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ABSTRACT

We reinterpret the final softmax classifier over the vocabulary of Large Language
Models (LLM) as an Energy-based Model (EBM). This allows us to decompose the
chain of probabilities used in sequence-to-sequence modeling as multiple EBMs
that interact together at inference time. Our decomposition offers a principled
approach to measuring where the “energy spills” in LLM decoding, empirically
showing that spilled energy correlates well with factual errors, inaccuracies, biases,
and failures. Similar to Orgad et al. (2025), we localize the “exact” token associated
with the answer, yet, unlike them, who need to train a classifier and ablate which
activations to feed to it, we propose a method to detect hallucinations completely
training-free that naturally generalizes across tasks and LLMs by using the output
logits across subsequent generation steps. We propose two ways to detect hallu-
cinations: the first one that measures the difference between two quantities that
we call spilled energy, measuring the difference between energy values across
two generation steps that mathematically should be equal; the other is marginal
energy, which we can measure at a single step. Unlike prior work, our method
is training-free, mathematically principled, and demonstrates strong cross-dataset
generalization: we scale our analysis to state-of-the-art LLMs, including LLaMa-3,
Mistral, and Qwen-3, evaluating on nine benchmarks and achieving competitive
performance with robust results across datasets and different LLMs.

Q/A: ‘‘What is the capital of Italy? Answer:’’

Logit

The capital of Italy is Rome ✓

The capital of Italy is Sydney ✗

Spilled (Ours)

The capital of Italy is Rome ✓

The capital of Italy is Sydney ✗

Reasoning: ‘‘A farmer has 12 chickens. Each chicken lays 2 eggs per day.
How many eggs will the farmer collect in 5 days?’’

Logit

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 120 eggs in 5 days ✓

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 470 eggs in 5 days ✗

Spilled (Ours)

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 120 eggs in 5 days ✓

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 470 eggs in 5 days ✗

Figure 1: Color-coded comparison of hallucination detection with LLaMa-3 8B using logit confidence
and our spilled energy. Our method generalizes well across topics (e.g., Q&A, reasoning) and
diverse LLMs. ✓ indicates a correct answer and ✗ an incorrect one. While our approach focuses on
the exact answer tokens (e.g. Rome/Sydney and 120/470, see Section 4.2), here we apply min–max
normalization to the full answer for visualization, as truthful hallucination.
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1 INTRODUCTION

The widespread adoption of Large Language Models (LLMs) across various domains has brought
increasing attention to their critical limitation: their tendency to generate incorrect or misleading
information—commonly referred to as “hallucinations.” This issue supports the idea that LLMs are
just stochastic parrots (Bender et al., 2021) answering in a way that is statistically plausible with
respect to the input prompt despite not having a real understanding of it. On the other side, recent
reasoning capabilities proper to ChatGPT 4o (OpenAI-Team, 2023) or Deepseek (Liu et al., 2024)
offer counter evidence to actually support this. Ongoing research seeks to characterize and categorize
hallucinations, setting them apart from other error types (Liu et al., 2022; Ji et al., 2023; Huang et al.,
2023b; Rawte et al., 2023). At the same time, recent discussions have introduced terms such as
confabulations (Millidge, 2023) and fabrications (McGowan et al., 2023), sometimes attributing a
form of “intention” to LLMs—though the very idea of LLM “intentionality” and other human-like
qualities remains contested (Salles et al., 2020; Serapio-Garcı́a et al., 2023; Harnad, 2024). Research
on LLM hallucinations can be categorized into two main branches: the first one is the extrinsic branch,
where the hallucinations are measured with respect to the interpretation that humans give to those
errors (Bang et al., 2023; Ji et al., 2023; Huang et al., 2023b; Rawte et al., 2023). The second branch
was started by Kadavath et al. (2022b), proposing to study the hallucinations within the model itself.
Following Kadavath et al. (2022b), the work in Li et al. (2024) proposes Inference-Time Intervention
(ITI) as a way to improve the “truthfulness” of LLMs at inference time. ITI functions by altering
model activations at inference time, steering them along specific directions within a restricted set
of attention heads. Our work is also different from Yin et al. (2023), since we care about detecting
errors in LLMs, whereas they introduce an automated methodology to detect when LLMs are aware
that they do not know how to answer.

In this work, we follow the definition of hallucinations given by Orgad et al. (2025) as any form of
error produced by an LLM—including factual mistakes, biased outputs, breakdowns in common-sense
reasoning, and related issues. Like them, we also confirm that the truthfulness signal is concentrated
in the “exact answer tokens.” Nevertheless, unlike them, we abandon the idea of using a probe
classifier (Belinkov, 2022) trained for each task and dataset. Given that LLMs are foundational
models, user interactions typically occur in the wild, making it difficult to predict which probe
classifier is best suited for detecting hallucinations in real-world scenarios. Furthermore, in this
setting, classifier weights should not only be updated dynamically for each task, but the optimal
token–layer combination is also dataset-dependent, which conflicts with the broad LLM applicability.
Indeed, in the work by Orgad et al. (2025), the article reports:

“We find that probing classifiers do not generalize across different tasks.”

