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Abstract

We present a latent variable model for classification that provides a novel probabilistic
interpretation of neural network softmax classifiers. We derive a variational training objective,
analogous to the evidence lower bound (ELBO) used to train variational auto-encoders,
that generalises the cross-entropy loss used to train classification models. Treating inputs
to the softmax layer as samples of a latent variable, our abstracted perspective reveals a
potential inconsistency between their anticipated distribution, required for accurate label
predictions to be output, and their empirical distribution found in practice. We augment the
variational objective to mitigate such inconsistency and encourage a chosen latent distribution,
instead of the implicit assumption found in a standard softmax layer. Overall, we provide
new theoretical insight into the inner workings of widely-used softmax classifiers. Empirical
evaluation on image and text classification datasets demonstrates that our proposed approach,
variational classification1, maintains classification accuracy while the reshaped latent space
improves other desirable properties of a classifier, such as calibration, adversarial robustness,
robustness to distribution shift and sample efficiency useful in low data settings.

1 Introduction

Classification is a central task in machine learning, used to categorise objects (Klasson et al., 2019), provide
medical diagnoses (Adem et al., 2019; Mirbabaie et al., 2021), or identify potentially life-supporting planets
(Tiensuu et al., 2019). Classification also arises in other learning regimes, e.g. to select actions in reinforcement
learning, distinguish positive and negative samples in contrastive learning, and pertains to the attention
mechanism in transformer models (Vaswani et al., 2017). Classification is commonly tackled by training a
neural network with a sigmoid or softmax output layer.2 Each data sample x is mapped deterministically by
an encoder fω (with weights ω) to a real vector z=fω(x), which the softmax layer maps to a distribution
over class labels y∈Y:

pθ(y|x) = exp{z⊤wy + by}∑
y′∈Y exp{z⊤wy′ + by′}

. (1)

Softmax classifiers have achieved impressive performance (e.g. Krizhevsky et al., 2012), however they are
known to suffer from several issues. For example: such classifiers are trained to numerically minimise a loss
function over a random dataset and their resulting predictions are hard to explain; model predictions may
accurately identify the correct class by their mode but less accurately reflect a meaningful class distribution
p(y|x), known as miscalibration; predictions can vary materially and erroneously for imperceptible changes
in the data (adversarial examples); and highly flexible neural networks are often used in order to achieve
accurate predictions, which tend to require considerable labelled data to train.

1Code: www.github.com/shehzaadzd/variational-classification. Review: www.openreview.net/forum?id=EWv9XGOpB3
2We refer throughout to the softmax function since it generalises sigmoid to multiple classes, but arguments apply to both.
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Figure 1: Empirical distributions of inputs to the output layer qϕ(z|y) for classifiers trained under incremental
components of the VC objective (Eqn. 7) on MNIST (cf the central Z-plane in figure 2). (l) “MLE” objective
= softmax cross-entropy; (c) “MAP” objective = MLE + Gaussian class priors pθ(z|y) (in contour); (r) VC
objective = MAP + entropy of pθ(z|y). Colour indicates class y; Z=R2 for visualisation purposes.

In order to better understand softmax classification and ideally mitigate some of its known shortcomings, we
take a latent perspective, introducing a latent variable z in a graphical (Markov) model y→ z→ x. This
model can be interpreted generatively as first choosing a sample’s class, or what it is (y); then parameters
defining its attributes, e.g. size, colour (z); which determine the observation (x), subject to any stochasticity,
e.g. noise or natural variation. Class labels can be inferred by learning to reverse the process: predicting z
from x, and y from z, integrating over all z: pθ,ϕ(y|x)=

∫
z
pθ(y|z)qϕ(z|x).3 It is generally intractable to learn

parameters (θ, ϕ) of this predictive model by maximising the log likelihood,
∫
x,y

p(x, y) log pθ,ϕ(y|x). Instead
a lower bound on the log likelihood can be maximised, comparable to the evidence lower bound (ELBO) used
to train a variational auto-encoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014).

We show that training a softmax classifier under cross entropy loss (SCE) is, in fact, a special case of training
this generalised latent classification model under the variational objective, in which the input to the softmax
layer (z of Eqn. 1) is treated as the latent variable, the encoder parameterises qϕ(z|x), and the softmax
layer computes pθ(y|z). In other words, the latent variable model and its training objective provide an
interpretable generalisation of softmax classification. Probing further, the softmax layer can be interpreted
as applying Bayes’ rule, pθ(y|z)= pθ(z|y)pθ(y)∑

y′ pθ(z|y′)pθ(y′)
, assuming that latent variables follow exponential family

class-conditional distributions pθ(z|y) for true class distributions to be output. Meanwhile, the distribution
that latents actually follow, qϕ(z|y) =

∫
x
qϕ(z|x)p(x|y), is defined by the data distribution and the encoder.

We refer to these two descriptions of p(z|y) as the anticipated and empirical latent distributions, respectively,
and consider their relationship. We show, both theoretically and empirically, that in practical settings
these distributions can materially differ. Indeed, optimising the SCE objective may cause each empirical
distribution qϕ(z|y) to collapse to a point rather than fit the anticipated pθ(z|y). This essentially overfits
to the data and loses information required for estimating confidence or other potential downstream tasks,
limiting the use of z as a representation of x. To address the potential discrepancy between qϕ(z|y) and
pθ(z|y), so that the softmax layer receives the distribution it expects, we minimise the Kullback-Leibler (KL)
divergence between them. This is non-trivial since qϕ(z|y) can only be sampled not evaluated, hence we use
the density ratio trick (Nguyen et al., 2010; Gutmann & Hyvärinen, 2010), as seen elsewhere (Makhzani
et al., 2015; Mescheder et al., 2017), to approximate the required log probability ratios as an auxiliary task.

The resulting Variational Classification (VC) objective generalises softmax cross-entropy classification from
a latent perspective and fits empirical latent distributions qϕ(z|y) to anticipated class priors pθ(z|y). Within
this more interpretable framework, latent variables learned by a typical softmax classifier can be considered
maximium likelihood (MLE) point estimates that maximise pθ(y|z). By comparison, the two KL components
introduced in variational classification, respectively lead to maximum a posteriori (MAP) point estimates;
and a Bayesian treatment where latent variables (approximately) fit the full distribution pθ(z|y) (Figure 1).4
Since Variational Classification serves to mitigate over-fitting, which naturally reduces with increased samples,
VC is anticipated to offer greatest benefit in low data regimes.

