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A B S T R A C T

Despite the undeniable progress in visual recognition tasks fueled by deep neural net-
works, there exists recent evidence showing that these models are poorly calibrated,
resulting in over-confident predictions. The standard practices of minimizing the cross-
entropy loss during training promote the predicted softmax probabilities to match the
one-hot label assignments. Nevertheless, this yields a pre-softmax activation of the
correct class that is significantly larger than the remaining activations, which exacer-
bates the miscalibration problem. Recent observations from the classification litera-
ture suggest that loss functions that embed implicit or explicit maximization of the
entropy of predictions yield state-of-the-art calibration performances. Despite these
findings, the impact of these losses in the relevant task of calibrating medical im-
age segmentation networks remains unexplored. In this work, we provide a unify-
ing constrained-optimization perspective of current state-of-the-art calibration losses.
Specifically, these losses could be viewed as approximations of a linear penalty (or
a Lagrangian term) imposing equality constraints on logit distances. This points to
an important limitation of such underlying equality constraints, whose ensuing gradi-
ents constantly push towards a non-informative solution, which might prevent from
reaching the best compromise between the discriminative performance and calibra-
tion of the model during gradient-based optimization. Following our observations, we
propose a simple and flexible generalization based on inequality constraints, which
imposes a controllable margin on logit distances. Comprehensive experiments on
a variety of public medical image segmentation benchmarks demonstrate that our
method sets novel state-of-the-art results on these tasks in terms of network calibra-
tion, whereas the discriminative performance is also improved. The code is available at
https://github.com/Bala93/MarginLoss

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Deep neural networks (DNNs) are driving progress in a vari-

∗Corresponding author: balamurali.murugesan.1@ens.etsmtl.
ca

ety of computer vision tasks across different domains and appli-
cations. In particular, these high-capacity models have become
the de-facto solution in critical tasks, such as medical image
segmentation. Despite their superior performance, there exists
recent evidence (Guo et al., 2017; Mukhoti et al., 2020; Müller
et al., 2019) which demonstrates that these models are poorly
calibrated, often resulting in over-confident predictions. As
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a result, the predicted probability values associated with each
class overestimate the actual likelihood of correctness.

Quantifying the predictive uncertainty of modern DNNs has
gained popularity recently, with several alternatives to train bet-
ter calibrated models. A simple yet effective approach consists
in integrating a post-processing step that modifies the predicted
probabilities of a trained neural network (Guo et al., 2017;
Zhang et al., 2020; Tomani et al., 2021; Ding et al., 2021).
This strategy, however, presents several limitations. First, the
choice of the transformation parameters, such as temperature
scaling, is highly dependent on the dataset and network. And
second, under domain drift, post-hoc calibration performance
largely degrades (Ovadia et al., 2019), resulting in unreliable
predictions. A more principled alternative is to explicitly maxi-
mize the Shannon entropy of the model predictions during train-
ing, which can be achieved by augmenting the learning objec-
tive with a term that penalizes confident output distributions
(Pereyra et al., 2017). Furthermore, recent efforts to quantify
the quality of predictive uncertainties have focused on inves-
tigating the effect of the entropy on the training labels (Xie
et al., 2016; Müller et al., 2019; Mukhoti et al., 2020). Findings
from these works evidence that, popular losses, which modify
the hard-label assignments, such as label smoothing (Szegedy
et al., 2016) and focal loss (Lin et al., 2017), implicitly integrate
an entropy maximization objective and have a favourable effect
on model calibration. As shown comprehensively in the recent
study in (Mukhoti et al., 2020), these losses, with implicit or ex-
plicit maximization of the entropy, represent the state-of-the-art
in model calibration in visual and non-visual recognition tasks.

Despite this progress, the benefit of these calibration losses
remains unclear in medical image segmentation. Indeed, only
a handful of works have addressed this important problem,
mostly focusing on the calibration assessment of standard seg-
mentation losses (Mehrtash et al., 2020), i.e., cross-entropy and
Dice. Thus, we believe that it is of great significance and inter-
est to study methods for confidence calibration of segmentation
models in the context of medical image segmentation.

The contributions of this work are summarized as follows:

• We provide a unifying constrained-optimization perspec-
tive of current state-of-the-art calibration losses. Specifi-
cally, these losses could be viewed as approximations of
a linear penalty (or a Lagrangian term) imposing equality
constraints on logit distances. This points to an important
limitation of such underlying hard equality constraints,
whose ensuing gradients constantly push towards a non-
informative solution, which might prevent from reaching
the best compromise between the discriminative perfor-
mance and calibration of the model during gradient-based
optimization.

• Following our observations, we propose a simple and flex-
ible generalization based on inequality constraints, which
imposes a controllable margin on logit distances.

• We provide comprehensive experiments and ablation stud-
ies on five different public segmentation benchmarks

that focus on diverse targets and modalities, highlighting
the generalization capabilities of the proposed approach.
Our empirical results demonstrate the superiority of our
method compared to state-of-the-art calibration losses in
both calibration and discriminative performance.

This journal version provides a substantial extension of the
conference work presented in (Liu et al., 2022). In particu-
lar, we provide a thorough literature review on calibration of
segmentation models, with a main focus on the medical field.
Second, we perform a comprehensive empirical validation, in-
cluding i) multiple public benchmarks covering diverse modal-
ities and targets, ii) adding recent approaches which specifi-
cally target calibration of segmentation models (i.e., (Islam and
Glocker, 2021) and (Ding et al., 2021)), and iii) substantial in-
depth analysis of the behaviour of the analyzed models. We be-
lieve that, to date, this work represents the most comprehensive
evaluation of calibration models in the task of medical image
segmentation, not only in terms of the amount of benchmarks
employed, but also in regards of models compared.