In our paper, we propose to solve this problem with a training-free method that generalizes better
across different tasks and is mathematically principled using the framework of Energy-based Models
(EBMs). Fig. 1 reports a qualitative comparison across tasks, comparing to the logit confidence.
Additional samples are shown in Appendix D.4.

We reinterpret the final softmax classifier over the vocabulary of LLM as an EBM, taking inspiration
from what Grathwohl et al. (2020) did five years ago for classifiers. This perspective enables us to
decompose the sequence-to-sequence probability chain into multiple interacting EBMs that operate
jointly during inference. Through this decomposition, we introduce the notion of “spilled energy” in
LLM decoding and show empirically that such spill strongly correlates with errors. Given that our
method is solely based on the mathematics of EBMs and the chain rule of probability, we do not have
to train or tune our detector, striking a good generalization across tasks and LLMs. Building on this
foundation, our contributions are as follows:

⋄ Training-free, LLM hallucination detection generalizing across tasks using the EBM framework.
We introduce a method for detecting hallucinations that requires no additional training, in contrast
to prior work that relies on trained classifiers and ablations of model activations. Our approach
directly reads values inside the LLM, enabling natural generalization across tasks and performing
better than logit-based detection.

⋄ Two energy-based metrics. We define two complementary measures of energy spills: (i) delta
energy ∆Eθ(xi:1), which captures discrepancies between energy values across two time steps that
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Figure 2: How energy spills in LLMs. (a) Language Modeling p(xi:1) is attained as a decomposition
problem following the chain rule of probability, implemented as autoregressive: we recursively apply
a discriminative classifier over the vocabulary V to attain generative modeling with larger context
size i.e. p(xi|xi−1:1). (b) We reinterpret each discriminative classifier as a generative EBM, finding
a connection between two quantities that should be the same across time steps yet are different. We
call this difference “the spilled energy” ∆Eθ(xi:1) in Eq. (8). (c) Given that we simply read values
inside the LLM, our approach is training-free and correlates well with hallucinations on a synthetic
math dataset with increasing difficulty; (d) histograms of spilled energy values, for incorrect and
correct answers on all nine datasets using min pooling for Llama-3-Instruct. The two distributions
are easily separable by using a simple threshold, resulting in a generalization across real-world tasks.

should be mathematically equivalent, and (ii) marginal energy Em
θ (xi:1), which can be evaluated

at a single time step.

⋄ Scalable and generalizable analysis. Our framework is mathematically principled, training-free,
and exhibits strong cross-dataset generalization. We scale our analysis to state-of-the-art LLMs,
including Llama 3-8B-Instruct and Mistral-7B-Instruct, and demonstrate competitive performance
across nine benchmarks, showing robustness across datasets and architectures.

Fig. 2(a) illustrates the core idea of our method: rather than using a naı̈ve approach, such as simply
recording the logit or training a probe classifier at the activations of the answer token, we first
reinterpret the LLM as an autoregressive EBM via the chain rule of probabilities. We then further
decompose each conditional probability, incorporating insights from Grathwohl et al. (2020). At
the time step of the exact token i − 1, we extract the energy, which corresponds to the logit, and
compare it with the marginal energy at the next time step i, corresponding to the denominator of the
softmax. According to the chain rule, these two quantities should be identical; however, they differ in
the LLM implementation—Fig. 2(b). We find that the discrepancy, which we term spilled energy
∆Eθ(xi:1), correlates strongly with instances where the LLM produces an incorrect output—see
Fig. 2(c). Moreover, its detection signal separates well correct and incorrect classes across datasets,
reflecting the model’s confidence, as shown in Fig. 2(d).

2 RELATED WORK

EBM applications to Trustworthy AI. EBMs have been applied to improve the reliability and inter-
pretability of Deep Nets. For example, Energy-Based Out-of-Distribution Detection (OOD) (Liu
et al., 2020) uses the energy score as a more robust alternative to the softmax confidence. At the same
time, Grathwohl et al. (2020) presents how to reinterpret a discriminative classifier as EBM to train
models both discriminative and generative. Following this work, Zhu et al. (2021) gives new insights
into the role of energy when training EBMs and robust classifiers using adversarial training. Instead,
Mirza et al. (2024; 2025) explain adversarial attacks by reinterpreting the softmax classifier as an
EBM, showing that these perturbations correspond to shifts in the underlying energy landscape.
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Foundations of Hallucination in LLMs. LLMs are prone to diverse errors—including bias, reasoning
failures, and generation of factually incorrect information unsupported by reliable sources. Karpowicz
(2025) frames hallucination and imagination as mathematically identical phenomena, both emerging
from a necessary violation of information conservation. Also Xu et al. (2025) provides a formal
learning-theoretic proof that hallucinations are unavoidable. They define a formal world in which
both the LLM and the ground-truth are computable functions, showing through classic results in
computability theory, that no LLM can learn all such functions. As a consequence, hallucination
is not just a practical artifact but a fundamental limitation of LLMs, valid even under idealized
conditions. Recently Kalai et al. (2025) showed that hallucinations come from the statistical problem
of the pretraining methodology: minimizing the cross entropy naturally causes errors because it does
not train the model to express uncertainty and say “I do not know.” Kalai et al. (2025) proposes to
change the evaluation practices to not reward models for guessing, but rather to mimic the human
exams that penalize only wrong answers.

