0.2425 ± 0.0034 0.2348 ± 0.0032 302.1285 ± 0.9338
SCDIFFUSION 0.2335 ± 0.0125 0.2288 ± 0.0111 0.2368 ± 0.0067 0.2306 ± 0.0049 72.0208 ± 0.3937
SCGPT 0.1838 ± 0.0086 0.1788 ± 0.0169 0.1811 ± 0.0149 0.1882 ± 0.0071 2989.8066 ± 4.9229
C2S (PYTHIA-160M) 0.2588 ± 0.0061 0.2565 ± 0.0060 0.2746 ± 0.0073 0.2715 ± 0.0070 54.3040 ± 0.3410

Table 2. Predicting perturbation effects on unseen conditions. We use a dataset comprising combinatorial cytokine stimulation of immune
cells (Dong et al., 2023). The Pearson R and Spearman R values are computed using the mean expression vectors in the unseen test
dataset and the corresponding mean expression vectors generated by the model. The top 5000 highly variable genes are selected based
on the training dataset, and the top 20 most differentially expressed genes between exposures of the same cell type and perturbation
are computed from those 5000 highly variable genes. The ∆ symbol indicates the correlations based on differencing with the mean
expression vector of the opposite exposure in the training dataset. The conditioning labels are combinatorial, consisting of triples of cell
type, cytokine stimulation, and exposure. There are 140 possible combinations in total, and the models were tasked with generating 10
cell type/perturbation combinations with different exposures from those seen during training. Our C2S-trained Pythia-160m model shows
superior performance in generating unseen exposures of perturbations compared to SOTA perturbation methods scGEN and scGPT.

MODEL PEARSON R TOP-20 DE PEARSON R SPEARMAN R TOP-20 DE SPEARMAN R

SCGEN 0.6805 ± 0.0075 0.7187 ± 0.0054 0.5654 ± 0.0025 0.6256 ± 0.0074
SCGPT 0.0041 ± 0.0018 0.1299 ± 0.0495 -0.0002 ± 0.0040 0.1440 ± 0.0996
C2S (PYTHIA-160M) 0.9241 ± 0.0002 0.9734 ± 0.0007 0.6210 ± 0.0005 0.9752 ± 0.0016

∆
SCGEN 0.3871 ± 0.0060 0.3743 ± 0.0167 0.2586 ± 0.0030 0.3999 ± 0.0103
SCGPT 0.0980 ± 0.0001 0.0213 ± 0.0001 0.0689 ± 0.0019 0.0441 ± 0.0006
C2S (PYTHIA-160M) 0.4829 ± 0.0008 0.3789 ± 0.0042 0.2895 ± 0.0009 0.4528 ± 0.0092

is prompted with a cell sentence and tasked with producing
biological insights from the cell as an abstract summary (see
the full prompt in Appendix E.1). We compare our approach
against OpenAI’s GPT-3.5-Turbo-1106, as well as Mistral-
7B-Instruct (Jiang et al., 2023) and Mixtral-8x7B-Instruct
(Jiang et al., 2024) quantized to 4-bit precision with AWQ
(Lin et al., 2023). We also benchmark the performance of
GPT-2 small and large pretrained checkpoints without C2S
fine-tuning. The pretrained GPT-2 models are prompted in
a zero-shot fashion due to their small contexts—the models
are unable to accommodate the 4,000 tokens required for the
10-shot prompting setting (more details about the evaluation
can be found in Appendix E).

Evaluation: Generated summaries are embedded and
evaluated for pairwise similarity relative to the ground-truth
abstracts (Xiao et al., 2023). We compute the mean pair-
wise cosine similarity between evaluation studies to test
whether generated abstracts are significantly correlated to
their ground-truths, more so than to other original abstracts.
We apply the T and KS test on the mean cosine similari-

ties. We also compute embedding distribution correlations
(Pearson’s, Spearman’s) and distances (MMD, Wasserstein)
between generated and original abstracts.

Results: We find that C2S was more adept at generat-
ing abstracts that closely align with the ground truth, com-
pared to baseline large language models. Table 4 shows
that only C2S is able to generate differentiated abstracts
given a prompt cell sentence and large context. Addition-
ally, C2S-generated summaries lie closer to the held out
study abstracts in embedding space by a 50% margin on
MMD (see Table 4). This experiment brings empirical ev-
idence for the utility of cell sentences to derive biological
insights from single-cell data. C2S learns to associate rel-
evant language (e.g., tissue type, condition) to complex
gene sequences, going beyond capabilities acquired during
pretraining. We present a qualitative comparison of gener-
ated abstract summaries in Appendix Figure 12. Further
examples of generated abstracts compared to their original
counterparts are shown in Appendix G.1.
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Table 3. Experimental results on downstream cell label classification. Cell labels are composed of multiple combinatorial metadata parts,
including cell type, perturbations, and dosage information. Accuracy and area under ROC curve is computed on model predictions versus
ground truth combinatorial labels, with partial credit given for partial misclassifications.