2. Related work

Post-processing approaches. Including a post-processing step
that transforms the probability predictions of a deep network
(Guo et al., 2017; Zhang et al., 2020; Tomani et al., 2021; Ding
et al., 2021) is a straightforward yet efficient strategy to miti-
gate miscalibrated predictions. Among these methods, temper-
ature scaling (Guo et al., 2017), a variant of Platt scaling (Platt
et al., 1999), employs a single scalar parameter over all the pre-
softmax activations, which results in softened class predictions.
Despite its good performance on in-domain samples, (Ovadia
et al., 2019) demonstrated that temperature scaling does not
work well under data distributional shift. (Tomani et al., 2021)
mitigated this limitation by transforming the validation set be-
fore performing the post-hoc calibration step, whereas (Ma and
Blaschko, 2021) introduced a ranking model to improve the
post-processing model calibration.
Probabilistic and non-probabilistic approaches have been
also investigated to measure the uncertainty of the predictions
in modern deep neural networks. For example, prior literature
has employed Bayesian neural networks to approximate infer-
ence by learning a posterior distribution over the network pa-
rameters, as obtaining the exact Bayesian inference is computa-
tionally intractable in deep networks. These Bayesian-based
models include variational inference (Blundell et al., 2015;
Louizos and Welling, 2016), stochastic expectation propaga-
tion (Hernández-Lobato and Adams, 2015) or dropout varia-
tional inference (Gal and Ghahramani, 2016). A popular non-
parametric alternative is ensemble learning, where the empiri-
cal variance of the network predictions is used as an approx-
imate measure of uncertainty. This yields improved discrim-
inative performance, as well as meaningful predictive uncer-
tainty with reduced miscalibration. Common strategies to gen-
erate ensembles include differences in model hyperparameters
(Wenzel et al., 2020), random initialization of the network pa-
rameters and random shuffling of the data points (Lakshmi-
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narayanan et al., 2017), Monte-Carlo Dropout (Gal and Ghahra-
mani, 2016; Zhang et al., 2019), dataset shift (Ovadia et al.,
2019) or model orthogonality constraints (Larrazabal et al.,
2021). However, a main drawback of this strategy stems from
its high computational cost, particularly for complex models
and large datasets.
Explicit and implicit penalties. Modern classification net-
works trained under the fully supervised learning paradigm re-
sort to training labels provided as binary one-hot encoded vec-
tors. Therefore, all the probability mass is assigned to a single
class, resulting in minimum-entropy supervisory signals (i.e.,
entropy equal to zero). As the network is trained to follow
this distribution, we are implicitly forcing it to be overconfi-
dent (i.e., to achieve a minimum entropy), thereby penalizing
uncertainty in the predictions. While temperature scaling arti-
ficially increases the entropy of the predictions, (Pereyra et al.,
2017) included into the learning objective a term to penalize
confident output distributions by explicitly maximizing the en-
tropy. In contrast to tackling overconfidence directly on the pre-
dicted probability distributions, recent works have investigated
the effect of the entropy on the training labels. The authors
of (Xie et al., 2016) explored adding label noise as a regular-
ization, where the disturbed label vector was generated by fol-
lowing a generalized Bernoulli distribution. Label smoothing
(Szegedy et al., 2016), which successfully improves the accu-
racy of deep learning models, has been shown to implicitly cali-
brate the learned models, as it prevents the network from assign-
ing the full probability mass to a single class, while maintain-
ing a reasonable distance between the logits of the ground-truth
class and the other classes (Müller et al., 2019). More recently,
(Mukhoti et al., 2020) demonstrated that focal loss (Lin et al.,
2017) implicitly minimizes a Kullback-Leibler (KL) divergence
between the uniform distribution and the softmax predictions,
thereby increasing the entropy of the predictions. Indeed, as
shown in (Müller et al., 2019; Mukhoti et al., 2020), both la-
bel smoothing and focal loss implicitly regularize the network
output probabilities, encouraging their distribution to be close
to the uniform distribution. To our knowledge, and as demon-
strated experimentally in the recent studies in (Müller et al.,
2019; Mukhoti et al., 2020), loss functions that embed implicit
or explicit maximization of the entropy of the predictions yield
state-of-the-art calibration performances.

Calibration in medical image segmentation. Recent literature
has focused on either estimating the predictive uncertainty or on
leveraging this uncertainty to improve the discriminative per-
formance of segmentation models (Wang et al., 2019). Never-
theless, research to improve both the calibration and segmenta-
tion performance of CNN-based segmentation models is scarce.
(Jena and Awate, 2019) proposed a novel deep segmentation
framework rooted in generative modeling and Bayesian deci-
sion theory, which allowed to define a principled measure of
uncertainty associated with label probabilities. Recent find-
ings (Fort et al., 2019), however, suggest that current state-
of-the-art Bayesian neural networks have tendency to find so-
lutions around a single minimum of the loss landscape and,
consequently, lack diversity. In contrast, ensembling deep neu-

ral networks typically results in more diverse predictions, and
therefore obtain better uncertainty estimates. This observation
aligns with the recent work in (Jungo et al., 2020; Mehrtash
et al., 2020), which evaluates several uncertainty estimation
approaches and concludes that ensembling outperforms other
methods. To promote model diversity within the ensemble,
(Larrazabal et al., 2021) integrate an orthogonality constraint in
the learning objective, showing significant gains over the non-
constrained set. More recently, (Karimi and Gholipour, 2022)
argue that training a single model in a multi-task manner on
several different datasets yields better calibration on the differ-
ent tasks. Nevertheless, these methods incur in high computa-
tionally expensive steps as they involve training either multiple
models or a single model on multiple datasets. In an orthogo-
nal direction, several recent methods have overcome this lim-
itation and proposed lighter alternatives. For example, (Ding
et al., 2021) extends the naive temperature scaling by integrat-
ing a simple CNN to predict the pixel-wise temperature val-
ues in a post-processing step. In addition, (Islam and Glocker,
2021) apply a weight matrix with a Gaussian kernel across the
one-hot encoded expert labels to obtain soft class probabilities,
adding into the standard Label smoothing a spatial-awareness.
However, despite these initial efforts, and to the best of our
knowledge, a comprehensive evaluation of calibration methods
in multiple medical image segmentation benchmarks has not
been conducted yet.

3. Preliminaries

Let D(X ,Y) = {(x(i),y(i))}Ni=1 be the training dataset,
with x(i) ∈ X ⊂ RΩi representing the ith image, Ωi the spatial
image domain, and y ∈ Y ⊂ RK its corresponding ground-
truth label withK classes, provided as one-hot encoding. Given
an input image x(i), a neural network parameterized by θ gen-
erates a logit vector, defined as fθ(x(i)) = l(i) ∈ RK . To
simplify the notations, we omit sample indices, as this does not
lead to ambiguity, and just use l = (lk)1≤k≤K ∈ RK to denote
logit vectors. Note that the logits are the inputs of the softmax
probability predictions of the network, which are computed as:

s = (sk)1≤k≤K ∈ RK ; sk =
explk∑K
j explj

The predicted class is computed as ŷ = arg maxk sk,
whereas the predicted confidence is given by p̂ = maxk sk.
Calibrated models. Perfectly calibrated models are those for
which the predicted confidence for each sample is equal to the
model accuracy : p̂ = P(ŷ = y|p̂), where y denotes the true
labels. Therefore, an over-confident model tends to yield pre-
dicted confidences that are larger than its accuracy, whereas
an under-confident model displays lower confidence than the
model’s accuracy.
Miscalibration of DNNs. To train fully supervised discrimina-
tive deep models, the standard cross-entropy (CE) loss is com-
monly used as the training objective. We argue that, from a
calibration performance, the supervision of CE is suboptimal.
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Indeed, CE reaches its minimum when the predictions for all
the training samples match the hard (binary) ground-truth la-
bels, i.e., sk = 1 when k is the ground-truth class of the sample
and sk = 0 otherwise. Minimizing the CE implicitly pushes
softmax vectors s towards the vertices of the simplex, thereby
magnifying the distances between the largest logit maxk(lk)
and the rest of the logits, yielding over-confident predictions
and miscalibrated models.

