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ABSTRACT

The problem of generating high-dimensional distributions has been known as a
difficult problem in machine learning due to the Curse of Dimensionality: the
higher the dimensionality is the more the empirical data deviates from its orig-
inal distribution even for a large number of samples. Along with the Curse of
Dimensionality, the generalization of conditional density estimation (CDE) suf-
fers from so-called Lack of Conditional Samples: the number of data for each
conditional density is usually much smaller than the number of samples or no data
is avaiable for some conditional densities. To overcome these difficulties, we in-
troduce the concept of Vicinal Estimation (VE) which is shown to be useful in
estimating conditional densities. With VE we propose a conditional Generative
Adversarial Network (cGAN) model and analyze theoretically that the general-
ization error of our model is independent of the dimensionality of the output. We
also show that our theoretical analysis holds in practice through experiments.

1 INTRODUCTION

For many years Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been
widely used to predict high dimensional distributions like images. Despite their widespread use
and the existence of models that perform well on high-resolution images (Brock et al., 2019; Karras
et al., 2019), it is still an important issue that how we can stablize the training of GANs and make
them have good generalization performance. GANs are usually trained to minimize the distance
between the generated distribution and the empirical distribution, but the estimation of the empirical
distribution is prone to failure especially in high dimension. This phenomenon is called the Curse
of Dimensionality and it is the main reason why the generalizaton error analysis of GANs is very
difficult. For example, it is known (Weed & Bach, 2017) that for every d and δ > 0, there exists
Cd,δ > 0 such that the Wasserstein-2 distance between the empirical distribution pX and its true
distribution p satisfies the inequality

EX [W2(pX , p)] ≥ Cd,δN
− 1

d−δ (1)

where X denotes an i.i.d. sampling of size N from the true distribution p on [0, 1]d which is abso-
lutely continuous with respect to the Lebesgue measure.

The curse of dimensionality issue is exacerbated when predicting conditional distributions with con-
ditional GANs (cGANs) (Mirza & Osindero, 2014) for Conditional Density Estimation (CDE).
In CDE we have to handle the issue that the training data for each conditional variable (called label
in this work) is not sufficient or does not exist. This issue becomes even worse when the label is
continuous (as opposed to class-conditional) because there are an infinite number of possible values
for the label, but a finite number of training data. In this work, we call this issue Lack of Conditional
Samples. To solve this issue, we need to consider a method to increase the effective number of data
in CDE. All the above issues are closely related with the generalization performance of cGANs and
some recent works provide partial solutions to the issues as follows:

• One recent work (Yang & E, 2021) introduces a simplied GAN model in unconditional
density estimation using early stopping and adding a regularization term based on RKHS
norm and it can achieve a dimension-free Wasserstein-2 generalization error, which allows
the GAN model to escape from the Curse of Dimensionality. However, the same approach
cannot be applied to cGANs because we still have the Lack of Conditional Samples issue.
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• Another recent work called Continuous cGAN (CcGAN) (Ding et al., 2023) considers
a training loss of cGAN based on Vicinal Risk Minimization (VRM) (Chapelle et al.,
2000). This approach augments the label with a perturbation to increase the effective num-
ber of data in CDE, so it partially solves the Lack of Conditional Samples issue. However,
(Ding et al., 2023) only analyzes the error bound on the discriminator, not on the generated
conditional density. Furthermore, it does not handle the Curse of Dimensionality issue and
only focuses on one-dimensional label.

In this work, we combine and further extend the ideas of the above two works to develop a new
cGAN model which provides good generalization performance as shown later even in high dimen-
sion. In our cGAN model we introduce the concept of Vicinal Estimate (VE) of a distribution,
which is an alternative distribution of an auxiliary label value which replaces the original label
value. In this case, the conditional density of VE becomes a linear combination of original con-
ditional densities, which can resolve the Lack of Conditional Samples issue. We then propose our
cGAN model to predict the conditional density of the VE. We analyze it using a similar approach as
given in (Yang & E, 2021) to obtain a generalization error bound on VE independent of the output
dimensionality. Finally, we complete our analysis on generalization error by converting the bound
on VE to that on the original distribution and selecting an optimal auxiliary label distribution.

The remainder of this paper is organized as follows: We review related works in section 2 and
introduce the notation, the problem setup, and the basic cGAN framework in section 3. In section
4, we define the VE of a general distribution and derive its properties including the conditional
densities of the VE and their differences from the original conditional distributions. We also present
our cGAN model for estimating the conditional densities of the VE. The analysis on generalization
error is provided in section 5, and experimental results are provided in section 6. Finally, section 7
concludes this paper with a discussion of future works. Proofs and Experimental details are provided
in appendixes.

2 RELATED WORKS

Vicinal Risk Minimization: VRM is widely used as a theoretical basis on data augmentation
(Simard et al., 1998), primarily in supervised learning. For example, mixup (Zhang et al., 2018)
is one of widely used data augmentation methods that is proved to improve the robustness and gen-
eralization of the models (Zhang et al., 2021). However, to the best of the authors’ knowledge, our
work is the first one to generalize the notion of VE and to investigate the generalization error from
the CDE perspective.

cGANs with continuous labels: Since most of the state-of-the-art cGAN algorithms (Odena et al.,
2017; Miyato & Koyama, 2018) focus on class-conditional labels, research works focusing on gen-
erating conditional distributions over continuous labels are rarely found in the literature and CcGAN
(Ding et al., 2023) is known to be the first work with continuous labels. There are some research
works (Jahanian et al., 2020; Shoshan et al., 2021) that control the images by changing the latent
variable of an unconditional GAN according to the label value, but such methods are not suitable
for generating conditional densities, which is the main interest of this paper.