3We use the notation qϕ to distinguish distributions, as will be made clear.
4Terms of the standard ELBO can be interpreted similarly.
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Through a series of experiments on vision and text datasets, we demonstrate that VC achieves comparable
accuracy to regular softmax classification while the aligned latent distribution improves calibration, robust-
ness to adversarial perturbations (specifically FGSM “white box”), generalisation under domain shift and
performance in low data regimes. Although many prior works target any one of these pitfalls of softmax
classification, often requiring extra hyperparameters to be tuned on held-out validation sets, VC simultaneously
improves them all, without being tailored towards any or needing further hyperparameters or validation data.
Overall, the VC framework gives novel mathematical insight and interpretability to softmax classification:
the encoder maps a mixture of unknown data distributions p(x|y) to a mixture of chosen latent distributions
pθ(z|y), which the softmax/output layer “flips” by Bayes’ rule. This understanding may enable principled
improvement of classification and its integration with other latent variable paradigms (e.g. VAEs).

2 Background

The proposed generalisation from softmax to variational classification (§3) is analogous to how a deterministic
auto-encoder relates to a variational auto-encoder (VAE), as briefly summarised below.

Estimating parameters of a latent variable model of the data pθ(x) =
∫
z
pθ(x|z)pθ(z) by maximising the

likelihood,
∫
x
p(x) log pθ(x), is often intractable. Instead, one can maximise the evidence lower bound (ELBO):∫

x

p(x) log pθ(x) =
∫
x

p(x)
∫
z

qϕ(z|x)
{

log pθ(x|z)− log qϕ(z|x)
pθ(z) + log qϕ(z|x)

pθ(z|x)

}
≥

∫
x

p(x)
∫
z

qϕ(z|x)
{

log pθ(x|z)− log qϕ(z|x)
pθ(z)

}
.= ELBO, (2)

where qϕ(z|x) is the approximate posterior and the term dropped in the inequality is a Kullback-Leibler (KL)
divergence, DKL[ q(z)∥ p(z)] .=

∫
z
q(z) log q(z)

p(z) ≥ 0. The VAE (Kingma & Welling, 2014; Rezende et al., 2014)
uses the ELBO as a training objective with pθ(x|z) and qϕ(z|x) assumed to be Gaussian parameterised by
neural networks. Setting the variance of qϕ(z|x) to zero, i.e. each qϕ(z|x) to a delta distribution, the first
(“reconstruction”) term of Eqn. 2 equates to the training objective of a deterministic auto-encoder, which the
VAE can be interpreted to probabilistically generalise, allowing for uncertainty or stochasticity in qϕ(z|x)
constrained by the second (“regularisation”) term.

y
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qϕ(z|x)
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Figure 2: Variational Classification, reversing the
generative process: qϕ(z|x) maps data x∈X to the
latent space Z, where empirical distributions qϕ(z|y)
are fitted to class priors pθ(z|y); top layer computes
pθ(y|z) by Bayes’ rule to give a class prediction p(y|x).

Maximising the ELBO directly equates to minimising
DKL[ p(x)∥ pθ(x)] + Ex

[
DKL[ qϕ(z|x)∥ pθ(z|x)]

]
, and so

fits the model pθ(x) to the data distribution p(x) and
qϕ(z|x) to the model posterior pθ(z|x) .= pθ(x|z)pθ(z)

pθ(x) .
Equivalently, the modelled distributions qϕ(z|x) and
pθ(x|z) are made consistent under Bayes’ rule.

3 Variational Classification

Classification Latent Variable Model (LVM):
Consider data x ∈X and labels y ∈Y as samples of
random variables x, y jointly distributed p(x, y). Under
the (Markov) generative model in Figure 2 (left),

p(x) =
∫
y,z

p(x|z)p(z|y)p(y) , (3)

labels can be predicted by reversing the process,

pθ(y|x) =
∫
z

pθ(y|z)pθ(z|x) . (4)

A neural network (NN) softmax classifier is a deter-
ministic function that maps each data point x, via a
sequence of intermediate representations, to a point on
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the simplex ∆|Y| that parameterises a categorical label distribution pθ(y|x). Any intermediate representation
z=g(x) can be considered a sample of a latent random variable z from conditional distribution p(z|x)=δz−g(x).

Proposition: a NN softmax classifier is a special case of Eqn. 4.
Proof : Define (i) the input to the softmax layer as latent variable z; (ii) pθ(z|x)=δz−fω(x), a delta distribution
parameterised by fω, the NN up to the softmax layer (the encoder); and (iii) pθ(y|z) by the softmax layer (as
defined in RHS of Eqn. 1).

3.1 Training a Classification LVM

Similarly to the latent variable model for pθ(x) (§2), parameters of Eqn. 4 cannot in general be learned by
directly maximising the likelihood. Instead we can maximise a lower bound:∫

x,y

p(x, y) log pθ(y|x) =
∫
x,y

p(x, y)
∫
z

qϕ(z|x)
{

log pθ(y|z, x)− log qϕ(z|x)
pθ(z|x) + log qϕ(z|x)

pθ(z|x,y)

}
≥

∫
x,y

p(x, y)
∫
z

qϕ(z|x) log pθ(y|z)
.= ELBOVC (5)

Here, pθ(y|z, x)=pθ(y|z) by the Markov model, and the (freely chosen) variational posterior qϕ is assumed to
depend only on x and set equal to pθ(z|x) (eliminating the second term).5 The derivation of Eqn. 5 follows
analogously to that of Eqn. 2 conditioned on x; an alternative derivation follows from Jensen’s inequality.

Unlike for the standard ELBO, the “dropped” KL term DKL[ qϕ(z|x)∥ pθ(z|x, y)] (minimised implicitly as
ELBOVC is maximised) may not minimise to zero – except in the limiting case pθ(y|x, z)=pθ(y|z). That is,
when z is a sufficient statistic for y given x, intuitively meaning that z contains all information contained in x
about y.6 Hence, maximising ELBOVC implicitly encourages z to learn a sufficient statistic for y|x.