4. A constrained-optimization perspective of calibration

We present in this section a novel constrained-optimization
perspective of current calibration methods for deep networks,
showing that the existing strategies, including Label Smooth-
ing (LS) (Müller et al., 2019; Szegedy et al., 2016), Focal Loss
(FL) (Mukhoti et al., 2020; Lin et al., 2017) and Explicit Con-
fidence Penalty (ECP) (Pereyra et al., 2017), impose equality
constraints on logit distances. Specifically, they embed either
explicit or implicit penalty functions, which push all the logit
distances to zero.

4.1. Definition of logit distances

Let us first define the vector of logit distances between the
winner class and the rest as:

d(l) = (max
j

(lj)− lk)1≤k≤K ∈ RK (1)

Note that each element in d(l) is non-negative. In the fol-
lowing, we show that LS, FL and ECP correspond to different
soft penalty functions for imposing the same hard equality con-
straint d(l) = 0 or, equivalently, imposing inequality constraint
d(l) ≤ 0 (as d(l) is non-negative by definition). Clearly, en-
forcing this equality constraint in a hard manner would result in
all K logits being equal for a given sample, which corresponds
to non-informative softmax predictions sk = 1

K ∀k.

4.2. Penalty functions in constrained optimization

In the general context of constrained optimization (Bert-
sekas, 1995), soft penalty functions are widely used to tackle
hard equality or inequality constraints. For the discussion in the
sequel, consider specifically the following hard equality con-
straint:

d(l) = 0 (2)

The general principle of a soft-penalty optimizer is to replace
a hard constraint of the form in Eq. 2 by adding an additional
term P(d(l)) into the main objective function to be minimized.
Soft penalty P should be a continuous and differentiable func-
tion, which reaches its global minimum when the constraint is
satisfied, i.e., it verifies: P(d(l)) ≥ P(0)∀ l ∈ RK . Thus,
when the constraint is violated, i.e., when d(l) deviates from 0,
the penalty term P increases.
Label smoothing. Recent evidence (Lukasik et al., 2020;
Müller et al., 2019) suggests that, in addition to improving
the discriminative performance of deep neural networks, La-
bel Smoothing (LS) (Szegedy et al., 2016) positively impacts

model calibration. In particular, LS modifies the hard target la-
bels with a smoothing parameter α, so that the original one-hot
training labels y ∈ {0, 1}K become yLS = (yLS

k )1≤k≤K , with
yLS
k = yk(1 − α) + α

K . Then, we simply minimize the cross-
entropy between the modified labels and the network outputs:

LLS = −
∑
k

yLS
k log sk = −

∑
k

((1− α)yk +
α

K
) log sk (3)

where α ∈ [0, 1] is the smoothing hyper-parameter. It is
straightforward to verify that cross-entropy with label smooth-
ing in Eq. 3 can be decomposed into a standard cross-entropy
term augmented with a Kullback-Leibler (KL) divergence be-
tween uniform distribution u = 1

K and the softmax prediction:

LLS
c
= LCE +

α

1− α
DKL (u||s) (4)

where c
= stands for equality up to additive and/or non-negative

multiplicative constants. Now, consider the following bound-
ing relationships between a linear penalty (or a Lagrangian) for
equality constraint d(l) = 0 and the KL divergence in Eq. 4.

Proposition 1. A linear penalty (or a Lagrangian term) for
constraint d(l) = 0 is bounded from above and below by
DKL (u||s), up to additive constants:

DKL (u||s)− log(K)
c
≤ 1

K

∑
k

(max
j

(lj)− lk)
c
≤ DKL (u||s)

where
c
≤ stands for inequality up to an additive constant.

These bounding relationships could be obtained directly from
the softmax and DKL expressions, along with the following
well-known property of the LogSumExp function: maxk(lk) ≤
log

∑K
k e

lk ≤ maxk(lk)+log(K). For the details of the proof,
please refer to Appendix A of the conference version in (Liu
et al., 2022).

Prop. 1 means that LS is (approximately) optimizing a linear
penalty (or a Lagrangian) for logit-distance constraint d(l) = 0,
which encourages equality of all logits; see the illustration in
Figure 1, top-left.
Focal loss. Another popular alternative for calibration is fo-
cal loss (FL) (Lin et al., 2017), which attempts to alleviate the
over-fitting issue in CE by directing the training attention to-
wards samples with low confidence in each mini-batch. More
concretely, the authors proposed to use a modulating factor
to the CE, (1 − sk)γ , which controls the trade-off between
easy and hard examples. Very recently, (Mukhoti et al., 2020)
demonstrated that focal loss is, in fact, an upper bound on CE
augmented with a term that implicitly serves as a maximum-
entropy regularizer:

LFL = −
∑
k

(1− sk)γyk log sk ≥ LCE − γH(s) (5)

where γ is a hyper-parameter and H denotes the Shannon en-
tropy of the softmax prediction, given by

H(s) = −
∑
k

sk log(sk)
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In this connection, FL is closely related to ECP (Pereyra
et al., 2017), which explicitly added the negative entropy term,
−H(s), to the training objective. It is worth noting that min-
imizing the negative entropy of the prediction is equivalent to
minimizing the KL divergence between the prediction and the
uniform distribution, up to an additive constant, i.e.,

−H(s)
c
= DKL(s||u)

which is a reversed form of the KL term in Eq. 4.
Therefore, all in all, and following Prop. 1 and the discus-

sions above, LS, FL and ECP could be viewed as different
penalty functions for imposing the same logit-distance equality
constraint d(l) = 0. This motivates our margin-based general-
ization of logit-distance constraints, which we introduce in the
following section, along with discussions of its desirable prop-
erties (e.g., gradient dynamics) for calibrating neural networks.

