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Abstract

Large scale convex-concave minimax problems arise in numerous applications,
including game theory, robust training, and training of generative adversarial
networks. Despite their wide applicability, solving such problems efficiently and
effectively is challenging in the presence of large amounts of data using existing
stochastic minimax methods. We study a class of stochastic minimax methods and
develop a communication-efficient distributed stochastic extragradient algorithm,
LocalAdaSEG, with an adaptive learning rate suitable for solving convex-concave
minimax problem in the Parameter-Server model. LocalAdaSEG has three main
features: (i) periodic communication strategy reduces the communication cost
between workers and the server; (ii) an adaptive learning rate that is computed
locally and allows for tuning-free implementation; and (iii) theoretically, a nearly
linear speed-up with respect to the dominant variance term, arising from estimation
of the stochastic gradient, is proven in both the smooth and nonsmooth convex-
concave settings. LocalAdaSEG is used to solve a stochastic bilinear game, and
train generative adversarial network. We compare LocalAdaSEG against several
existing optimizers for minimax problems and demonstrate its efficacy through
several experiments in both the homogeneous and heterogeneous settings.

1 Introduction

Stochastic minimax optimization problems arise in applications ranging from game theory [46],
robust optimization [19], and AUC Maximization [28], to adversarial learning [52] and training of
generative adversarial networks (GANs) [27]. In this work, we consider

min
xPX

max
yPY

 

F px, yq :“ Eξ„P
“

fpx, y, ξq
‰ (

, (1)

where X Ď X, Y Ď Y are nonempty compact convex sets, X, Y are finite dimensional vector
spaces, ξ is a random vector with an unknown probability distribution P supported on a set Ξ, and
f : X ˆ Y ˆ Ξ Ñ R is a real valued function, which may be nonsmooth. Throughout the paper, we
assume that the expectation Eξ„P rfpx, y, ξqs is well-defined and finite. For all ξ P Ξ, we assume
that the function F px, yq is convex in x P X and concave in y P Y . In addition, we assume that
F px, yq is a Lipschitz continuous function.

There are three main challenges in developing a solver for the minimax problem (1). First, the solver
should provide iterates that converge. Second, the solver should be computationally efficient so that it
˚Li Shen is the corresponding author.
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can be applied to problems with large amounts of training samples. Third, the solver should provide
an adaptive way to set the learning rate. We discuss these challenges in detail below.

First, from a theoretical perspective, it has been demonstrated that direct application of the (stochastic)
gradient descent ascent ((S)GDA) to solve (1) may result in divergence of the iterates [41, 18, 26, 42].
Possible ways to overcome the divergence issue are to apply primal-dual hybrid gradient(PDHG) or
(stochastic) extragradient method and their variants [41, 18, 25, 4, 38, 56, 55].

Second, from a computational perspective, it is desirable to have a distributed solver to solve the
stochastic minimax problem (1). The minimax problem (1) is often instantiated as a finite-sum
problem, where the distribution P is the empirical distribution over the data points. Storing and
manipulating large-scale datasets on a single worker is challenging, while computing the exact
(sub)gradient of F px, yq is also impossible. For example, when problem (1) is specified as BigGAN
[8] over ImageNet [20], the number of training samples is as many as 14 million. Traditional
distributed SGDA on problem (1) may suffer from considerable communication burden due to such
a large amount of samples. Sometimes data are intrinsically distributed on multiple devices (such
as cell-phone data) and, due to privacy concerns, local data must stay on the device, which further
motivates the development of distributed solvers. Communication-efficient distributed large-scale
solvers for minimax problems have been investigated only recently [7, 22, 30, 39].

Third, from an adaptive learning perspective, the performance of stochastic minimax solvers for (1) is
highly dependant on the learning rate tuning mechanism [29, 1]. However, designing a solver for (1)
with an adaptive learning rate is much more challenging compared to the convex case. For example,
for classical minimization problems, the learning rate can be tuned based on the loss evaluated at
the current iterate, which directly quantifies how close the iterate is to the minimum. However, such
an approach does not extend to minimax problems since the value of F at an iterate px, yq does not
serve as a performance criterion and, therefore, a more sophisticated approach is required for tuning
the learning rate. Development of adaptive learning rate tuning mechanisms for large scale stochastic
minimax problems has been explored only recently [6, 5, 24, 1, 38]. Hence, we ask

Can we develop an efficient algorithm for the stochastic minimax problem (1) that enjoys
convergence guarantees, communication-efficiency and adaptivity simultaneously ?

We provide an affirmative answer to this question and develop LocalAdaSEG (Local Adaptive
Stochastic Extragradient) algorithm. Our contributions are three-fold:
Novel communication-efficient distributed minimax algorithm. Specifically, LocalAdaSEG al-
gorithm falls under the umbrella of the Parameter-Server model [50] and adopts a periodic com-
munication mechanism to reduce the communication cost between the server and workers, similar
to Local SGD/FedAvg [54, 51, 35] in federated learning [40]. In addition, in each worker, a local
stochastic extragradient algorithm with an adaptive learning rate is performed with multiple iterations
independently. Every once in a while, current iterates and adaptive learning rates from all workers
are sent to the server. Then a weighted average of the iterates is computed, where the weights are
constructed from the received local adaptive learning rates. We emphasize that the adaptive learning
in each worker is distinct from others and is automatically updated according to local data as is done
in [11, 7], and different from the existing adaptive distributed algorithms [53, 47, 12].
Theoretically optimal convergence rate. We establish the optimal Õ

`

γGD{
?
T ` σD{

?
MT

˘

convergence rate in the nonsmooth stochastic convex-concave minimax setting and optimal
Õ
`

σD{
?
MT `DM3{2 ¨ V1pT q{T ` γ

2LD2{T ` γGDM3{2{T
˘

convergence rate in the smooth
stochastic convex-concave minimax setting with respect to duality gap [44, 36], where M is the num-
ber of workers and V1pT q is the cumulative growth of stochastic gradients. Therefore, LocalAdaSEG
algorithm enjoys the linear speed-up property on the stochastic gradient variance term thanks to the
periodic communication mechanism.
Experimental verification. We conduct several experiments on stochastic bilinear game and Wasser-
stein GAN [3] to verify the efficiency and effectiveness of LocalAdaSEG algorithm. We also
extend LocalAdaSEG algorithm to solve the challenging federated GANs in a heterogeneous set-
ting. Experiment results agree with the theoretical guarantees and demonstrate the superiority of
LocalAdaSEG against several existing minimax optimizers, such as SEGDA [44], UMP [6], ASMP
[24], LocalSEGDA [7], LocalSGDA [22], and Local Adam [7].
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2 Related Work

While there has been a lot of work on minmax optimization, due to space constraints, we summarize
only the most closely related work. Our work is related to literature on stochastic minimax algorithms,
adaptive minimax algorithms, and distributed minimax algorithms.

Stochastic minimax algorithms. Stochastic convex-concave minimax problems (1) have been ex-
tensively studied in the optimization literature and are usually solved via variants of PDHG or
extragradient methods, e.g., [9, 56, 44, 45, 32, 31, 15, 7]. [16] and [32] adopted mirror-prox-type
methods to tackle the stochastic convex-concave minimax problem with Op 1?

T
q convergence rate.

[56] proposed an accelerated stochastic PDHG-type algorithm with Bergman divergence for solving
stochastic convex-concave minimax problem with a similar Op 1?

T
q convergence rate dominated

by the stochastic variance term. However, while all these algorithms [16, 32, 56] have achieved
the optimal rate according to the low and upper bound for the stochastic convex-concave minimax
problem [7], their performance is highly influenced by the choice of learning rate.

Adaptive minimax algorithms. Adaptive learning rate in stochastic optimization is first developed
for minimization problems [23]. Its variants [33, 48] are extensively used for training deep learning
models. The key feature of adaptive learning rate is that it can automatically tune the learning rate
during the training process and achieve faster convergence. Recently, adaptive learning rate has also
been developed for minimax algorithms to accelerate the training process, since the learning rate in
stochastic minimax algorithm is hard to tune based on the minimax loss, as compared to minimization
problems. Several recent papers have tried to analyze convergence rate of adaptive extragradient
in the convex-concave minimax setting. The universal mirror-prox method [6] proposed a new
adaptive learning rate technique that adapts to problem parameters, such as the unknown Lipschitz
parameter, and achieves optimal convergence rates in the stochastic setting. [5] extended the universal
mirror-prox of [6] by replacing the norm dependence in the learning rate with a general Bregman
divergence dependence. [24] proposed an adaptive stochastic single-call extragradient algorithm
for variational inequality problems. [1] proposed a similar adaptive mirror-prox algorithm, but their
method handles unbounded domain by introducing the notion of local norms in the deterministic
setting. Training of a GAN model [27] corresponds to solving a specific non-convex non-concave
minimax problem. Several works have heuristically adopted stochastic adaptive extragradient for
training GANs [25, 41, 7]. Recently, [38] studied the convergence behavior of an adaptive optimistic
stochastic gradient algorithm for a class of non-convex non-concave minimax problems under the
MVI condition for training GANs.

