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Abstract

We study the online problem of minimizing power consumption in systems with
multiple power-saving states. During idle periods of unknown lengths, an algorithm
has to choose between power-saving states of different energy consumption and
wake-up costs. We develop a learning-augmented online algorithm that makes
decisions based on (potentially inaccurate) predicted lengths of the idle periods.
The algorithm’s performance is near-optimal when predictions are accurate and
degrades gracefully with increasing prediction error, with a worst-case guarantee
almost identical to the optimal classical online algorithm for the problem. A key
ingredient in our approach is a new algorithm for the online ski rental problem in
the learning augmented setting with tight dependence on the prediction error. We
support our theoretical findings with experiments.

1 Introduction

Energy represents up to 70% of total operating costs of modern data centers [41] and is one of
the major quality-of-service parameters in battery-operated devices. In order to ameliorate this,
contemporary CPUs are equipped with sleep states to which the processor can transition during
periods of inactivity. In particular, the ACPI-standard [25] specifies that each processor should
possess, along with the active state �0 that is used for processing tasks, at least one sleep state �1.
Modern processors generally possess more sleep states �2, . . . ; for example, current Intel CPUs
implement at least 4 such �-states [19]. Apart from CPUs, such sleep states appear in many systems
ranging from hard drives or mobile devices to the start-stop feature found in many cars, and are
furthermore often employed when rightsizing data centers [2].

Intuitively, in a “deeper” sleep state, the set of switched-off components will be a superset of the
corresponding set in a more shallow sleep state. This implies that the running cost for residing in
that deeper state will be lower, but the wake-up cost to return to the active state �0 will be higher
compared to a more shallow sleep state. In other words, there is a tradeoff between the running and
the wake-up cost. During each idle period, a dynamic power management (DPM) strategy has to
decide in which state the system resides at each point in time, without a-priori knowledge about
the duration of the idle period. Optimally managing these sleep states is a challenging problem due
to its online nature. On the one hand, transitioning the system to a too deep state could be highly
suboptimal if the idle period ends shortly after. On the other hand, spending too much idle time
in a shallow state would accumulate high running costs. The impact of DPM strategies in practice
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has been studied for instance in data centers, where each machine may be put to a sleep mode if no
request is expected. See the study of Lim et al. [34] on multi-tier data centers.

The special case of 2-state DPM systems, i.e., when there is only a single sleep state (besides the
active state), is essentially equivalent to the ski rental problem, one of the most classical problems
and of central importance in the area of online optimization [39; 26]. This problem is defined as
follows: A person goes skiing for an unknown number of days. On every day of skiing, the person
must decide whether to continue renting skis for one more day or to buy skis. Once skis are bought
there will be no more cost on the following days, but the cost of buying is much higher than the cost
of renting for a day. It is easy to see that this captures a single idle period of DPM with a single
sleep state whose running cost is 0: The rental cost corresponds to the running cost of the active
state and the cost of buying skis corresponds to the wake-up cost; transitioning to the sleep state
corresponds to buying skis. Given this equivalence, the known 2-competitive deterministic algorithm
and 4/(4 − 1) ≈ 1.58-competitive randomized algorithm for ski rental carry over to 2-state DPM, and
these competitive ratios are tight. In fact, it was shown by Irani et al. [28] and Lotker et al. [36] that
the same competitive ratios carry over even to multi-state DPM. Ski rental, also known as rent-or-buy
problem, is a fundamental problem appearing in many domains not restricted to computer hardware
questions. For the AI community, this problem for example implicitly appears in expert learning with
switching costs: paying the price to switch to a better expert allows to save expenses in the future.

Beyond these results for the classical online setting, [28] also gave a deterministic 4/(4 − 1)-
competitive algorithm for the case in which the length of the idle periods is repeatedly drawn from a
fixed, and known, probability distribution. When the probability distribution is fixed but unknown
they developed an algorithm that learns the distribution over time and showed that it performs well
in practice. Although it is perhaps not always reasonable to assume a fixed underlying probability
distribution for the length of idle periods, real-life systems do often follow periodical patterns so that
these lengths can indeed be frequently predicted with adequate accuracy, see Chung et al. [18] for
a specific example. Nevertheless, it is not hard to see that blindly following such predictions can
lead to arbitrarily bad performance when predictions are faulty. The field of learning-augmented
algorithms [38] is concerned with algorithms that incorporate predictions in a robust way.