Logit distance
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Figure 1: Illustration of the linear (left) and margin-based (right) penalties for
imposing logit-distance constraints, along with the corresponding derivatives.

Note that while the derivative of the linear penalty for constraint d(l) = 0
constantly pushes towards the trivial solution sk = 1

K
∀K (i.e., LS, FL and

EPC), the derivative of the proposed model only pushes towards zero those
logits above the given margin.

4.3. Margin-based Label Smoothing (MbLS)

Our previous analysis shows that LS, FL and ECP are closely
related from a constrained-optimization perspective, and they
could be seen as approximations of a linear penalty for impos-
ing constraint d(l) = 0, pushing all logit distances to zero;
see Figure 1, top-left. Clearly, enforcing this constraint in a
hard way yields a non-informative solution where all the classes
have exactly the same logit and, hence, the same class predic-
tion: sk = 1

K ∀K. While this trivial solution is not reached
in practice when using soft penalties (as in LS, FL and ECP)
jointly with CE, we argue that the underlying equality constraint
d(l) = 0 has an important limitation, which might prevent from
reaching the best compromise between the discriminative per-
formance and calibration of the model during gradient-based
optimization. Figure 1, left, illustrates this: With the linear
penalty for constraint d(l) = 0 in the top-left of the Figure,

the derivative with respect to logit distances is a strictly positive
constant (left-bottom), yielding during training a gradient term
that constantly pushes towards the trivial, non-informative so-
lution d(l) = 0 (or equivalently sk = 1

K ∀K). To alleviate this
issue, we propose to replace the equality constraint d(l) = 0
with the more general inequality constraint d(l) ≤ m, where
m denotes the K-dimensional vector with all elements equal to
m > 0. Therefore, we include a margin m into the penalty, so
that the logit distances in d(l) are allowed to be below m when
optimizing the main learning objective:

min LCE s.t. d(l) ≤ m, m > 0 (6)

The intuition behind adding a strictly positive margin m is that,
unlike the linear penalty for constraint d(l) = 0 (Figure 1, left),
the gradient is back-propagated only on those logits where the
distance is above the margin (Figure 1, right). This contrasts
with the linear penalty, for which there exists always a gradient,
and its value is the same across all the logits, regardless of their
distance.

Even though the constrained problem in Eq. 6 could be
solved by a Lagrangian-multiplier algorithm, we resort to a sim-
pler unconstrained approximation by ReLU function:

min LCE + λ
∑
k

max(0,max
j

(lj)− lk −m) (7)

Here, the non-linear ReLU penalty for inequality constraint
d(l) ≤ m discourages logit distances from surpassing a given
margin m, and λ is a trade-off weight balancing the two terms.
It is clear that, as discussed in Sec. 4, several competitive cal-
ibration methods could be viewed as approximations for im-
posing constraint d(l) = 0 and, therefore, correspond to the
special case of our method when setting the margin to m = 0.
Our comprehensive experiments in the next section demonstrate
clearly the benefits of introducing a strictly positive margin m.

Note that our model in Eq. 7 has two hyper-parameters, m
and λ. We fixed λ to 0.1 in our experiments for all the bench-
marks, and tuned only the margin m over validation sets. In
this way, when comparing with the existing calibration solu-
tions, we use the same budget of hyper-parameter optimization
(m in our method vs. α in LS or γ in FL).

5. Experiments

5.1. Experimental Setting

5.1.1. Datasets

To empirically validate our model, we employ five pub-
lic multi-class segmentations benchmarks, whose detailes are
specified below.

Automated Cardiac Diagnosis Challenge (ACDC) (Bernard
et al., 2018). This dataset consists of 100 patient exams con-
taining cardiac MR volumes and its respective multi-class seg-
mentation masks for both diastolic and systolic phases. The



6 Murugesan et al. / Medical Image Analysis (2022)

segmentation mask contains four classes, including the left ven-
tricle (LV), right ventricle (RV), myocardium (Myo) and back-
ground. Following the standard practices on this dataset, 2D
slices are extracted from the available volumes and resized to
224×224. Last, the dataset is randomly split into independent
training (70), validation (10) and testing (20) sets.

Brain Tumor Segmentation (BRATS) Challenge. (Menze
et al., 2015; Bakas et al., 2017, 2018) The dataset contains 484
multi-modal MR scans (FLAIR, T1, T1-contrast, and T2) with
their corresponding Glioma segmentation masks. The classes
representing the mask include tumor core (TC), enhancing tu-
mor (ET) and whole tumor (WT). Each volume of dimension
155×240×240 is resampled and slices containing only back-
ground are removed from the training. The patient volumes are
randomly split to 327, 54, 94 for training, validation, and testing
respectively.

MRBrainS18 (Mendrik et al., 2015a). The dataset contains
paired T1, T2, and T1-IR volumes of 7 subjects and their seg-
mentation masks, which correspond to brain tissue including
Gray Matter (GM), White Matter (WM), and Cerebralspinal
fluid (CSF). The dimensions of the volumes are 240×240×48.
We utilize 5 subjects for training and 2 subjects for testing.

Fast and Low GPU memory Abdominal oRgan sEgmentation
(FLARE) Challenge (Ma et al., 2021). The dataset contains
360 volumes of multi-organ abdomen CT including liver, kid-
neys, spleen and pancreas and their corresponding pixel-wise
masks. The different resolutions are resampled to a common
space and cropped to 192×192×30. The volumes are then ran-
domly split to 240 for training, 40 for validation, 80 for testing.

PROMISE. (Litjens et al., 2014) The dataset was made avail-
able at the MICCAI 2012 prostate MR segmentation challenge.
It contains the transversal T2-weighted MR images acquired at
different centers with multiple MRI vendors and different scan-
ning protocols. It is comprised of various diseases, i.e., be-
nign and prostate cancers. The images resolution ranges from
15×256×256 to 54×512×512 voxels with a spacing ranging
from 2×0.27×0.27 to 4×0.75×0.75mm3. We employed 22 pa-
tients for training, 3 for validation and 7 for testing.

Note that in all datasets, images are normalized to be within
the range [0-1]. Furthermore, for the datasets containing mul-
tiple image modalities (i.e., MRBrainS and BRATS), all avail-
able modalities are concatenated in a single tensor, which is
fed to the input of the neural network. In addition, there ex-
ists one dataset for which the low amount of available images
impeded us to generate a proper training, validation and testing
split (MRBrainS). In this case, we repeat the training-testing
procedure several times randomly selecting the train-test data
and report the mean values.