Distributed minimax algorithms. As datasets and deep learning architectures become larger and
larger distributed minimax algorithms are needed for GANs and adversarial training. [7] established
upper and lower bounds for iteration complexity for strongly-convex-strongly-concave and convex-
concave minimax problems in both the centralized and decentralized setting. However, convergence
rate for their Extra Step Local SGD is established only in a strongly-convex-strongly-concave setting
with a linear speed-up property with respect to the number of works; while for their proposed local
Adam no convergence results are provided. [22] provided convergence guarantees for a primal-dual
local stochastic gradient algorithm in the strongly-convex-strongly-concave-setting and several non-
convex settings with PL-inequality-type conditions. [14] and [39] studied convergence of a distributed
optimistic stochastic gradient algorithm for non-convex non-concave minimax problem under the
pseudomonotonicity condition and MVI condition, respectively. However, their convergence rates
hold only for a sufficient large mini-batch size or a sufficiently large amount of workers. In addition,
there also exist several decentralized or federated algorithms for stochastic strongly-convex-strongly-
concave minimax problems [30, 49]. In this work, we mainly focus on the centralized setting for the
stochastic convex-concave minimax problems.

Our work and the proposed LocalAdaSEG contributes to the above described literature. To the
best of our knowledge, the proposed LocalAdaSEG algorithm is the first communication-efficient
distributed algorithm for stochastic minimax problem and simultaneously supports adaptive learning
rate and mini-batch size. Moreover, LocalAdaSEG communicates only periodically to improve the
communication efficiency and uses a local adaptive learning rate, computed on local data in each
worker, to improve the computation efficiency. In addition, LocalAdaSEG can be also applied in the
nonsmooth setting with convergence guarantee. LocalAdaSEG can be seen as distributed extension
of [6] with period communication as local SGD [51]. We note that only very recently, a local adaptive
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stochastic minimax algorithm, called Local Adam, has been heuristically used for training GANs
without convergence guarantee [7]. We summarize relationship to existing literature in Table 1.

Stochastic minimax algorithms Nonsmooth ? Comm. eff. ? Adaptive ?
Mirror SA [45], SMP [32], SAMP [16], Optimal
Stochastic PDHG-type [56]

X 7 7

SCAFFOLD-Catalyst-S [30], Local SGDA [22],
Extra Step Local SGD [7]

7 X 7

Universal Mirror-prox [6], Adaptive Single-
gradient Mirror-prox [24], Geometry-Aware Uni-
versal Mirror-prox [5], AdaProx [1]

X 7 X

Optimistic AdaGrad [38] 7* 7 X
Our LocalAdaSEG X X X

Table 1: Comparison to related works on adaptive or communication-efficient approaches to stochastic
minimax problems. Here "Nonsmooth ?" asks whether the algorithm enjoys theoretical guarantees
in the nonsmooth convex-concave setting; "Comm. eff. ?" asks whether the proposed algorithm is
communication-efficient; "Adaptive ?" asks whether the proposed algorithm requires knowledge of
problem parameters. "*": The work of [38] discusses non-convex non-concave minimax problems.

3 Notations and Assumptions

A point px˚, y˚q P X ˆ Y is called a saddle-point for the minimax problem in (1) if

F px˚, yq ď F px˚, y˚q ď F px, y˚q for all px, yq P X ˆ Y. (2)

Under the assumptions stated in Section 1, the corresponding primal, minxtmaxy F px, yqu, and
dual problem, maxytminx F px, yqu, have optimal solutions and equal optimal values, denoted F˚.
The pairs of optimal solutions px˚, y˚q form the set of saddle-points of F on X ˆ Y . We denote
Z “ X ˆ Y, Z “ X ˆ Y , z “ px, yq P Z , and z˚ “ px˚, y˚q P Z . We use } ¨ }X , } ¨ }Y ,
and } ¨ }Z to denote the Euclidean norms on X, Y, Z, respectively, and let } ¨ }X ,˚, } ¨ }Y,˚ and

} ¨ }Z,˚ denote the corresponding dual norms. With this notation, }z}Z “

b

}x}2X ` }y}
2
Y and

}z}Z,˚ “
b

}x}2X ,˚ ` }y}
2
Y,˚. Throughout the paper, we focus on the Euclidean setting, but note

that the results can readily generalize to non-Euclidean cases.

We are interested in finding a saddle-point of F over X ˆY . For a candidate solution z̃ “ px̃, ỹq P Z ,
we measure its quality by the duality gap, defined as

DualGappz̃q :“ max
yPY

F px̃, yq ´min
xPX

F px, ỹq. (3)

The duality gap is commonly used as a performance criterion for general convex-concave minimax
problems (see, e.g., [44, 36]). Note that for all z P Z it holds DualGappzq ě 0 and DualGappzq “ 0
if and only if z is a saddle-point.

For the stochastic minimax problem (1), we assume that neither the function F px, yq nor its
sub/supgradients in x and y are available. Instead, we assume access to an unbiased stochastic
oracle Gpx, y, ξq “ rGxpx, y, ξq,´Gypx, y, ξqs, such that the vector EξrGpx, y, ξqs is well-defined
and EξrGpx, y, ξqs P rBxF px, yq,´ByF px, yqs. For notational convenience, we let

G̃pzq :“ Gpx, y, ξq, Gpzq :“ EξrGpx, y, ξqs. (4)

Below, we impose assumptions on the minimax problem (1) and the stochastic gradient oracle (4).
Assumption A.1 (Bounded Domain). There exists D such that supzPZ

1
2}z}

2 ď D2.

Assumption A.2 (Bounded Stochastic Gradients). There exists G such that supzPZ }G̃pzq}˚ďG,
P-almost surely.

Domain boundedness A.1 is commonly assumed in the convex-concave minimax literature; see the
references in §1. However, we note that the assumption might be removed in certain settings. For
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example, [15, 43] use a perturbation-based variant of the duality gap as the convergence criterion, [1]
handles unbounded domains via the notion of local norms, while [56] handles unbounded domains
with an access to a convex optimization oracle. The almost sure boundedness assumption A.2 on
the gradient oracle seems restrictive, but is common in the literature on adaptive stochastic gradient
methods (see, e.g., [23, 13, 6, 38]). In Remark 2 we discuss how to extend our analysis to unbounded
oracles.
Assumption A.3 (Bounded Variance). There exists σ such that supzPZEξ

“

}Gpzq´G̃pzq}2˚ | z
‰

ď σ2.

We analyze separately the case when the saddle function F is differentiable with Lipschitz gradients.
Assumption A.4 (Smoothness). Assume for all z, z1 P Z , we have }Gpzq ´Gpz1q}˚ ď L}z ´ z1}.

4 LocalAdaSEG Algorithm

In this section we introduce LocalAdaSEG algorithm used to solve (1) and describe its main features.
Algorithm 1 details the procedure.

Algorithm 1 LocalAdaSEGpG0, D;K,M,R;αq

1: Input: G0, a guess on the upper bound of gradients, D, the diameter of the set Z , K, com-
munication interval, M , the number of workers, R, number of rounds, α, base learning rate.

2: Initialize: ηm1 “ Dα{G0, z̃0 “ z̃m0 “ z̃m,˚0 “ 0 for all m, and S :“ t0,K, 2K, . . . , RKu.
3: for t “ 1, . . . , T “ RK, parallel for workers m “ 1, . . . ,M do
4: update learning rate

ηmt “ Dα
L

b

G2
0 `

řt´1
τ“1

`

}zmτ ´ z̃
m,˚
τ´1}

2 ` }zmτ ´ z̃
m
τ }

2
˘

{
`

5pηmτ q
2
˘

5: if t´ 1 P S then
6: worker m: send pηmt , z̃

m
t´1q to server

7: server: compute z̃˝t´1, the weighted average of tz̃mt´1umPrMs, and broadcast it to workers

wm “ pηmt q
´1

L
řM
m1“1pη

m1

t q
´1 and z̃˝t´1 “

řM
m“1wm ¨ z̃

m
t´1

8: worker m: set z̃m,˚t´1 “ z̃˝t´1
9: else

10: set z̃m,˚t´1 “ z̃mt´1
11: end if
12: update zmt “ ΠZ rz̃

m,˚
t´1 ´ η

m
t M

m
t s with Mm

t “ G̃pz̃m,˚t´1 q

z̃mt “ ΠZ rz̃
m,˚
t´1 ´ η

m
t g

m
t s with gmt “ G̃pzmt q

13: end for
14: Output: 1

TM

řM
m“1

řT
t“1z

m
t

The Parameter-Server model. LocalAdaSEG uses M parallel workers which, in each of R rounds,
independently execute K steps of extragradient updates (Line 1). The adaptive learning rate is com-
puted solely based on iterates occurred in the local worker (Line 1). Let S :“ t0,K, 2K, . . . , RK “

T u denote the time points of communication. At a time of communication (t P S ` 1, Lines 1–1), the
workers communicate and compute the weighted iterate, z̃˝t´1, defined in Line 1. Then the next round
begins with a common iterate z̃˝t´1. Finally, LocalAdaSEG outputs the average of the sequence
tzmt umPrMs,tPrT s. Overall, each worker computes T “ KR extragradient steps locally, for a total of
2MT stochastic gradient calls (since each extragradient step, Line 1, requires two calls of gradient
oracle) with R rounds of communication (every K steps of computation).