Detecting and Mitigating LLM Hallucinations. Orgad et al. (2025) train classifiers on the internal
representations of the LLMs to predict, based on the features, the correctness of the answer. Given an
LLM in a white-box setting, an input prompt, and the generated response ŷ, the classifier’s task is
to predict whether ŷ is a hallucination. Orgad et al. suggested that LLMs may encode more factual
knowledge in their latent subspaces than is revealed in their outputs. Gekhman et al. (2025) propposed
a framework for studying hidden knowledge. Finally, Santilli et al. (2025) point out that uncertainty
quantification in language models is often evaluated using metrics like AuROC. This shares biases
between detection methods and correctness functions (e.g., length effects) that systematically distort
results. One way to mitigate hallucinations is to act at the decoding stage, where the output generation
can be steered Subramani et al. (2022). Steering vectors provide a straightforward way to control
a model by adding a fixed vector to its activations (Dunefsky & Cohan, 2025). Fu et al. (2025)
introduced DeepConf, a test-time method that leverages model-internal confidence signals to filter out
low-quality reasoning traces during or after generation. Kuhn et al. (2023b); Fadeeva et al. (2024);
Farquhar et al. (2024), and its follow-up by Kossen et al. (2025) in which they approximate the
semantic entropy in a more efficient way. Constrained decoding approaches Li et al. (2023); Peng
et al. (2023) modify token selection policies. Similarly, reinforcement learning with fact-based
rewards Ouyang et al. (2022) has been used to bias decoding trajectories toward verifiable outcomes.
Incorrect answers may also be given due to an ambiguous prompt: Kuhn et al. (2023a)’s CLAM
framework uses few-shot prompts to classify a question’s ambiguity and then asks the user to clarify.

3 BACKGROUND AND PRELIMINARIES

3.1 ENERGY-BASED MODELS

We give an overview of Energy-based Models (EBMs) and their use in discriminative classifiers.

EBMs. Energy-Based Models are a class of probabilistic models in which the probability distribution
over data points x is defined in terms of an energy function Eθ(x). The energy function, parameter-
ized by a neural network θ (Lecun et al., 2006), assigns a scalar energy to each configuration of x,
where lower energy values correspond to higher likelihood. The resulting probability distribution
is given by pθ(x) =

exp(−Eθ(x))
Zθ

where Zθ denotes the partition function (normalizing constant),
defined as Zθ =

∑
x exp(−Eθ(x)) for discrete x, or equivalently Zθ =

∫
exp(−Eθ(x)) dx for

continuous x. Standard neural networks are often deterministic function approximators, mapping
x 7→ y, EBMs instead define a full probability distribution over data or latent variables.

One of the strengths of EBMs is their flexibility in modeling arbitrary distributions without being tied
to a specific parametric form. This flexibility comes from the fact that the energy function E(x) can
be defined in various ways. Training involves learning the parameters of the energy function such
that the probability distribution pθ(x) matches the empirical distribution of the data. This is typically
done using techniques like contrastive divergence, score matching, or maximum likelihood.

Notation. Let V denote the vocabulary of the LLM, i.e., the set of all tokens that can be processed as
input and generated at each decoding step, with size |V| = V . We shorten the sequence of tokens
{xN , . . . ,x1} as X = {xN :1}, and xi ∈ V denotes the token in the i-th position along the sequence.
We model the LLM as a function θ : RN×V → RV , implemented by a transformer, or any other
sequence-to-sequence mechanism. For a sequence {xi:1} as input, we write θ

(
xi:1

)
[k] to denote the
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predicted logit assigned to the k-th token class in V for the i+ 1 token in the sequence, as is standard
in autoregressive LLM training (Ouyang et al., 2022).

3.2 AUTOREGRESSIVE LARGE LANGUAGE MODELS

Generative modeling has been pursued through a variety of approaches beyond autoregression
(AR). Variational Autoencoders (VAEs) (Kingma & Welling, 2014) learn a probabilistic latent
variable model by encoding inputs into a latent space and decoding samples back to the data domain.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) frame generation as a min-max
game between a generator and a discriminator. The diffusion process has been incorporated into
neural nets (Sohl-Dickstein et al., 2015) and, more recently, Diffusion Models (Ho et al., 2020)
have emerged as a powerful class of generative models. While these paradigms differ in how they
approximate the data distribution, AR models are special in their kind and take a more direct route
by factorizing the joint probability of sequences into conditionals, making them especially suitable
for language modeling. We now focus on the AR formulation that underlies most LLMs. Textual
data is segmented into a sequence of tokens X = {xi, . . . ,x1}, and a language modeling objective
is employed to maximize the likelihood of such data (Radford & Narasimhan, 2018). In other
words, we model the joint probability of tokens in the sequence X , through a conditional probability
parameterized by θ:

p(xi:1) = p(xi | xi−1:1) . . . p(x2 | x1) p(x1) =
∏
i

pθ(xi | xi−1:1)︸ ︷︷ ︸
discriminative model

pθ(x1). (1)

What we find interesting about this factorization is that, although it seeks to attain generative modeling,
i.e., p(xi:1), it actually uses recursively discriminative classifiers, parametrized by a transformer
network θ, that predicts a discrete distribution of the next token xi over the vocabulary V , given
previous tokens xi−1:1. This is used to model each conditional probability.