5.1.2. Evaluation Metrics

To assess the discriminative performance of the evaluated
models, we resort to standard segmentation metrics in the med-
ical segmentation literature, which includes the DICE coeffi-

cient (DSC) and the Average Surface Distance (ASD). To eval-
uate the calibration performance, we employ both the expected
calibration error (ECE) (Naeini et al., 2015) and classwise ex-
pected calibration error (CECE). The reason to include CECE
is because ECE only considers the softmax probability of the
predicted class, ignoring the other scores in the softmax dis-
tribution (Mukhoti et al., 2020). To compute the ECE given a
finite number of samples, we group predictions into M equis-
paced bins. Let Bi denote the set of samples with confidences
belonging to the ith bin. The accuracy Ai of this bin is com-
puted as Ai = 1

|Bi|
∑
j∈Bi

1(ŷj = yj), where 1 is the indicator
function, and ŷj and yj are the predicted and ground-truth la-
bels for the jth sample. Similarly, the confidence Ci of the ith

bin is computed as Ci = 1
|Bi|

∑
j∈Bi

p̂j , i.e. Ci is the average
confidence of all samples in the bin. The ECE can be approxi-
mated as a weighted average of the absolute difference between
the accuracy and confidence of each bin:

ECE =

M∑
i=1

|Bi|
N
|Ai − Ci| (8)

The ECE metric only considers the probability of the predicted
class, without considering the other scores in the softmax dis-
tribution. A stronger definition of calibration would require the
probabilities of all the classes in the softmax distrubution to be
calibrated. This can be achieved with a simple classwise exten-
sion of the ECE metric: Classwise ECE, given by

CECE =

M∑
i=1

K∑
j=1

|Bi,j |
N
|Ai,j − Ci,j | (9)

where K is the number of classes, Bij denotes the
set of samples from the jth class in the ith bin, Ai =

1
|Bi,j |

∑
k∈Bi,j

1(j = yk) and Ci,j = 1
|Bij |

∑
k∈Bi,j

p̂kj)

Following the recent literature on calibration of segmenta-
tion networks (Islam and Glocker, 2021) both ECE and CECE
are obtained by considering only the foreground regions. The
reason behind this is that most of the correct –and certain– pre-
dictions are from the background. If we exclude these areas
from the statistics, the obtained results will better highlight the
differences among the different approaches. In our implemen-
tation, the number of bins to compute ECE and CECE is set
to M = 15. Furthermore, we also employ reliability plots
(Niculescu-Mizil and Caruana, 2005) in our evaluation, which
plot the expected accuracy as a function of class probability
(confidence), and for a perfectly calibrated model it represents
the identity function.

5.1.3. Implementation Details

To empirically evaluate the proposed model, we conduct ex-
periments comparing a state-of-the-art segmentation network
on a multi-class scenario trained with different learning objec-
tives. In particular, we first include standard loss functions em-
ployed in medical image segmentation, which include the com-
mon Cross-entropy (CE) and the duple composed by CE and
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Table 1: The discriminative performance (DSC and ASD) obtained by the different models across five popular medical image segmentation benchmarks. Best
method is highlighted in bold, whereas second best approach is underlined.

Dataset Region CE CE + DICE FL ECP LS SVLS Ours

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD

ACDC

RV 0.813 0.77 0.798 0.75 0.714 1.27 0.754 0.87 0.815 0.68 0.642 1.86 0.866 0.42
MYO 0.816 0.43 0.795 0.46 0.734 0.61 0.751 0.53 0.805 0.42 0.664 1.79 0.845 0.37

LV 0.894 0.36 0.888 0.35 0.846 0.47 0.839 0.41 0.886 0.32 0.795 1.21 0.913 0.29
Mean 0.841 0.52 0.827 0.52 0.764 0.78 0.782 0.60 0.835 0.48 0.701 1.62 0.875 0.36

MRBrainS

GM 0.780 0.42 0.757 0.48 0.773 0.53 0.793 0.47 0.745 0.51 0.753 0.49 0.800 0.39
WM 0.811 0.62 0.761 0.66 0.804 0.60 0.810 0.55 0.727 0.97 0.670 1.06 0.831 0.46
CSF 0.772 0.44 0.780 0.46 0.793 0.40 0.803 0.39 0.772 0.46 0.810 0.39 0.807 0.38
Mean 0.788 0.50 0.766 0.54 0.790 0.51 0.802 0.47 0.748 0.64 0.744 0.65 0.813 0.41

FLARE

Liver 0.949 0.60 0.942 0.43 0.951 0.37 0.952 0.56 0.952 1.44 0.949 1.47 0.953 1.52
Kidney 0.944 0.37 0.941 0.37 0.946 0.32 0.950 0.31 0.947 0.38 0.946 0.40 0.945 0.35
Spleen 0.929 0.56 0.904 0.61 0.924 0.55 0.924 0.68 0.942 0.38 0.932 0.56 0.940 0.38

Pancreas 0.635 1.55 0.634 1.41 0.625 1.65 0.649 1.47 0.636 1.56 0.636 1.53 0.645 1.42
Mean 0.864 0.77 0.855 0.71 0.862 0.72 0.869 0.75 0.869 0.94 0.866 0.99 0.871 0.92

BRATS

TC 0.754 1.01 0.768 1.13 0.761 1.17 0.756 1.14 0.737 1.26 0.751 1.29 0.763 1.14
ET 0.498 1.41 0.524 1.40 0.499 1.72 0.498 1.64 0.477 1.89 0.490 1.92 0.505 1.66
WT 0.839 1.08 0.850 0.98 0.852 1.00 0.860 0.98 0.856 1.05 0.856 1.09 0.857 1.08

Mean 0.697 1.17 0.714 1.17 0.704 1.30 0.705 1.25 0.690 1.40 0.699 1.43 0.708 1.29

PROMISE
Prostate 0.737 1.33 0.751 1.17 0.729 1.42 0.736 1.27 0.713 1.72 0.766 1.27 0.770 0.95
Tumor 0.258 5.81 0.328 4.10 0.361 3.35 0.344 2.48 0.350 3.29 0.396 2.16 0.397 2.34
Mean 0.498 3.57 0.540 2.63 0.545 2.39 0.540 1.88 0.532 2.50 0.581 1.71 0.583 1.64

Table 2: The calibration performance (ECE and CECE) obtained by the different models across five popular medical image segmentation benchmarks. Best
method is highlighted in bold, whereas second best approach is underlined. ∇ indicates the difference between the best model and our approach.

