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Abstract

Training and using modern neural-network based
latent-variable generative models (like Variational
Autoencoders) often require simultaneously train-
ing a generative direction along with an inferential
(encoding) direction, which approximates the pos-
terior distribution over the latent variables. Thus,
the question arises: how complex does the infer-
ential model need to be, in order to be able to
accurately model the posterior distribution of a
given generative model? In this paper, we iden-
tify an important property of the generative map
impacting the required size of the encoder. We
show that if the generative map is “strongly in-
vertible" (in a sense we suitably formalize), the
inferential model need not be much more com-
plex. Conversely, we prove that there exist non-
invertible generative maps, for which the encod-
ing direction needs to be exponentially larger (un-
der standard assumptions in computational com-
plexity). Importantly, we do not require the gen-
erative model to be layerwise invertible, which a
lot of the related literature assumes and isn’t sat-
isfied by many architectures used in practice (e.g.
convolution and pooling based networks). Thus,
we provide theoretical support for the empirical
wisdom that learning deep generative models is
harder when data lies on a low-dimensional mani-
fold.

1. Introduction

Many modern generative models of choice (e.g. Generative
Adversarial Networks (Goodfellow et al., 2014), Variational
Autoencoders (Kingma and Welling, 2013)) are modeled as
non-linear, possibly stochastic transformations of a simple
latent distribution (e.g. a standard Gaussian). A particularly

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by INNF+ 2021. Do not dis-
tribute.

common task is modeling the inferential (encoder) direction:
that is, modeling the posterior distribution on the latents z
given an observable sample x. Such a task is useful both at
train time and at fest time. At train time, fitting generative
models like variational autoencoders via maximum likeli-
hood often relies on variational methods, which require the
joint training of a generative model (i.e. generator/decoder),
as well as an inference model (i.e. encoder) which models
the posterior distribution of the latent given the observables.
At test time, the posterior distribution very often has some
practical use, e.g. useful, potentially interpretable feature
embeddings for data (Berthelot et al., 2018), “intervening”
on the latent space to change the sample in some targeted
manner (Shen et al., 2020), etc. As such, the question of the
“complexity” of the inference model (i.e. number of parame-
ters to represent it using a neural network-based encoder) as
a function of the “complexity” of the forward model is of
paramount importance:

Question: How should we choose the architecture of the
inference (encoder) model relative to the architecture of the
generative (decoder) model during training?

For instance, when is the backward model not much more
complex, so that training in this manner is not computation-
ally prohibitive? Such a question is also pertinent from a
purely scientific perspective, as it asks:

Question: Given a generative model for data, when is in-
ference (much) harder than generation?

In this paper we identify an important aspect of the gener-
ative direction governing the complexity of the inference
direction for variational autoencoders: a notion of approxi-
mate bijectivity/invertibility of the mean of the generative
direction. We prove that under this assumption, the complex-
ity of the inference direction is not much greater than the
complexity of the generative direction. Conversely, without
this assumption, under standard computational complexity
conjectures from cryptography, we can exhibit instances
where the inference direction has to be much more complex.

On the mathematical level, our techniques involve a neural
simulation of a Langevin random walk to sample from the
posterior of the latent variables. We show that the walk
converges fast when started from an appropriate initial point
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— which we can compute using gradient descent (again, sim-
ulated via a neural network). On the lower bound side, we
provide a reduction from the existence of one-way Boolean
permutations in computational complexity: that is, permuta-
tions that are easy to calculate, but hard to invert. We show
that the existence of a small encoder for non-invertible gen-
erators would allow us to design an invertor for any Boolean
permutation, thus violating the existence a one-way permu-
tation. This is the first time such ideas have been applied to
generative models.

Our results can be seen as corroborating empirical observa-
tions that learning deep generative models more generally is
harder when data lies on a low-dimensional manifold (Dai
and Wipf, 2019; Arjovsky et al., 2017).

2. Our Results

The Variational Autoencoder (VAE) (Kingma and Welling,
2013) is one of the most commonly used paradigms in gener-
ative models. It’s trained by fitting a generator which maps
latent variables z to observables z, denoted by pp (z|z), as
well as an encoder which maps the observables to the latent
space, denoted by g, (z|x). Here ¢ and 6 are the encoder
parameters and generator parameters respectively. Given n
training samples {z(*) ™., the VAE objective is given by

1
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where p(z) is typically chosen to be a standard Gaussian.
This loss can be viewed as a variational relaxation of the
maximum likelihood objective, where the encoder ¢4, in the
limit of infinite representational power, is intended to model
the posterior distribution pg(z|z(*)) over the latent variables
z.