MODEL
CYTOKINE STIMULATION L1000 GTEX
ACC AUROC ACC AUROC ACC AUROC

PARTIAL LABEL

k-NN CLASSIFIER 0.462 ± 0.0047 0.550 ± 0.0064 0.592 ± 0.0054 0.740 ± 0.0036 0.492 ± 0.0047 0.662 ± 0.0035
XGBOOST 0.515 ± 0.0175 0.631 ± 0.0202 0.389 ± 0.0066 0.534 ± 0.0044 0.482 ± 0.0127 0.633 ± 0.0120
GENEFORMER 0.600 ± 0.0170 0.722 ± 0.0145 0.419 ± 0.0153 0.632 ± 0.0181 0.500 ± 0.0013 0.649 ± 0.0025
SCGPT 0.419 ± 0.0001 0.500 ± 0.0000 0.334 ± 0.0076 0.500 ± 0.0000 0.270 ± 0.0522 0.500 ± 0.0000
C2S (GPT-2 LARGE) 0.639 ± 0.0049 0.767 ± 0.0049 0.631 ± 0.0031 0.768 ± 0.0021 0.575 ± 0.0035 0.713 ± 0.0014

FULL LABEL

k-NN CLASSIFIER 0.060 ± 0.0044 0.509 ± 0.0013 0.168 ± 0.0041 0.583 ± 0.0020 0.112 ± 0.0027 0.500 ± 0.0001
XGBOOST 0.087 ± 0.0088 0.528 ± 0.0050 0.124 ± 0.0032 0.556 ± 0.0018 0.107 ± 0.0080 0.500 ± 0.0003
GENEFORMER 0.134 ± 0.0161 0.555 ± 0.0085 0.102 ± 0.0288 0.549 ± 0.0146 0.123 ± 0.0005 0.500 ± 0.0000
SCGPT 0.049 ± 0.0002 0.500 ± 0.0000 0.026 ± 0.0001 0.500 ± 0.0000 0.006 ± 0.0028 0.500 ± 0.0000
C2S (GPT-2 LARGE) 0.149 ± 0.0057 0.564 ± 0.0030 0.202 ± 0.0059 0.600 ± 0.0029 0.152 ± 0.0062 0.574 ± 0.0032

Table 4. Experimental results on abstract summary generation. This table displays the outcomes of statistical analyses (T-test, KS test) to
evaluate the mean cosine similarities between embeddings of generated abstracts and their respective original abstracts (where i = j) as
well as with different original abstracts (where i ̸= j). Additionally, it details the Maximum Mean Discrepancy (MMD) and Wasserstein
distance (W) comparisons of the embeddings from generated abstracts against those of original abstracts. The results indicate that C2S
significantly surpasses baseline methods by achieving a higher correlation with the original abstracts’ embeddings. Furthermore, the
embeddings from C2S-generated summaries exhibit closer alignment to those of the original abstracts compared to baseline approaches.

MODEL T TEST (↑) KS TEST (↑) MMD (↓) W (↓)

C2S (GPT-2 SMALL) 2.96, p = 0.003∗ 0.35, p = 0.023∗ 0.198 ± 0.004 0.414 ± 0.006
C2S (GPT-2 LARGE) 2.85, p = 0.004∗ 0.36, p = 0.014∗ 0.198 ± 0.004 0.413 ± 0.002
GPT-3.5-TURBO-1106 1.23, p = 0.220 0.21, p = 0.392 0.298 ± 0.004 0.490 ± 0.008
MIXTRAL-8X7B-INSTRUCT AWQ -1.20, p = 0.233 0.24, p = 0.246 0.639 ± 0.016 0.544 ± 0.005
MISTRAL-7B-INSTRUCT -8.64, p = 0.384 0.23, p = 0.299 0.754 ± 0.010 0.584 ± 0.004
GPT-2 SMALL 1.31, p = 0.896 1.52, p = 0.783 1.045 ± 0.009 0.752 ± 0.004
GPT-2 LARGE -1.44, p = 0.885 1.81, p = 0.581 0.939 ± 0.006 0.701 ± 0.016

5. Discussion
Cell2Sentence is a novel approach for training large lan-
guage models using single-cell transcriptomics data, con-
verting gene expression profiles into sequences of text called
cell sentences. This method involves ranking gene names
by their expression levels to create a reversible encoding
of biological data with minimal loss of information. Lan-
guage models fine-tuned on these cell sentences outperform
other foundation models such as Geneformer and scGPT
on embedding tasks and generative tasks. Cell sentences,
which can be integrated with textual annotations, are versa-
tile for generation and summarization tasks, benefiting from
natural language pretraining. We show pretrained language
models trained on combinations of text and cell sentences
leads to nascent capabilities of drawing insight from data
not inherent to large language models such as GPT-3.5 and
Mixtral. We leave the possibility of exploring the emergent
properties of large language models with model and data
scale to future work.
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Baltrušaitis, T., Ahuja, C., and Morency, L.-P. Multimodal
machine learning: A survey and taxonomy. IEEE trans-
actions on pattern analysis and machine intelligence, 41
(2):423–443, 2018.

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C.,
Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy,
K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee,
H., Zhang, N., Robertson, C. L., Serova, N., Davis, S.,
and Soboleva, A. NCBI GEO: archive for functional
genomics data sets—update. Nucleic Acids Research,
41(D1):D991–D995, 11 2012. ISSN 0305-1048. doi:
10.1093/nar/gks1193. URL https://doi.org/10.
1093/nar/gks1193.