Proposition: softmax cross-entropy (SCE) loss is a special case of ELBOVC.
Proof : In Eqn. 5, let (i) qϕ(z|x) = δz−fω(x); and (ii) pθ(z|y) = h(z) exp{z⊤wy + b′

y},∀y ∈Y, for constants
wy, b

′
y, arbitrary positive function h : Z → R+ and by = b′

y + log pθ(y):∫
x,y

p(x, y)
∫
z

qϕ(z|x)log pθ(y|z)
(i)=

∫
x,y

p(x, y)log pθ(y|z=fω(x)) (Bayes)=
∫
x,y

p(x, y)log pθ(z=fω(x)|y)pθ(y)∑
y′ pθ(z=fω(x)|y′)pθ(y′)

(ii)=
∫
x,y

p(x, y)log h(z) exp{fω(x)⊤wy+by}∑
y′ h(z) exp{fω(x)⊤wy′ +by′ }

.= SCE. (6)

Corollary: A NN softmax classifier outputs true label distributions p(y|x) if inputs to the softmax layer, z,
follow anticipated class-conditional distributions pθ(z|y) of (equi-scale) exponential family form.

3.2 Anticipated vs Empirical Latent Distributions

Defining an LVM for classification (Eqn. 4) requires specifying pθ(y|z). In the special case of softmax
classification, pθ(y|z) is effectively encoded by Bayes’ rule assuming exponential family pθ(z|y), i.e. distributions
over softmax layer inputs for class y (Eqn. 6). More generally, one can choose the parametric form of pθ(z|y)
and compute pθ(y|z) by Bayes’ rule in a classifier’s output layer (generalising the standard softmax layer),
thereby encoding the distribution latent variables are anticipated to follow for accurate label predictions
p(y|x) to be output. A natural question then is: do latent variables of a classification LVM empirically
follow the anticipated distributions pθ(z|y)?

Empirical latent distributions are not fixed, but rather defined by qϕ(z|y) .=
∫
x
qϕ(z|x)p(x|y), i.e. by sampling

qϕ(z|x) (parameterised by the encoder fω) given class samples x ∼ p(x|y). Since ELBOVC is optimised w.r.t.
parameters ϕ, if optimal parameters are denoted ϕ∗, the question becomes: does qϕ∗(z|y) = pθ(z|y)?

It can be seen that ELBOVC is optimised w.r.t ϕ if qϕ∗(z|x)=δz−zx
, for zx=arg maxz Ey|x[log pθ(y|z)] (see

appendix A.1).7 In practice, true label distributions p(y|x) are unknown and we have only finite samples
5We use the notation “qϕ” by analogy to the VAE and to later distinguish qϕ(z|y), derived from qϕ(z|x), from pθ(z|y).
6Proof: from p(z|x, y)p(y|x) = p(y|x, z)p(z|x) and Markovianity, we see that DKL[ qϕ(z|x)∥ pθ(z|x, y)] = 0 ⇔ pθ(z|x, y) =

qϕ(z|x) ⇔ pθ(y|x)=pθ(y|x, z)=pθ(y|z) ⇔ z a sufficient statistic for y|x.
7We assume the parametric family qϕ is sufficiently flexible to closely approximate the analytic maximiser of ELBOVC.
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from them. For a continuous data domain X , e.g. images or sounds, any empirically observed x is sampled
twice with probability zero and so is observed once with a single label y(x). A similar situation arises (for
any X ) if – as a property of the data – every x has only one ground truth label y(x), i.e. labels are mutually
exclusive and partition the data.8 In either case, the expectation over labels simplifies and, for a given class
y, zx = arg maxz pθ(y|z), meaning the optimal latent distribution qϕ∗(z|x) is identical for all samples x of
class y.9 Letting zy denote the optimal latent variable for all x of class y, optimal class-level distributions
are simply qϕ∗(z|y)=δz−zy

, and ELBOVC is maximised if all latent representations of a class, and
hence qϕ(z|y), “collapse” to the same point, irrespective of the anticipated pθ(z|y).

Since softmax classification is a special case, this reveals the potential for softmax classifiers to learn over-
concentrated, or over-confident, latent distributions relative to anticipated distributions (subject to the data
distribution and model flexibility). In practical terms, the softmax cross-entropy loss may be minimised
when all samples of a given class are mapped (by the encoder fω) to the same latent variable/representation,
regardless of differences in the samples’ probabilities or semantics, thus disregarding information that may be
useful for calibration or downstream tasks. We note that the Information Bottleneck Theory (Tishby et al.,
2000; Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) assumes that such “loss of information” is
beneficial, but as we see below, it is unnecessary for classification and may be undesirable in general.

3.2.1 Aligning the Anticipated and Empirical Latent Distributions

We have shown that the ELBOVC objective, a generalisation of SCE loss, effectively involves two versions of
the latent class conditional distributions, pθ(z|y) and qϕ(z|y), and that a mismatch between them may have
undesirable consequences in terms of information loss. We therefore propose to align pθ(z|y) and qϕ(z|y),
or, equivalently, for pθ(y|z) and qϕ(z|y) to be made consistent under Bayes’ rule (analogous to pθ(x|z) and
qϕ(z|x) in the ELBO, §2). Specifically, we minimise DKL[ qϕ(z|y)∥ pθ(z|y)], ∀y∈Y. Including this constraint
(weighted by β>0) and learning required class distribution pπ(y) defines the full VC objective:

−LVC =
∫
x,y

p(x, y)
{ ∫

z

qϕ(z|x) log pθ(z|y)pπ(y)∑
y′ pθ(z|y′)pπ(y′)

− β
∫
z

qϕ(z|y) log qϕ(z|y)
pθ(z|y) + log pπ(y)

}
. (7)

Taken incrementally, qϕ–terms of LVC can be interpreted as treating the latent variable z from a maximum
likelihood (MLE), maximum a posteriori (MAP) and Bayesian perspective:

(i) maximising
∫
z
qϕ(z|x) log pθ(y|z) may overfit qϕ(z|y) ≈ δz−zy (as above); [MLE]

(ii) adding class priors
∫
z
qϕ(z|y) log pθ(z|y) changes the point estimates zy; [MAP]