Dimension-free Generalization of GANs: Since it is very difficult to analyze dimension-free gen-
eralization errors of GANs, the analysis is usually conducted with simplified generators (Feizi et al.,
2018; Lei et al., 2020; Wu et al., 2019) or simplified discriminators (E et al., 2021; Yang & E,
2021). For cGANs, there exist no works on dimension-free generalization error, but we consider
a simplified discriminator and its corresponding function space called Barron space and derive a
generalization error bound that is independent of the output dimensionality.

3 PROBLEM SETUP

We first set up some notation and describe CDE and a cGAN framework. In this study, x denotes
label and y denotes image.

Let X ⊂ Rdx and Y ⊂ [0, 1]dy be the domains of all possible labels and images, respectively. We
assume that there is a joint distribution pr(x,y) on X × Y which we call true distribution. Then
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Conditional Density Estimation (CDE) is a supervised learning task to estimate the conditional
density pr(y|x). We observe a dataset of N data pairs (X,Y ) = {(xi,yi)}Ni=1 and aim to estimate
pr(y|x). With a given dataset (X,Y ), we obtain an empirical distribution

pX,Y (x,y) =
1

N

N∑
i=1

δ(x− xi)δ(y − yi) (2)

instead of pr(x,y). Note that, to achieve the objective of CDE, we have to focus on the distance
between conditional densities, not on the joint distribution. In addition, we have to analyze the
generalization error in CDE for a predicted distribution p which is defined in this work by

Ex∼pr(x)L(p(y|x), pr(y|x)) (3)

where L(µ, ν) is any metric between two probabilistic measures. From the definition of the condi-
tional density

pr(y,x) = pr(x) · pr(y|x), (4)

we can say that the procedure of CDE is twofold: (1) Estimating the marginal distribution of the
label pr(x) and then (2) estimating the conditional density pr(y|x). In this work, we assume that
the label distribution pr(x) is an already known distribution on X to focus on the second problem
only because the first problem is actually an unconditional density estimation on pr(x), and pr(x)
in (4) can be replaced to any distribution on X without affecting the conditional density pr(y|x).
The other reason for this assumption is that cGAN, which we consider in this work, predicts only
the conditional density pr(y|x), not pr(x).

In cGAN, we seek to find a generator G : Z × X → Y to reproduce the conditional density
of the training set (X,Y ) with respect to the label value where Z is a space of latent variable
Z which is a random variable with a pre-determined distribution pZ(z) (usually Gaussian). cGAN
trains its generator in an adversarial manner by introducing an auxiliary network called discriminator
D : Y × X → R̄ and transforming a minimization problem on conditional density into a minimax
problem. After training we use the trained generator G to get a conditional density pg(y|x) derived
from G(Z,x) by considering Z as a latent random variable where x is a fixed label value.

For example, the Wasserstein cGAN (Arjovsky et al., 2017) uses the minimax problem
maxG minD V (G,D) with the following cGAN loss

V (G,D) = Ex∼pr(x)

[
Ey∼pr(y|x)D(y,x)− Ez∼pZ(z)D(G(z,x),x)

]
(5)

where D is restricted to be a 1-Lipschitz continuous function with respect to y. For an optimal
discirminator, it is equivalent to minimizing the expected value of the Wasserstein-1 divergence
between two conditional densities:

L(pg) = Ex∼pr(x)W1(pg(y|x), pr(y|x)). (6)

which matches with a generalization error of CDE.

However, the exact value of L(pg) is not tractable as we do not know the true distribution pr in
general. Therefore, we instead try to calculate its empirical risk

L̂(pg) = Ex∼pX(x)L(pg(y|x), pX,Y (y|x)). (7)

which is tractable. In fact, however, empirical risk is not a reasonable estimate of the generalization
error because of the Curse of Dimensionality and Lack of Conditional Samples which are the issues
discussed in the previous sections.

4 VICINAL ESTIMATION

To overcome the Lack of Conditional Samples issue, we introduce the Vicinal Estimation (VE) of a
distribution. Let X ′ ⊂ Rdx′ be the domain of auxiliary label and assume that we have an auxiliary
distribution qx on X ′, which is a distribution defined for every x. Once we have an auxiliary
distribution, we can define the vicinal estimate p̃ of a joint distribution p with qx:

p̃(x′,y) =

∫
X
p(x,y)qx(x

′)dx. (8)
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Algorithm 1 Sampling algorithm for p̃(x′,y)

Input: n ∈ N: Number of sampled data
{(xi,yi)|1 ≤ i ≤ n} ← n sampled data from p(x,y)
for 1 ≤ i ≤ n do

x′
i ← sample from the auxiliary distribution qxi(x

′)
end for

Output: {(x′
i,yi)|1 ≤ i ≤ n}: n sampled data from p̃(x′,y)

Intuitively, it is equivalent to mapping a true label x to an auxiliary label x′ after sampling (x,y)
from the original distribution p by using Algorithm 1.

We can see that the mapping of label is independent of y, meaning that any conditional density of
the VE can be written in terms of the original conditional density:

p̃(y|x′) =
p̃(x′,y)∫

Y p̃(x′,y)dy
=

∫
X p(y|x)p(x)qx(x′)dx∫

X p(x)qx(x′)dx
=

∫
X
p(y|x)q̃x′(x)dx (9)

where

q̃x′(x) =
p(x)qx(x

′)∫
X p(x)qx(x′)dx

. (10)

So p̃(y|x′) is an expected value of the original conditional density p(y|x) under a modified dis-
tribution q̃x′(x) of x. Note that q̃x′(x) is actually the conditional density of x given the value of
x′, which is exactly the inverse of what qx(x′) describes. Hence, we call it the inverse auxiliary
distribution.