Barua, A., Ahmed, M. U., and Begum, S. A systematic
literature review on multimodal machine learning: Ap-
plications, challenges, gaps and future directions. IEEE
Access, 11:14804–14831, 2023. doi: 10.1109/ACCESS.
2023.3243854.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson,
K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.
Scaling instruction-finetuned language models, 2022.

Consortium, G. The gtex consortium atlas of genetic regu-
latory effects across human tissues. Science, 369(6509):
1318–1330, 2020.

Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., and Wang,
B. scgpt: Towards building a foundation model for single-
cell multi-omics using generative ai. bioRxiv, pp. 2023–
04, 2023a.

Cui, H., Wang, C., Maan, H., and Wang, B. scgpt:
Towards building a foundation model for single-
cell multi-omics using generative ai. bioRxiv,
2023b. doi: 10.1101/2023.04.30.538439. URL

10

https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Cell2Sentence: Teaching Large Language Models the Language of Biology

https://www.biorxiv.org/content/
early/2023/05/01/2023.04.30.538439.

Cui, Z., Liao, Y., Xu, T., and Wang, Y. Geneformer: Learned
gene compression using transformer-based context mod-
eling. arXiv preprint arXiv:2212.08379, 2022.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. 2023.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
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A. Method Details
We further evaluate the robustness of the Cell2Sentence transformation across 127 single-cell datasets retrieved from (Megill
et al., 2021). Among those are the 99 human single-cell datasets introduced in Section 4, as well as 28 mouse single-cell
datasets. We quantify the reconstruction performance using a linear regression between log-rank and normalized expression
on Pearson’s R, Spearman’s R and R-squared coefficients (see Figure 6). We also visualize the linear linear between log-rank
and normalized expression across 12 human datasets in Figure 7. Interestingly, emerging patterns seem to hold across data
samples within tissues (e.g., kidney and blood tissue samples achieve relatively similar reconstruction performance).

Figure 6. Distributions of Peason’s R, Spearman’s R and R2 statistics for linear expression reconstruction from log-rank using across 127
distinct scRNA-seq datasets. Both mean and standard deviation are shown for each score, with the mean represented by a dashed line on
the x-axis.

B. Experimental Details
B.1. Training Data Augmentation

We augment the original abstracts of studies in the multi-tissue dataset and generate 5,000 summaries for each abstract with
GPT-3.5-Turbo-1106, yielding 495,000 unique abstract summaries (Eldan & Li, 2023; Taori et al., 2023b). The prompt
employed to generate the abstracts is presented in Figure 8.

B.2. Evaluation Datasets

Cell label prediction Our evaluation benchmarks model performance across three distinct datasets, incorporating both
single-cell and bulk data. Each dataset introduces unique challenges for label classification, stemming from their combinato-
rial label structures and the presence of out-of-distribution samples:

1. Human PBMC single-cell (Dong et al., 2023): This dataset comprises 250 PBMC cells distributed among 7 cell types,
incorporating 10 different stimulations and distinguishing between acute and chronic stimulations. The evaluation set
encompasses approximately 120 unique label combinations, challenging the model’s ability to navigate sparse label
spaces.

2. L1000 (Subramanian et al., 2017): Comprising bulk RNA sequencing data, the L1000 dataset is considered out-of-
distribution for our task. It features 2,000 bulk samples, with labels denoting the cell line, drug compound (with
20 possible values), dosage, and perturbation time, leading to a total of 4,000 potential label combinations. This
dataset serves to evaluate the model’s generalization capabilities across a broad spectrum of biological conditions and
experimental interventions.

3. GTEx (Consortium, 2020): Similarly utilizing bulk RNA sequencing data, the GTEx dataset includes 1,000 bulk
samples. Labels combine patient age, death condition (such as ventilator use or sudden death), and tissue type,
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Figure 7. Scatter plots showing the log-linear relationship between gene expression and rank across 12 diverse scRNA-seq datasets. The
red line shows the fitted linear model, with Pearson’s R, Spearman’s R, and R2 quantifying goodness of fit. The high correlation values
demonstrate that gene rank encodes expression in a consistent, reversible way across datasets. This enables translating between the text
domain of cell sentences and original gene expression.

amounting to around 1,000 distinct label combinations. Through this dataset, the model’s ability to deduce complex
biological states from significantly diverse data compared to single-cell observations is scrutinized.
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You are a helpful assistant and PhD in single-cell genomics. Your task is to concisely summarize abstracts of
scientific publications while conveying the key results from the paper. Keep your summary under 70 words.

Abstract: <ABSTRACT>

Figure 8. Prompt employed to generate synthetic abstract summaries using GPT-3.5-Turbo-1106.

B.3. Cell Generation

For cell type generation, we train the pretrained human scGPT model with sequence lengths of 1200 nonzero genes as
described in (Cui et al., 2023a) for 1 epoch. In order for the model to generate zero-expressed genes, we train for 3 more
epochs on randomly sampled collections of 2000 genes including zero-expressed genes with the same masking ratios used
during the first phase of finetuning. The reported results show the model trained after its first epoch since the model had
converged and stayed at the same loss for the remaining epochs. Even on a p4d.24xlarge AWS instance with 8 A100 40GB
GPUs, half-precision, and flash attention 2, we found it difficult to fit longer sequences without memory issues. Although
Pythia-160m has approximately 3 times as many parameters as scGPT, it was able train on the same instance 4 times faster
per epoch despite having 4.5 times more tokens per sample.