(iii) adding entropy = −
∫
z
qϕ(z|y) log qϕ(z|y) encourages qϕ(z|y) to “fill out” pθ(z|y). [Bayesian]

Figure 1 shows samples from empirical latent distributions qϕ(z|y) for classifiers trained under incremental
terms of the VC objective. This empirically confirms that softmax cross-entropy loss does not impose the
anticipated latent distribution encoded in the output layer (left). Adding class priors pθ(z|y) changes the
point at which latents of a class concentrate (centre). Adding entropy encourages class priors to be “filled
out” (right), relative to previous point estimates/δ-distributions. As above, if each x has a single label (e.g.
MNIST), the MLE/MAP training objectives are optimised when class distributions qϕ(z|y) collapse to a
point. We note that complete collapse is not observed in practice (Figure 1, left, centre), which we conjecture
is due to strong constraints on fω, in particular continuity and ℓ2 regularisation and early stopping based on
validation loss. Compared to the KL form of the ELBO (§2), maximising Eqn. 7 is equivalent to minimising:

Ex
[
DKL[ p(y|x)∥ pθ(y|x)] +Ex,y

[
DKL[ qϕ(z|x)∥ pθ(z|x, y)]

]
+Ey

[
DKL[ qϕ(z|y)∥ pθ(z|y)]

]
+DKL[ p(y)∥ pπ(y)]

]
(8)

showing the extra constraints over the core objective of modelling p(y|x) by pθ(y|x) (underlined).
8As in popular image datasets, e.g. MNIST, CIFAR, ImageNet, where samples belong to one class or another.
9Subject to uniqueness of arg maxz pθ(y|z), which is not guaranteed in general, but is assumed for suitable pθ(z|y), such as

the softmax case of central interest: if all x have a single label y(x) (i.e. p(y|x) = 1y=y(x) is a “one-hot” vector), and norms
are finitely constrained (∥z∥ = α > 0), then the SCE objective (Eqn. 6) is maximised, and softmax outputs pθ(y|x) (Eqn. 1)
increasingly approximate true p(y|x), as class parameters wy are maximally dispersed (i.e. unit vectors ŵy tend to a regular
polytope on the unit sphere) and all representations of a class y align with the class parameter: zx = fω(x) → αŵy(x) (unique).
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Algorithm 1 Variational Classification (VC)
1: Input pθ(z|y), qϕ(z|x), pπ(y), Tψ(z); learning rate schedule {ηtθ, ηtϕ, ηtπ, ηtψ}t, β
2: Initialise θ, ϕ, π, ψ; t← 0
3: while not converged do
4: {xi, yi}mi=1 ∼ D [sample batch from data distribution p(x, y)]
5: for z = {1 ... m} do
6: zi ∼ qϕ(z|xi), z′

i ∼ pθ(z|yi) [e.g. qϕ(z|xi)
.=δz−fω(xi), ϕ

.=ω ⇒ zi=fω(xi)]
7: pθ(yi|zi) = pθ(zi|yi)pπ(yi)∑

y
pθ(zi|y)pπ(y)

8: end for
9: gθ ← 1

m

∑m
i=1∇θ [log pθ(yi|zi) + β pθ(zi|yi)]

10: gϕ ← 1
m

∑m
i=1∇ϕ [log pθ(yi|zi)− β Tψ(zi)] [e.g. using “reparameterisation trick”]

11: gπ ← 1
m

∑m
i=1∇π log pπ(yi)

12: gψ ← 1
m

∑m
i=1∇ψ [log σ(Tψ(zi)) + log(1−σ(Tψ(z′

i))]
13: θ ← θ + ηtθ gθ, ϕ← ϕ+ ηtϕ gϕ, π ← π + ηtπ gπ, ψ ← ψ + ηtψ gψ, t← t+ 1
14: end while

3.3 Optimising the VC Objective

The VC objective (Eqn. 7) is a lower bound that can be maximised by gradient methods, e.g. SGD:
• the first term can be calculated by sampling qϕ(z|x) (using the “reparameterisation trick” as necessary

(Kingma & Welling, 2014)) and computing pθ(y|z) by Bayes’ rule;

• the third term is standard multinomial cross-entropy;

• the second term, however, is not readily computable since qϕ(z|y) is implicit and cannot easily be evaluated,
only sampled, as z∼qϕ(z|x) (parameterised by fω) for class samples x∼p(x|y).

Fortunately, we require log ratios log qϕ(z|y)
pθ(z|y) for each class y, which can be approximated by training a binary

classifiers to distinguish samples of qϕ(z|y) from those of pθ(z|y). This so-called density ratio trick underpins
learning methods such as Noise Contrastive Estimation (Gutmann & Hyvärinen, 2010) and contrastive
self-supervised learning (e.g. Oord et al., 2018; Chen et al., 2020) and has been used comparably to train
variants of the VAE (Makhzani et al., 2015; Mescheder et al., 2017).
Specifically, we maximise the following auxiliary objective w.r.t. parameters ψ of a set of binary classifiers:

−Laux =
∫
y

p(y)
{∫

z

qϕ(z|y) log σ(T yψ(z)) +
∫
z

pθ(z|y) log(1−σ(T yψ(z))
}

(9)

where σ is the logistic sigmoid function σ(x)=(1 + e−x)−1, T yψ(z)=w⊤
y z + by and ψ={wy, by}y∈Y .

It is easy to show that Eqn. 9 is optimised if T yψ(z)=log qϕ(z|y)
pθ(z|y) , ∀y∈Y . Hence, when all binary classifiers are

trained, T yψ(z) approximates the log ratio for class y required by the VC objective (Eqn. 7). Optimising the
VC objective might, in principle, also require gradients of the approximated log ratios w.r.t. parameters θ
and ϕ. However, the gradient w.r.t. the ϕ found within the log ratio is always zero (Mescheder et al., 2017)
and so the gradient w.r.t. θ can be computed from Eqn. 7. See Algorithm 1 for a summary.