Extragradient step. At the time when no communication happens (t´ 1 R S), Line 1 reduces to

zmt “ ΠZ rz̃
m
t´1 ´ η

m
t M

m
t s with Mm

t “ G̃pz̃mt´1q,

z̃mt “ ΠZ rz̃
m
t´1 ´ η

m
t g

m
t s with gmt “ G̃pzmt q,

which is just the extragradient (EG) algorithm [34] that is commonly used to solve minimax problems;
see references in §1.

Periodic averaging weights. The proposed weighted averaging scheme in Line 1 is different from
existing works on local SGD and Local Adam [7]. At the time of averaging (t́ 1PS), LocalAdaSEG
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pulls the averaged iterate towards the local iterate with a smaller learning rate. For the homogeneous
case studied in this paper, we expect wm „ 1{M .

Intuition of local adaptive learning rate scheme. The adaptive learning rate scheme (Line 1)
follows that of Bach and Levy [6] closely. To develop intuition, consider the deterministic setting
where σ “ 0 and define pδmt q

2 :“ }gmt }
2
˚ ` }M

m
t }

2
˚. If we ignore the projection operation, the

learning rate ηmt would look like ηmt „ 1{p1 `
řt´1
τ“1pδ

m
τ q

2q1{2. In the nonsmooth case, the
subgradients might not vanish as we approach the solution (in the case of convex optimization,
consider the function fpxq “ |x| near 0), and thus we only have lim inftÑ8 δ

m
t ą 0. This implies ηmt

will vanish at the rate 1{
?
t, which is the optimal learning rate scheme for nonsmooth convex-concave

problems [6, 1]. For the smooth case, one might expect the sequence tδmt ut to be square-summable
and thus ηmt Ñ ηm8 ą 0, in which case the learning rate does not vanish. Additionally, the adaptive
learning rate for each worker is locally updated to exploit the problem structure available in worker’s
local dataset. This makes our local adaptive learning rate scheme distinct compared to existing
distributed adaptive algorithms for minimization problems [53, 47, 12]. Very recently, [7] used local
Adam for training conditional GANs efficiently, but they provide theoretical guarantees only for the
local extragradient without adaptivity.

Adaptivity to pG,L, σq. Our algorithm does not require knowledge of problem parameters such as
the size of the gradients G, the smoothness L, or the variance of gradient estimates σ. Instead, we
only need an initial guess of G, denoted G0, and the diameter of the feasible set, D. Define

γ :“ maxtG{G0, G0{Gu ě 1. (5)
This quantity measures how good our guess is and appears in the convergence guarantees for the
algorithm. Our algorithm still requires knowledge of the problem class, as we need to use different
base learning rate, α, for smooth and nonsmooth problems; see Theorems 5.1 and 5.2, respectively.

5 Convergence Results

We state two theorems characterizing the convergence rate of LocalAdaSEG for the smooth and
nonsmooth problems. We use the notation Õ to hide absolute constants and logarithmic factors of
T “ KR and problem parameters. The proofs are given in §B.1 and §B.2 of the appendix. Recall
the definition of γ in (5). [6].
Theorem 5.1 (Nonsmooth Case). Assume A.1, A.2, and A.3 hold. Let z̄ “

LocalAdaSEGpG0, D;K,M,R; 1q. Then

ErDualGappz̄qs “ Õ

ˆ

γGD
?
T
`

σD
?
MT

˙

.

Theorem 5.2 (Smooth Case). Assume A.1, A.2, A.3, and A.4 hold. Let z̄ “

LocalAdaSEGpG0, D;K,M,R; 1{
?
Mq. Define the cumulative norms of stochastic gradients

occurred on worker m:

VmpT q :“ E

»

–

g

f

f

e

T
ÿ

t“1

}gmt }
2
˚ ` }M

m
t }

2
˚

fi

fl . (6)

Then

ErDualGappz̄qs “ Õ

ˆ

σD
?
MT

`
DM3{2 ¨ V1pT q

T
`
γ2LD2 ` γGDM3{2

T

˙

. (7)

Remark 1 (The cumulative stochastic gradient growth V1pT q.). Although a trivial bound on
V1pT q is V1pT q ď G

?
2T , typically we have V1pT q !

?
T in practice [23, 48, 17, 13, 38], es-

pecially in the sparse data scenarios. For example, consider the bilinear saddle-point problem
minxPX minyPY x

J
`
řn
i“1 piMi

˘

y, where a larger weight pi ą 0 means the matrix Mi appears
more frequently in the dataset. When most of matrices with large weights are row-sparse and column-
sparse, the quantity V1pT q is much smaller than G

?
2T . Theorem B.3, in the appendix, shows that

with a different choice of the base learning rate α one can obtain a near linear speed-up result, which
removes the dependence on V1pT q: for large T ,

ErDualGappz̄qs “ Õ

ˆ

σD
?
MT 1´2ε

`
γ2LD2

T 1´2ε
`
LD2M

T
`
γGDM3{2

T 1`ε

˙

, for any ε P p0, 12 q.
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Following the discussion in [17, 38], when the cumulative growth of the stochastic gradient is slow,
i.e., V1pT q “ OpT bq for some 0 ă b ă 1

2 , then the second term in (7) is OpDM3{2{T 1´bq and
linear speed-up is achieved, since as T Ñ8, the dominating term become OpσD{

?
MT q.

Remark 2 (Unbounded stochastic gradient oracle). Our analysis can be extended to unbounded homo-
geneous and light-tailed oracles using the following argument. Let }G}8 :“ supzPZ }Gpzq}˚ ă 8,
which upper bounds the expectation of the SG oracle. Assume }G̃pzq ´Gpzq}˚{}G}8 is indepen-
dent of z and follows the distribution of the absolute value of a standard normal. Define the set
Z 1 :“ tzmt , z̃

m,˚
t´1 ut,m of all iterates. For any 0 ă δ ă 1, define the event

E :“
!

max
z1PZ1

}G̃pz1q ´Gpz1q}˚ ď }G}8 ¨
`

a

2 logp4MT q `
a

2 logp2{δq
˘

:“ Gprob

)

.

Then PpEq ě 1´ δ; see Appendix A.1. We can repeat the proof of Theorem 5.1 and Theorem 5.2 on
the event E and interpret our results with G replaced by Gprob, which effectively substitutes G with
}G}8 at the cost of an extra logpT q factor.
Remark 3 (Minibatch EG as a baseline). We comment on a performance of an obvious baseline that
implements minibatch stochastic EG using M workers. Suppose the algorithm takes R extragradient
steps, with each step using a minibatch of size KM , resulting in a procedure that communicates
exactly R times. The performance of such a minibatch EG for general nonsmooth and smooth
minimax problems [6, 24] is, respectively, 2

O

ˆ

σD
?
KMR

`
}G}8D
?
R

˙

and O

ˆ

σD
?
KMR

`
LD2

R

˙

. (8)

Under the same computation and communication structure, our algorithm enjoys adaptivity, achieves
the same linear speed-up in the variance term σD?

KMR
, and improves dependence on the gradient

upper bound }G}8 and the smoothness parameter L, which is a desirable property for problems
where these parameters are large.
Remark 4 (Single-worker mode). Another natural baseline is to run EG on a single worker for
T iterations with batchsize equal to one. The convergence rates for this procedure in nonsmooth
and smooth cases are OpσD{

?
T ` }G}8D{

?
T q and OpσD{

?
T ` LD2{T q, respectively. In the

smooth case, the single-worker mode is inferior to minibatch EG, since the dominant term for the
former is 1{

?
T , but it is 1{

?
MT for the latter. On the other hand, in the nonsmooth case, minibatch

EG reduces the variance term, but the term involving the deterministic part degrades. Therefore, in
the nonsmooth case, we can only claim that the minibatch EG is better than the single-worker mode
in the noise-dominant regime σ“Ωp}G}8

?
Mq.