Dataset CE CE + DICE FL ECP LS SVLS Ours

ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ∇ECE ∇CECE

ACDC 0.079 0.073 0.137 0.084 0.113 0.116 0.109 0.095 0.081 0.107 0.176 0.135 0.061 0.069 – –
MRBrainS 0.089 0.070 0.172 0.102 0.020 0.064 0.048 0.068 0.036 0.085 0.060 0.080 0.050 0.058 0.030 –

FLARE 0.045 0.029 0.058 0.034 0.033 0.035 0.037 0.027 0.055 0.050 0.039 0.036 0.038 0.028 0.005 0.001
BRATS 0.128 0.108 0.206 0.116 0.139 0.139 0.107 0.099 0.125 0.146 0.128 0.109 0.116 0.109 0.009 0.010

PROMISE 0.411 0.334 0.430 0.304 0.247 0.298 0.306 0.252 0.280 0.299 0.344 0.271 0.232 0.237 – –

DSC losses. Furthermore, we also include training objectives
which have been proposed to calibrate neural networks, which
represent nowadays the state-of-the-art for this task. This in-
cludes Focal loss (FL) (Lin et al., 2017), Label Smoothing (LS)
(Szegedy et al., 2016) and ECP (Pereyra et al., 2017). Last, we
also compare to the recent Spatially-Varying LS (SVLS) (Is-
lam and Glocker, 2021), which demonstrated to outperform the
simpler LS version in the task of medical image segmentation.
Following the literature, we have chosen the commonly used
hyper-parameters and considered the one which provided the
best compromise between DSC and ECE. For FL, γ values of
1, 2, and 3 are considered. In case of ECP and LS, α and λ
values of 0.1, 0.2, 0.3 are used. For our method, we considered
the margins to be 5, 8, and 10. In the case of SVLS, the one-
hot label smoothing is performed with a kernel size of 3. For
the experiments, we fixed the batch size to 4, epochs to 100,
and optimizer to ADAM. The learning rate of 1e-3 and 1e-4 are
used for the first 50 epochs, and the next 50 epochs respectively.
Backbones. The main experiments are conducted on the pop-
ular UNet (Ronneberger et al., 2015). Nevertheless, to show
the versatility of the proposed margin based label smoothing,
we have evaluated our model on other popular architectures in
medical image segmentation including AttUNet (Oktay et al.,
2018), TransUNet (Chen et al., 2021), and UNet++ (Zhou et al.,
2020).

5.2. Results

5.2.1. Main results

The discriminative quantitative results obtained by the pro-
posed model, as well as prior literature, are reported in Table
1. We observe that across the different datasets, our model con-
sistently achieves the best disciminative performance, typically
ranking as the best or second-best model in both region-based
(i.e., DSC) and distance-based (i.e., ASD) metrics. This demon-
strates that our method yields not only a better identification
of target regions, but also an improvement in the boundary re-
gions, highlighted by lower ASD values. An interesting obser-
vation is that, while other learning objectives typically result
in performance gains compared to the standard CE loss, their
superiority over the others depends on the selected dataset.

Table 2 summarizes the calibration performance, in terms of
ECE and CECE of all the analyzed models. We can observe
that, similar to the discriminative performance reported ear-
lier, the proposed model typically ranks as best or second best
method. An interesting observation is that, according to the re-
sults, focal loss provides well-calibrated models, whereas their
discriminative performance is typically far from best perform-
ing models. As exposed in our motivation, one of the reasons
behind this behaviour might be the undesirable effect of push-
ing all logit distances to zero. Enforcing this constraint may
alleviate the problem of overconfidence in deep networks, at
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Figure 2: Compromise between calibration and discriminative performance. For each dataset, we show the discriminative (DICE) and calibration (ECE)
results for each method. In order to get the best performance, we expect a model to achieve large DSC (in green) and small ECE (in blue) values.

the cost of providing non-informative solutions.
An interesting summary of these results is depicted in Figure

2, where we resort to radar plots to highlight the better com-
promise between discriminative and calibration performance
shown by our model. In particular, a well-calibrated model
should have a balanced compromise between a high discrim-
inative power (green line) and low calibration metrics (purple
line). This means that, following these plots, the larger the gap
between green and purple lines, the better the compromise be-
tween discriminative and calibration performance.

Furthermore, to have a better overview of the general perfor-
mance across different models, we follow the strategy followed
in several MICCAI Challenges, e.g., MRBrainS (Mendrik et al.,
2015b), where the final ranking is given as the sum of individual
ranking metrics: RT =

∑|M |
m=0 rm, where rm is the rank of the

segmentation model for the metricm (mean)1. Thus, if a model
ranks first in terms of DSC in the FLARE dataset, it will receive
one point, whereas five points will be added in case the model
ranks fifth. The final ranking is obtained after the overall scores
RT for each model are sorted in ascending order, and ranked
from 1 to n. Figure 3 provides the rank comparison through
heatmap visualization. It can be inferred that, for both dis-
criminative and calibration metrics, our methods achieves the
highest rank. Interestingly, the proposed loss term yields very
competitive discriminative results, outperforming the popular
compounded CE+DSC loss. It is noteworthy to highlight that
the optimization goal of these two terms are different. Networks
trained with CE tend to achieve a lower average negative log-
likelihood over all the pixels, whereas using Dice as loss func-
tion should increase the discriminative performance, in terms of
Dice. Thus, it is expected that the compounded loss brings the
better of both worlds. Nevertheless, we can observe that this is
not what happens in practice. On the one hand, the networks
trained with CE+DSC loss rank among the best discriminative
models (third in DSC and second in ASD). On the other hand,
their calibration performance is substantially degraded, ranking
last and second-last in ECE and CECE, respectively. These re-
sults align with recent findings (Mehrtash et al., 2020), which
highlight the deficiencies of models trained with the DSC loss
to deliver well-calibrated models. While adjusting the balanc-
ing hyperparameter could improve the performance on one task,

1Note that the per-class scores are not used in the sum-rank computation.

the results on the other task would likely degrade due to the dif-
ferent nature of both learning objectives. Thus, based on these
observations, we argue that obtaining a good compromise be-
tween calibration and segmentation quality is hardly attainable
with the popular CE+DSC loss, and promote our model as a
better alternative.