In this work, we introduce multi-state DPM to the learning-augmented setting. Extending ideas
of [28] and [36], we give a reduction from multi-state DPM to ski rental that is applicable to
the learning-augmented setting. Although ski rental has been investigated through the learning-
augmented algorithms lens before [40; 44], earlier work has focused on the optimal trade-off between
consistency (i.e., the performance when predictions are accurate) and robustness (i.e., the worst-case
performance). To apply our reduction from DPM to ski rental, we require more refined guarantees
for learning-augmented ski rental. To this end we develop a new learning-augmented algorithm for
ski rental that obtains the optimal trade-off between consistency and dependence on the prediction
error. Our resulting algorithm for DPM achieves a competitive ratio arbitrarily close to 1 in case of
perfect predictions and its performance degrades gracefully to a competitive ratio arbitrarily close to
the optimal robustness of 4/(4 − 1) ≈ 1.58 as the prediction error increases.

Potential negative societal impact. This is a work of theoretical nature and we are not aware of
potential negative societal impact. That said, we cannot rule out future misuse of the contained
theoretical knowledge.

1.1 Formal definitions

Problem definition. In the problem of dynamic power management (DPM), we are given : + 1
power states denoted by 0, 1, . . . , : , with power consumptions U0 > · · · > U: ≥ 0 and wake-up costs
V0 < · · · < V: . For state 0, we have V0 = 0 and we call this the active state. The input is a series of
idle periods of lengths ℓ1, . . . , ℓ) received online, i.e., the algorithm does not know the length of the
current period before it ends. During each period, the algorithm can transition to states with lower
and lower power consumption, paying energy cost GU8 for residing in state 8 for time G. If 9 is the
state at the end of the idle period, then it has to pay the wake-up cost V 9 to transition back to the
active state 0. The goal is to minimize the total cost.

In the learning-augmented setting, the algorithm receives at the beginning of the 8th idle period a
prediction g8 ≥ 0 for the value of ℓ8 as additional input. We define [8 := U0 |g8 − ℓ8 | to be the error of
the 8th prediction, and [ :=

∑)
8 [8 to be the total prediction error.
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(Continuous-time) ski rental is the special case of DPM with : = 1, U1 = 0 and a single idle period of
some length ℓ. In this case, we call U := U0 the rental cost, V := V1 the buying cost, and ℓ the length
of the ski season. In learning-augmented ski rental, we write the single prediction as g := g1.

(d, `)(d, `)(d, `)-competitiveness. Classical online algorithms are typically analyzed in terms of competitive
ratio. A (randomized) algorithm A for an online minimization problem is said to be d-competitive
(or alternatively, obtain a competitive ratio of d) if for any input instance,

cost(A) ≤ d · OPT + 2, (1)

where cost(A) and OPT denote the (expected) cost ofA and the optimal cost of the instance and 2 is
a constant independent of the online part of the input (i.e., the lengths ℓ8 in case of DPM). For the ski
rental problem one requires 2 = 0, since the trivial algorithm that buys at time 0 has constant cost V.

In the learning-augmented setting, for d ≥ 1 and ` ≥ 0, we say that A is (d, `)-competitive if

cost(A) ≤ d · OPT + ` · [ (2)

for any instance, where [ is the prediction error. This corresponds to a competitive ratio of d + ` [

OPT
(with 2 = 0). While this could be unbounded as [/$%) → ∞, our DPM algorithm achieves a
favorable competitive ratio even in this case (see Theorem 5, where we take the minimum over a
range of pairs (d, `), including ` = 0).

For a (d, `)-competitive algorithm, d is also called the consistency (i.e., competitive ratio in case of
perfect predictions) while ` describes the dependence on the prediction error.

1.2 Our results

Our first result is a (d, `)-competitive algorithm for ski rental that achieves the optimal ` correspond-
ing to the given d. For d ∈ [1, 4

4−1 ], let

`(d) := max
{1 − d 4−1

4

ln 2
, d(1 − ))4−)

}
, (3)

where ) ∈ [0, 1] is the solution to )24−) = 1 − 1
d

. Let d̃ ≈ 1.16 be the value of d for which both
terms in the maximum yield the same value. The first term dominates for d > d̃ and the second term
if d < d̃. Note that `(1) = 1 and `

(
4

4−1
)
= 0. See Figure 1 (left) for an illustration.

Theorem 1. For any d ∈ [1, 4
4−1 ], there is a (d, `(d))-competitive randomized algorithm for

learning-augmented ski rental, i.e., given a prediction with error [, its expected cost is at most
d OPT +`(d) · [.

Note that d < 1 is impossible for any algorithm (due to the case [ = 0) and d > 4
4−1 is uninteresting

since d = 4
4−1 already achieves the best possible value of ` = 0.