Setup: We will consider a setting in which the data dis-
tribution itself is given by some ground-truth generator
G : R% — R and ask how complex (in terms of number
of parameters) the encoder needs to be (as a function of
the number of parameters of (7), s.t. it approximates the
posterior distribution p(z|z) of the generator.

We will consider two standard probabilistic models for the
generator/encoder respectively.

Definition 1 (Latent Gaussian). A latent Gaussian is the
conditional distribution given by a stochastic pushforward
of the standard gaussian. That is, for latent variable
z € R% and observable z € R%, for a neural network
G : R% — R% and noise parameter B?; the distribu-
tion p(z|z) = N(G(2), 8%1,,) is a latent Gaussian when
p(z) = N(0, Ig,).

In other words, a sample from this distribution can be
generated by sampling independently z ~ AN(0,I) and
& ~ N(0,8%I) and outputting * = G(z) + £. This is a
standard neural parametrization of a generator with (scaled)
identity covariance matrix, a fairly common choice in prac-
tical implementations of VAEs (Kingma and Welling, 2013;
Dai and Wipf, 2019).

We will also define a probabilistic model which is a composi-
tion of latent Gaussians (i.e. consists of multiple stochastic
layers), which is also common, particularly when model-
ing encoders in VAEs, as they can model potentially non-
Gaussian posteriors (Burda et al., 2015; Rezende et al.,
2014):

Definition 2 (Deep Latent Gaussian). A deep latent Gaus-
sian is the conditional distribution given by a sequence of
stochastic pushforwards of any density. That is, for ob-
servable zp € R% and latent variables {z; € R%}E |
for neural networks {G; : R4-1 — R%}L . and
noise parameters {82}~ |, the conditional distribution
p(zL|20) is a deep latent Gaussian when p(z;|z;—1) =
N(Gi(zi-1), B214,),Vi € [L] and p(2) is any valid den-
sity.

In other words, a deep latent Gaussian is a distribution,
which can be sampled by ancestral sampling, one layer at
a time. Note that this class of distributions is convenient
as a choice for an encoder in a VAE, since compositions
are amenable to the reparametrization trick of (Kingma and
Welling, 2013) — the randomness for each of the layers can
be “presampled” and appropriate transformed (Burda et al.,
2015; Rezende et al., 2014). Then, we ask the following:

Question: If a VAE generator is modeled as a latent Gaus-
sian (that is, p(z|z) = N(G(z), 82I)), s.t. the correspond-
ing G has at most NV parameters, and we wish to approxi-
mate the posterior p(z|x) by a deep latent Gaussian s.t. the
total size of the networks in it have at most N’ parameters,
how large must N/ be as function of N?

We will work in the setting d; = d, = d, and prove
a dichotomy based on the invertibility of G: namely, if
. Rd d 3o hiiact] 1
G : R — R® is bijective, and g < O (‘“'5\/@)’
the posterior p(z|z) can be e-approximated in total vari-
ation distance by a deep latent Gaussian of size N/ =
O (N - poly(d,1/B,1/¢€)). Thus, if the neural network G
is invertible, and for a fixed € and a small-enough variance
term 32, we can approximate the posterior with a deep la-
tent Gaussian polynomially larger than G. On the other
hand, if G is not bijective, if one-way-functions exist (a
widely believed computational complexity conjecture), we
will show there exists a VAE generator G’ : RY — R? of
size polynomial in d, for which the posterior p(z|z) cannot
be approximated in total variation distance for even an in-
verse polynomial fraction of inputs x, unless the inferential



The Effects of Invertibility in Variational Autoencoders

network is of size exponential in d.

2.1. Upper bounds for bijective generators

We first lay out the assumptions on the map G. The first is a
quantitative characterization of bijectivity; and the second
requires upper bounds on the derivatives of GG upto order 3.
We also have a centering assumption. We state these below.