Note that a VE reduces the conditional information of labels to a certain extent. For example,
uniform auxiliary distributions on X ′ erase completely the information of labels in the data, making
the VE of the data the same for all auxiliary label values. Therefore, q̃ needs to be discriminative to
make the VE close enough to its original distribution. We show that the upper bound of q̃ defined by

||q̃||∞ = sup
x∈X ,x′∈X ′

q̃x′(x), (11)

which represents the magnitude on how the inverse auxiliary distribution is distributed smoothly,
plays an important role in generalization error of p̃, which will be clear in the next section.

Note that the original distribution can be also considered as a VE by setting X ′ = X and qx(x
′) =

δ(x−x′), but we immediately have q̃x′(x) = δ(x−x′) in this case, which means that both auxiliary
distribution and inverse auxiliary distribution are not bounded.

In this paper, we focus on the label Lipschitz conditional densities. For a constant L > 0, we
call the conditional density p(·|x) is L-label Lipschitz if W2(p(·|x1), p(·|x2)) ≤ L||x1 − x2|| for
every x1,x2 ∈ X . For those distributions, we can construct a bound for p̃(·|x) from its original
distribution:

Lemma 1. Suppose that p is L-label Lipschitz. Then

W2(p̃(·|x′), p(·|mq̃(x
′))) ≤ L

√
Eq̃x′ (x)[||x−mq̃(x′)||2] (12)

where mq̃(x
′) = Ex∼q̃x′ (x)[x] is the center of mass of the distribution q̃x′ .

Note that the quantities mq̃(x
′) and dq̃(x

′) :=
√
Eq̃x′ (x)[||x−mq̃(x′)||2] only depend on the

inverse auxiliary distribution q̃, not on the distribution p. In fact, q̃ is the main point of interest
in this study as it holds all the information of vicinal estimation contributing to the generalization
bound as shown later.

One simple method to construct q̃ is to make X ′ = X and q̃x′ is a distribution centered at x′ (i.e.,
mq̃(x

′) = x′). We call such q̃ a perturbation in this paper. Here, we introduce two simple examples
of q̃, inspired from the setting used in continuous cGAN (Ding et al., 2023).
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Algorithm 2 Sampling algorithm of p̃g(y|x′) from G

Input: x′ ∈ X ′ : Auxiliary label, n ∈ N : Number of sampled data
{xi|1 ≤ i ≤ n} ← n samples from q̃x′(x)
{zi|1 ≤ i ≤ n} ← n samples from pZ(z)
for 1 ≤ i ≤ n do

yi ← G(zi,xi)
end for

Output: {yi|1 ≤ i ≤ n} : sample from p̃(y|x′)

• q̃x′(x) is a uniform distribution on the box x′+[−κ, κ]dx where κ > 0 is a hyperparameter.

• q̃x′(x) is a multivariate Gaussian distributionN (x′, σ2I) where σ > 0 is a hyperparameter.

In both cases, we can show that dq̃(x′) is a constant multiple of ||q̃||−1/dx
∞ . In fact, we can show

the same property for a wide variety of the inverse auxiliary distributions including various pertur-
bations. Consider a family {q̃L} of the inverse auxiliary distributions q̃Lx′(x) parametrized by the
hyperparameter named lengthscale L > 0, which satisfies the following:

• mq̃L(x
′) is the same for every L > 0.

• The random variable (x − mq̃L(x
′))/L is the same for every L > 0 and x′ > 0 where

x ∼ q̃x′(x).

With the above assumptions, we can observe that dq̃L(x′) ∝ L−1 and ||q̃L||∞ ∝ L−dx . So we can
show the following theorem:

Theorem 1. For the family {q̃L}, there exists a constant C > 0 such that dq̃L(x′) = C||q̃L||−1/dx
∞

holds for every L > 0.

In this paper, we assume that q̃ is given to have a constant D > 0 such that dq̃(x′) ≤ D||q̃||−1/dx
∞ .

In this case, the difference between p and p̃ is bounded by the inverse of ||q̃||∞, meaning that the
larger ||q̃||∞ the better. On the other hand, a smaller value of ||q̃||∞ is required to have a better
generalization bound on the VE as shown later. Therefore, the optimal value of ||q̃||∞ should be
carefully selected to make the best generalization bound on p, which is the objective of our analysis
and will be done in section 5.

4.1 CGAN USING VICINAL ESTIMATE

We develop a new cGAN model using the idea of VE in this section. To use VE in our cGAN
model, we train our cGAN model (the generator and discriminator) with the conditional density of
VE p̃r instead of pr, but we need to obtain a generator G which can generate the conditional density
of pr from our cGAN model. To this end, our cGAN model has the following special structure.
The generator in our cGAN model, called the vicinal generator G̃ : Z × X ′ → Y , consists of
two components. The first component has the auxiliary label x′ as its input and produces the label
x as its output with the help of q̃x′(x) in (9). The second component is the original generator
G : Z × X → Y having two types of inputs: one is the label x from the first component and the
other is the latent variable z. So the generator G̃ generates p̃g(·|x′) to estimate the VE p̃r(·|x′) of
the true distribution. The main reason why we consider this special structure in G̃ is that it is not
possible to retrieve pg(·|x) from p̃g(·|x′) generated by G̃ if it has the same structure as a legacy
generator, as deriving the original distribution from its VE is ill-posed in general. Another reason
is that, since the generator G is implemented in G̃, after finishing training we can use the trained
generator G to generate pg(·|x), which is the objective of this work. The sampling algorithm from
G̃ is summarized in Algorithm 2.