CE
CE+DSC FL ECP LS

SVLS
Ours

DSC

ASD

ECE

CECE

Total

24 21 22 18 24 25 6

20 15 23 19 21 30 12

24 33 13 15 17 25 11

18 25 22 10 30 24 9

86 94 80 62 92 104 38

Figure 3: Ranking (global and per-metric) of the different methods based on
the sum-rank approach.

5.2.2. Comparison to post-hoc calibration

The proposed approach is orthogonal to post-hoc calibration
strategies, which can still be used after training, as long as
there exists an independent validation set to find the optimal
hyperparameters (for example T in temperature scaling). To
demonstrate this, we now report the performance of pre-scaling
and post-scaling for ACDC, FLARE, and PROMISE datasets
across the different approaches. In particular, we have included
two post-hoc calibration strategies. First, we use the standard
Temperature scaling approach, referred to as TS, where a single
value for the entire image is employed. Furthermore, we also
include the Local Temperature Scaling (LTS) method in (Ding
et al., 2021), which was recently proposed in the context of
medical image segmentation and provides a temperature value
at each image pixel. For both TS and LTS, the optimal temper-
ature values are found by optimizing the network parameters to
decrease the negative log likelihood on an independent valida-
tion set. From the quantitative comparison, which can be found
in Table 3, it can be inferred that our method further benefits
from scaling the raw softmax probability predictions. Interest-
ingly, the calibration performance obtained by our method prior
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Table 3: Calibration performance of post-hoc calibration methods: temperature scaling (TS) and Local Temperature Scaling (LTS) (Ding et al., 2021). Best method
is highlighted in bold, whereas second best approach is underlined.

Dataset Method CE CE + DICE FL ECP LS SVLS Ours

ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE

ACDC

Pre 0.079 0.073 0.137 0.084 0.113 0.116 0.109 0.095 0.081 0.107 0.176 0.135 0.061 0.069
TS 0.077 0.073 0.135 0.084 0.112 0.117 0.105 0.095 0.084 0.109 0.174 0.135 0.055 0.065

LTS 0.067 0.065 0.070 0.076 0.127 0.125 0.080 0.094 0.065 0.072 0.118 0.116 0.041 0.046

FLARE

Pre 0.045 0.029 0.058 0.034 0.033 0.035 0.037 0.027 0.055 0.050 0.039 0.036 0.038 0.028
TS 0.040 0.030 0.051 0.036 0.030 0.038 0.032 0.028 0.042 0.039 0.039 0.038 0.033 0.029

LTS 0.033 0.030 0.044 0.038 0.065 0.048 0.026 0.028 0.031 0.026 0.040 0.036 0.031 0.026

PROMISE

Pre 0.411 0.334 0.430 0.304 0.247 0.298 0.306 0.252 0.280 0.299 0.344 0.271 0.232 0.237
TS 0.408 0.334 0.429 0.304 0.245 0.299 0.303 0.251 0.279 0.298 0.342 0.271 0.229 0.237

LTS 0.294 0.283 0.312 0.263 0.209 0.291 0.230 0.235 0.255 0.257 0.234 0.238 0.189 0.217

to temperature scaling still outperforms the results obtained by
several other approaches even after applying LTS on their pre-
dictions. Another unexpected observation is that, under some
settings, the use of temperature scaling (either TS or LTS) de-
teriorates the calibration performance. We argue that this phe-
nomenon could be due to noticeable differences between the
validation and testing datasets. As empirically demonstrated in
(Ovadia et al., 2019), applying temperature scaling when differ-
ences between datasets exist might result in a negative impact.
In addition, similar observations were reported in (Kock et al.,
2021), where the calibration performance of segmentation mod-
els on several datasets was degraded after applying temperature
scaling.

5.2.3. Effects of logit margin constraints

In our motivation, we hypothesized that the suboptimal su-
pervision delivered by CE in multi-class scenarios might likely
result in poorly calibrated models, as the posterior probability
assigned to each of the non-true classes cannot be directly con-
trolled. Indeed, it is expected that by minimizing the CE the
softmax vectors are pushed towards the vertex of the probabil-
ity simplex. This implies that the distances between the largest
logit and the rest are magnified, resulting in overconfident mod-
els. To validate this hypothesis, and to empirically demonstrate
that our proposed term can alleviate this issue, we plot the av-
erage logit distributions across classes on two datasets. In par-
ticular, we first separate all the voxels based on their ground
truth labels. Then, for each category group, we average the per-
voxel vector of logit predictions for both CE and the proposed
model, whose results are depicted in Figure 4. First, we can
observe that a model trained with CE indeed tends to provide
large logit differences, which intensifies overconfidence predic-
tions. Furthermore, while the mean logit value of the target
class is considerably large and greatly differs from the largest
value across other categories, the differences with the remaining
logits –from non-target classes– remain uncontrolled. In con-
trast, we can clearly observe the impact on the logit distribution
when we include the proposed term into the learning objective.
In particular, our margin-based term i) promotes similar values
of the true class logit across classes and ii) encourages more
equidistant logits between this and the remaining classes, which
implicitly constraints the logit values of untargeted classes to
be very close (mimicking a uniform distribution). These re-

sults empirically validate our hypothesis in regards of the weak-
nesses of CE and the benefits brought by our approach.
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Figure 4: Adopting the proposed term during training substantially
reduces the logit distances, producing less overconfident predictions.

These plots depict the average predicted logit distributions for each target class
–based on the ground truth– on ACDC (top) and FLARE (bottom) datasets

when the model is trained with CE (left) and the proposed loss (right).
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Figure 5: Robustness to distributional drift on PROMISE (left) and MRBrainS
(right) datasets. Note that larger circles represent lower sigma values for the

Gaussian noise corruptions.