6 Experiments

We apply LocalAdaSEG to the stochastic bilinear minimax problem introduced in [25, 7] and to
train Wasserstein generative adversarial neural network (Wasserstein GAN) [3]. For the homogeneous
setting, to demonstrate the efficiency of our proposed algorithm, we compare LocalAdaSEG with
mini-batch stochastic extragradient gradient descent (MB-SEGDA) [44], mini-batch universal mirror-
prox (MB-UMP) [6], mini-batch adaptive single-gradient mirror-Prox (MB-ASMP) [24], extra
step local SGD (LocalSEGDA) [7], and local stochastic gradient descent ascent (LocalSGDA)
[22]. We further extend the proposed LocalAdaSEG algorithm to solve federated WGANs with a
heterogeneous dataset to verify its efficiency. In this setting, we additionally compare LocalAdaSEG
with Local Adam [7]. We emphasize here that whether Local Adam converges is still an open
question, even for the stochastic convex-concave setting.

6.1 Stochastic bilinear minimax problem

We consider the stochastic bilinear minimax problem with box constraints

min
xPRn

max
yPRn

F px, yq “ Eξ„P
“

xJAy ` pb` ξqJx` pc` ξqJy
‰

, (9)

2These bounds hold due to Theorem 4 of [24], whose rates for nonsmooth and smooth problems are of
the form OpRpG ` σq{

?
T q and OpβR2

{T ` Rσ{
?
T q, respectively. Eq. (8) follows with σ in the original

theorem statement replaced by σ{
?
KM , β by L, R by D, G by }G}8, and T by R.
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(a) (b) (c) (d)

Figure 1: Subfigures (a)-(b) and (c)-(d) plot the residual of LocalAdaSEG against the total number of iterations
T and communications R, with varying numbers of local iterations K. We also investigate the effect of noise
level (σ “ 0.1 in (a)(b) and σ “ 0.5 in (c)(d)).

(a) (b) (c) (d)

Figure 2: Subfigures (a)-(b) and (c)-(d) compare LocalAdaSEG with existing optimizers. We plot the residuals
against the total number of iterations T and communications R with different noise levels (σ “ 0.1 in (a)(b) and
σ “ 0.5 in (c)(d)).

where x, y P r´1, 1sn P Rn, pA, b, cq are data, random variable ξ „ Np0, σ2Iq, and σ is the variance.
We define the KKT residual Respx, yq as:

Respx, yq “

b

›

›x´Πr´1,1s

`

x´ pAy ` bq
˘
›

›

2
`
›

›y ´Πr´1,1s

`

y ` pAx` cq
˘
›

›

2
. (10)

It is not hard to verify that given px˚, y˚q P Rn ˆ Rn, Respx˚, y˚q “ 0 if and only if px˚, y˚q
belongs to the saddle-points of the bilinear minimax problem (9). During the experiments, we use
Respx, yq to measure the quality of approximated solution obtained by different optimizers.

Dataset Generation. We uniformly generate b and c in r´1, 1sn with n “ 10. The symmetric matrix
A is constructed as A “ Ā{max

`

|b|max, |c|max

˘

, where Ā P r´1, 1snˆn is a random symmetric
matrix. We emphasize that A is merely symmetric, but not semi-definite. To simulate the distributed
environment, we distribute pA, b, cq to M workers, where M “ 4. Each worker solves the above
bilinear problem with an optimization algorithm locally. We instantiate LocalAdaSEG with different
numbers of local iterationsK P t1, 5, 10, 50, 100, 250, 500u, and different noise levels σ P t0.1, 0.5u,
shown in Figure 1. A larger σ indicates more noise in the stochastic gradients, making problem (9)
harder. In addition, we further compare LocalAdaSEG by setting local iteration K “ 50 against
several existing optimizers, illustrated in Figure 2.

Experimental results. In Figure 1, LocalAdaSEG provides stable convergence results under dif-
ferent configurations of local iterations K and noise levels σ. Figure (b)(d) illustrate that a suitably
large K could accelerate the convergence speed of LocalAdaSEG. Figure (a)(c) illustrate that a
large variance would result in unstable optimization trajectories. The experiment findings agree
with our theoretical predictions: (i) a larger T “ KR improves the convergence; (ii) the vari-
ance term dominates the convergence rate of LocalAdaSEG, large variance term will slowdown
LocalAdaSEG. In Figure 2, (a)(c) illustrate that adaptive variants of stochastic minimax optimizers,
i.e., LocalAdaSEG, MB-UMP and MB-ASMP, achieve better performance compared to standard
ones such as LocalSGDA, LocalSEGDA and MB-SEGDA, whose learning rates are hard to tune
for minimax problems. In addition, when compared in terms of communication rounds in (b)(d),
LocalAdaSEG converges faster than other distributed stochastic minimax optimizers, demonstrating
the superiority of LocalAdaSEG.
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(a) (b) (c) (d)
Figure 3: Subfigures (a)-(b) and (c)-(d) show the results of WGAN trained with LocalAdaSEG and existing
optimizers. We plot FID and IS against the number of iterations and communications, respectively.

(a) (b) (c) (d)
Figure 4: Subfigures (a)-(b) and (c)-(d) show the results of Federated WGAN trained with LocalAdaSEG and
existing optimizers. We plot FID and IS against the number of iterations and communications, respectively.

6.2 Wasserstein GAN

We train Wasserstein GAN (WGAN) to validate the efficiency of LocalAdaSEG on a real-world
application task. This is a challenging minimax problem as the objectives of both generator and
discriminator are non-convex and non-concave. Problem description is placed in Appendix D.1.

Implementation details. Experiments are conducted on the MNIST datasets of digits from 0 to 9,
with 60000 training images of size 28ˆ 28. We adopt the same network architecture of WGAN as
that of DCGAN [3]. We simulate M “ 4 parallel workers and run LocalAdaSEG with the batch
size 128 and local iteration steps K “ 500. In the homogeneous setting, the local data in each worker
is uniformly sampled from the entire dataset. In the heterogeneous setting, we partition the MNIST
dataset into 4 subsets using the partition methods in [37]. Then each worker is loaded with a fraction
of the dataset. Due to non-adaptive learning rates, LocalSGDA, LocalSEGDA, and MB-SEGDA
are hard to tune and do not achieve a satisfactory performance for training WGAN. For a better
illustration, we only show the performance of LocalAdaSEG, MB-UMP, MB-ASMP and Local
Adam. To measure the efficacy of the compared optimizers, we plot FID and IS [29] against the
number iterations and communications, respectively.

Experimental results. Figures 3 and 4 compare MB-UMP, MB-ASMP, LocalAdam and
LocalAdaSEG in the homogeneous and heterogeneous setting, respectively. In Figure 3(a) and
Figure 4(a), MB-UMP, MB-ASMP, LocalAdam and LocalAdaSEG quickly converge to a solution
with a low FID value. However, when compared in terms of communication rounds in Figure 3(b)
and Figure 4(b), LocalAdaSEG and Local Adam converge faster than other optimizers and reach a
satisfactory solution within just a few rounds. In Figure 3(c) and Figure 4(c), all the listed optimizers
achieve a high IS. Notably, the IS of LocalAdaSEG and Local Adam increase much faster with less
communication than MB-UMP, MB-ASMP as shown in Figure 3(d) and Figure 4(d).

7 Conclusion, Discussion, and Broader Impact

We proposed an adaptive communication-efficient distributed stochastic extragradient algorithm
in the Parameter-Server model for stochastic convex-concave minimax problem, LocalAdaSEG.
We theoretically showed LocalAdaSEG that achieves the optimal convergence rate with a linear
speed-up property for both nonsmooth and smooth objectives. Experiments verify our theoretical
results and demonstrate the efficiency of LocalAdaSEG.

One main limitation of this work is that the current analysis merely holds for the homogeneous setting.
A future direction is to extend the theoretical result of LocalAdaSEG to the heterogeneous setting

9



that better models various real-world applications, such as federated GANs [7] and robust federated
learning [21]. In addition, extending theoretical results from the stochastic convex-concave setting to
the stochastic nonconvex-(non)concave setting is an interesting and challenging research direction.

Training deep learning models with a large amount of parameters and data requires a lot of GPUs
and energy. Our algorithm can be applied to train large-scale (federated) GANs quickly and with
lower communication costs. At the same time adaptive tuning of the learning rate further saves costs
compared to trial-and-error approach by saving computational resource and energy.
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A Appendix to Main Text

A.1 Extension to Unbounded Stochastic Gradient Oracle

Let tZiuni“1 be a sequence of i.i.d. standard normals. We have the following well-known results (see
Appendix A of [10])

P
`

max
i
Zi ą Ermax

i
Zis ` t

˘

ď expp´t2{2q for all t ą 0,

Ermax
i
|Zi|s ď

a

2 logp2nq.