The training procedure is simplified for perturbed cell generation since we restrict to 5000 highly variable genes in our
evaluations. We train scGPT directly on these 5000 highly variable genes starting from the pretrained human model with
mask ratios of .25, .50, and .75. The best model checkpoint is used for evaluation.

To generate cells at inference, we start with a fixed number of randomly sampled genes from a randomly sampled cell in our
dataset. In the case of cell type generation, the cell is sampled from the training dataset. For perturbed cell generation, the
cell is sampled from the test dataset. A cell is generated autoregressively at inference using the previously generated genes
as context until all genes are generated. The number of genes used as context is 1000 for cell type generation and 2500 for
perturbed cell generation. The same number of genes are generated during each forward pass. Labels are embedded and
added to all other tokens, so the model receives two sets of conditional signals during inference.

C. Training Details
We provide further details on our training configuration for the pretraining for experimental results and fine-tuning settings.
We refer to natural language as ”NL” and Cell2Sentence as ”C2S”, and refer to a model that has been solely trained on cell
sentences as ”C2S”, in contrast to a pretrained model fine-tuned on cell sentences which we refer to as ”NL + C2S”. We
use sequence lengths of 1024 for GPT-2 and 9200 for Pythia-160m and train on all tokens. We use the AdamW optimizer
(Loshchilov & Hutter, 2017) and flash attention (Dao et al., 2022; Dao, 2023). We find that C2S models largely benefit
from natural language pretraining as opposed to starting training from randomly initialized weights as explained below (see
Appendix C.1).

C.0.1. PRETRAINING

The GPT-2 small model is initialized with 12 layers and 768 hidden dimensions, and the medium model with 24 layers
and 1024 hidden dimensions, as detailed in (Radford et al., 2019). We employ a learning rate of 6× 10−4 with a cosine
scheduler and 1% warmup ratio. For the GPT-2 medium model, we accumulate gradients over 16 steps. The effective batch
sizes for the small and medium models are of 10 and 48 examples. Each model is trained using a single A5000 GPU over
two days. Model weights are randomly initialized using a Xavier normal distribution (Glorot & Bengio, 2010).

We train a Byte Pair Encoding (BPE) tokenizer (Sennrich et al., 2015) on the full cell sentence dataset, including NL
prompts and cell type labels, yielding a vocabulary of 9,609 tokens. The training set contains approximately 30 million
tokens, averaging 740 tokens per example. Due to the smaller embedding space, the initialized models contain slightly fewer
parameters than their counterparts pretrained on a vocabulary of 50,257 tokens (93M for the small model and 313M for
medium model). The resulting corpus exhibits sparse NL tokens due to short and repetitive prompts. Despite instruction
corpora being traditionally used to fine-tune pretrained models for question answering tasks, we adopt this setting during
pretraining to mirror our fine-tuning setup described in Section C.0.2. We hypothesize that the semantic variability from
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Table 5. Comparison of required compute on the L1000 dataset (Subramanian et al., 2017). All reported numbers are model checkpoints
used in experiments.

MODEL FOUNDATION # PARAMETERS GPU # GPUS # TRAINING SAMPLES # EPOCHS TRAIN TIME (HRS)

GENEFORMER YES 46,107,089 A5000 1 83096 50 ∼ 7
SCGPT YES 51,342,849 A5000 1 83096 50 ∼ 3.3

C2S (GPT-2 LARGE) YES 774,030,080 A5000 1 83096 50 ∼ 3

Table 6. Comparison of required compute on the immune tissue dataset (Conde et al., 2022). All reported numbers are model checkpoints
used in experiments. *scGPT was trained on 6000 highly variable genes due to memory limitations with our setup. All other methods used
all genes after standard filtering, which amounted to over 36,000 genes. Total GPU hours for each model can be computed by multiplying
the number of GPUs with the train time.

MODEL FOUNDATION # PARAMETERS GPU # GPUS # TRAINING SAMPLES # EPOCHS TRAIN TIME (HRS)

SCGEN NO 59,967,903 A5000 1 218,732 60 ∼ 1
SCDIFFUSION NO 781,510,338 A5000 1 218,732 1638 ∼ 78
SCVI NO 23,580,274 A5000 1 218,732 100 ∼ 1
SCGPT* YES 51,342,849 A100 40GB 8 218,732 4 ∼ 9
C2S (PYTHIA-160M) NO 162,322,944 A100 40GB 8 218,732 21 ∼ 29

prompting patterns might implicitly regularize token and positional embeddings, with natural language tokens acting as
class tokens.

We emphasize that the loss is computed on both the prompt and the associated label (i.e. cell type). Not doing so would
cause embeddings of the prompt tokens to remain random, impairing the capacity of the model to learn the conditional
relations between prompt and label tokens. We evaluate the capacity of our model to generate valid genes and maintain an
accurate sequence length (here, of 100 genes) and present the results in Table 11. We find that both pretrained models are
able to generate sequences of 100 genes without significantly deviating from the mean. The models also both achieve over
97% and 96% accuracy in gene validity and uniqueness.