5.2.4. Calibration and discriminative performance under dis-
tribution shift.

There have been recent empirical studies (Ovadia et al., 2019;
Minderer et al., 2021) on the robustness of calibration models
under distribution shift. In particular, (Minderer et al., 2021) ex-
plores out-of-distribution calibration by resorting to ImageNet-
C (Hendrycks and Dietterich, 2018), a computer vision dataset
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Figure 6: Sensibility to hyperparameters across datasets. For each method, we use the standard hyperparameters used in the literature and compare its variation
across different datasets. The discriminative performance (DSC) is reported in the top row, whereas the calibration analysis (ECE) is depicted in the bottom row.

that contains images that have been synthetically corrupted, for
example by including Gaussian noise. Inspired by these works,
we now assess the robustness of our model in the presence of
domain drift. To do this, we added Gaussian noise to the images
on the testing set, with sigma values ranging from 0 to 0.05 with
an increment of 0.01. From the plots in Figure 5 we can clearly
observe that models trained with our objective function are less
sensitive to noise, compared to prior state-of-the-art methods.
More concretely, on the PROMISE dataset, the discriminative
and calibration performance of our approach remains almost in-
variant to image perturbations with different levels of Gaussian
noise. Furthermore, while the results obtained by our method
in the MRBrainS data are affected by noise, its performance
degradation is significantly lower than nearly all previous ap-
proaches, being on par with the focal loss. Nonetheless, it is
noteworthy to mention that despite the relative decrease in per-
formance is similar between the proposed method and FL, their
global performance differences are substantially large (e.g., 6-
8% difference in DSC). Based on these results we can argue that
the proposed method delivers higher performing models that
are, in addition, more robust to distributional drifts produced
by Gaussian noise.

5.2.5. On the impact of hyperparameters

We now assess the sensitivity of each model to the choice of
the hyperparameters on each dataset. We stress that, for each
method, we have selected a range of common values used in
the literature. In particular, γ is set to 1.0, 2.0 and 3.0 in Focal
loss, λ is fixed to 0.1, 0.2 and 0.3 in ECP and Label smoothing,
whereas the margin values in our method are set to 5.0, 8.0 and
10. The discriminative (DSC) and calibration (ECE) perfor-
mances obtained across the different hyperparameter values are

depicted in Fig. 6. From this figure, it can be easily observed
that, while prior approaches are very sensitive to the value of
their balancing term, our method is significantly more robust to
these changes. For example, the discriminative performance is
drastically affected in both ECP and LS across several datasets
when changing the value of the balancing term from 0.1 and
0.2 to 0.2 and 0.3, respectively. On the other hand, this phe-
nomenon is more pronounced in the calibration metrics, where
FL, ECP and LS show much higher variations than the pro-
posed approach. A potential drawback that can be extracted
from these findings is that, in order to get a well calibrated
and high performance model, prior approaches might require
multiple training iterations to find a satisfactory compromise.
Furthermore, we believe that these large variations indicate that
differences in the data –e.g., image contrast, target size and het-
erogeneity, or class distribution– might have a different impact
on these losses, entangling the convergence of models trained
with these terms.
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Figure 7: Our loss is model agnostic. Robustness to segmentation backbone,
which evaluates the standard cross-entropy and the proposed model on the

FLARE segmentation benchmark.

5.2.6. Robustness to backbone
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Figure 8: Qualitative results on MRBrainS dataset for different methods. In particular, we show the original image and the corresponding segmentation masks
provided by each method (top row), the ground-truth (GT) mask followed by maximum confidence score of each method (middle row) and the respective reliability

plots (bottom row). Methods from left to right: CE, CE+DICE, FL, ECP, LS, SVLS, Ours.

In this experiment, we evaluate the proposed loss on several
standard medical image segmentation networks, including: At-
tUNet (Oktay et al., 2018), TransUNet (Chen et al., 2021), and
UNet++ (Zhou et al., 2020). For this study, we consider the
FLARE dataset due to its larger number of classes. The quan-
titative comparison of CE and our method for these backbones
is presented in Fig. 7, from which it can be inferred that, irre-
spective of the backbone used, our method is capable of consis-
tently achieving better model calibration compared to the pop-
ular cross-entropy loss, while yielding at par performance in
the discrimination task. We can therefore say that the proposed
term is model agnostic, and the improvement observed is con-
sistent across different models.

5.2.7. Qualitative results and reliability diagrams

Figure 8 depicts the predicted segmentation masks (top), con-
fidence maps (middle) and their corresponding reliability plots
(bottom) on one subject across the different methods. While the
segmentation masks reveal several differences in terms of dis-
criminative performance, the confidence maps present more in-
teresting observations. Note that, as highlighted in prior works
(Liu et al., 2022), better calibrated models should show better
edge sharpness, matching the expected property that the model
should be less confident at the boundaries, whereas yielding
more confident predictions in inner target regions. First, we can
observe that adding the DSC loss term substantially degrades
the confidence map compared to its single CE loss counterpart.
In particular, the CE+DSC compounded loss tends to produce
smoother edges, in terms of confidence, which is derived from
worst calibrated models. Furthermore, while it can increase the
confidence of predictions in several inner object regions, it de-
creases this score in others. In addition, we can clearly observe
that the remaining analyzed methods provide a diverse span of
confidence estimates, with several models providing highly un-
confident inner regions (e.g., FL (Mukhoti et al., 2020) and LS
(Szegedy et al., 2016)). In contrast, our method yields confi-
dence estimates that are sharp in the edges and low in within-
region pixels, as expected in a well-calibrated model. These

visual findings are supported by the reliability diagrams. In-
deed, our model yields the best reliability diagram, as the ECE
curves are closer to the diagonal, indicating that the predicted
probabilities serve as a good estimate of the correctness of the
prediction.

6. Conclusion

Despite the popularity of network calibration in a broad span
of applications, the connection between state-of-the-art calibra-
tion losses remains unexplored, and their impact on segmen-
tation networks, particularly in the medical field, has largely
been overlooked. In this work, we have demonstrated that these
popular losses are closely related from a constrained optimiza-
tion perspective, whose implicit or explicit constraints lead to
non-informative solutions, preventing the model predictions to
reach the best compromise between discriminative and cali-
bration performance. To overcome this issue, we proposed a
simple solution that integrates an inequality constraint into the
main learning objective, which imposes a controlled margin on
the logit distances. Through an extensive empirical evaluation,
which contains multiple popular segmentation benchmarks, we
have assessed the discriminative and calibration performance of
state-of-the-art calibration losses in the important task of medi-
cal image segmentation. The results highlight several important
benefits of the proposed loss. First, it achieves consistent im-
provements over state-of-the-art calibration and segmentation
losses, both in terms of discriminative and calibration perfor-
mance. Second, the proposed model is much less sensitive to
hyperparameters changes compared to prior losses, which re-
duces the training time to find a satisfactory compromise be-
tween discrimination and calibration tasks. In addition, the em-
pirical observations support our hypothesis that the suboptimal
supervision delivered by the standard cross-entropy loss likely
results in poorly calibrated models, as model trained with this
loss tend to produce largest logit differences. Thus, we advo-
cate that the proposed loss term should be preferred to train
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models that provide higher discriminative performance, while
yet delivering accurate uncertainty estimates.
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