This approach is adversarial since (a) the VC objective is maximised when log ratios give a minimal KL
divergence, i.e. when qϕ(z|y) = pθ(z|y) and latents sampled from qϕ(z|y) or pθ(z|y) are indistinguishable;
whereas (b) the auxiliary objective is maximised if the ratios are maximal and the two distributions are fully
discriminated. Relating to a Generative Adversarial Network (GAN) (Goodfellow et al., 2014a), the encoder fω
acts as a generator and each binary classifier as a discriminator. Unlike a GAN, VC requires a discriminator per
class that each distinguish generated samples from a learned, rather than static, reference/noise distribution
pθ(z|y). However, whereas a GAN discriminator distinguishes between complex distributions in the data
domain, a VC discriminator compares a Gaussian to an approximate Gaussian in the lower dimensional
latent domain, a far simpler task. The auxiliary objective does not change the complexity relative to softmax
classification and can be parallelised across classes, adding marginal computational overhead per class.
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3.3.1 Optimum of the VC Objective

In §3.2, we showed that the empirical distribution qϕ(z|x) that opitimises the ELBOVC need not match the
anticipated pθ(z|y). Here, we perform similar analysis to identify qϕ∗(z|x) that maximises the VC objective,
which, by construction of the objective, is expected to better match the anticipated distribution.

Letting β=1 to simplify (see appendix A.2 for general case), the VC objective is maximised w.r.t. qϕ(z|x) if:

Ep(y|x)[log qϕ(z|y)] = Ep(y|x)[log pθ(y|z)pθ(z|y)] + c , (10)

for a constant c. This is satisfied if, for each class y,
qϕ(z|y) = pθ(z|y) pθ(y|z)

Epθ(z′|y)[pθ(y|z′)] , (11)

giving a unique solution if each x has a single label y (see §3.2; see appendix A.2 for proof). This shows that
each qϕ(z|y) fits pθ(z|y) scaled by a ratio of pθ(y|z) to its weighted average. Hence, where pθ(y|z) is above
average, qϕ(z|y) > pθ(z|y), and vice versa. In simple terms, qϕ(z|y) reflects pθ(z|y) but is “peakier” (fitting
observation in Figure 1). We have thus shown empirically (Figure 1) and theoretically that the VC objective
aligns the empirical and anticipated latent distributions. However, these distributions are not identical and we
leave to future work the derivation of an objective that achieves both pθ(y|x)=p(y|x) and qϕ(z|y)=pθ(z|y).

3.4 Summary

The latent variable model for classification (Eqn. 4) abstracts a typical softmax classifier, giving interpretability
to its components:
• the encoder (fω) transforms a mixture of analytically unknown class-conditional data distributions p(x|y)

to a mixture of analytically defined latent distributions pθ(z|y);
• assuming latent variables follow the anticipated class distributions pθ(z|y), the output layer applies Bayes’

rule to give pθ(y|z) (see figure 2) and thus meaningful estimates of label distributions p(y|x) (by Eqn. 4).
ELBOVC generalises softmax cross-entropy, treating the input to the softmax layer as a latent variable and
identifying the anticipated class-conditionals pθ(z|y) implicitly encoded within the softmax layer. Extending
this, the VC objective (LVC) encourages the empirical latent distributions qϕ(z|y) to fit pθ(z|y). Softmax
cross-entropy loss is recovered from LVC by setting (i) qϕ(z|x) = δz−fω(x); (ii) pθ(z|y) to (equal-scale)
exponential family distributions, e.g. equivariate Gaussians; and (iii) β = 0. This is analogous to how a
deterministic auto-encoder relates to a VAE. Thus the VC framework elucidates assumptions made
implicitly in softmax classification and by generalising this special case, allows these assumptions, e.g.
the choice of pθ(z|y), to be revised on a task/data-specific basis.

4 Related Work

Despite notable differences, the energy-based interpretation of softmax classification of Grathwohl et al.
(2019) is perhaps most comparable to our own in taking an abstract view to improve softmax classification.
However, their gains, e.g. in calibration and adversarial robustness, come at a significant cost to the main aim:
classification accuracy. Further, the required MCMC normalisation reportedly slows and destabilises training.
In contrast, we use tractable probability distributions and retain the order of complexity. Our approach is
also notionally related to Bayesian Neural Networks (BNNs) or related approaches such as MC-dropout (Gal
& Ghahramani, 2016), although these are Bayesian with respect to model parameters, rather than latent
variables. In principle, these mightt be combined (e.g. Murphy, 2012) as an interesting future direction.

Several previous works adapt the standard ELBO, used to learn a model of p(x), to a conditional analog for
learning p(y|x) (Tang & Salakhutdinov, 2013; Sohn et al., 2015). However, such works focus on generative
scenarios rather than discriminative classification, e.g. x being a face image and y|x being the same face
in a different pose determined by latent z; or x being part of an image and y|x its completion given latent
content z. The Gaussian stochastic neural network (GSNN) model (Sohn et al., 2015) is closer to our own by
conditioning q(z|x, y) only on x, however the model neither generalises softmax classification nor considers
class-level latent priors q(z|y) as in variational classification.
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Variational classification subsumes a number of works that add a regularisation term to a softmax cross-entropy
loss function, which can be interpreted as a prior over latent variables in the “MAP” case (§3.2.1). For
example, several semi-supervised learning models can be interpreted as treating the softmax outputs as latent
variables and using a latent prior to guide predictions for unlabelled data (Allen et al., 2020). Closer to
variational classification, several works can be interpreted as treating softmax inputs as latent variables with
a regularisation term that encourages prior beliefs, such as deterministic label predictions (i.e. all probability
mass on a single class), which can be encouraged by imposing a large margin between class-conditional latent
distributions (Liu et al., 2016; Wen et al., 2016; Wan et al., 2018; 2022; Scott et al., 2021).

Variational classification also relates to works across several learning paradigms in which a Gaussian mixture
prior is imposed in the latent space, e.g. for representation learning (Xie et al., 2016; Caron et al., 2018), in
auto-encoders (Song et al., 2013; Ghosh et al., 2019) and in variational auto-encoders (Jiang et al., 2016;
Yang et al., 2017; Prasad et al., 2020; Manduchi et al., 2021).