C.0.2. FINE-TUNING

Models are initialized using pretrained weights retrieved from the Hugging Face model hub (HF Canonical Model Maintain-
ers, 2022). We employ a cosine scheduler. On both models, we accumulate gradients over 16 steps and use batch sizes of
eight examples (yielding an effective gradient update batch size of 128 examples). Each model is trained using a single
A5000 GPU. While we experimented with applying efficient fine-tuning techniques (e.g. LoRA (Hu et al., 2022)), fully
fine-tuned models outperformed alternatives in gene uniqueness and validity assessments. We notably found LoRA to
yield highly variable generation patterns, with uniqueness of genes in generated sentences as low as 70%. Unlike for our
pretraining setup, we apply the instruction fine-tuning task in a classical manner, computing the loss exclusively on labels.
We use the pretrained GPT-2 tokenizer, which averages around 233 tokens per training samples (yielding a total of 9M
training tokens).

Similarly to the process detailed in Section C.0.1, we examine the coherence of generated output using sequence length,
as well as accuracy in gene validity and uniqueness. We find that the fine-tuned model outperform the pretrained models
by generating genes with over 99% validity and 98% uniqueness on average (see Table 11). While both models achieve
reliable performance by these standard metrics, we conclude that our fine-tuned models are consistently outperforming the
pretrained models in generating real human genes, which are only rarely duplicated within cell sentences.

C.0.3. COMPUTE RESOURCES

Comparisons of the amount of compute required to train and fine-tune models for our experiments are found in Tables 5 and
6. When adjusting for the number of parameters and number of epochs, C2S models compare favorably to other foundation
models. However, wholly fair comparisons are challenging due to the uniqueness of C2S models’ integrated text inputs and
its leveraging of highly optimized open source libraries.
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Table 7. Correlation metrics for averaged generated cells per cell type against original expression values. The ”random” model was trained
from scratch on cell sentences. The ”pretrained” model was fine-tuned on cell sentences. Correlation metrics are computed on individual
cell types and then averaged.

MODEL PEARSON R R2

GPT-2 SMALL, RANDOM 0.947 0.873
GPT-2 SMALL, PRETRAINED 0.984 0.949

Table 8. k-NN classification accuracy results against ground truth data. ”NL + C2S” means pretrained on natural language and then trained
on cell sentences. ”C2S” means no pretraining and just trained on cell sentences. k-NN classifier is fitted on ground truth cell sentences
and used to predict the cell type label of generated cell sentences from different trained models. k-NN classification is done both in cell
sentence space using Levenshtein distance (Lev.), as well as after converting back to expression vectors (Expr.). ”Real cells” indicates
k-NN classification fit on ground truth cell sentences and used to predict a separate sample of ground truth cell sentences.

MODEL
k=5 k=10 k=25 k=50

EXPR. LEV. EXPR. LEV. EXPR. LEV. EXPR. LEV.

GPT-2 SMALL (C2S) 24.56 16.02 23.79 17.72 23.51 19.17 22.84 19.76
GPT-2 SMALL (NL + C2S) 52.55 37.63 52.19 41.20 51.42 43.42 49.51 44.44
GPT-2 MEDIUM (C2S) 26.36 17.58 25.48 19.18 24.55 20.67 23.44 21.32
GPT-2 MEDIUM (NL + C2S) 54.67 38.60 54.52 41.34 53.27 43.93 51.80 44.73

C.1. Comparing fine-tuning and pretraining

We test whether using pretrained GPT-2 weights yields performance improvements over only training from randomly
initialized weights on cell sentences. We therefore train two GPT-2 small models on a random subset of 49,920 cell sentences
spanning 17 cell types from the immune tissue dataset. To evaluate the ability of our trained models to generate realistic
cells, we consider the average generated cell of each of the 17 cell types in our immune tissue dataset, and compare it with
the average real cell of each cell type in Table 7. Across 17 different cell types, generated cells from fine-tuned models
show high correlation with real cells, capturing over 94% of the variation in the expression of an average cell. We note that
initializing a model with a pretrained language model outperforms training from scratch, indicating that there is mutual
information which allows a model to better understand cell sentence generation.

We also trained an additional two GPT-2 medium models to assess the performance improvements brought by scaling the
parameter count. Table 8 show the k-NN accuracy of each model for different number of neighbors. The cell type of cells
generated by C2S models are accurately classified with a k-NN classifier, achieving a peak of accuracy of 54%. Table
9 underscores the necessity of NL pretraining for accurate cell type identification. A significant performance decline is
observed when using models that have not undergone NL pretraining, thereby confirming that the models are not merely
memorizing the conditioning text. Despite 1) the limited scope of natural language text in our training prompts relative
to the pretraining corpus, and 2) permitting the models to train on these natural language prompts, models without NL
pretraining failed to acquire meaningful natural language embeddings. Furthermore, a modest performance increment is
observed as the scale of pretrained models increases.