It can be shown Ppmaxi |Zi| ě
a

2 logp2nq ` tq ď 2 expp´t2{2q. We apply this result with the
sequence

 

}Gpzmt q ´ G̃pz
m
t q}˚{}G}8, }Gpz̃

m,˚
t´1 q ´ G̃pz̃

m,˚
t´1 q}˚{}G}8

(

m,t
, which is a sequence of

2MT i.i.d. standard normals by the homogeneity of the oracle.

B Proof of Theorems

Lemma B.1. For allm P rM s, consider the sequence tηmt , z̃
m,˚
t´1 , z

m
t , z̃

m
t u

T
t“1 defined in Algorithm 1.

It holds

}z̃m,˚t´1 ´ z
m
t }{η

m
t ď G, }z̃mt ´ z

m
t }{η

m
t ď G.

Proof of Lemma B.1. Let I : Z Ñ Z˚ be the identity map which maps an element z P Z to the
corresponding element in the dual space Z˚. The first-order optimality condition of the update rule
zmt “ ΠZ rz̃

m,˚
t´1 ´ η

m
t M

m
t s is

xηmt M
m
t ` Ipz

m
t ´ z̃

m,˚
t´1 q, z ´ z

m
t y ě 0,@z P Z.

Set z “ z̃m,˚t´1 , apply the Cauchy-Schwartz inequality and we obtain

ηmt }M
m
t }˚ ¨ }z̃

m,˚
t´1 ´ z

m
t } ě xη

m
t M

m
t , z̃

m,˚
t´1 ´ z

m
t y

ě xIpz̃m,˚t´1 ´ z
m
t q, z̃

m,˚
t´1 ´ z

m
t y “ }z̃

m,˚
t´1 ´ z

m
t }

2.

The second inequality holds due to similar reasoning. We conclude the proof of Lemma B.1.

Lemma B.2 (One-step analysis). For all m P rM s, consider the sequence tηmt , z̃
m,˚
t´1 ,M

m
t “

G̃pz̃m,˚t´1 q, z
m
t , g

m
t “ G̃pz̃mt q, z̃

m
t u

T
t“1 defined in Algorithm 1. It holds for all z P Z ,

xzmt ´ z, g
m
t y ď

1

ηmt

´

1
2}z ´ z̃

m,˚
t´1 }

2 ´ 1
2}z ´ z̃

m
t }

2
¯

´
1

ηmt

´

1
2}z

m
t ´ z̃

m,˚
t´1 }

2 ` 1
2}z

m
t ´ z̃

m
t }

2
¯

`}gmt ´M
m
t }˚ ¨ }z

m
t ´ z̃

m
t }.

Proof of Lemma B.2. For any c, g P Z , consider the update of the form a˚ “ ΠZ rc ´ gs “
argminzPZ xg, zy `

1
2}z ´ c}

2. It holds for all b P Z ,

xg, a˚ ´ by ď 1
2}b´ c}

2 ´ 1
2}b´ a

˚}2 ´ 1
2}a

˚ ´ c}2.

By the update rule of zmt and z̃mt , we have (taking a˚ Ø zmt , bØ z̃mt , g Ø ηmt M
m
t , cØ z̃m,˚t´1 )

xηmt M
m
t , z

m
t ´ z̃

m
t y ď

1
2}z̃

m
t ´ z̃

m,˚
t´1 }

2 ´ 1
2}z̃

m
t ´ z

m
t }

2 ´ 1
2}z

m
t ´ z̃

m,˚
t´1 }

2, (11)

and for all z P Z (taking a˚ Ø z̃mt , bØ z, g Ø ηmt g
m
t , cØ z̃m,˚t´1 )

xηmt g
m
t , z̃

m
t ´ zy ď

1
2}z ´ z̃

m,˚
t´1 }

2 ´ 1
2}z ´ z̃

m
t }

2 ´ 1
2}z̃

m
t ´ z̃

m,˚
t´1 }

2. (12)
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Finally we apply the Cauchy-Schwarz inequality and plug in Eqs. (11) and (12).

xgmt , z
m
t ´ zy “ xg

m
t , z

m
t ´ z̃

m
t y ` xg

m
t , z̃

m
t ´ zy

“ xgmt ´M
m
t , z

m
t ´ z̃

m
t y ` xg

m
t , z̃

m
t ´ zy ` xM

m
t , z

m
t ´ z̃

m
t y
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m
t , z̃
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m
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m
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m
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m
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This finishes the proof of Lemma B.2.

B.1 Proof of Theorem 5.1

Proof of Theorem 5.1, Non-smooth Case. The proof strategy follows closely that of Bach and Levy
[6]. Step 1. We apply the Lemma B.2 and sum over all m P rM s and t P rT s. Define

ξmt :“ Gpzmt q ´ g
m
t “ Gpzmt q ´ G̃pz

m
t q.

For all z P Z ,
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Now we use Lemma C.3 and obtain

TM ¨ ErDualGappz̄qs ď Ersup
zPZ
tIpzq ` IIpzq ` III ` IV us (18)

ď Ersup
zPZ

Ipzqs ` Ersup
zPZ

IIpzqs ` ErIIIs ` ErIV s (19)

Next we upper bound each term in turns. Steps 2–5 rely heavily on the learning rate scheme. Define

pZmt q
2 :“

}zmt ´ z̃
m,˚
t´1 }

2 ` }zmt ´ z̃
m
t }

2

5pηmt q
2

for all t P rT s and m P rM s. By Lemma B.1 we know Zmt ď G almost surely. This is due to

}zmt ´ z̃
m,˚
t´1 }

2 ` }zmt ´ z̃
m
t }

2 ď }zmt ´ z̃
m,˚
t´1 }

2 ` 2}zmt ´ z̃
m,˚
t´1 }

2 ` 2}z̃m,˚t´1 ´ z̃
m
t }

2 ď 5G2pηmt q
2.
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Moreover, for the nonsmooth case (α “ 1), ηmt can be expressed by

ηmt “
D

b

G2
0 `

řt´1
τ“1pZ

m
τ q

2

. (20)

Step 2. Show ErsupzPZ Ipzqs “ OpσD
?
MT q. For all z P Z ,

Ipzq “
T
ÿ

t“1

M
ÿ

m“1

xzmt ´ z̃
m
0 , ξ

m
t y `

T
ÿ

t“1

M
ÿ

m“1

xz̃m0 ´ z, ξ
m
t y.

The first term is a martingale difference sequence (MDS) and is zero in expectation. For the second
term we use the Cauchy-Schwarz inequality. For all z P Z ,

E
„ T
ÿ

t“1

M
ÿ

m“1

xz̃m0 ´ z, ξ
m
t y



“ E
„

A

z̃0 ´ z,
T
ÿ

t“1

M
ÿ

m“1

ξmt

E



ď

c

E
”

}z̃0 ´ z}2
ı

¨

g

f

f

eE
„
›

›

›

›

T
ÿ

t“1

M
ÿ

m“1

ξmt

›

›

›

›

2

˚



“

c

E
”

}z̃0 ´ z}2
ı

¨

g

f

f

eE
„ T
ÿ

t“1

M
ÿ

m“1

}ξmt }
2
˚



ď σD
?
MT.

In the last equality we use the fact that tξmt u is a MDS. This establishes Ersupz Ipzqs ď σD
?
MT .

Step 3. Show ErsupzPZ IIpzqs “ OpDG ¨M
?
T q. For all z P Z ,

IIpzq “
T
ÿ

t“1

M
ÿ

m“1

1

ηmt

´

1
2}z ´ z̃

m,˚
t´1 }

2 ´ 1
2}z ´ z̃

m
t }

2
¯

“

M
ÿ

m“1

ÿ

tRS`1

1

ηmt

´

1
2}z ´ z̃

m,˚
t´1 }

2 ´ 1
2}z ´ z̃

m
t }

2
¯

`

M
ÿ

m“1

ÿ

tPS`1

1

ηmt

´

1
2}z ´ z̃

m,˚
t´1 }

2 ´ 1
2}z ´ z̃

m
t }

2
¯

“

M
ÿ

m“1

ÿ

tRS`1

1

ηmt

´

1
2}z ´ z̃

m
t´1}

2 ´ 1
2}z ´ z̃

m
t }

2
¯

`

M
ÿ

m“1

ÿ

tPS`1

1

ηmt

´

1
2}z ´ z̃

˝
t´1}

2 ´ 1
2}z ´ z̃

m
t }

2
¯

“

M
ÿ

m“1

T
ÿ

t“1

1

ηmt

´

1
2}z ´ z̃

m
t´1}

2 ´ 1
2}z ´ z̃

m
t }

2
¯

A

`

M
ÿ

m“1

ÿ

tPS`1

1

ηmt

´

1
2}z ´ z̃

˝
t´1}

2 ´ 1
2}z ´ z̃

m
t´1}

2
¯

B

where we used the definition of z̃m,˚t´1 for two cases t P S ` 1 and t R S ` 1 (Line 1 and 1 in
algorithm).

We upper bound A and show B ď 0.