We also prove a lower bound showing that `(d) defined in (3) is the best possible.
Theorem 2. For any d ∈ [1, 4

4−1 ] and any (randomized) algorithm A, there is a ski rental instance
with some prediction error [ such that the expected cost of A is at least d OPT +`(d)[.

However, for most values of the prediction g it is possible to achieve a better ` < `(d), and `(d)
only captures the worst case over all possible predictions g. The proof of Theorem 1 is sketched
in Section 2. The complete proofs of Theorems 1 and 2 are provided in the full version [8] in the
supplementary material.

In Section 3, we give a reduction from DPM to ski rental in the learning-augmented setting, provided
that the ski rental algorithm satisfies a natural monotonicity property (defined formally in Section 3):
Lemma 3. If there is a monotone (d, `)-competitive ski rental algorithm, then there is a (d, `)-
competitive algorithm for DPM.

Since our ski rental algorithm is monotone, this directly yields a (d, `(d))-competitive algorithm for
DPM. From the special case (d, `) =

(
4

4−1 , 0
)
, this theorem directly implies the following result for

classical DPM (without predictions), which was first proved by Lotker et al. [36] for the equivalent
multi-slope ski rental problem:
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Figure 1: Illustration of `(d) and of the resulting competitive ratio in function of [/OPT.

Corollary 4 ([36]). There is a 4
4−1 -competitive randomized online algorithm for DPM (without

predictions).

Using techniques from online learning, in a way similar to [5], we show in Section 4 how to achieve
“almost” (d, `(d))-competitiveness simultaneously for all d:
Theorem 5. For any n > 0, there is a learning-augmented algorithm A for dynamic power manage-
ment whose expected cost can be bounded as

cost(A) ≤ (1 + n)min
{
d OPT +`(d) · [

�� d ∈ [1, 4
4−1 ]

}
+$

( V:

n
log 1

n

)
.

The above theorem gives a competitive ratio arbitrarily close to min{d + `(d) · [

OPT }, which is equal
to 1 if [ = 0 and never greater than 4

4−1 . In particular, we achieve a performance that degrades
gracefully from near-optimal consistency to near-optimal robustness as the error increases.1 See
Figure 1 (right) for an illustration.

In Section 5, we illustrate the performance of these algorithms by simulations on synthetic datasets,
where the dependence on the prediction error can be observed as expected from theoretical results.

1.3 Related work

Learning-Augmented Algorithms. Learning augmented algorithms have been a very active area
of research since the seminal paper of Lykouris and Vassilvitskii [37]. We direct the interested reader
to a survey [38] by Mitzenmacher and Vassilvitskii, as well as [7; 20; 37; 5; 42; 43; 35; 32] for recent
results on secretary problems, paging, :-server as well as scheduling problems. In the following we
survey some results in the area more closely related to our work.

The ski rental problem has already been studied within the context of learning augmented algo-
rithms. Here, the main objective was to optimize the tradeoff between consistency and robustness
(performance on perfect predictions and worst-case performance). The first results are due to Purohit
et al. [40] who propose a deterministic and a randomized algorithm. A hyperparameter allows to
choose a prescribed consistency d and leads to a corresponding robustness. They also present a
linear dependency on the error: their randomized algorithm is (d, d)-competitive for d ≥ 1, with
larger d allowing for better robustness. Note that such a guarantee of (d, d)-competitiveness is not
valuable in our model where we do not focus on robustness as blindly following the predictions
leads to a (1, 1)-competitive algorithm. Wei and Zhang [44] show that the consistency / robustness
tradeoff achieved by the randomized algorithm of [40] is Pareto-optimal. Angelopoulos et al. [4]
propose a deterministic algorithm achieving a Pareto-optimal consistency / robustness tradeoff, but
with no additional guarantee when the error is small. Interestingly, these algorithms not focusing
on (d, `)-competitiveness are naturally monotone, so easily extend to DPM by Lemma 3, contrarily
to the tight algorithm we present in this paper. Nevertheless, experimental data (Section 5) seem to
indicate that our algorithm optimizing (d, `)-competitiveness for ski rental leads to better algorithms
for DPM. A variant with multiple predictions was also studied in [21].

As we will see in Section 4, DPM can be cast as a problem from the class of Metrical Task Systems
(MTS). Antoniadis et al. [5] gave a learning-augmented algorithm for MTS that can be interpreted as
(1, 4)-competitive within their prediction setup.