For the discriminator of our cGAN model, it has a similar structure as the unconditional GAN
discussed in (Yang & E, 2021) as follows. We assume that there exists a parameter function

a(w, b,x′) : S1
w,b := {(w, b)|w ∈ Rdy , b ∈ R, ||w||1 + |b|1 ≤ 1} × X ′ → R (13)

5



Under review as a conference paper at ICLR 2024

where

D̃a(y,x
′) = E(w,b)∼ρ0

[a(w, b,x′)σ(w · y + b)] , (14)

ρ0 is the uniform distribution in S1
w,b, and σ is the ReLU function. Note that local discriminators

D̃a,x′ = D̃a(·,x′) form an RKHS known as Barron Space H which is equipped with the inner
product

⟨D̃a(·,x′), D̃a′(·,x′)⟩H = E(w,b)∼ρ0
[a(w, b,x′)a′(w, b,x′)] (15)

and the reproducing kernel

k(y,y′) = E(w,b)∼ρ0
[σ(w · y + b)σ(w · y′ + b)] . (16)

For simplicity, we drop the subscript a in D̃a,x′ from now on. Moreover, since the training of G̃ is
equivalent to the training of G, we use G as an argument in the loss functions below.

We now consider a cGAN loss using Wasserstein loss (Arjovsky et al., 2017) as follows:

V (G, D̃) = Ex′∼ρ(x′)

[
Ey∼p̃r(y|x′)[D̃(y,x′)]− Ey∼p̃g(y|x′)[D̃(y,x′)]

]
, (17)

where ρ is any predetermined distribution on X ′. In this paper, we further add the RKHS norm as a
penalty term for regularization to the cGAN loss and consider two-time-scale training: We train D̃
to maximize the cGAN loss as well as minimizing RKHS norm of its local discriminator. It can be
implemented as the maximization problem for the cGAN loss with an addtional term penalizing the
average RKHS norm of a local discrminator, i.e.,

V ′(G, D̃) = Ex′∼ρ(x′)

[
Ey∼p̃r(y|x′)[D̃(y,x′)]− Ey∼p̃g(y|x′)[D̃(y,x′)]− ||D̃x′ ||2H

]
. (18)

and find D̃ that maximizes V ′(G, D̃). After finding D̃, G can be trained to minimize V (G, D̃).

For the empirical dataset, p̃r is replaced by a VE of empirical distribution p̃X,Y so D̃ is trained to
maximize

V̂ ′(G, D̃) = Ex′∼ρ(x′)

[
Ey∼p̃X,Y (y|x′)[D̃(y,x′)]− Ey∼p̃g(y|x′)[D̃(y,x′)]− ||D̃x′ ||2H

]
(19)

and then G is trained to minimize

V̂ (G, D̃) = Ex′∼ρ(x′)

[
Ey∼p̃X,Y (y|x′)[D̃(y,x′)]− Ey∼p̃g(y|x′)[D̃(y,x′)]

]
. (20)

5 ANALYSIS ON GENERALIZATION ERROR

To analyze a generalization error, we consider a cGAN with VE trained with the loss in (18) and first
find the maximizer D̃∗ = argmaxD̃ V ′(G, D̃). Using variational derivative, the loss is maximized
when the parameter a∗ of the discriminator D̃ satisfies

a∗(w, b,x′) =
1

2

∫
σ(w · y + b)d(p̃r(·|x′)− p̃g(·|x′))(y) (21)

which results in an optimal discriminator

D̃∗(y,x′) =
1

2

∫
k(y,y′)d(p̃r(·|x′)− p̃g(·|x′))(y′) =

1

2
k ∗ (p̃r(·|x′)− p̃g(·|x′)) (22)

which is the convolution of the kernel and the difference between the conditional densities of the
VE. Using this optimal discriminator, (17) becomes a minimization problem with respect to G for
the loss function

L(G) = Ex′∼ρ(x′)
1

2

∫ ∫
k(y,y′)d(p̃r(·|x′)− p̃g(·|x′))(y)d(p̃r(·|x)− p̃g(·|x))(y′). (23)

We assume that the capacity of G is wide enough to handle any p̃g . We then rewrite the previous
equation as the optimization problem on p̃g instead:

L(p̃g) = Ex′∼ρ(x′)
1

2

∫ ∫
k(y,y′)d(p̃r(·|x′)− p̃g(·|x′))(y)d(p̃r(·|x)− p̃g(·|x))(y′). (24)
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Now assume that p̃g is trained with respect to gradient descent on itself. Then p̃g satisfies the flow
equation of

dp̃tg(y|x′)

dt
= k ∗ (p̃r(·|x′)− p̃tg(·|x′)) (25)

where p̃tg(y|x′) is constrained in the space of the probability density function ∆ = {p ∈ L2(Y)|p ≥
0 a.e.,

∫
p = 1} for each x′ ∈ X , using the projection Π∆(p̃

t
g(y|x′)) = p̃tg(y|x′)/

∫
p̃tg(y|x′)dy, if

necessary. Replacing p̃tg(·|x′) ∈ ∆ by Gt(x′) ∈ L2(Y), the flow equation becomes

dGt(x′)

dt
= k ∗ (p̃r(·|x′)− Gt(x′)). (26)

We can do the same procedure using p̃X,Y instead of p̃r, to have another trajectory Ĝt(x′) whose
flow equation is given as

dĜt(x′)

dt
= k ∗ (p̃X,Y (·|x′)− Ĝt(x′)) (27)

We derive a generalization bound by dividing it into two terms: discrepancy between two trajectories
Ĝt(x′) and Gt(x′) and the gap between Gt(x′) and p̃r(·|x′). Assuming that two trajectories share
the same initial point G0(x′) = Ĝ0(x′), we can first bound the difference between Gt(x′) and Ĝt(x′)
by the following theorem:

Theorem 2. For every δ > 0 and t > 0, with probability 1− δ over i.i.d. sampling on (X,Y ),