Recall for t P S ` 1, we have z̃m,˚t´1 “ z̃˝t´1 “
řM
m“1wm ¨ z̃

m
t´1, and for t R S ` 1, we have

z̃m,˚t´1 “ z̃mt´1. For the first term A we use 1
2}z ´ z̃

m
t }

2 ď D2 and then telescope.

A “
M
ÿ

m“1

"

1

ηm1

´

1
2}z̃

m
0 ´ z}

2
¯

´
1

ηmT

´

1
2}z̃

m
T ´ z}

2
¯

`

T
ÿ

t“2

´ 1

ηmt
´

1

ηmt´1

¯´

1
2}z̃

m
t´1 ´ z}

2
¯

*

ď

M
ÿ

m“1

"

D2

ηm1
`

T
ÿ

t“2

´ 1

ηmt
´

1

ηmt´1

¯

D2

*

ď

M
ÿ

m“1

"

D2

ηm1
`
D2

ηmT

*
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For each m, we have D2{ηm1 “ DG0. For D2{ηmT we use the learning rate scheme. Recall the
definition of Zmt . Then

D2

ηmT
“ D

g

f

f

eG2
0 `

T´1
ÿ

t“1

pZmt q
2 ď D

a

G0 `G2T ď DG0 `DG
?
T .

This implies A ďMp2DG0 `DG
?
T q “ OpDG ¨M

?
T q.

For the term B, we use the definition of z̃˝t´1 and the weights twmu to show B ď 0. For each t, since
z̃˝t´1 the same for all workers,

M
ÿ

m“1

1

ηmt

´

1
2}z ´ z̃

˝
t´1}

2
¯

“

´

M
ÿ

m“1

1

ηmt

¯´

1
2}z ´ z̃

˝
t´1}

2
¯

“

´

M
ÿ

m“1

1

ηmt

¯´

1
2

›

›

řM
m“1 wm

1{2 ¨ wm
1{2pz ´ z̃mt´1q

›

›

2
¯

ď

´

M
ÿ

m“1

1

ηmt

¯´

M
ÿ

m“1

wm

¯´

M
ÿ

m“1

wm ¨
1
2}z ´ z̃

m
t´1}

2
¯

“

M
ÿ

m“1

1

ηmt

´

1
2}z ´ z̃

m
t´1}

2
¯

.

In the last equality we use
řM
m“1wm “ 1 and p

řM
m“11{ηmt qwm1 “ 1{ηm

1

t for all m1 P rM s. This
implies B ď 0. This establishes Ersupz IIpzqs ď Ersupz As “ OpDG ¨M

?
T q.

Step 4. Show ErIIIs ď 0. This is obviously true.

Step 5. Show ErIV s “ ÕpγDG ¨M
?
T q. Define γ “ G{G0. By A.2 we have }gmt ´M

m
t }˚ ď 2G.

It holds almost surely that

IV ď 2G
M
ÿ

m“1

T
ÿ

t“1

}zmt ´ z̃
m
t }

ď 2G
?
T ¨

M
ÿ

m“1

g

f

f

e

T
ÿ

t“1

}zmt ´ z̃
m
t }

2

ď 2G
?
T ¨

M
ÿ

m“1

g

f

f

e

T
ÿ

t“1

pηmt Z
m
t q

2

“ 2G
?
T ¨D ¨

M
ÿ

m“1

g

f

f

e

T
ÿ

t“1

pZmt q
2

G2
0 `

řt´1
τ“1pZ

m
τ q

2

ď 2GD
?
T ¨

M
ÿ

m“1

d

2` 4γ2 ` 2 log
´G2

0 `
řT´1
t“1 pZ

m
t q

2

G2
0

¯

(Lemma C.1)

ď 2GD
?
T ¨

M
ÿ

m“1

d

2` 4γ2 ` 2 log
´G2

0 `G
2T

G2
0

¯

ď 2GD
?
T ¨

M
ÿ

m“1

a

2` 4γ2 ` 2 logp1` γ2T q

“ ÕpγGD ¨M
?
T q

Finally, we plug in the upper bounds for I–IV and continue Eq (19).

TM ¨ ErDualGappz̄qs “ ÕpγDG ¨M
?
T ` σD

?
MT q.

This finishes the proof of Theorem 5.1
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B.2 Proof of Theorem 5.2

Proof of Theorem 5.2, Smooth Case. The proof strategy follows closely that of Bach and Levy [6].
Using the notation for Step 1 in the proof for nonsmooth case, we have the bound

TMErDualGappz̄qs ď Ersup
z
tIpzq ` IIpzq ` III ` IV us,

where I–IV are defined in Eqs. (14)–(17). We deal with these terms in a different manner.

For the term Ipzq in Eq. (14), following Step 2 we have Ersupz Ipzqs “ OpγσD
?
MT q.

Next we define a stopping time. For each m P rM s, let

τ˚m :“ tmax t P rT s :
1

ηmt
ď 1{p2Lqu. (21)

Recall our learning rate scheme for the smooth case

ηm1 “
Dα

G0
, ηmt “

Dα
b

G2
0 `

řt´1
τ“1pZ

m
τ q

2

.

For the term IIpzq in Eq. (15), we follow Step 3 and obtain for all z P Z ,

IIpzq ď
M
ÿ

m“1

"

D2

ηm1
`
D2

ηmT

*

.

By the definition of ηm1 , we have
řM
m“1D

2{ηm1 ď DMG0{α. For the second term, for fixed
m P rM s,

M
ÿ

m“1

D2{ηmT “
M
ÿ

m“1

D

α

g

f

f

eG2
0 `

T´1
ÿ

t“1

pZmt q
2 (22)

ď

M
ÿ

m“1

D

α

˜

G0 `

T
ÿ

t“1

pZmt q
2

b

G2
0 `

řt´1
τ“1pZ

m
τ q

2

¸

(Lemma C.2)

“
MDG0

α
`

M
ÿ

m“1

T
ÿ

t“1

1

α2
pηmt q

2pZmt q
2

:“A

(23)

So we have Ersupz IIpzqs ď 2γMDG{α` ErAs.
For the term III in Eq. (16), we also split it into two parts by τ˚m.

III :“ ´
T
ÿ

t“1

M
ÿ

m“1

1

ηmt
p 12}z

m
t ´ z̃

m,˚
t´1 }

2 ` 1
2}z

m
t ´ z̃

m
t }

2q (24)

“ ´

T
ÿ

t“1

M
ÿ

m“1

5

2
ηmt pZ

m
t q

2 (25)

“ ´

M
ÿ

m“1

τ˚m
ÿ

t“1

5

2
ηmt pZ

m
t q

2

ě0

´

M
ÿ

m“1

T
ÿ

t“τ˚m`1

5

2
ηmt pZ

m
t q

2

:“Btail

(26)

For the term IV in defined in Eq. (17), we first introduce a margtingale difference sequence. For all
t P rT s,m P rM s, let

ζmt :“
`

gmt ´Gpz
m
t q

˘

`
`

Mm
t ´Gpz̃

m,˚
t´1 q

˘

. (27)
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By the triangular inequality, we have

IV :“
T
ÿ

t“1

M
ÿ

m“1

}gmt ´M
m
t }˚ ¨ }z

m
t ´ z̃

m
t } (28)

ď

T
ÿ

t“1

M
ÿ

m“1

}ζmt }˚ ¨ }z
m
t ´ z̃

m
t }

:“V

`

T
ÿ

t“1

M
ÿ

m“1

}Gpzmt q ´Gpz̃
m,˚
t´1 q}˚ ¨ }z

m
t ´ z̃

m
t } (29)

ď V `
T
ÿ

t“1

M
ÿ

m“1

´L

2
}zmt ´ z̃

m,˚
t´1 }

2 `
L

2
}zmt ´ z̃

m
t }

2
¯

(30)

“ V `
T
ÿ

t“1

M
ÿ

m“1

5L

2
pηmt q

2pZmt q
2 (31)

“ V `
M
ÿ

m“1

τ˚m
ÿ

t“1

5L

2
pηmt q

2pZmt q
2

:“Chead

`

M
ÿ

m“1

T
ÿ

t“τ˚m`1

5L

2
pηmt q

2pZmt q
2

:“Ctail

(32)

Eq. (30) holds due to smoothness, i.e., for all z, z1 P Z , }Gpzq´Gpz1q}˚ ď L}z´ z1}. Eq. (30) thus
follows:

}Gpzmt q ´Gpz̃
m,˚
t´1 q}˚ ¨ }z

m
t ´ z̃

m
t }

ď
1

2L
}Gpzmt q ´Gpz̃

m,˚
t´1 q}

2
˚ `

L

2
}zmt ´ z̃

m
t }

2

ď
L

2
}zmt ´ z̃

m,˚
t´1 }

2 `
L

2
}zmt ´ z̃

m
t }

2.