D. Inference Details
At inference, we follow the training procedure highlighted in Section C. We set the hyper-parameters top p = 0.9 and
temperature = 0.7 to promote diversity in cell generation. For cell type generation and unconditional cell generation used
in our experiments (see Section 4), we randomly sample prompt templates as input, inserting the cell type or sentence
where needed for conditional generation. For autoregressive cell type prediction or abstract generation, we randomly sample
templates as in training.

All outputs are generated until an end-of-sequence (EOS) token is predicted. Post-generation, gene and cell type extraction
is done using regex to remove prompts. For evaluation, we retain invalid genes and average ranks of duplicate genes,
rearranging sequences as needed. When reverting back to expression values, invalid genes are ignored, but the rank values
are preserved, e.g. if an invalid gene appears in position 3 and a valid gene appears in position 4, the invalid gene is ignored,
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Table 9. Quantification of autoregressive cell type prediction on unseen cells. ”NL + C2S” means pretrained on natural language and then
trained on cell sentences. ”C2S” means no pretraining and just trained on cell sentences. These results show test accuracy significantly
improves with NL pretraining. The scores are computed on unseen immune tissue test data and weighted by the distribution of labels.

MODEL ACCURACY F1 PRECISION RECALL

GPT-2 SMALL (C2S) 29.33 17.46 13.27 29.33
GPT-2 SMALL (NL + C2S) 69.95 68.56 69.44 69.95
GPT-2 MEDIUM (C2S) 29.17 17.41 13.35 19.17
GPT-2 MEDIUM (NL + C2S) 74.26 73.69 74.16 74.26

Table 10. Comparison of k-NN performance on cell type generation with the C2S (Pythia-160m) model when using seen vs unseen
prompts. This is the same setup as the results reported in Table 1, except the unseen prompts are new prompts generated by GPT-4 which
were not used during training. The new prompts are similar in semantic meaning to the original training prompts. Our results show there
is some robustness to variability in prompts at our model scale, but there is an observable reduced performance. We hypothesize that
larger and improved models would suffer less from changes in training prompts.

PROMPTS k-NN (↑)
3 5 10 25

SEEN 0.2588 ± 0.0061 0.2565 ± 0.0060 0.2746 ± 0.0073 0.2715 ± 0.0070
UNSEEN 0.1983 ± 0.0050 0.1949 ± 0.0067 0.2083 ± 0.0065 0.2022 ± 0.0056

but the valid gene retains a rank of 4.

Utilizing pretrained LLMs offers the advantage of using highly optimized, open-source libraries for inference. Similarly
to the training setup, we make use of flash attention (Dao et al., 2022; Dao, 2023) and batched inference to accelerate
generation. Inference for GPT-2 medium (345M parameters) can be done on a single A5000 GPU with 24GB of VRAM and
a batch size of 100 without running out of memory. For GPT-2 small (117M parameters), the batch size can be increased to
250. We did not determine the exact maximum batch sizes, so these values can likely be increased further. On average, the
number of tokens in the prompts and top 100 genes combined was around 350. For example, the GPT-2 small model takes
approximate 20 minutes to generate 500 cells from each of the 35 cell types found in the immune tissue dataset. Model
quantization was not required but may be useful for future experiments with larger models.

E. Evaluation
E.1. In-Context Learning Abstract Generation

We evaluate the capacity of closed- and open-source LLMs to generate biological insights from cell sentences in a 10-shot
prompting setting. Each model is provided with a sequence of pairs of cell sentences and abstract summaries. We evaluate
GPT-3.5-Turbo-1106 with the prompt presented in Figure 11. We use an identical prompt for Mixtral-8x7B-Instruct and
Mistral-7B-Instruct, while removing the instruction to return JSON format as this is not known to be a feature of these
models. This 10-shot prompting approach yields a context length of around 4000 tokens. As GPT-2 small and GPT-2 large
are limited to 1024 in-context tokens, we use the same prompt as for the C2S models, in which we only provide a minimal
instruction in natural language paired with a cell sentence.

F. Attention Visualizations
We provide attention visualizations for highly-attended to genes in drug compound (Figure 9) and cell line (Figure 10)
predictions. Attention coefficients corresponding to input genes are first aggregated for drug compound and cell line label
predictions across all test samples in the L1000 dataset. We extract attention coefficients of the last hidden layer of our
finetuned GPT-2 model, and average attention coefficients across different attention heads. Gene attention coefficients
are then averaged for each unique drug compound (Figure 9, y-axis) or cell line (Figure 10, y-axis) label, and the top 50
highly-attended to genes are visualized. The biclustered heatmaps reveal differential attention of genes for the prediction of
different labels, giving insight of which input genes in the cell sentences the model is attending to for prediction of different
drug compounds and cell lines.
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Table 11. Quality of generated outputs. ”NL + C2S” means pretrained on natural language and then trained on cell sentences. ”C2S”
means no pretraining and just trained on cell sentences. This table shows 1. models trained using Cell2Sentence are able to generate real
genes with few duplicates and invalid genes and 2. models pretrained with natural language generate more accurately. The metrics are
computed across all 35 cell types seen during training with 500 cells generated per cell type and then averaged across all generated cells
(top 100 genes) from the immune tissue dataset. The valid genes percentage shows the number of genes generated that are real genes
including duplicates. The generated length is the number of genes generated regardless of their validity. The unique gene ratio is the ratio
of unique valid genes to the generated length.