4 HOW ENERGY SPILLS IN LLMS

When predicting the token at position i, the conditional probability modeled by θ can be decomposed
using the probabilities of the sequences. As a result, the marginal term from step i cancels out with
the sequence probability from the decomposition at the previous step i− 1, which means we have:

p(xi:1) =
∏
i

pθ(xi|xi−1:1) =
∏
i

pθ(xi:1)

pθ(xi−1:1)
=⇒ . . .

pθ(xi:1)

�����pθ(xi−1:1)︸ ︷︷ ︸
step i

step i − 1︷ ︸︸ ︷
�����pθ(xi−1:1)

pθ(xi−2:1)
· · · = p(xi:1).

(2)

This indeed confirms that Eq. (1) results in the correct formulation for language modeling, which is
p(xi:1). Following the mathematics, these quantities should cancel out along the sequence, but we
will now show that, in practice, this constraint is not explicitly optimized for, and we can exploit it for
hallucination detection.

4.1 INTERPRETING LLMS AS ENERGY-BASED MODELS (EBMS)

Let us continue the expansion from Eq. (2). Writing the conditional as the ratio between the joint
distribution in the numerator and the marginal distribution in the denominator, we note that this ratio
is actually implemented in LLMs as a softmax classifier that digests the embedding of the prior
sentence xi−1:1 and predicts the next token xi, thus this chain of equality holds true. We can then
apply the “trick” from Grathwohl et al. (2020) as:

pθ(xi|xi−1:1) =
pθ(xi:1)

pθ(xi−1:1)
=

expθ(xi−1:1) [id(xi)]
V∑

k=1

expθ(xi−1:1)[k]

where id : {0, 1}V 7→ [1, . . . , V ]. (3)

id is the map that takes as input a one-hot encoding vector xi for a word token at position i in the
text and outputs its index in the vocabulary. A typical cross-entropy loss only optimizes with the
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supervision provided by the ground-truth token, through the vocabulary index id(xi). This loss
ignores all other quantities or constraints related to the complete sequence X , i.e., ignores all the time
steps higher than i+ 1.

We can write the conditional probability of Eq. (3) as a ratio of two EBMs as:

log pθ(xi|xi−1:1) = log
exp(−Eℓ

θ(xi:1))

exp(−Em
θ (xi−1:1))

Z̃(θ)

Z(θ)
= −Eℓ

θ(xi:1) + Em
θ (xi−1:1). (4)

Following Zhu et al. (2021), the partition functions simplify since log Z̃(θ) = logZ(θ)1.

Eℓ
θ, E

m
θ are computed from the output of the model, but with two big differences: Eℓ

θ as a single logit
extracted using the id of the sampled token, Em

θ by marginalizing over all ids in the vocabulary.

The two energies can be derived from the softmax of the logits, by connecting Eq. (4) and Eq. (3):

− log pθ(xi | xi−1:1) = − log

(
exp(θ(xi−1:1)[id(xi)])∑

k

exp(θ(xi−1:1)[k])

)
= (5)

= −θ(xi−1:1) [id(xi)]︸ ︷︷ ︸
Eℓ

θ(xi:1)

+ log

V∑
k=1

expθ(xi−1:1)[k]︸ ︷︷ ︸
−Em

θ (xi−1:1)

(6)

where θ(xi−1:1) produces the logits over the entire vocabulary V , and id(xi) allows us to extract
the logit of the sampled token at decoding step i.

We can think of Eℓ
θ(xi:1) as the energy of the sampled tokens {xi:1}, and Em

θ (xi−1:1) as the energy
Eθ(xi:1), marginalized over all possible xi. Considering the decoding at step i in Eq. (4), we get:

Eℓ
θ(xi:1) = −θ(xi−1:1)[id(xi)], Em

θ (xi−1:1) = − log

V∑
k=1

expθ(xi−1:1)[k]. (7)

Using the chain rule and Eq. (6), we can write the negative log-likelihood in terms of energies as:

− log p(xN :1) = − log
∏
i

pθ(xi|xi−1:1) =
∑
i

Eℓ
θ(xi:1)− Em

θ (xi−1:1)

without considering the base case pθ(x1). Now, if we develop the above equation as done for
Eq. (2), we write the total energy of a sequence of length N as Eθ(xN :1). Observe that the two
energies, not interacting at the same step but at steps i and i − 1, should be equal, but they
are measured in the LLM at different generation steps and from different components.

Eθ(xN :1) =
∑N−1

i=1 Eℓ
θ(xi+1:1)− Em

θ (xi:1) = . . .

timestep i+1︷ ︸︸ ︷
Eℓ

θ(xi+1:1) ︸ ︷︷ ︸
∆Eθ(xi:1)

− Em
θ (xi:1)+

timestep i︷ ︸︸ ︷
Eℓ

θ(xi:1)− Em
θ (xi−1:1) . . .