Ex′∼ρ(x′)W2(Π∆(Ĝt(x′)),Π∆(Gt(x′))) ≤
√

dy||q̃||∞
4
√

2 log 2dy +
√
2 log(2/δ)

√
N

t. (28)

On the other hand, the trajectory Gt(x′) converges to the true conditional density p̃r(·|x′), but we
can further say that its expectation on Wasserstein-2 distance shrinks by the factor of

√
t:

Theorem 3. For every t > 0,

Ex′∼ρ(x′)W2(Π∆(Gt(x′)), p̃r(y|x′)) ≤
√

dy
Ex′∼ρ(x′)[||p̃r(y|x′)− G0(x′)||H]

√
t

. (29)

Summing up two inequalities and using the fact that Wasserstein-2 distance is a metric, we have the
following generalization bound on the distance between the conditional densities of the VE:

Theorem 4 (Generalization Bound on p̃g). For every δ > 0 and t > 0, with probability 1− δ over
i.i.d. sampling on (X,Y ),

Ex′∼ρ(x′)W2(Π∆(Ĝt(x′)), p̃r(y|x′)) ≤√
dy||q̃||∞

4
√

2 log 2dy +
√
2 log(2/δ)

√
N

t+
√
dy

Ex′∼ρ(x′)[||p̃r(y|x′)− G0(x′)||H]
√
t

. (30)

We can select t∗, an optimal value of t which minimizes the right-hand side of (30), by

t∗ =

(
Ex′∼ρ(x′)[||p̃r(y|x′)− G0(x′)||H]

8
√
2 log 2dy + 2

√
2 log(2/δ)

)2/3
N1/3

||q̃||2/3∞
(31)

which results in the generalization error of scale O(N−1/6):

Corollary 1 (Generalization Bound on p̃g with Early Stopping). Let δ > 0 and t∗ be defined as
(31). Then with probability 1− δ over i.i.d. sampling on (X,Y ),

Ex′∼ρ(x′)W2(Π∆(Ĝt
∗
(x′)), p̃r(y|x′)) ≤ (32)

3

2

√
dy

(
4
√
2 log 2dy +

√
2 log(2/δ)

)1/3 (
Ex′∼ρ(x′)[||p̃r(y|x′)− G0(x′)||H]

)2/3 ||q̃||1/3∞ N−1/6.
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Therefore, we have a generated conditional densities p̃g(·|x′) = Π∆(Ĝt
∗
(x′)) which has a PAC-

Bayesian bound of scale O(N−1/6).

As the last step, we convert the bound on the distance between conditional densities of the VE into
the distance between conditional densities of the original distribution with the help of the result in
the previous section. We assume that pr and pg are Lr- and Lg-label Lipschitz, respectively. Then
we can construct a PAC-Bayesian bound on generalization error on pg:
Theorem 5 (Generalization Bound on pg). Let generator G is trained so that the distribution
p̃g(x

′) = Π∆(Ĝt
∗
(·|x′)) is trained under the flow equation (27) and early stopping at time t∗

in (31). and assume that pr and pg are Lr and Lg-label Lipschitz continuous respectively, and there
exists D > 0 that dq̃(x′) ≤ D||q̃||−1/dx

∞ . Then with probability 1−δ over i.i.d. sampling on (X,Y ),

Ex′∼ρ(x′)W2(pg(·|mq̃(x
′)), pr(·|mq̃(x

′))) ≤ O(||q̃||1/3∞ N−1/6) + (Lr + Lg)D||q̃||−1/dx
∞ . (33)

Selecting the optimal scale of ||q̃||∞ = O(N
dx

6+2dx ), we finally obtain a generalization bound on pg:
Corollary 2 (Generalization Bound on pg with the optimal scale of ||q̃||∞). Under the optimal scale
of ||q̃||∞, we have

Ex′∼ρ(x′)W2(pg(·|mq̃(x
′)), pr(·|mq̃(x

′))) ≤ O(N− 1
6+2dx ). (34)

We end this section by discussing the bounds and the assumption in our analysis:

• Note that we do not consider any assumption on ρ except for being a distribution on X ′,
so the bound in Corollary 2 can be applied over various distributions on X as well. For
example, when q̃ is a perturbation as in the examples, we can simply set ρ(x′) = pr(x

′) to
get a generalization error of Ex∼pr(x)W2(pg(·|x), pr(·|x)).

• The bound of O(N− 1
6+2dx ) is independent of the output dimensionality dy , but it is not

independent of the label dimensionality dx and hence still vulnerable for the Curse of
Dimensionality in high dx. However, dx is usually assumed to be a very small integer or
even 1 for most of its applications.

• Assuming label Lipschitzness on pr and pg is crucial to bound the distance between the con-
ditional densities of its original distribution. Even though the Lipschitzness on pr cannot
be verified in practice, we can easily enforce label Lipschitzness on pg by giving Lipschitz
continuity on the generator G with the methods like spectral normalization (SN) (Miyato
et al., 2018) or Lipschitz constant constraint (LCC) Gouk et al. (2020) on its layers.

6 EXPERIMENTS

To validate our analysis in the previous section, we construct a simple toy example pr with

pr(x) ∼ N (0, 1), pr(y|x) ∼ (s(x), · · · , s(x))/2 + U([0, 1/2]dy ), (35)

where s(x) = 1/(1 + e−x) is a sigmoid function and U means a uniform distribution. Note that the
conditional distribution pr(y|x) is

√
dy/8-label Lipschitz continuous and Y ⊂ [0, 1]dy . Now we

try to predict the conditional density pr(·|x) from the empirical distribution pX,Y (·|x) of N samples
with the following two cGAN models:

• cGAN model (Baseline cGAN): It uses the minimax training with the standard Wasser-
stein GAN loss (5) for 3000 epochs and the layers of D are normalized by using spectral
normalization.