Assumption 1 (Strong invertibility). We will assume that
the latent and observable spaces have the same dimension
(denoted d), and G : R¢ — R< is bijective. Moreover, we
will assume there exists a positive constant m > 0 such
that:

Va1, 2 €RY,[|G(21) = G(z2)| = m- |21 — 2|

Remark 1: This is a stronger quantitative version of in-

vertibility. Furthermore, the infinitesimal version of this

condition (i.e. ||z1 — 22| — 0) implies that the smallest mag-

nitude of the singular values of the Jacobian at any point is

lower bounded by m, that is Vz € R, Ighlﬁ loi(Ja(2))| >
K2

m > 0. Since m is strictly positive, this in particular means
that the Jacobian is full rank everywhere.

Remark 2: Note, we do not require that G is layerwise in-
vertible (i.e. that the each map from one layer to the next is
invertible) — if that is the case, at least in the limit 5 — 0, the
existence of an inference decoder of comparable size to G
is rather obvious: we simply invert each layer one at a time.
This is important, as many architectures based on convolu-
tions perform operations which increase the dimension (i.e.
map from a lower to a higher dimensional space), followed
by pooling (which decrease the dimension). Nevertheless, it
has been observed that these architectures are invertible in
practice— (Lipton and Tripathi, 2017) manage to get almost
100% success at inverting an off-the-shelf trained model—
thus justifying this assumption.

Assumption 2 (Smoothness). There exists a finite positive
constant M > 0 such that :

VZl,ZQ S Rd, ||G(Zl> — G(ZQ)H < M- ||2’1 — Zz”

Moreover, we will assume that G has continuous partial
derivatives up to order 3 at every z € R? and the derivatives
are bounded by finite positive constants My and M3 as

vz eRY, [|V2G(2)],, < M2 < oo,
IV2G(2)]],, < M5 < o0

Remark 3: This is a benign assumption, stating that the
map G is smooth to third order. The infinitesimal version of
this means that the largest magnitude of the singular values
of the Jacobian at any point is upper bounded by M, that is
Vz € RY, max|oi(Ja(2))] = [[Ja(2)llop < M < oo

Remark 4: A neural network with activation function o
will satisfy this assumption when o : R — R is Lipschitz,
and max, |0/ (a)| & max, |0”(a)| are finite.

Assumption 3 (Centering). The map G : R — R? satis-
fies G(0) = 0.

Remark 5: This assumption is for convenience of stating
the bounds — we effectively need the “range” of majority
of the samples x under the distribution of the generator. All
the results can be easily restated by including a dependence
on [|G(0)].

Our main result is then stated below. Throughout, the O(.)
notation hides dependence on the map constants, namely
m, M, Ma, M3. We will denote by dv (p, ¢) the total vari-
ation distance between the distributions p, q.

Theorem 1 (Main, invertible generator). Consider a VAE
generator given by a latent Gaussian with noise parameter
B2 and generator G : R — RY satisfying Assumptions 1
and 2, which has N parameters and a differentiable activa-
tion function o. Then, for

1

a5 flog ?

there exists a deep latent Gaussian with N' =

B<0O )

@) (N - poly(d, %, %)) parameters and activation functions

{o,0’, p}, where p(x) = x2, such that with probability
1 — exp(—O(d)) over a sample x from the VAE generator,
the distribution q(z|x) of the deep latent Gaussian on input

x satisfies dpy (q(z|z),p(z]x)) < e

Remark 6: The addition of p in the activation functions
is for convenience of stating the bound. Using usual tech-
niques in universal approximation it can be simulated using
any other smooth activation.

2.2. Lower bounds for non-bijective Generators

We now discuss the case when the generative map G is not
bijective, showing an instance such that no small encoder
corresponding to the posterior exists. The lower bound will
be based on a reduction from the existence of one-way func-
tions — a standard complexity assumption in theoretical com-
puter science (more concretely, cryptography). Precisely, we
will start with the following form of the one-way-function
conjecture:

Conjecture 1 (Existence of one-way permutations, (Katz

and Lindell, 2020)). There exists a bijection f

{~1,1}* — {—1,1}? computable by a Boolean cir-

cuit C : {—1,1}¢ — {=1,1}7 of size poly(d), but for
d

every T(d) = poly(d) and e(d) = pol;(d) and cir-

cuit C' : {=1,1}¢ — {=1,1}? of size T(d) it holds
Pr..(4£13[C'(C(2)) = 2] < €(d).
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In other words, there is a circuit of size polynomial in the
input, s.t. for every polynomially sized invertor circuit (the
two polynomials need not be the same — the invertor can be
much larger, so long as it’s polynomial), the invertor circuit
succeeds on at most an inverse polynomial fraction of the
inputs. Assuming this Conjecture, we show that there exist
generators that do not have small encoders that accurately
represent the posterior for most points z. Namely:

Theorem 2 (Main, non-invertible generator). If Conjec-
ture 1 holds, there exists a VAE generator G : R — R4
with size poly(d) and activation functions {sgn, min, max},
s.t., for every B = o(1/\/d), every T(d) = poly(d)
and every e(d) = 1/poly(d), any encoder E that can
be represented by a deep latent Gaussian with networks
that have total number of parameters bounded by T(d),
weights bounded by W, activation functions that are L-
Lipschitz, and node outputs bounded by M with probability
1 — exp(—d) over a sample x from G and L, M,W =
o(exp(poly(d))), we have:

Pro.c |dy(E(z|2),p(z]2)) < | < e(d)

L
0]~

Thus, we show the existence of a generator for which no
encoder of polynomial size reasonably approximates the
posterior for even an inverse-polynomial fraction of the
samples = (under the distribution of the generator).

Remark 7: The generator G, though mapping from R? —
R? will be highly non-invertible. Perhaps counterintuitively,
Conjecture 1 applies to bijections—though, the point will
be that G will be simulating a Boolean circuit, and in the
process will give the same output on many inputs (more
precisely, it will only depend on the sign of the inputs, rather
than their values).

Remark 8: The choice of activation functions
{sgn, min, max} is for convenience of stating the
theorem. Using standard universal approximation results,
similar results can be stated with other activation functions.

Remark 9: The restrictions on the Lipschitzness of the
activations, bounds of the weights and node outputs of E
are extremely mild — as they are allowed to be potentially
exponential in d — considering that even writing down a
natural number in binary requires logarithmic number of
digits.

3. Related Work

On the empirical side, the impact of impoverished varia-
tional posteriors in VAEs (in particular, modeling the en-
coder as a Gaussian) has long been conjectured as one of the
(several) reasons for the fuzzy nature of samples in trained
VAEs. (Zhao et al., 2017) provide recent evidence towards

this conjecture. Invertibility of generative models in general
(VAEs, GANs and normalizing flows), both as it relates to
the hardness of fitting the model, and as it relates to the use-
fulness of having an invertible model, has been studied quite
a bit: (Lipton and Tripathi, 2017) show that for off-the-shelf
trained GANSs, they can invert them with near-100% success
rate, despite the model not being encouraged to be invertible
during training; (Dai and Wipf, 2019) propose an alternate
training algorithm for VAEs that tries to remedy algorithmic
problems during training VAEs when data lies on a lower-
dimensional manifold; (Behrmann et al., 2020) show that
trained normalizing flows, while being by design invertible,
are just barely so — the learned models are extremely close
to being singular.

On the theoretical side, the most closely relevant work is
(Lei et al., 2019). They provide an algorithm for invert-
ing GAN generators with random weights and expanding
layers. Their algorithm is layerwise — that is to say, each
of the layers in their networks is invertible, and they in-
vert the layers one at a time. This is distinctly not satisfied
by architectures used in practice, which expand and shrink
— a typical example are convolutional architectures based
on convolutions and pooling. The same paper also shows
NP-hardness of inverting a general GAN, but crucially they
assume the network G is part of the input (their proof does
not work otherwise). Our lower bound can be viewed as a
“non-uniform complexity” (i.e. circuit complexity) analogue
of this, since we are looking for a small neural network FE,
as opposed to an efficient algorithm; crucially, however G
is not part of the input (i.e. G can be preprocessed for an
unlimited amount of time). (Hand and Voroninski, 2018)
provide similar guarantees for inverting GAN generators
with random weights that satisfy layerwise invertibility, al-
beit via non-convex optimization of a certain objective.

4. Conclusion

In this paper we initiated the first formal study of the ef-
fect of invertibility of the generator on the representational
complexity of the encoder in variational autoencoders. We
proved a dichotomy: invertible generators give rise to dis-
tributions for which the posterior can be approximated by
an encoder not much larger than the generator. On the other
hand, for non-invertible generators, the corresponding en-
coder may need to be exponentially larger. Our work is the
first to connect the complexity of inference to invertibility,
and there are many interesting venues for further work.
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