At timestep i+ 1, first −Em
θ (xi:1) is measured, taking the denominator in the softmax as in the right

part of Eq. (6), whereas at timestep i, the second Eℓ
θ(xi:1) is taken, reading the logit in the softmax,

left part of Eq. (6). We thus define the discrepancy between the two quantities as spilled energy:

Definition 4.1 (Spilled Energy ∆Eθ(xi:1)). The spilled energy in an LLM is the difference
between two energies that, in principle, should be equal, but given that they are measured i)
at different time steps ii) in different components, could be different.

∆Eθ(xi:1) ≜ −Em
θ (xi:1) + Eℓ

θ(xi:1) = − log
∑

k
exp(θ(xi:1)[k])︸ ︷︷ ︸

timestep i+1

+θ(xi−1:1)[id(xi)]︸ ︷︷ ︸
timestep i

(8)

Since both terms on the right side should be equal to Eθ(xi:1), delta values should always be zero
when we are correctly modeling the energy at timestep i. A shorter explanation for why spilled
energy needs to be zero is given in Appendix A.3.

1For a formal proof, please see Appendix A.1.
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4.2 DETECTING HALLUCINATIONS WITH SPILLED ENERGY

EBMs have previously been used to assess neural network credibility (Liu et al., 2020), and calibration
for LLMs has been explored by the Anthropic team (Kadavath et al., 2022b). However, dominant
training-free baselines such as logits or “p(true)” remain weak. We likewise adopt a training-free
approach, but rely on Eq. (8) and its variants as discriminants.

We feed the prompt {xi−1, . . . ,x1} to the LLM θ and obtain the completion {xN , . . . ,xi}. Follow-
ing Orgad et al. (2025), we focus on the “exact answer” tokens—those in [i+ 1, N ] that contain the
precise answer (e.g., Rome in Fig. 1), denoted [u,w] ⊆ [i + 1, N ]. For instance, it would be the
tokens associated with Rome in the question in Fig. 1. We identify this span by prompting the LLM
for a brief answer. When the answer spans multiple tokens, we apply a pooling strategy, which we
ablate in Section 5. We propose measuring two values that correlate well with hallucinations:

1. the marginal energy Em
θ (xi:1);

2. the spilled energy ∆Eθ(xi:1) by definition of Eq. (8).

We also attempt to combine the two metrics into scaled spilled energy ∆Es, where the spilled energy
is multiplied by the absolute value of the marginal energy as ∆Es(xi:1) = |Em

θ (xi:1)|∆Eθ(xi:1).
The metrics proposed here are independent, new for LLMs, and can all be tested efficiently. These
measures can be computed over the full sequence, but for error detection, as discussed in Section 5.2,
we must extract the values in the localized exact interval [u,w] to avoid false positives. Note that
Eℓ

θ(xi:1) is the classic baseline which in literature is referred to as “logits” or “logits confidence”.

5 EXPERIMENTS

To evaluate spilled energy, we consider two complementary settings. First, a controlled synthetic
environment, where we generate both correct and incorrect multi-digit arithmetic solutions. Second,
established real-world benchmarks, where errors arise naturally across diverse reasoning and com-
prehension tasks. Together, these experiments test whether insights from the clean synthetic setup
transfer to the complexity of open-domain language understanding.

5.1 SPILLED ENERGY UNDER SYNTHETIC ARITHMETIC

Experimental Setting. We first evaluate spilled energy in a controlled setting: multi-digit arithmetic
problems with more than 14 digits. For each instance, we generate both correct and incorrect
solutions. We tested three different LLMs: Llama-3 8B (Dubey et al.), Qwen-3 8B (Qwen-Team),
and Mistral-7B-Instruct v0.3 (Jiang et al.). Incorrect solutions are obtained by introducing random
numerical errors of varying magnitude. Specifically, we define three error ranges that differ in their
difficulty of detection:

⋄ Easy: random offset in the range [1000, 10000], which are typically easier to identify.
⋄ Medium: random offset in the range [100, 1000], where detection requires closer inspection.
⋄ Hard: random offset in [1, 10], much harder to detect since they appear plausible at first glance.

This design allows us to systematically probe whether spilled energy can distinguish between correct
and incorrect generations across different levels of error subtlety.

Results. We observe that spilled energy values separate correct from incorrect solutions with high
reliability across all error ranges and across all LLMs. In particular, spilled energy consistently
assigns lower values to correct generations and higher values to incorrect ones, producing a clear
margin of separation. Compared to standard baselines such as logits, spilled energy achieves superior
discriminative power, especially for errors in the more challenging range [1, 10], see Fig. 3. We offer
more results in Fig. 5. Larger, better-detailed ROC and histograms are in Figs. 6 and 7 respectively.

5.2 CROSS-DATASET RESULTS IN REAL-WORLD BENCHMARKS

Experimental Setting. We evaluate our methods on a diverse set of established NLP benchmarks,
including Math (Hendrycks et al.), TriviaQA (Joshi et al.), HotpotQA (Yang et al.), Winogrande

7
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Figure 3: Histograms of Spilled Energy values across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right, making it harder to detect
errors). All sums are performed on 13-digit integers. In the fourth column, we show ROC curves for
Hallucination Detection across the error ranges (colors) and methods (line styles).
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(b) Spilled Energy Improvement over Orgad et al.