1At first glance, our consistency and robustness might seem to contradict the lower bound of Wei and Zhang
[44] for ski rental. However, [44] crucially uses 2 = 0 in the definition of competitiveness for ski rental.

4



A different problem related to energy conservation is the classical online speed scaling problem,
which was recently studied in the learning-augmented setting by Bamas et al. [11].

DPM. The equivalence between 2-state DPM and ski rental is mentioned in [39]. Therefore the
well-known 2-competitive deterministic and an 4/(4 − 1)-competitive randomized algorithm [30] for
the classical ski rental problem carry over to 2-state DPM, and these bounds are known to be tight.

Irani et al. [28] present an extension of the 2-competitive algorithm for two-state DPM to multi-state
DPM that also achieves a competitive ratio of 2. Furthermore they give an 4/(4 − 1)-competitive
algorithm for the case that the lengths of the idle periods come from a fixed probability distribution.

Lotker et al. [36] consider what they call multi-slope ski rental which is equivalent to the DPM
problem. Among other results, they show how to reduce a (: + 1)-slope ski rental instance to :
classical ski rental instances. The reduction from DPM to ski rental presented in this paper is similar,
but more general in order to also be applicable in the presence of predictions with the introduced
(d, `)-competitiveness. They furthermore show how to compute the best possible randomized
strategy for any instance of the problem.

There have been several previous approaches that try to predict the length of an idle interval (see,
e.g., [18; 28], and the survey of Benini et al. [13]). However, the proposed approaches to use these
predictions are not robust against a potentially high prediction error.

Augustine et al. [10] investigate a problem generalizing DPM where transition cost is paid for going
to a deeper sleep state rather than waking up and these transition costs may be non-additive (i.e., it
can be cheaper to skip states). Albers [2] studies the offline version of the problem with multiple,
parallel devices and shows that it can be solved in polynomial time.

Irani et al. [29] introduced a 2-state problem where jobs that need to be processed have a release-time,
a deadline and a required processing time. This gives further flexibility to the system to schedule
the jobs and create periods of inactivity so as to maximize the energy-savings by transitioning to the
sleep state. For the offline version, there is an exact polynomial-time algorithm due to Baptiste et
al. [12]. Recently, a 3-approximation algorithm for the multiprocessor-case was developed [6].

Another related problem consists of deciding which components of a data-center should be powered
on or off in order to process the current load on the set of active components (see, e.g., [3]). A similar
problem, where jobs have individual processing times for each machine, was studied in [31; 33].
Helmbold et al. [23] considered the problem of spinning down the disk of a mobile computer when
idle times are expected, which is another instance of DPM.

Several surveys cover DPM, see for example [13; 1; 27].

2 New algorithm for ski rental

For d ∈ [1, 4
4−1 ], we present a (d, `(d))-competitive algorithm for (learning augmented) ski rental,

proving Theorem 1. The next lemma shows that it suffices to give such an algorithm for U = V = 1.
Lemma 6. An algorithm A ′ that is (d, `)-competitive for instances of the ski rental problem with
U = V = 1 implies a (d, `)-competitive algorithm A for arbitrary U, V > 0.

Proof idea. Simulate A’ with prediction U
V
g. If it buys at time C ′, then A buys at time C = V

U
C ′. �

A key difference between proving d-competitiveness in the classical online setting and (d, `)-
competitiveness in the learning-augmented setting is the following. In the online setting without
predictions, a greedy algorithm that buys with the highest affordable probability is optimal. This
relies on the fact that the right-hand side of (1) is a monotone and concave function of the skiing
season length. In contrast, the right-hand side of (2) is neither monotone (if g > 1) nor concave
(regardless of g), which complicates the description and especially the analysis of our algorithm.

2.1 Description of the algorithm

We next describe our randomized algorithm for instances with U = V = 1, which can then be used to
solve arbitrary ski rental instances using Lemma 6. Our algorithm is fully specified by the cumulative

5



1.00.0 0.2 0.4 0.6 0.8 1.2 1.4

Time

1-`

1.0

0.0

0.2

0.4

0.8

Pr
ob

ab
ili

ty
th

at
th

e
al

go
ri

th
m

bu
ys

be
fo

re
th

at
tim

e
g=0.1
g=0.3
g=0.5
g=0.65
g=0.8
g=0.95
g=1.1

g=1.4

g=1.7

Case 1, g < 0.5856
Case 2, g ∈ [0.5856, 1]
Case 3, g > 1

Figure 2: Our (d, `)-competitive ski rental algorithm for d = d̃ ≈ 1.1596 and ` = `( d̃) ≈ 0.3852.
The figure presents the cumulative distribution functions of the time of buying for several prediction
values g. Here U = V = 1, i.e., at time C = 1 buying and renting has equal costs.

distribution function (CDF) �g of the time when the algorithm buys skis. The algorithm then draws
a ? ∈ [0, 1] uniformly at random and buys at the earliest time C ∈ [0,∞) such that �g (C) ≥ ?. The
CDF �g will depend on the given prediction g ≥ 0 as well as the fixed d and `, which can be chosen
as ` = `(d), see Equation (3).