5 Empirical Validation

Our goal is to empirically demonstrate that the latent structure induced by the VC objective is beneficial
relative to the standard softmax classifier. A variational classifier can be substituted wherever a softmax
classifier is used, by making distributional choices appropriate for the data. In particular, variational
classification does not set out to address any one drawback of a softmax classifier, rather it aims to better
reverse the generative process and so capture the data distribution, providing multiple benefits. We illustrate
the effectiveness of a VC through a variety of tasks on familiar datasets from the visual and text domains.

Specifically, we set out to validate the following hypotheses:

H1: The VC objective improves uncertainty estimation, leading to a more calibrated model.
H2: The VC objective increases model robustness to changes in the data distribution.
H3: The VC objective enhances resistance to adversarial perturbations.
H4: The VC objective aids learning from fewer samples.

For fair comparison, we make minimal changes to adapt a standard softmax classifier to a variational classifier.
As described in §3.4, we train with the VC objective (Eqn. 7) under the following assumptions: qϕ(z|x) is
a delta distribution parameterised by a neural network fω : X → Z; class-conditional priors pθ(z|y) are
multi-variate Gaussians with parameters learned from the data (we use diagonal covariance for simplicity).
To provide an ablation across the components of the VC objective, we compare classifiers trained to maximise
three objective functions (see §3):

CE: equivalent to standard softmax cross-entropy under the above assumptions and corresponds to the MLE
form of the VC objective (§3.2.1, (i)).

JCE =
∫
x,y

p(x, y)
(∫

z

qϕ(z|x) log pθ(y|z) + log pπ(y)
)

GM: includes class priors and corresponds to the MAP form of the VC objective (§3.2.1, (ii)). This is
equivalent to Wan et al. (2018) with just the Gaussian Prior.

JGM = JCE +
∫
x,y

p(x, y)
∫
z

qϕ(z|y) log pθ(z|y)

VC: includes entropy of the empirical latent distributions and corresponds to the Bayesian form of the VC
objective (§3.2.1, (iii)).

JVC = JGM −
∫
x,y

p(x, y)
∫
z

qϕ(z|y) log qϕ(z|y)
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CIFAR-10 CIFAR-100 Tiny-Imagenet
CE GM⋄ VC vMF⋆ CE GM ⋄ VC vMF⋆ CE GM⋄ VC

Acc. (%, ↑)
WRN 96.2 ± 0.1 95.0 ± 0.2 96.3 ± 0.2 - 80.3 ± 0.1 79.8 ± 0.2 80.3 ± 0.1 - - - -
RNET 93.7 ± 0.1 93.0 ± 0.1 93.2 ± 0.1 94.0 ± 0.1 73.2 ± 0.1 74.2 ± 0.1 73.4 ± 0.1 69.94 ± 0.2 59.7 ± 0.2 59.3 ± 0.1 59.3 ± 0.1

ECE (%, ↓)
WRN 3.1 ± 0.2 3.5 ± 0.3 2.1 ± 0.2 - 11.1 ± 0.7 19.6 ± 0.4 4.8 ± 0.3 - - - -
RNET 3.8 ± 0.3 4.1 ± 0.2 3.2 ± 0.2 5.9 ± 0.2 8.7 ± 0.2 10.5 ± 0.2 5.1 ± 0.2 7.9 ± 0.3 12.3 ± 0.4 8.75 ± 0.2 7.4 ± 0.5

Table 1: Classification Accuracy and Expected Calibration Error (mean, std.dev. over 5 runs). Accuracy is
comparable between VC and CE across encoder architectures and data sets, while calibration of VC notably
improves. ⋆ from Scott et al. (2021), ⋄ our implementation of Wan et al. (2018)

5.1 Accuracy and Calibration

We first compare the classification accuracy and calibration of each model on three standard bench-
marks (CIFAR-10, CIFAR-100, and Tiny-Imagenet), across two standard ResNet model architectures
(WideResNet-28-10 (WRN) and ResNet-50 (RNET)) (He et al., 2016; Zagoruyko & Komodakis, 2016).
Calibration is evaluated in terms of the Expected Calibration Error (ECE) (see Appendix C). Table 1 shows
that the VC and GM models achieve comparable accuracy to softmax cross entropy (CE), but that the
VC model is consistently, significantly more calibrated (H1). Unlike approaches such as Platt’s scaling
(Platt et al., 1999) and temperature scaling (Guo et al., 2017), no post hoc calibration is performed requiring
additional data or associated hyperparameters tuning.

We also compare MC-Dropout (Gal & Ghahramani, 2016) for CIFAR-10 and CIFAR-100 on ResNet-50
(p = 0.2, averaging over 10 samples). As seen previously (Ovadia et al., 2019), although calibration improves
relative to CE (3.3%, 1.4%, resp.), the main goal of classification, prediction accuracy, reduces (92.7%, 70.1%).

5.2 Generalization under distribution shift

When used in real-world settings, machine learning models may encounter distribution shift relative to the
training data. It can be important to know when a model’s output is reliable and can be trusted, requiring
the model to be calibrated on out-of-distribution (OOD) data and know when they do not know. To
test performance under distribution shift, we use the robustness benchmarks, CIFAR-10-C, CIFAR-100-C
and Tiny-Imagenet-C, proposed by Hendrycks & Dietterich (2019), which simulate distribution shift by
adding various synthetic corruptions of varying intensities to a dataset. We compare the CE model, with and
without temperature scaling, to the VC model. Temperature scaling was performed as in Guo et al. (2017)
with the temperature tuned on an in-distribution validation set.

Both models are found to perform comparably in terms of classification accuracy (Figure 8), according to
previous results (§5.1). However, Figure 3 shows that the VC model has a consistently lower calibration
error as the corruption intensity increases (left to right) (H2). We note that the improvement in calibration
between the CE and VC models increases as the complexity of the dataset increases.

When deployed in the wild, natural distributional shifts may occur in the data due to subtle changes in
the data generation process, e.g. a change of camera. We test resilience to natural distributional shifts on
two tasks: Natural Language Inference (NLI) and detecting whether cells are cancerous from microscopic
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Figure 3: Calibration under distribution shift: (l) CIFAR-10-C, (m) CIFAR-100-C, (r) Tiny-Imagenet-C.
Boxes indicate quartiles, whiskers indicate min/max, across 16 types of synthetic distribution shift.
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images. NLI requires verifying if a hypothesis logically follows from a premise. Models are trained on the
SNLI dataset (Bowman et al., 2015) and tested on the MNLI dataset (Williams et al., 2018) taken from
more diverse sources. Cancer detection uses the Camelyon17 dataset (Bandi et al., 2018) from the WILDs
datasets (Koh et al., 2021), where the train and eval sets contain images from different hospitals.