Figure 4: (a) AuROC performance as percentages of probing classifiers on exact answer tokens by
Orgad et al. for LlaMA-3-Instruct. (b) depicts the performance difference between our Spilled ∆E
with Min pooling and theirs. Positive values indicate cases where Spilled ∆E outperforms Orgad
et al.. This comparison highlights the generalization capabilities of our method, compared to probing
classifiers. Legend: low performance high performance.

(Sakaguchi et al.), Winobias (Zhao et al.), Movies (Tapaswi et al.), MNLI (Williams et al.) and IMDB
(Maas et al.). These datasets span a wide range of reasoning and error-detection tasks, allowing
us to test whether the patterns observed in the synthetic arithmetic setting extend to real-world,
open-domain scenarios. Here too, we evaluate multiple LLMs that are either instruction-aligned or
not aligned, such as LLaMA-3 (Dubey et al.), and Mistral (Jiang et al.). As emphasized by Orgad
et al., it is essential to first localize the tokens most relevant to the final answer before applying error
detection. Since exact answer tokens may consist of multiple tokens, we further adopt a pooling
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Table 1: Hallucination detection performance, in terms of AuROC, across nine benchmarks and four
different LLMs. We measure the generalization across all tasks by computing the average.

Pool HotpotQA HotpotQA-WC IMDB Math MNLI Movies TriviaQA Winobias Winogrande Average

LLaMA-Instruct Dubey et al. (2024)

p(true) — 58.31±0.32 51.66±1.05 50.72±1.20 49.53±2.16 52.33±0.98 59.30±0.85 45.99±0.51 45.47±1.58 48.33±0.68 51.29±04.86

Orgad et al. Mean 66.56±9.10 59.00±8.14 69.78±14.76 66.56±17.04 60.56±12.53 66.44±8.06 63.22±11.11 67.33±11.97 58.00±7.79 64.16±03.90

Logit Eℓ Max 72.85±2.12 91.11±1.52 42.08±5.07 57.81±3.82 25.52±3.00 43.97±1.38 68.89±1.96 39.95±2.41 49.40±2.16 54.62±18.97

Marginal Em Max 76.72±1.38 30.74±3.45 85.63±2.39 27.08±5.06 89.90±1.25 96.17±0.63 80.13±1.87 57.67±2.94 47.47±1.83 65.72±24.39

Marginal Em Min 75.91±1.62 97.57±0.75 14.37±2.39 70.55±2.43 61.21±3.24 72.21±1.60 73.38±1.86 47.19±2.71 53.98±2.30 62.93±21.89

Spilled ∆Es Max 53.65±1.40 36.28±2.99 55.80±4.32 35.44±3.41 58.81±2.58 70.30±1.49 48.70±2.44 36.53±2.98 44.32±1.70 48.87±11.26

Spilled ∆E Min 85.98±1.09 93.00±1.61 47.66±4.06 65.58±3.02 73.95±1.97 89.34±1.04 87.07±1.33 60.72±2.74 55.11±2.05 73.16±15.64

LLaMA Dubey et al. (2024)

p(true) — 52.83±0.71 49.33±0.86 52.30±0.58 58.63±1.26 53.78±0.70 60.76±0.69 62.94±0.51 50.02±1.24 53.47±0.54 54.90±04.77

Orgad et al. Mean 61.22±9.95 56.78±8.70 72.67±13.91 69.67±15.07 60.33±13.77 64.00±8.40 66.44±8.20 60.89±12.60 53.56±4.36 62.84±05.71

Logit Eℓ Max 53.47±2.13 49.02±1.79 48.27±1.32 57.38±6.09 91.76±0.91 57.42±1.43 52.77±2.58 50.74±1.51 51.17±1.83 56.89±12.70

Marginal Em Max 78.00±1.30 76.90±1.09 48.29±1.16 68.77±8.33 10.93±1.42 80.70±1.98 67.49±1.69 51.91±2.32 51.28±2.47 59.36±20.69

Marginal Em Min 58.39±2.79 59.20±1.95 51.71±1.16 34.13±8.78 97.42±0.51 50.37±2.43 69.88±1.40 49.05±2.20 49.00±2.30 57.68±16.75

Spilled ∆Es Min 77.75±1.52 79.44±2.05 43.39±1.82 72.87±6.10 99.97±0.08 61.56±2.95 77.55±1.62 52.34±2.57 48.17±1.62 68.12±17.15

Spilled ∆E Min 79.04±1.78 80.83±1.87 43.22±1.67 74.36±5.54 99.97±0.08 61.97±2.81 78.54±1.57 52.11±2.58 48.21±1.62 68.69±17.48

Mistral-Instruct Jiang et al. (2023)

p(true) — 56.67±0.80 53.41±0.68 48.84±0.78 51.63±1.29 54.93±0.53 60.64±0.47 63.59±0.57 56.34±0.92 56.92±0.57 55.88±04.45

Orgad et al. Mean 64.78±10.56 56.78±7.95 82.67±11.63 68.78±11.43 64.22±12.12 64.89±11.55 65.44±12.10 61.00±12.23 61.44±11.31 65.56±06.84