• VE-cGAN model (Proposed): It uses a VE defined by the perturbation on x whose inverse
auxiliary distribution is q̃x′(x) = N (x′, σ2), the penalized loss in (19) with ρ(x′) =
N (0, 1), early stopping at epoch ⌊100N1/4⌋, and the optimal value σ = 0.4N−1/8.

Two cGAN models have the same structure including generator, discriminator, latent space, initial-
ization, and hyperparameters. Note that the same discriminator can be used for both models because

8
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Table 1: Optimal Values of α
dy 4 8 16 32 64 128

Baseline cGAN 0.393 0.223 0.107 0.076 0.030 0.009
VE-cGAN 0.501 0.423 0.348 0.289 0.252 0.235
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Figure 1: (a) Training curve of L̄ (averaged over 20 random seeds) for each epoch when dy = 128
and N = 64000. The VE-cGAN model is trained additionally until 3000 epoches for comparison
with the baseline cGAN. (b) Graph between N and L̄ in the case of dy = 128. The dashed lines
represent the graphs of log L̄ = log L̄0 − α logN for two cGAN models.

X = X ′ in this example. For each pair of N ∈ {1000, 2000, 4000, 8000, 16000, 32000, 64000} and
dy ∈ {4, 8, 16, 32, 64, 128}, we train two cGAN models with 20 different samplings on (X,Y ).
Instead of the true generalization error Ex∼N (0,1)W2(pr(y|x), pg(y|x)) which is not tractable in
high dimension, we evaluate L(pg) = Ex∼N (0,1)W2(p̄r(y|x), p̄g(y|x)) where p̄(y|x) denotes the
distribution of the norm ||y − (s(x), · · · , s(x))/2|| for y ∼ p(y|x). After averaging L(pg) over 20
different samplings (say the average L̄) for each pair of N and dy , we compare two cGAN models
by interpolating them with the curve L̄ = L̄0N

−α for each value of dy , which is done by a linear
regression with log L̄ = log L̄0 − α logN . The optimal values of α from the linear regression are
provided in Table 1.

From Table 1 we see that the average L̄ of the VE-cGAN model decays with respect to N much
faster than that of the baseline cGAN model. Figure 1 shows how much L̄ changes during the
training for each cGAN model and how it decays as a function of N in the case of dy = 128.
In Figure 1(a), the VE-cGAN model shows a rapid decrease in L̄ up to a certain epoch followed
by an increase, compared with the baseline cGAN which barely learns anything. The VE-cGAN
model achieves its optimum around epoch 1600, which approximately agrees with our theoretical
result ⌊100N1/4⌋ = 1590 on early stopping. Figure 1(b) shows that L̄ decays with respect to N
in the VE-cGAN model whereas it does not show any significant difference in the baseline cGAN.
From Table 1 and Figure 1, we can conclude that the VE-cGAN model has a good generalization
performance even in high dy , compared with the baseline cGAN model. Similar trends are observed
for other values of dy as well. More experimental details and results are provided in Appendix B.

7 CONCLUSIONS AND FUTURE WORKS

We introduced the concept of the Vicinal Estimate (VE) of a distribution and proposed a new cGAN
model with VE for estimating conditional density. For the proposed cGAN model we derived a
generalization error bound that is independent of the output dimensionality, which means that the
proposed cGAN model can escape from both the Curse of Dimensionality and Lack of Conditional
Samples issues. We conducted an experiment to demonstrate that the generalization error of the
proposed cGAN decays effectively in high dimension. We believe that our work contributes to
understanding how the VRM-based method can improve the generalization performance of cGANs.

One of the main limitations of our analysis is that the Barron space of discriminators is not large
enough to handle more complex cGAN models. However, we believe that, if we can derive general-
ization errors for some complex unconditional GANs, then we can also derive generalization errors
for the corresponding cGANs with the same approach for unconditional GANs as we did in this
work.

9
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8 REPRODUCIBILITY STATEMENT

All the codes used in the experiments in section 6 will be uploaded online. In addition, we provide
in Appendix B the detailed information on the parameters and the model structure to make it easy
for anyone to reproduce the results.
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A PROOF OF THE THEOREMS

A.1 PROOF OF LEMMA 1

Assume that p is L-label Lipschtiz continuous. Then

W2(p̃(·|x′), p(·|mq̃(x
′)))

= W2

(∫
X
p(·|x)q̃x′(x)dx, p(·|mq̃(x

′))

)
= W2

(∫
X
p(·|x)q̃x′(x)dx,

∫
X
p(·|mq̃(x

′))q̃x′(x)dx

)
≤

√∫
X
(W2(p(·|x), p(·|mq̃(x′))))2q̃x′(x)dx (*)

≤ L

√∫
X
||x−mq̃(x′))||2q̃x′(x)dx (**)

= L
√
Eq̃x′ (x)[||x−mq̃(x′))||2]. (36)

Here, (**) holds by simply applying the L-label Lipschitz continuity of p. To show (*) let ϵ > 0.
From the definition of W2(p(·|x), p(·|mq̃(x

′))), for each x we have a joint probability γx(y1,y2)
of p(·|x) and p(·|mq̃(x

′)) such that

E(y1,y2)∼γx
||y1 − y2||2 < W2(p(·|x), p(·|mq̃(x

′)))2 + ϵ. (37)

We next construct a joint probability γ(y1,y2) between p̃(·|x′) and p(·|mq̃(x
′)) by γ(y1,y2) =∫

X γx(y1,y2)q̃x′(x)dx. We then have

(W2(p̃(·|x), p(·|mq̃(x
′))))2 ≤ E(y1,y2)∼γ ||y1 − y2||2

=

∫
X
E(y1,y2)∼γx

||y1 − y2||2q̃x′(x)dx

≤
∫
X
(W2(p(·|x), p(·|mq̃(x

′))))2q̃x′(x)dx+ ϵ (38)

so we can take the limit of ϵ→ 0 and take the square root to obtain (*).