MODEL GEN. LENGTH VALID GENES % UNIQUE GENES %

GPT-2 SMALL (C2S) 101.54 97.84 97.31
GPT-2 SMALL (NL + C2S) 99.84 99.60 98.88
GPT-2 MEDIUM (C2S) 100.62 97.51 96.69
GPT-2 MEDIUM (NL + C2S) 99.80 99.70 99.47

Figure 9. Attention heatmap visualization for drug compound prediction in the L1000 dataset.
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Figure 10. Attention heatmap visualization for cell line prediction in the L1000 dataset.
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G. Generated abstracts

You are an AI assistant with specialized expertise in biology, particularly skilled in single-cell transcriptomics
data analysis. Your role is to provide concise, insightful summaries of research studies centered on specific cells,
emphasizing their most prominent features derived from the top-100 expressed genes in the sampled cell. Utilize
this gene expression data to deduce the cell’s condition and the type of tissue it originates from. This prompt
includes various examples where short abstracts were effectively generated from single-cell data:
context. Deliver your summary in a structured JSON format: ’abstract’: <ANSWER>.

Abstract: <ABSTRACT>
Cell sentence: <CELL SENTENCE>

Generate an abstract for the following cell sentence:
Cell sentence: <CELL SENTENCE>

Make sure to format your answer in JSON {’abstract’: <ANSWER>}.

Figure 11. In-context learning prompt employed to generate abstract summaries from cell sentences with GPT-3.5-Turbo-1106.
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A) Fallopian tube (FT) homeostasis requires dynamic regulation of heterogeneous cell populations
and is disrupted in infertility and ovarian cancer . Here we applied single-cell RNA-seq to pro-
file 59,738 FT cells from 4 healthy pre- menopausal subjects. The resulting cell atlas contains
12 major cell types representing epithelial, stromal and immune compartments. Re-clustering of
epithelial cells identified 4 ciliated and 6 non-ciliated secretory epithelial subtypes , two of which represent poten-

tial progenitor pools: one leading to mature secretory cells, while the other contributing to either ciliated cells or
one of the stromal cell types. To understand how FT cell numbers and states change in a disease state, we analyzed
17,798 cells from two hydrosalpinx samples and observed shifts in epithelial and stromal populations, and cell
type-specific changes in extracellular matrix and TGF- signaling, underscoring fibrosis pathophysiology. This
resource is expected to facilitate future studies to understand fallopian tube homeostasis in normal development
and disease.

B) Single-cell analysis of postmenopausal ovary and fallopian tube revealed 17 cell clusters in the ovary and

22 in the fallopian tube, defining distinct cell types in each tissue. Notably, ciliated and secretory epithelial cells
were in the fallopian tube. This work contributes to the Human Cell Atlas initiative and provides valuable insights
into normal ovarian and fallopian tube biology.

C) This study utilized single-cell gene expression analysis to investigate the molecular characteristics of smooth
muscle cells present in human vascular tissue. Through comprehensive profiling of gene expression patterns, the
researchers identified key genes involved in smooth muscle cell function, including those related to contractility and
regulatory processes. These findings contribute to our understanding of the molecular mechanisms underpinning
vascular smooth muscle cell physiology.

D) This single-cell transcriptomic analysis of multiple human tissue types revealed the top-100 expressed genes,
which include mitochondrial genes such as MT-CO3, MT-CO2, and MT-CO1, metabolic genes like FABP6 and
EEF1A1, and genes involved in immune response and cell adhesion, such as B2M, HLA-A, and CLDN3. Notable
findings include the expression of genes related to hypoxia response (PRAP1, PHGR1, TFF3, and TKFC) and
immune regulation (TNFSF4, CDHR5, and FOS), providing insights into tissue-specific features and potential
signaling pathways. The data provides a valuable resource for further investigation into tissue-specific gene
expression patterns and disease mechanisms.

Figure 12. Comparison between an original study abstract (A), and abstract summaries generated with GPT-2 small fine-tuned with C2S
(B), GPT-3.5-Turbo-1106 (C), and Mixtral-8x7B-Instruct (D). Only the C2S-generated abstract is relevant to the ground-truth study
abstract, despite all summaries being semantically correct. Note that this study was held out from the training set.
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G.1. Examples of generated abstracts.

The following examples of generated abstracts show C2S models can generate natural language insights from single cell
sentences not necessarily contained in the original abstract of the corresponding study.

Original study abstract: Although most SARS-CoV-2-infected individuals experience mild coronavirus disease
2019 (COVID-19), some patients suffer from severe COVID-19, which is accompanied by acute respiratory distress
syndrome and systemic inflammation. To identify factors driving severe progression of COVID-19, we performed
single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from healthy donors, patients with
mild or severe COVID-19, and patients with severe influenza. Patients with COVID-19 exhibited hyper-inflammatory
signatures across all types of cells among PBMCs, particularly up-regulation of the TNF/IL-1β-driven inflammatory
response as compared to severe influenza. In classical monocytes from patients with severe COVID-19, type I
IFN response co-existed with the TNF/IL-1β-driven inflammation, and this was not seen in patients with milder
COVID-19. Interestingly, we documented type I IFN-driven inflammatory features in patients with severe influenza
as well. Based on this, we propose that the type I IFN response plays a pivotal role in exacerbating inflammation in
severe COVID-19. (Lee et al., 2020)

C2S generated abstract: In patients with critical COVID-19, 19% had type I interferon autoantibodies, compared
to 6% in severe cases and none in moderate cases. Analysis of immune cells from patients revealed reduced type I
interferon response in myeloid cells, particularly in dendritic cells with autoantibodies. Monocytes from critically ill
patients showed elevated expression of the inhibitory receptor LAIR1, which correlated with reduced interferon
response. These findings suggest a unified mechanism involving interferon suppression in sever COVID-19.