Logit Eℓ Max 77.24±1.66 83.84±1.66 22.28±2.54 57.67±3.29 78.98±1.58 76.89±1.49 80.35±1.88 45.53±2.60 48.17±1.97 63.44±19.99

Marginal Em Max 64.63±1.97 33.42±1.90 81.33±2.32 26.52±2.28 17.62±1.20 86.60±1.20 65.46±2.25 56.41±4.44 51.14±1.71 53.68±22.53

Marginal Em Min 87.58±1.35 97.94±0.62 18.67±2.27 67.58±3.37 97.96±0.55 84.90±1.37 87.75±1.73 49.19±3.97 48.49±1.86 71.12±25.68

Spilled ∆Es Max 49.13±2.50 36.37±2.40 46.45±2.56 29.05±2.57 53.79±1.55 55.24±2.17 46.73±1.98 53.30±3.66 51.20±1.84 46.81±8.24

Spilled ∆E Min 91.12±1.10 97.47±0.78 59.77±2.57 66.63±3.46 95.95±0.83 94.99±0.93 91.75±1.01 50.74±3.15 49.00±1.92 77.49±19.42

Mistral Jiang et al. (2023)

p(true) — 54.21±0.76 51.68±0.76 50.40±0.50 45.86±2.05 51.94±0.50 49.12±0.63 58.00±0.67 53.76±1.17 47.29±0.55 51.36±03.73

Orgad et al. Mean 61.78±9.27 57.44±6.95 76.22±12.82 65.78±15.27 56.67±11.83 64.22±8.91 64.33±10.40 58.00±12.29 54.56±4.36 62.11±06.21

Logit Eℓ Max 49.54±1.42 52.47±1.61 32.72±2.89 57.21±3.89 92.49±1.15 30.52±2.00 39.73±2.03 46.53±3.80 44.41±2.42 49.51±17.28

Marginal Em Max 83.57±1.13 86.83±1.70 45.31±2.49 62.26±4.29 96.03±0.83 99.27±0.24 92.26±1.31 51.31±3.35 54.49±2.48 74.59±19.91

Marginal Em Min 87.52±1.31 90.91±1.58 54.69±2.49 86.21±1.96 98.80±0.35 94.41±0.62 83.66±2.16 52.15±1.74 46.37±2.02 77.19±19.05

Spilled ∆Es Max 60.54±1.81 60.18±1.84 43.47±2.76 71.93±3.62 45.94±2.40 78.84±1.53 67.92±1.32 57.24±3.72 51.88±1.90 59.77±11.08

Spilled ∆E Min 84.24±1.18 83.74±1.41 57.43±2.99 78.26±2.93 96.69±0.62 84.47±1.17 81.27±1.83 50.62±1.72 48.72±1.75 73.94±16.18

strategy across the localized span to obtain a final score per sentence. We compare spilled and
marginal energy against baselines such as the probing classifiers of Orgad et al., logit confidence of
Varshney et al. and p(true) of Kadavath et al..

Ablation of the exact answer token. We provide an ablation experiment on the impact of selecting
the exact answer tokens. Table 2 reports average AuROC over 9 benchmarks and 3 LLMs with the
exact answer, along with another column that offers the improvement provided by using the exact
answer. Like prior work, we confirm that searching for the exact answer provides a notable boost: the
improvement is very pronounced (∼ 24%) for spilled and marginal energy, while the logit baseline
receives a modest increase of 9%.

Cross-dataset results. We next evaluate in the more general setting of cross-dataset transfer, which
better reflects real-world usage. For methods requiring training, we report the average performance
on each dataset when trained separately on each remaining datasets (e.g., performance on IMDB
is the average accuracy of classifiers trained on each of the other nine datasets). Fig. 4 shows a
confusion matrix of cross-dataset performance, where the rows represent the training dataset and the
columns represent the testing dataset, and where red means good performance and blue low accuracy.
The model tested is LlaMA-3-Instruct. Fig. 4a shows that probing classifiers, as soon as they go
out-of-distribution from the dataset on which they are trained, perform only marginally better than
random guessing. The sharp drop observed in the off-diagonal elements supports our premise that this
standard, in-distribution setup significantly overestimates the utility of trained probes for broad LLM
deployment. Meanwhile, Fig. 4b displays the improvement of Spilled ∆E over the probing classifier,
where a positive red result means improvement of our method. Ours exhibits greater performance
across most datasets without requiring training. The generalization is proved with a strong increment
over the off-diagonal. Moreover, in some cases, such as TriviaQA, HotpotQA, and Movies, we have
improvements even on the diagonal. Other confusion matrices are available in Appendix D.2.

Table 1 summarizes results across nine benchmarks. The result reported in each cell is the average of
the accuracies of Fig. 4a within a column. Spilled energy consistently outperforms logit confidence,
and substantially surpasses the probing classifiers of Orgad et al. (2025). While this latter performs
well when trained and tested on the same dataset, their performance drops sharply under cross-dataset
evaluation, as reflected in their higher standard deviations. By contrast, ours requires no training and
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Table 3: Hallucination detection performance on the Gemma Model Instruct for different parameters
of the model, 1B and 4B.