A.2 PROOF OF THEOREM 1

Let q̄(x∗) be the distribution of the random variable x∗ = (x −mq̃L(x
′))/L. Then q̃Lx′(x) can be

written as

q̃Lx′(x) = L−dx q̄

(
x−mq̃L(x

′)

L

)
. (39)

We then have ||q̃L||∞ = L−dx ||q̄||∞ and dq̃L(x
′) = Ldq̄ where dq̄ =

√∫
X ||x∗||2q̄(x∗)dx∗ is the

ℓ2-average distance of x∗. Therefore, we have

dq̃L(x
′) = dq̄||q̄||1/dx

∞ ||q̃L||−1/dx
∞ (40)

= C||q̃L||−1/dx
∞ (41)

for all L > 0 where C = dq̄||q̃||1/dx
∞ .

A.3 PROOF OF THEOREM 2

We first use the lemma from (Yang & E, 2021):

Lemma 2. For any p, q ∈ L2(Y), W2(Π∆(p),Π∆(q)) =
√

dy||p− q||L2(Y).

12
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From Lemma 2, it is enough to show the inequality on Ex′∼ρ(x′)||Ĝt(x′)−Gt(x′)||L2(Y). Consider
its derivative with respect to t:
d

dt
Ex′∼ρ(x′)||Ĝt(x′)− Gt(x′)||L2(Y)

= Ex′∼ρ(x′)

〈
Ĝt(x′)− Gt(x′)

||Ĝt(x′)− Gt(x′)||
,
dĜt(x′)

dt
− dGt(x′)

dt

〉
L2(Y)

= Ex′∼ρ(x′)

〈
Ĝt(x′)− Gt(x′)

||Ĝt(x′)− Gt(x′)||
, k ∗ (p̃X,Y (·|x′)− Ĝt(x′))− k ∗ (p̃r(·|x′)− Gt(x′))

〉
L2(Y)

= Ex′∼ρ(x′)

〈
Ĝt(x′)− Gt(x′)

||Ĝt(x′)− Gt(x′)||
, k ∗ (p̃X,Y (·|x′)− p̃r(·|x′))− k ∗ (Ĝt(x′)− Gt(x′))

〉
L2(Y)

≤ Ex′∼ρ(x′)

〈
Ĝt(x′)− Gt(x′)

||Ĝt(x′)− Gt(x′)||
, k ∗ (p̃X,Y (·|x′)− p̃r(·|x′))

〉
L2(Y)

≤ Ex′∼ρ(x′)||k ∗ (p̃X,Y (·|x′)− p̃r(·|x′))||L2(Y)

≤ Ex′∼ρ(x′) sup
y∈Y

∣∣∣∣E(w,b)∼ρ0

[
σ(w · y + b)

∫
σ(w · y′ + b)d(p̃X,Y (·|x′)− p̃r(·|x′))(y′)

]∣∣∣∣
≤ Ex′∼ρ(x′) sup

S1
w,b

∣∣∣∣∫ σ(w · y + b)d(p̃X,Y (·|x′)− p̃r(·|x′))(y)

∣∣∣∣ (*)

Define a function L(x,y,x′) = σ(w · y + b)q̃x′(x). Then we have∫
σ(w · y + b)d(p̃X,Y (·|x′))(y) =

1

N

N∑
i=1

L(xi,yi,x
′) (42)

and ∫
σ(w · y + b)d(p̃r(·|x′))(y) =

1

N
E(x,y)∼pr

L(x,y,x′) (43)

which makes

(∗) = Ex′∼ρ(x′) sup
S1
w,b

∣∣∣∣∣ 1N
N∑
i=1

L(xi,yi,x
′)− E(x,y)∼pr

L(x,y,x′)

∣∣∣∣∣ (44)

and it is the actually the average of the maximal difference between the empirical average and real
average of the function L(xi,yi,x

′), whereas we clearly have |L| ≤ ||q̃||∞. Now, we use the
inequality on Ramedacher complexity like Theorem 6 in (E et al., 2021) to obtain

(∗) ≤ ||q̃||∞

(
2RadN (||D||H ≤ 1) +

√
2 log(2/δ)√

N

)
≤ ||q̃||∞

4
√

2 log 2dy +
√
2 log(2/δ)

√
N

(45)

with probability 1 − δ over i.i.d. sampling on (X,Y ). Clearly we have Ĝ0 = G0 from having the
same initial point, so we can integrate it from 0 to t and apply Lemma 2 to obtain Theorem 2 (Note
that the bound on (∗) is independent f t).

A.4 PROOF OF THEOREM 3

Fix x′ ∈ X ′. Then for each a ∈ L2(ρ0), define a function

fa(y,x
′) = E(w,b)∼ρ0

[a(w, b,x′)σ(w · y + b)] ∈ L2(Y). (46)

If ||p̃r(y|x′) − G0(x′)||H < ∞, we can choose a0 such that fa0(y,x
′) = p̃r(y|x′) − G0(x′) for

every y. Now fix x′ and consider training at(·,x′) by gradient flow with initialization a0(·,x′) on
the loss

min
a

Γ(a) =
1

2
||fa(y,x′)||2L2(Y). (47)

13
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which implies

d

dt
at(w, b,x′) = − δΓ(at)

δat(w, b,x′)
= −

∫
fat

(y′,x′)σ(w · y′ + b)dy′ (48)

The function fat
evolves by

d

dt
fat(y,x

′) = E(w,b)∼ρ0

[
d

dt
at(w, b,x′)σ(w · y + b)