Definition of the CDF (see Figure 2) We denote by %0 the probability of buying at time 0 and, for
any C > 0, we denote by ?C the probability density of buying at time C, so that the probability that the
algorithm buys by time G can be expressed as

�g (G) = %0 +
∫ G

0
?C3C.

For convenience, we also specify the probability %∞ = 1 − (%0 +
∫ ∞
0 ?C3C) of never buying.

To define %0 and ?C , we distinguish three cases depending on the value of the prediction g. Note that
we always have 0 ≤ ` ≤ 1 ≤ d ≤ 4

4−1 .

Case 1: -3 < - − 1 + 1. We choose

%0 =
g(d − 1)

1 − g , ?C =

{
d4C−1 for C ∈ (1, 1]
0 otherwise

, %∞ = min{`, 1 − %0},

where 1 ∈ [g, 1] is chosen such that %0 + %∞ +
∫ 1
1
d4C−13C = 1, in order to have the sum of

probabilities equal to 1. Note that if %0 ≥ 1 − `, we have 1 = 1 and ?C = 0 for all C > 0.

Case 2: - − 1 + 1 ≤ -3 and 3 ≤ 1. We choose

%0 = `g, ?C =


(`g + d − ` − 1)4C for C ≤ 0
d4C−1 for C ∈ (1, 1]
0 otherwise

, %∞ = min{`, 1 − %0},

where 0 ∈ [0, g] is chosen maximal such that %0 + %∞ +
∫ 0

0 (`g + d − ` − 1)4C3C ≤ 1, and 1 ∈ [g, 1]
is chosen so that %0 + %∞ +

∫ 0

0 (`g + d − ` − 1)4C3C +
∫ 1
1
d4C−13C = 1 in order to have the sum of

probabilities equal to 1. In case d = 4
4−1 , we have ` = 0 and (`g + d − ` − 1)4C = (d − 1)4C = d4C−1,

recovering the classical online algorithm of Karlin et al. [30].

Case 3: 3 > 1. If `g ≥ 1, we buy at time 0. Otherwise, we choose

%0 = `g, ?C =

{
(`g + d − ` − 1)4C if C ≤ )
0 if C > )

, %∞ = d − ` − (`g + d − ` − 1)4) ,
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where ) is the number closest to g − 1 that satisfies

4) ≤ d − `
`g + d − ` − 1

(equivalently %∞ ≥ 0) (4)

4) ≥ d − 2`
`g + d − ` − 1

(equivalently %∞ ≤ `). (5)

Thus, either ) = g − 1 if this choice satisfies both bounds, or ) is at an endpoint of the feasible
interval prescribed by (4) and (5).

2.2 Sketch of the analysis

Our algorithm is (d, `)-competitive if and only if for all G ≥ 0 we have

cost(G) := %0 +
∫ G

0
(1 + C) ?C3C +

∫ ∞

G

G ?C3C + G%∞ ≤ dmin{G, 1} + ` |g − G |, (6)

where cost(G) denotes the expected cost of the algorithm in the case when ℓ = G: If we intend to buy
at some time C and C < G, we pay 1 + C, otherwise we pay G. On the right hand side, min{G, 1} is the
optimal cost and |g − G | is the prediction error, assuming U = V = 1.

We first sketch the analysis for Case 2, and then discuss the differences in Case 1. These cases are
relatively simple. Case 3 is far more involved and we will only sketch the ideas.

Case 2: For the algorithm to be well defined, we need to choose ` such that a suitable 1 ∈ [g, 1]
exists. For ` = `(d), this is ensured by the inequality `(d) ≥ 1−d 4−1

4

ln 2 from the definition of `(d),
which implies existence of such 1 for any value of g. If g = ln 2, then ` = `(d) is in fact the smallest
possible, allowing only 1 = g. For other values of g, suitable 1 exists also for smaller values of `.
We now show that (6) is satisfied.