To summarize, we have shown

TM ¨ ErDualGappz̄qs ď Ersup
z
tIpzq ` IIpzq ` III ` IV us (33)

ď O
´

γσD
?
MT

¯

` 2γMDG{α (34)

` ErA` Chead ` p´Btail ` Ctailq ` V s. (35)

Step a. Show ErAs ď 8γGDM{α` 3DMV1pT q{α. Recall its definition in Eq. (50).

A :“
M
ÿ

m“1

T
ÿ

t“1

1

α2
pηmt q

2pZmt q
2

“
D

α

M
ÿ

m“1

T
ÿ

t“1

pZmt q
2

b

G2
0 `

řt´1
τ“1pZ

m
τ q

2

ď
D

α

M
ÿ

m“1

˜

5γG` 3

g

f

f

eG2
0 `

T´1
ÿ

t“1

pZmt q
2

¸

(Lemma C.2)

ď
D

α

M
ÿ

m“1

˜

8γG` 3

g

f

f

e

T´1
ÿ

t“1

pZmt q
2

¸

Note by Lemma B.1 we know pZmt q
2 ď p}gmt }

2
˚ ` }M

m
t }

2
˚q{5 ď }gmt }

2
˚ ` }M

m
t }

2
˚. Recall the

definition of VmpT q in Eq. (6). By the symmetry of the algorithm over all workers, we know

18



V1pT q “ VmpT q for all m P rM s. Then

ErAs ď 8γDMG{α`
3D

α

M
ÿ

m“1

E

«

g

f

f

e

T´1
ÿ

t“1

pZmt q
2

ff

ď 8γDMG{α`
3D

α

M
ÿ

m“1

E

«

g

f

f

e

T´1
ÿ

t“1

}gmt }
2
˚ ` }M

m
t }

2
˚

ff

“ 8γDMG{α`
3D

α

M
ÿ

m“1

VmpT q “ 8γDMG{α` 3DMV1pT q{α.

By our choice of α we have ErAs “ OpγDM3{2G`DM3{2V1pT qq.

Step b. Show ErCheads “ Op1q. Recall its definition in Eq. (32).

Chead :“
M
ÿ

m“1

τ˚m
ÿ

t“1

5L

2
pηmt q

2pZmt q
2 (36)

“
5α2D2L

2

M
ÿ

m“1

τ˚m
ÿ

t“1

pZmt q
2

G2
0 `

řt´1
τ“1pZ

m
τ q

2
(37)

ď
5α2D2L

2

M
ÿ

m“1

ˆ

6γ2 ` 2 log
´G2

0 `
řτ˚m´1
t“1 pZmτ q

2

G2
0

¯

˙

(Lemma C.1)

“
5α2D2L

2

M
ÿ

m“1

ˆ

6γ2 ` 2 log
´ α2D2

G2
0pη

m
τ˚m
q2

¯

˙

(38)

ď
5α2D2LM

2

ˆ

6γ2 ` 4 log
´ αD

2G0L

¯

˙

(39)

The last inequality is due to definition of τ˚m. By our choice of α we have ErCheads “ Õpγ2LD2q.

Step c. Show Ctail ´ Btail ď 0. Recall Btail is defined in Eq. (26). By definition,

Ctail ´ Btail “

M
ÿ

m“1

T
ÿ

t“τ˚m`1

´5L

2
ηmt ´

5

2

¯

ηmt pZ
m
t q

2.

We show 5L
2 η

m
t ´

5
2 ď 0 for all t P rT s,m P rM s. Note that for all t ě τ˚m`1 we have ηmt ď 1{p2Lq.

Thus 5L
2 η

m
t ´

5
2 ď ´5{4. Thus Ctail ´ Btail ď 0.
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Step d. Show ErV s “ ÕpγσD
?
MT q. Recall its definition in Eq.(29). Also note Er}ζmt }2˚s ď 4σ2.

ErV s :“ E

«

T
ÿ

t“1

M
ÿ

m“1

}ζmt }˚ ¨ }z
m
t ´ z̃

m
t }

ff

(40)

ď E

«

g

f

f

e

T
ÿ

t“1

M
ÿ

m“1

}ζmt }
2
˚

ff

¨ E

«

g

f

f

e

T
ÿ

t“1

M
ÿ

m“1

}zmt ´ z̃
m
t }

2

ff

(41)

ď

g

f

f

e

T
ÿ

t“1

M
ÿ

m“1

E
“

}ζmt }
2
˚

‰

¨ E

«

g

f

f

e

T
ÿ

t“1

M
ÿ

m“1

}zmt ´ z̃
m
t }

2

ff

(42)

ď 2σ
?
MT ¨ E

«

g

f

f

e

M
ÿ

m“1

T
ÿ

t“1

}zmt ´ z̃
m
t }

2

ff

(43)

ď 2σ
?
MT ¨ E

«

g

f

f

e

M
ÿ

m“1

T
ÿ

t“1

}zmt ´ z̃
m,˚
t´1 }

2 ` }zmt ´ z̃
m
t }

2

ff

(44)

“ 2σ
?
MT ¨ E

«

g

f

f

e

M
ÿ

m“1

T
ÿ

t“1

5 ¨ pηmt q
2pZmt q

2

ff

(45)

“ 2
?

5 ¨ σ
?
MT ¨Dα ¨ E

«

g

f

f

e

M
ÿ

m“1

T
ÿ

t“1

pZmt q
2

G2
0 `

řt´1
τ“1pZ

m
τ q

2

ff

(46)

ď 6 ¨ σ
?
MT ¨Dα ¨ E

«

g

f

f

e

M
ÿ

m“1

ˆ

6γ2 ` 2 log
´G2

0 `
řT´1
t“1 pZ

m
t q

2

G2
0

¯

˙

ff

(Lemma C.1)

ď 6σ
?
MT ¨Dα ¨

a

Mp6γ2 ` 2 logp1` γ2T qq. (47)

By our choice of α, we have ErV s “ ÕpγσD
?
MT q.

Continuing Eq. (53), we have

TM ¨ ErDualGappz̄qs

ď O
´

γσD
?
MT

¯

` 2γMDG{α` ErA` Chead ` p´Btail ` Ctailq ` V s

“ Õ
´

γσD
?
MT ` γDM3{2G`DM3{2VmpT q

A

` γ2LD2

Chead

` γσD
?
MT

V

¯

.

This finishes the proof of Theorem 5.2.

Remark 5 (Getting rid of V1pT q). We could also use the free parameters α (base learning rate) and
obtain the following near linear speed-up result.

Theorem B.3 (Smooth Case, free of V1pT q). Assume A.1, A.2, A.3 and A.4. Let σ,D,G,L be defined
therein. For any ε P p0, 12 q, let z̄ “ LocalAdaSEGpG0, D;K,M,R;T ε{

?
Mq. If T ě M1{p2εq,

then

ErDualGappz̄qs “ Õ

ˆ

σD
?
MT 1´2ε

`
γ2LD2

T 1´2ε
`
LD2M

T
`
γGDM3{2

T 1`ε

˙

,

where Õ hides absolute constants, logarithmic factors of problem parameters and logarithmic factors
of T .
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Proof of Theorem B.3. We deocompose the term II in Eq.(15) in a different way. Recall in Step 3
we have shown for all z P Z , IIpzq ď

řM
m“1

D2

ηm1
` D2

ηmT
. For the second term, for fixed m P rM s,

M
ÿ

m“1

D2{ηmT “
M
ÿ

m“1

D

α

g

f

f

eG2
0 `

T´1
ÿ

t“1

pZmt q
2 (48)

ď

M
ÿ

m“1

D

α

˜

G0 `

T
ÿ

t“1

pZmt q
2

b

G2
0 `

řt´1
τ“1pZ

m
τ q

2

¸

(Lemma C.2)

“
MDG0

α
`

M
ÿ

m“1

T
ÿ

t“1

1

α2
pηmt q

2pZmt q
2 (49)

ď
γMDG

α
`

M
ÿ

m“1

τ˚m
ÿ

t“1

1

α2
pηmt q

2pZmt q
2

:“Ahead

`

M
ÿ

m“1

T
ÿ

t“τ˚m`1

1

α2
pηmt q

2pZmt q
2

:“Atail

(50)

So we have Ersupz IIpzqs ď 2γMDG{α ` ErAhead ` Atails. Then, following the proof in the
smooth case, we have

TM ¨ ErDualGappz̄qs ď Ersup
z
tIpzq ` IIpzq ` III ` IV us (51)

ď O
´

γσD
?
MT

¯

` 2γMDG{α (52)

` ErAhead ` Chead ` pAtail ´ Btail ` Ctailq ` V s. (53)

Recall our choice of α “ T ε{
?
M .

Show ErAheads “ Õp1q. Recall its definition in Eq. (50).