Original study abstract: Fallopian tube (FT) homeostasis requires dynamic regulation of heterogeneous cell
populations and is disrupted in infertility and ovarian cancer. Here we applied single-cell RNA-seq to profile 59,738
FT cells from 4 healthy pre-menopausal subjects. The resulting cell atlas contains 12 major cell types representing
epithelial, stromal and immune compartments. Re-clustering of epithelial cells identified 4 ciliated and 6 non-ciliated
secretory epithelial subtypes, two of which represent potential progenitor pools: one leading to mature secretory
cells, while the other contributing to either ciliated cells or one of the stromal cell types. To understand how FT
cell numbers and states change in a disease state, we analyzed 17,798 cells from two hydrosalpinx samples and
observed shifts in epithelial and stromal populations, and cell type-specific changes in extracellular matrix and TGF-
signaling, underscoring fibrosis pathophysiology. This resource is expected to facilitate future studies to understand
fallopian tube homeostasis in normal development and disease. (Ulrich et al., 2021)

C2S generated abstract: This study provides single-cell transcriptomic and regulatory profiles of postmenopausal
ovary and fallopian tube. In the fallopian tube, 22 cell clusters integrated into 11 cell types, including ciliated
and secretory epithelial cells. The ovary had 17 distinct cell clusters defining 6 major cell types. These findings
contribute to the understanding of cellular composition in these tissues for future studies on reproductive health and
diseases.
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Original study abstract: Gastrointestinal microbiota and immune cells interact closely and display regional
specificity; however, little is known about how these communities differ with location. Here, we simultaneously
assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of
immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe
distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation
trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation,
clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing
number of reactive bacterial species. (James et al., 2020)

C2S generated abstract: In this study, 720,633 cells from the intestines of 71 individuals with Crohn’s disease
were analyzed to understand cell-specific responses to inflammation. The findings showed distinct responses in
immune, epithelial, and stromal cells between the small and large intestines, particularly related to genes associated
with inflammatory bowel disease (IBD) risk. Additionally, potential regulators of fibrotic complications were
identified, offering insights into potential therapeutic targets for Crohn’s disease. This work provides a roadmap for
understanding the disease at a cellular level.

Original study abstract: During postnatal life, thymopoiesis depends on the continuous colonization of the thymus
by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding
of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell
RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration
of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that
varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors
supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly
of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human
T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps
of human T cell development. This comprehensive dataset defines the expression signature of immature human
thymocytes and provides a resource for the further study of human thymopoiesis. (Lavaert et al., 2020)

C2S generated abstract: This study combined single-cell genomics techniques to reconstruct the developing human
immune system across nine prenatal tissues. The findings revealed the timing of immune cell subset acquisition and
maturation, as well as blood and immune cell development beyond primary hematopoietic organs. The study also
characterized human prenatal B1 cells and shed light on the origin of unconventional T cells, providing valuable
insights for cell engineering, regenerative medicine, and disease understanding.
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Original study abstract: The retina is a specialized neural tissue that senses light and initiates image processing.
Although the functional organization of specific retina cells has been well studied, the molecular profile of many
cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA
sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised
clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal
cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells,
horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early
degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time,
which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the
use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult
Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional
landscape of human retinal cells, which is fundamental to understanding retinal biology and disease. (Lukowski
et al., 2019)

C2S generated abstract: This study used single-cell RNA sequencing to analyze human retinal cells, identifying
58 cell types and mapping gene expression patterns linked to blinding diseases. They found differences in gene
expression and proportions between foveal and peripheral retinal cells. Comparing human and macaque retinas, they
found over 90% correspondence in cell types and expression of genes implicated in blinding diseases, validating the
macaque as a model for studying blinding diseases.

Original study abstract: The liver is the largest solid organ in the body and is critical for metabolic and immune
functions. However, little is known about the cells that make up the human liver and its immune microenvironment.
Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide
the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh
hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical
examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic
stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic mono-
cyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell
resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human
hepatic immune microenvironment. (MacParland et al., 2018)

C2S generated abstract: This study used single-cell RNA sequencing and single nucleus RNA sequencing to
comprehensively map the cell types in the human liver. The addition of snRNA-seq revealed new subtypes of hepatic
stellate cells and cholangiocyte progenitors, while T and B lymphocytes and NK cells were only distinguishable
using snATAC-seq. The study validated the spatial distribution of liver cell populations using spatial transcriptomics
and immunohistochemistry. This work provides a high-resolution map of healthy human liver parenchymal cell
populations.
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