Note that (6) is tight for G = 0, with both sides equal to `g. To obtain (6) for all G > 0, it suffices
to show that the derivative of the left-hand side with respect to G is at most the derivative of the
right-hand side (where derivatives exist). For G ∈ (0,∞) \ {0, 1, 1}, we have

3

3G
cost(G) = (1 + G)?G +

∫ ∞

G

?C3C − G?G + %∞ = ?G +
∫ ∞

G

?C3C + %∞.

For G ∈ (0, 0) this yields
3

3G
cost(G) = ?G + 1 − %0 − (?G − ?0) = 1 − `g + (`g + d − ` − 1)40 = d − `,

which is equal to the derivative of the right-hand side of (6). For G ∈ (0, 1), 3
3G

cost(G) is even smaller
because ?G is 0, and the derivative of the right-hand side of (6) is d − ` or d + `. For G ∈ (1, 1),

3

3G
cost(G) = ?G +

∫ ∞

G

?C3C + %∞ = ?G + (?1 − ?G) + %∞ = d + %∞ ≤ d + `,

which is equal to the derivative of the right-hand side of (6). Finally, for G > 1 we have 3
3G

cost(G) =
%∞ ≤ ` and the derivative of the right-hand side is also `.

Case 1: The reason we cannot define ?C in the same way as in Case 2 is that ?C would be negative
for C ≤ 0 (i.e., the algorithm would try to sell skis that it bought at time 0, which is not allowed).
We therefore choose %0 such that (6) is tight for G = g if we do not buy in the interval (0, g]. The
remainder of the proof of (6) is similar to Case 2. For ` = `(d), the existence of 1 ∈ [g, 1] follows
from the inequality ` ≥ d(1 − ))4−) in the definition of `(d). Note that such ` is the smallest
possible for g = 1 − ) .

Case 3: The first step in the analysis of Case 3 is to derive an inequality involving d, `, g and
) that is equivalent to the algorithm being (d, `)-competitive. Denoting by `g (d) the minimal `
satisfying this inequality, it suffices to show that `g (d) ≤ `(d) for all g > 1. The difficulty is that
no closed-form expression for `g (d) exists. However, we are still able to show that g ↦→ `g (d) can
have a local maximum only if ) = g − 1, and therefore supg>1 `g (d) is achieved either for g → 1 or
when ) = g − 1. This allows us to eliminate g from the aforementioned inequality, and we can show
that ` = `(d) satisfies the remaining inequality (with tightness occurring for d ≤ d̃ and g = ) + 1).

A complete proof of Theorem 1 is in the full version of the paper in the supplementary material.
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3 Reduction from DPM to ski rental

We now give a reduction from DPM to ski rental in the learning-augmented setting (Lemma 3),
provided that the ski rental algorithm satisfies the following monotonicity property: We say that a ski
rental algorithm for rental cost U = 1 and buying cost V = 1 is monotone if its CDF �g for the buying
time when given prediction g satisfies

�g (C) ≤ �g′ (C) for all C ≥ 0 and g < g′.

Intuitively, this property is very natural: The longer the predicted duration of skiing, the greater
should be our probability of buying. Indeed, our algorithm satisfies this property:
Lemma 7. For ` = `(d), the (`, d)-competitive ski rental algorithm from Section 2 is monotone,
i.e., its CDF �g when given prediction g satisfies �g (C) ≤ �g′ (C) for all C ≥ 0 and g < g′.

For many g one could actually achieve a better `g (d) < `(d). However, somewhat surprisingly
the optimal such algorithm would not be monotone. The monotonicity of our algorithm therefore
crucially relies on our specific description (in particular the choice of 0 and 1), which only aims for
(d, `(d))-competitiveness with `(d) = supg `g (d).
Combining Theorem 1, Lemma 3 and Lemma 7, we get:
Corollary 8. For every d ∈ [1, 4

4−1 ], there is a (d, `(d))-competitive algorithm for DPM.

To prove Lemma 3, it suffices to describe a (d, `)-competitive algorithm for the special case of
DPM with a single idle period: Running such an algorithm for each individual period yields a
(d, `)-competitive algorithm for DPM with any number of idle periods, since we can simply sum
inequality (2) over all periods to obtain the corresponding inequality for the entire instance.