Accuracy (↑) Calibration (↓)
CE VC CE VC

NLI 71.2 ± 0.1 71.2 ± 0.1 7.3 ± 0.2 3.4 ± 0.2

CAM 79.2 ± 2.8 84.5 ± 4.0 8.4 ± 2.5 1.8 ± 1.3

Table 2: Accuracy and Calibration (ECE) under dis-
tributional shift (mean, std. err., 5 runs)

Table 2 shows that the VC model achieves better cali-
bration under these natural distributional shifts (H2).
The Camelyon17 (CAM) dataset has a relatively
small number (1000) of training samples (hence wide
error bars are expected), which combines distribution
shift with a low data setting (H4) and shows that the
VC model achieves higher (average) accuracy in this
more challenging real-world setting.

We also test the ability to detect OOD examples. We compute the AUROC when a model is trained
on CIFAR-10 and evaluated on the CIFAR-10 validation set mixed (in turn) with SVHN, CIFAR-100,
and CelebA (Goodfellow et al., 2013; Liu et al., 2015). We compare the VC and CE models using the
probability of the predicted class arg maxy pθ(y|x) as a means of identifying OOD samples.

Model SVHN C-100 CelebA
PCE(y|x) 0.92 0.88 0.90
PVC(y|z) 0.93 0.86 0.89

Table 3: AUROC for OOD detection.
Models trained on CIFAR-10, evaluated
on in and out-of-distribution samples.

Table 3 shows that the VC model performs comparably to the CE
model. We also consider p(z) as a metric to detect OOD samples
and achieve comparable results, which is broadly consistent with
the findings of (Grathwohl et al., 2019). Although the VC model
learns to map the data to a more structured latent space and, from
the results above, makes more calibrated predictions for OOD
data, it does not appear to be better able to distinguish OOD
data than a standard softmax classifier (CE) using the metrics
tested (we note that “OOD” is a loosely defined term).

5.3 Adversarial Robustness
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Figure 4: Prediction accuracy for increasing FGSM adver-
sarial attacks (l) MNIST; (r) CIFAR-10

We test model robustness to adversarially gen-
erated images using the common Fast Gradi-
ent Sign Method (FGSM) of adversarial attack
(Goodfellow et al., 2014b). This “attack” is
arbitrarily chosen and VC is not explicitly tai-
lored towards it. Perturbations are generated
as P =ϵ×sign (∇xL(x, y)), where L(x, y) is the
model loss for data sample x and correct class
y; and ϵ is the attack magnitude. We compare
all models trained on MNIST and CIFAR-10
against FGSM attacks of different magnitudes.

Results in Figure 4 show that the VC model is consistently more (FGSM) adversarially robust relative to the
standard CE model, across attack magnitudes on both datasets (H3).

5.4 Low Data Regime

CE GM VC
MNIST 93.1 ± 0.2 94.4 ± 0.1 94.2 ± 0.2

CIFAR-10 52.7 ± 0.5 54.2 ± 0.6 56.3 ± 0.6

AGNews 56.3 ± 5.3 61.5± 2.9 66.3 ± 4.6

Table 4: Accuracy in low data regime (mean,
std.err., 5 runs)

In many real-world settings, datasets may have relatively
few data samples and it may be prohibitive or impossible
to acquire more, e.g. historic data or rare medical cases.
We investigate model performance when data is scarce on
the hypothesis that a prior over the latent space enables
the model to better generalise from fewer samples. Models
are trained on 500 samples from MNIST, 1000 samples
from CIFAR-10 and 50 samples from AGNews.

10



Published in Transactions on Machine Learning Research (12/2023)

Results in Table 4 show that introducing the prior (GM) improves performance in a low data regime and
that the additional entropy term in the VC model maintains or further improves accuracy (H4), particularly
on the more complex datasets.

10e3 10e4 10e5
Dataset train size
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4
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VC
 - 

CE

Figure 5: Accuracy increase of VC vs CE on 10 MedMNIST
classification datasets of varying training set size. Blue
points indicate accuracy on a dataset (mean, std.err., 3
runs). Green line shows a best-fit trend across dataset size.

We further probe the relative benefit of the VC
model over the CE baseline as training sample
size varies (H4) on 10 MedMNIST classifcation
datasets (Yang et al., 2021), a collection of
real-world medical datasets of varying sizes.

Figure 5 shows the increase in classification
accuracy for the VC model relative to the CE
model against number of training samples (log
scale). The results show a clear trend that the
benefit of the additional latent structure im-
posed in the VC model increases exponentially
as the number of training samples decreases.
Together with the results in Table 4, this suggests that the VC model offers most significant benefit for small,
complex datasets.

6 Conclusion

We present Variational Classification (VC), a latent generalisation of standard softmax classification trained
under cross-entropy loss, mirroring the relationship between the variational auto-encoder and the deterministic
auto-encoder (§3). We show that softmax classification is a special case of VC under specific assumptions
that are effectively taken for granted when using a softmax output layer. Moreover we see that latent
distributional assumptions, “hard-coded” in the softmax layer and anticipated to be followed for accurate
class predictions, are neither enforced theoretically nor satisfied empirically. We propose a novel training
objective based on the ELBO to better align the empirical latent distribution to that anticipated. A series of
experiments on image and text datasets show that, with marginal computational overhead and without tuning
hyper-parameters other than for the original classification task, variational classification achieves comparable
prediction accuracy to standard softmax classification while significantly improving calibration, adversarial
robustness (specifically FGSM), robustness to distribution shift and performance in low data regimes.

In terms of limitations, we intentionally focus on the output layer of a classifier, treating the encoder fω as a
“black-box”. This leaves open question of how, and how well, the underlying neural network achieves its role
of transforming a mixture of unknown data distributions p(x|y) to a mixture of specified latent distributions
p(z|y). We also prove that optimal empirical latent distributions qϕ(z|y) are “peaky” approximations to the
anticipated pθ(z|y), leaving open the possibility of further improvement to the VC objective.