]
= E(w,b)∼ρ0

[
−
∫

fat
(y′,x′)σ(w · y′ + b)dy′σ(w · y + b)

]
= −

∫
fat

(y′,x′)k(y,y′)dy′ = −k ∗ fat
(y,x′)

Therefore, the dynamics of fat
has the same rule as the function p̃r(y|x′) − Gt(x′) where two

functions are the same at t = 0. Therefore, we have fat
= p̃r(y|x′)−Gt(x′) for every t > 0. Note

that Γ(a) is convex with respect to a, therefore we have

d

dt
||at||2ρ0

=

〈
2at,

dat
dt

〉
ρ0

= 2

〈
at,−

δΓ(at)

δat

〉
ρ0

≤ −2Γ(at) = −||fat
||2L2(Y) (49)

and hence

||fat
||2L2(Y) ≤ −

d

dt
||at||2ρ0

. (50)

Integrating both sides over [0, t] yields∫ t

0

||fau ||2L2(Y)du ≤ ||a0||
2
ρ0
− ||at||2ρ0

. (51)

Therefore, we have

t||fat
||2L2(Y) ≤

∫ t

0

||fau
||2L2(Y)du ≤ ||a0||

2
ρ0
− ||at||2ρ0

≤ ||a0||2ρ0
(52)

as ||fat
||2L2(Y) =

1
2Γ(at) monotonically decreases with respect to t. It then follows that

||Gt(x′)− p̃r(y|x′)||2L2(Y) = ||fat
||2L2(Y) ≤

||a0||2ρ0

t
=
||p̃r(y|x′)− G0(x′)||2H

t
(53)

and hence

||Gt(x′)− p̃r(y|x′)||L2(Y) ≤
||p̃r(y|x′)− G0(x′)||H√

t
. (54)

Now applying Lemma 2 and integrating over ρ(x′), we obtain Theorem 3.

A.5 PROOF OF THEOREM 5

From Lemma 1 and W2 being a metric, we have

Ex′∼ρ(x′)W2(pg(·|mq̃(x
′)), pr(·|mq̃(x

′)))

≤ Ex′∼ρ(x′) [W2(p̃g(·|x′), p̃r(·|x′)) +W2(p̃g(·|x′), pg(·|mq̃(x
′))) +W2(p̃r(·|x′), pr(·|mq̃(x

′)))]

≤ Ex′∼ρ(x′) [W2(p̃g(·|x′), p̃r(·|x′)) + (Lg + Lr)dq̃(x
′)]

≤ Ex′∼ρ(x′) [W2(p̃g(·|x′), p̃r(·|x′))] + (Lg + Lr)Dq̃||q̃||−1/dx
∞ (*)

Then (33) can be obtained by applying Corollary 1 to (*).
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Table 2: Generator structure of two cGAN models. fc(n) denotes a fully-connected layer having the
output of dimension n. (SN) after a layer means that spectral normalization is applied to the layer.

Input: z ∈ Rdy ,x ∈ R
fc(128) (SN), ReLU
fc(128) (SN), ReLU
fc(128) (SN), ReLU
fc(128) (SN), ReLU
fc(128) (SN), ReLU
fc(dy) (SN), Logistic

Output: y ∈ Rdy

Table 3: Structure for the parameter function a. fc(n) denotes a fully-connected layer having the
output of dimension n. (SN) after a layer means that spectral normalization is applied to the layer.

Input: w ∈ Rdy , b ∈ R,x′(or x) ∈ R
fc(128) (SN), ReLU
fc(128) (SN), ReLU
fc(128) (SN), ReLU
fc(128) (SN), ReLU

fc(1) (SN)
Output: a(w, b,x′(or x)) ∈ Rdy

B EXPERIMENTAL DETAILS AND ANALYSIS

In this section we provide the details and results of our experiments in section 6. We assume that
the latent variable z follows a unit normal distribution in Rdy . In Table 2 we provide the network
architecture that we adopt in the experiment for both cGAN models. Note that spectral normalization
is applied to each layer so that the generated distributions are label Lipschitz.

The Barron Space, described in (14), is used as the discriminator of the VE-cGAN model. Unlike
the previous work in (Yang & E, 2021) which approximates the Barron space as a two-layer feed-
forward network, we introduce a new implementation which is directly derived from (14). Instead
of the discriminator itself, we model the parameter function a(w, b,x′) as a neural network whose
structure is provided in Table 3. Once we have a, D̃(y,x′) can be estimated by (14) by using a
sampling (w, b) of size 2048 from S1

w,b. The discriminator of the baseline cGAN also uses the same
Barron space structure where the auxiliary label x′ is replaced by the label x (we have X = X ′

from q̃ being a perturbation), which results in the formula of

Da(y,x) = E(w,b)∼ρ0
[a(w, b,x)σ(w · y + b)]. (55)

Note that the resulting discriminator in both models is 1-Lipschitz, meaning that the baseline cGAN
becomes a Wasserstein cGAN. Both cGAN models are trained with a constant learning rate (10−3

for the discriminator and 10−4 for the generator to demonstrate two-time-scale learning), a batch
size of 512, and the Adam optimizer. However, the total numbers of training epochs are different
(3000 in the baseline cGAN model, ⌊100N1/4⌋ for the VE-cGAN model) for both models.

We lastly provide additional results to support Table 1 and to verify our claim in section 6 that similar
trends are observed for other values of dy as well. Figure 2 depicts the graphs between N and L̄ for
various values of dy . From the figure we observe that L̄ decays effectively in the VE-cGAN model
for all values of dy including high dy whereas it fails to decay effectively for high dy in the baseline
cGAN model.
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Figure 2: Graphs between N and L̄ for various values of dy . The dashed lines represent the graphs
of log L̄ = log L̄0 − α logN for the cGAN models.
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