Consider now a single idle period of length ℓ for DPM. We first recall some observations of Irani et al.
[28] about the optimal offline algorithm: It is easy to see that the optimal offline algorithm would
transition to some state 9 only once at the beginning of the period and remain there throughout the
period, paying cost U 9ℓ + V 9 . Thus, state 9 is preferred over state 9 − 1 if and only if U 9−1ℓ + V 9−1 >

U 9ℓ + V 9 , or equivalently ℓ > C 9 := V 9−V 9−1
U9−1−U9

. We may assume without loss of generality that
C1 < · · · < C: : Indeed, suppose C 9+1 ≤ C 9 , then state 9 is redundant because whenever 9 is preferred
over 9 − 1, then 9 + 1 is preferred over 9 . Defining C0 := 0 and C:+1 := +∞, we get a partition
[0, +∞) = ⋃:

9=0 � 9 , where � 9 = [C 9 , C 9+1). We can then express the cost of the offline optimum as

OPT = U 9∗ℓ + V 9∗ , with 9∗ such that ℓ ∈ � 9∗ . (7)

In the online setting, we of course do not know ℓ. The idea of our algorithm (similar to [36]) is to
simulate : ski rental algorithms A1, . . . ,A: in parallel, where the task of A 9 is to decide whether
it is time to transition from the state 9 − 1 to 9 . For this, we choose A 9 to be an algorithm for ski
rental with rental cost U 9−1 − U 9 and buying cost V 9 − V 9−1. Let �g be the CDF of the buying time of
a monotone ski rental algorithm (for U = V = 1) when given prediction g. Recalling our reduction
from arbitrary U and V to the case U = V = 1 in Lemma 6, the CDF of A 9 is given by

� 9 (C) := �g/C 9
(
C/C 9

)
. (8)

An outline of our algorithm is given in Algorithm 1.

Algorithm 1: DPM with a single idle period
for j=1,. . . ,k do

Let � 9 be as defined by (8), induced by a monotone (d, `)-competitive ski rental algorithm;
Choose ? ∈ [0, 1] uniformly at random;
At any time C: choose state 9 = max{ 9 : � 9 (C) ≥ ?};

The proof that Algorithm 1 is (d, `)-competitive relies on the fact that � 9 (C) is non-increasing in 9 :

� 9−1 (C) = �g/C 9−1

(
C/C 9−1

)
≥ �g/C 9

(
C/C 9−1

)
≥ �g/C 9

(
C/C 9

)
= � 9 (C),

where we used C 9−1 < C 9 in both inequalities, the first inequality uses monotonicity of the ski rental
algorithm and the second inequality uses that any CDF is non-decreasing. Thus, algorithmA 9 signals
transitioning from state 9 − 1 to 9 no earlier than A 9−1 signals transitioning from state 9 − 2 to 9 − 1.
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Conversion to a prudent algorithm. It was shown in Lotker et al. [36, Theorem 4.2] that any DPM
algorithm can be converted (online) into a so-called prudent one that assigns a non-zero probability
to at most two adjacent power states. The resulting algorithm pays the same expected wake-up
cost but can only have smaller running cost than the original non-prudent algorithm. Hence, any
implementation should apply this conversion, which we describe in the supplementary material.

4 Finding the best trade-off online

Our goal is to design an algorithm whose performance almost matches that of Corollary 8 simultane-
ously for all d, proving Theorem 5. It will be useful to view DPM as a Metrical Task System.

Metrical Task Systems (MTS). Metrical Task Systems (MTS), introduced by Borodin et al. [15],
is a broad class of online problems containing many other problems as special cases. In MTS, we are
given a metric space " of states. We start at a predefined initial state G0. At each time C = 1, 2, . . . , ) ,
we are presented with a cost function 2C : " → R+. Then, we have to choose our new state GC and pay
dist(GC−1, GC ) + 2C (GC ), where dist(GC−1, GC ) is the distance between GC−1 and GC in " . The objective is
to minimize the overall cost incurred over time.

To formulate DPM as a Metrical Task System, we choose states 0, 1, . . . , : corresponding to the
power states, with distances dist(8, 9) = 1

2 |V8 − V 9 |, so that the cost of switching from the state 0 to 9
and back is V 9 . We choose 0 as the initial state. We discretize time in the DPM instance using time
steps of some small length X > 0. At each time step belonging to some idle period, we issue a cost
function 2 such that 2( 9) = XU 9 for each 9 = 0, . . . , : . At the end of each idle period, we issue a cost
function where 2(0) = 0 and 2( 9) = +∞ for 9 = 1, . . . , : , which forces any algorithm to move back
to the active state.

We use the result of Blum and Burch [14] to combine multiple instances of our algorithm with
different parameters d.
Theorem 9 (Blum and Burch [14]). There is an algorithm which, given # online algorithms
�1, . . . �# for an MTS with diameter � and n1 < 1/2, achieves expected cost at most

(1 + n1) ·min
8
{cost(�8)} +$ (�/n1) ln #.