The VC framework gives new theoretical insight into the highly familiar softmax classifier, opening up several
interesting future directions. For example, q(z|x) might be modelled by a stochastic distribution, rather
than a delta distribution, to reflect uncertainty in the latent variables, similarly to a VAE. VC may also be
extended to semi-supervised learning and related to approaches that impose structure in the latent space.
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A Proofs

A.1 Optimising the ELBOVC w.r.t q

Rearranging Eqn. 5, the ELBOVC is optimised by

arg max
qϕ(z|x)

∫
x

∑
y

p(x, y)
∫
z

qϕ(z|x) log pθ(y|z)

= arg max
qϕ(z|x)

∫
x

p(x)
∫
z

qϕ(z|x)
∑
y

p(y|x) log pθ(y|z)

The integral over z is a qϕ(z|x)-weighted sum of
∑
y p(y|x) log pθ(y|z) terms. Since qϕ(z|x) is a probability

distribution, the integral is upper bounded by maxz
∑
y p(y|x) log pθ(y|z). This maximum is attained iff

support of qϕ(z|x) is restricted to z∗ = arg maxz
∑
y p(y|x) log pθ(y|z) (which may not be unique). □

A.2 Optimising the VC objective w.r.t. q

Setting β = 1 in Eqn. 7 to simplify and adding a lagrangian term to constrain qϕ(z|x) to a probability
distribution, we aim to find

arg max
qϕ(z|x)

∫
x

∑
y

p(x, y)
{ ∫

z

qϕ(z|x) log pθ(y|z)

−
∫
z

qϕ(z|y) log qϕ(z|y)
pθ(z|y) + log pπ(y)

}
+ λ(1−

∫
z

qϕ(z|x)) .

Recalling that qϕ(z|y) =
∫
x
qϕ(z|x)p(x|y) and using calculus of variations, we set the derivative of this

functional w.r.t. qϕ(z|x) to zero∑
y

p(x, y)
{

log pθ(y|z) − (log qϕ(z|y)
pθ(z|y) + 1)

}
− λ = 0

Rearranging and diving through by p(x) gives

Ep(y|x)[log qϕ(z|y)] = Ep(y|x)[log pθ(y|z)pθ(z|y)] + c ,

where c = −(1+ λ
p(x) ). Further, if each label y occurs once with each x, due to sampling or otherwise, then

this simplifies to

qϕ(z|y∗)ec = pθ(y∗|z)pθ(z|y∗) ,

which holds for all classes y∈Y. Integrating over z shows ec =
∫
z
pθ(y|z)pθ(z|y) to give

qϕ(z|y) = pθ(y|z)pθ(z|y)∫
z
pθ(y|z)pθ(z|y)

= pθ(z|y) pθ(y|z)
Epθ(z|y)[pθ(y|z)] . □

We note, it is straightforward to include β to show

qϕ(z|y) = pθ(z|y) pθ(y|z)1/β

Epθ(z|y)[pθ(y|z)1/β ] .
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B Justifying the Latent Prior in Variational Classification

Choosing Gaussian class priors in Variational classification can be interpreted in two ways:

Well-specified generative model: Assume data x∈X is generated from the hierarchical model: y→ z→ x,
where p(y) is categorical; p(z|y) are analytically known distributions, e.g. N (z;µy,Σy); the dimensionality of
z is not large; and x=h(z) for an arbitrary invertible function h : Z → X (if X is of higher dimension than
Z, assume h maps one-to-one to a manifold in X ). Accordingly, p(x) is a mixture of unknown distributions.
If {pθ(z|y)}θ includes the true distribution p(z|y), variational classification effectively aims to invert h and
learn the parameters of the true generative model. In practice, the model parameters and h−1 may only be
identifiable up to some equivalence, but by reflecting the true latent variables, the learned latent variables
should be semantically meaningful.

Miss-specified model: Assume data is generated as above, but with z having a large, potentially uncountable,
dimension with complex dependencies, e.g. details of every blade of grass or strand of hair in an image. In
general, it is impossible to learn all such latent variables with a lower dimensional model. The latent variables
of a VC might learn a complex function of multiple true latent variables.

The first scenario is ideal since the model might learn disentangled, semantically meaningful features of the
data. However, it requires distributions to be well-specified and a low number of true latent variables. For
natural data with many latent variables, the second case seems more plausible but choosing pθ(z|y) to be
Gaussian may nevertheless be justifiable by the Central Limit Theorem.

C Calibration Metrics

One way to measure if a model is calibrated is to compute the expected difference between the confidence
and expected accuracy of a model.

EP (ŷ|x)

[
P(ŷ = y|P (ŷ|x) = p)− p

]
(12)

This is known as expected calibration error (ECE) (Naeini et al., 2015). Practically, ECE is estimated by
sorting the predictions by their confidence scores, partitioning the predictions in M equally spaced bins
(B1 . . . BM ) and taking the weighted average of the difference between the average accuracy and average
confidence of the bins. In our experiments we use 20 equally spaced bins.

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (13)

D OOD Detection

Figure 6: t-SNE plots of the feature space for a classifier trained on CIFAR-10. (l) Trained using CE. (r)
Trained using VC. We posit that similar to CE, VC model is unable to meaningfully represent data from an
entirely different distribution.
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E Semantics of the latent space

To try to understand the semantics captured in the latent space, we use a pre-trained MNIST model on the
Ambiguous MNIST dataset (Mukhoti et al., 2021). We interpolate between ambiguous 7’s that are mapped
close to the Gaussian clusters of classes of “1” and “2”. It can be observed that traversing from the mean of
the “7” Gaussian to that on the “1” class, the ambiguous 7’s begin to look more like “1”s.

Figure 7: Interpolating in the latent space: Ambiguous MNIST when mapped on the latent space. (l) VC,
(r) CE

F Classification under Domain Shift

A comparison of accuracy between the VC and CE models under 16 different synthetic domain shifts. We
find that VC performs comparably well as CE.
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Figure 8: Classification accuracy under distributional shift: (left) CIFAR-10-C (middle) CIFAR-100-C
(right) Tiny-Imagenet-C
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