Ahead :“
M
ÿ

m“1

τ˚m
ÿ

t“1

1

α2
pηmt q

2pZmt q
2

“
D

α

M
ÿ

m“1

τ˚m
ÿ

t“1

pZmt q
2

b

G2
0 `

řt´1
τ“1pZ

m
τ q

2

ď
D

α

M
ÿ

m“1

˜

5γG` 3

g

f

f

eG2
0 `

τ˚m´1
ÿ

t“1

pZmt q
2

¸

(Lemma C.2)

“
D

α

M
ÿ

m“1

´

5γG`
3Dα

ηm
τ˚m

¯

ď
D

α

M
ÿ

m“1

´

5γG` 6αLD
¯

“
5γGDM

α
` 6LD2M.

By our choice of α we have ErAheads ď 5γGDM3{2T´ε ` 6LD2M .

For Chead defined in Eq. (32), following Eq (39), we have ErCheads “ Õpγ2LD2T 2εq.

Show Atail ` Ctail ´ Btail ď 0. Recall Btail is defined in Eq. (26). By definition,

Atail ` Ctail ´ Btail “

M
ÿ

m“1

T
ÿ

t“τ˚m`1

´ 1

α2
`

5L

2
ηmt ´

5

2

¯

ηmt pZ
m
t q

2.

We show 1
α2 `

5L
2 η

m
t ´

5
2 ď 0 for all t P rT s,m P rM s. Note that

T ěM1{p2εq ùñ α2 “ pT ε{
?
Mq2 ě 1,
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and that for all t ě τ˚m ` 1 we have ηmt ď 1{p2Lq. Thus 1
α2 `

5L
2 η

m
t ´ 5

2 ď ´1{4. Thus
Atail ` Ctail ´ Btail ď 0.

For V defined in Eq. (29), following Eq. (47), ErV s “ ÕpγσD
?
MT 1`2εq.

Putting together we have

TM ¨ ErDualGappz̄qs

ď O
´

γσD
?
MT

¯

` 2γMDG{α` ErAhead ` Chead ` pAtail ´ Btail ` Ctailq ` V s

“ Õ
´

γσD
?
MT ` γGDM3{2T´ε ` LD2M

Ahead

` γ2LD2T 2ε

Chead

` γσD
?
MT 1`2ε

V

¯

.

This finishes the proof of Theorem B.3

C Helper Lemmas

Lemma C.1. For any non-negative real numbers a1, . . . , an P r0, as, and a0 ą 0, it holds

n
ÿ

i“1

ai

a0 `
ři´1
j“1 aj

ď 2`
4a

a0
` 2 log

´

1`
n´1
ÿ

i“1

ai{a0

¯

.

Proof of Lemma C.1. See Lemma A.2 of [6].

Lemma C.2. For any non-negative numbers a1, . . . , an P r0, as, and a0 ą 0, it holds
g

f

f

ea0 `
n´1
ÿ

i“1

ai ´
?
a0 ď

n
ÿ

i“1

ai
b

a0 `
ři´1
j“1aj

ď
2a

a0
` 3
?
a` 3

g

f

f

ea0 `
n´1
ÿ

i“1

ai.

Proof of Lemma C.1. See Lemma A.1 of [6].

Lemma C.3. 9 For any sequence tztuTt“1 Ă Zo, let z̄ denote its mean. It holds

T ¨DualGappz̄q ď sup
zPZ

T
ÿ

t“1

@

zt ´ z,Gpztq
D

.

Proof of Lemma C.3. This lemma depends on the convexity-concavity of the saddle function F .

Denote z̄ :“ rx̄, ȳs, zt :“ rxt, yts. Note x̄ “ p1{T q
řT
t“1xt and ȳ “ p1{T q

řT
t“1yt. By definition of

duality gap and the convexity-concavity of F ,

DualGappz̄q :“ sup
xPX ,yPY

F px̄, yq ´ F px, ȳq

ď sup
xPX ,yPY

1

T

T
ÿ

t“1

F pxt, yq ´
1

T

T
ÿ

t“1

F px, ytq.

Let Gpztq “ Gpxt, ytq :“ rdx,t,´dy,ts. Since dx,t P BxF pxt, ytq, for all x P X and y P Y ,

F pxt, yq ` xdx,t, x´ xty ď F px, yq.

Similarly, for all x P X and y P Y , it holds

F px, ytq ` xdy,t, y ´ yty ě F px, yq.
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We have

T ¨DualGappz̄q ď sup
xPX ,yPY

T
ÿ

t“1

xdx,t, xt ´ xy ´ xdy,t, yt ´ yy

“ sup
zPZ

T
ÿ

t“1

xGpztq, zt ´ zy.

This completes the proof of Lemma C.3.

D Experiments

We implement our algorithm and conduct all the experiments on a computer with Intel Core i5 CPU
@ 3.20GHz cores, 8GB RAM, and GPU @ GeForce RTX 3090. The deep learning framework we
use is PyTorch 1.8.1. The OS environment was created by conda over Ubuntu 20.04. We use Python
3.7. Python library requirement is specified in the configuration file provided in the supplemental
materials. Due to the hardware limitation, we simulate the distributed environment by creating object
instances to simulate multiple clients and a central server on one GPU card.

D.1 Wasserstein GAN

Inspired by game theory, generative adversarial networks (GANs) have shown great performance
in many generative tasks to replicate the real-world rich content, such as images, texts and music.
GANs are composed of two models, a generator and a discriminator, which are competing with each
other to improve the performance for a specific task. In this experiment, we aim to train a digit image
generator using the MNIST dataset.

It is challenging to train a GAN model due to the slow convergence speed, instability of training or
even failure to converge. [2, 3] proposed to use the Wasserstein distance as the GAN loss function to
provide stable and fast training. To enforce the Lipschitz constraint on the discriminator, we adopt
WGAN with gradient penalty as our experimental model. The objective can be described as

min
G

max
D

E
x„Pr

rDpxqs ´ E
z„Pz

rDpGpzqqs ´ λrp}∇x̂Dpx̂q}2 ´ 1q2s (54)

where D and G denote the generator and discriminator, Pr is the data distribution, and Pz represents
the noise distribution (uniform or Gaussian distribution). The point x̂ „ Px̂ is sampled uniformly
along straight lines between pairs of points sampled from the real data distribution Pr and the
generator distribution Px̃, expressed as x̂ :“ εx` p1´ εqx̃, where ε „ U r0, 1s.

DCGAN. We implement WGAN with the DCGAN architecture, which improves the original GAN
with convolutional layers. Specifically, the generator consists of 3 blocks, which contain decon-
volutional layers, batch normalization and activations. The details of the whole generator can be
represented as sequential layers {Linear, BN, ReLU, DeConv, BN, ReLU, DeConv, BN, ReLU, DeConv,
Tanh}, where Linear, BN, DeConv denote the linear, batch normalization and deconvolutional layer,
respectively. ReLU and Tanh represent the activation functions. Similarly, the discriminator also
contains 3 blocks, which can be described as sequential layers {Conv, LReLU, Conv, LReLU, Conv,
LReLU, Linear}, where Conv and LReLU denote the convolutional layer and Leaky-ReLU activation
function, respectively.

Inception score (IS). Inception score (IS) is proposed to evaluate the performance of a GAN with an
inception model. IS measures GAN from two aspects simultaneously. Firstly, GAN should output a
high diversity of images. Secondly, the generated images should contain clear objects. Specifically,
we feed the generated images x into a well-trained inception model to obtain the output y. Then, IS
can be calculated by the following equation:

IS “ expp E
x„Pg

rDKLpppy|xq}ppyqqsq, (55)

where Pg is the generator model distribution. Essentially, IS computes the mutual information
Ipy;xq “ Hpyq ´ Hpy|xq, where Hpq denotes the entropy. The higher Hpyq indicates higher
diversity of generated images. The lower Hpy|xq implies the input x belongs to one class with
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higher probability. In summary, IS is bounded by 1 ď IS ď 1000. The higher IS implies a better
performance of a GAN.

Fréchet inception distance (FID). Although IS can measure the diversity and quality of the gener-
ated images, it still has some limitations, such as losing the sight of the true data distribution, failure
to measure the model generalization. FID is an improved metric for GAN, which cooperates with the
training samples and generated samples to measure the performance together. Specifically, we feed
the generated samples and training samples into an inception model to extract the feature vectors,
respectively. Usually, we extract the logits value before the last sigmoid activation as the feature
vector with dimension 2048. Essentially, FID is the Wasserstein metric between two multidimensional
Gaussian distributions: N pµg,Σgq the distribution of feature vectors from generated samples and
N pµr,Σrq the distribution of feature vectors from the training samples. It can be calculated as

FID “ }ur ´ ug}
2 ` trpΣr ` Σg ´ 2pΣrΣgq

1{2q (56)

where trpq denotes the trace of a matrix. The lower the FID, the better the performance of a GAN.
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