Using this result, the straightforward proof of Theorem 5 is given in the supplementary material.
Here, we just note that we choose a suitable set % ⊂ [1, 4

4−1 ] of size $ (1/n2) so that the combination
of our (d, `(d))-competitive algorithms for all d ∈ % using the algorithm of Blum and Burch [14]
achieves expected cost at most

(1 + n1) (1 + n2) min
d∈[1,4/(4−1) ]

{
d OPT +`(d)[

}
+$

(
V:

n1
· ln 1

n2

)
.

In the supplementary material, we also argue how using results on shifting/dynamic regret [17; 16;
22; 24] can be used to achieve cost comparable not only to the algorithm with the best fixed d, but
also to the best strategy of switching between multiple values of d a bounded number of times. This
can be useful in scenarios where well-predictable parts of the input are interleaved with unpredictable
or adversarial sequences.

5 Experiments

We ran an experimental evaluation of our algorithms compared to existing learning-augmented ski
rental algorithms for the ski rental and DPM problems. Due to space limitations, only a small
part of the experimental results is presented here, and others are deferred to the supplementary
material, which also contains the source code and data [9]. Our results suggest that the performance
of learning-augmented algorithms indeed degrades smoothly when the error increases, providing
solutions which are better, for medium errors, than naive algorithms trusting the predictions and
online (predictionless) algorithms. In the experiments, our algorithm’s performance degrades more
smoothly compared to previous learning-augmented algorithms when the prediction error increases.
This is expected, since consistency-robustness trade-offs of previous algorithms optimize the two
extreme scenarios of perfect predictions and adversarially bad predictions, whereas the notion of
(d, `)-competitiveness also captures the case of useful but imperfect predictions.
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Figure 3: Experimental performance of different algorithms for DPM with four power states.

Setup. We consider four power states, whose respective power consumptions are {1, 0.47, 0.105, 0}
and wake-up costs are {0, 0.12, 0.33, 1}, values corresponding to the active, idle, stand-by and sleep
states of an IBM mobile hard-drive [28]. We convert algorithms initially designed for ski rental using
Lemma 3, and convert the resulting algorithms to their prudent variants as discussed in Section 3. In
addition to the classical 4/(4 − 1)-competitive online ski rental algorithm, we consider the following
algorithms: FTP, which blindly follows the prediction (i.e., it either buys at time 0 or never); PSK,
the randomized algorithm from [40]; and ADJKR, the deterministic algorithm from [4]. We use
Theorem 9 to let the algorithms automatically adjust their consistency parameters over time (d in
the notation of our paper). For FTP, when we use Theorem 9 we combine it only with the classical
randomized online algorithm. More details about the setup and additional scenarios are provided in
the supplementary material.

Synthetic scenario. For the synthetic dataset, we generate both the input data and predictions
similarly to Purohit et al. [40]. Figure 3a shows the performance of the algorithms on a dataset
composed of 10 000 idle periods, whose durations are drawn independently and uniformly from
[0, 8]. We feed the learning-augmented algorithms with synthetic predictions generated as follows:
each prediction is equal to the exact request plus a random noise drawn from a normal distribution
of mean 0 and standard deviation f (rounding any negative predictions to 0). We can observe that
for low error the algorithms perform equally well. The figure shows that the algorithms PSK and
ADJKR (combined with Lemma 3 and Theorem 9) essentially perform as well as the better of
the two algorithms FTP and the classical online algorithm without predictions. In contrast, since
our algorithm not only optimizes consistency and robustness, but also (d, `)-competitiveness, our
algorithm achieves a significant improvement over previous algorithms in the regime of medium-sized
errors and even when predictions are only very weakly correlated with the truth.

Real-world scenario. We created a dataset based on I/O traces from a Nexus 5 smartphone [45].
Predictions are generated based on past idle periods in a way proposed by Helmbold et al. [23] in
the context of spinning down disks of mobile computers. The predictor adapts the Share learning
algorithm of Herbster and Warmuth [24], which is based on the multiplicative weights update method.
Since it is interesting to evaluate learning-augmented algorithms both in the presence of good and
bad predictions, we consider two variants of that predictor. The good variant uses hyperparameters
proposed in [23]; the bad variant has the rate parameter of weight updates negated. Figure 3b
presents the results of the experiment on two selected traces. In particular, on each dataset, either
our algorithm performs better than all the others, or the nonrobust FTP is the best one and all robust
learning-augmented algorithms are almost equally good.
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