Pool IMBD Movies TriviaQA Winogrande Winobias MNLI Math HotpotQA HotpotQA-WC Average

Gemma-Instruct 4B Kamath et al. (2025)

Logit Eℓ Max 50.09±0.45 60.88±3.96 53.95±2.10 49.77±0.15 54.43±2.80 27.00±2.16 78.64±3.47 62.84±1.97 64.49±2.02 55.79±13.24

Marginal Em Max 49.14±2.70 83.02±1.56 84.14±1.39 51.49±1.97 47.97±1.80 100.00±0.00 74.57±3.60 83.70±0.77 85.95±2.03 73.33±17.94

Marginal Em Min 50.86±2.70 51.29±3.30 55.33±1.80 48.12±1.89 51.91±2.10 99.01±0.50 76.03±3.27 62.59±1.49 71.84±2.72 63.00±15.75

Spilled ∆Es Max 50.89±1.65 50.77±5.72 56.08±2.48 50.59±1.72 53.53±2.81 95.61±0.56 43.94±3.21 50.87±1.87 51.21±1.68 55.94±14.35

Spilled ∆E Min 50.89±1.65 86.13±4.28 89.01±1.06 50.18±1.97 53.10±3.05 99.66±0.21 82.29±2.46 89.10±1.75 82.70±1.35 75.89±17.98

Gemma-Instruct 1B Kamath et al. (2025)

Logit Eℓ Max 46.33±0.82 48.12±11.45 58.89±1.61 50.50±2.45 53.49±3.71 49.28±2.12 65.12±6.62 62.24±3.62 75.67±1.96 56.63±9.13

Marginal Em Max 45.42±1.78 94.15±8.44 83.66±1.82 50.23±3.83 49.93±1.56 98.17±0.39 64.21±6.67 86.87±1.39 82.33±1.27 72.77±19.33

Marginal Em Min 54.58±1.78 28.93±14.50 39.80±2.54 49.84±4.38 50.39±1.80 56.33±1.60 63.20±4.27 41.58±2.85 61.56±1.61 49.58±10.47

Spilled ∆Es Max 45.17±2.37 33.27±11.49 49.01±1.67 52.27±3.56 49.91±2.59 77.48±1.92 40.49±4.17 49.18±3.93 35.77±2.13 48.06±12.13

Spilled ∆E Min 45.02±2.45 82.82±12.91 80.73±2.16 52.48±3.75 49.77±2.82 92.93±1.79 56.82±6.90 85.64±2.23 71.86±1.77 68.67±16.84

generalizes robustly across diverse benchmarks. We observe that instruction-tuned models tend to
amplify the margin by which spilled energy outperforms other methods, whereas on non-aligned
Mistral, spilled energy may rank slightly behind marginal energy. We also compare pooling strategies
and find that min pooling yields the best overall performance across methods. Table 3 shows our
method generalizes to Gemma over different LLM size, 1B and 4B.

Pool Average % Exact
w/ exact answer
answer increase

Logit Eℓ Max 56.12 +9.23
Orgad et al. Mean 63.67 –

Marginal Em Min 67.23 +20,02
Marginal Em Max 63.34 +3,62
Spilled ∆E Min 73.32 +24.06

Table 2: Improvement in the AuROC
with the exact answer. Average across
4 LLMs and 9 benchmarks.

Impact of Instruction Tuning. We observe a difference in
the behavior in the base models and their instruction-tuned
ones. While instruction-tuning generally improves genera-
tion quality, it can degrade the calibration of classical confi-
dence metrics, as described in Huang et al. (2023a); Ho et al.
(2025). For instance, examining the average performance
in Table 1, the logit baseline Eℓ

θ decreases from 56.89% to
54.62% for LLaMA-3, indicating that fine-tuning may lead
to overconfidence. In contrast, Spilled Energy (∆Eθ) con-
sistently benefits from instruction tuning, showing improved
detection rates across both LLaMA-3 (68.69% to 73.16%)
and Mistral (73.94% to 77.49%).

Variance and Generalization. A notable observation in Table 1 is the higher standard deviation
associated with marginal and spilled energy compared to the probing classifiers in the average column.
This variance is not a weakness but a reflection of the method’s training-free nature. Since ∆Eθ relies
on the intrinsic energy landscape of the LLM, its magnitude and sensitivity are naturally dependent on
the specific domain (e.g., the sharp energy peaks in Math and HotpotQA versus the flatter distributions
in Winobias and IMDB). Probing classifiers, by contrast, have high-variance when cross-testing yet
the average of cross-testing results is mostly constant just above random chance (≈ 62− 64%).

Limitations. A current limitation of spilled energy is that it sometimes produces false positives on
tokens that are not semantically informative, as shown in Appendix D.4. We observe this effect
most prominently on punctuation tokens (e.g., commas, periods) and on words at the beginning of
sentences. In these cases, the probability mass over the next token is naturally spread across many
plausible options, leading to inflated spilled energy values even in otherwise correct generations. This
highlights the importance of accurately identifying the exact answer tokens, as detection is most
reliable when restricted to the parts of the output that carry the semantic content of the answer.

6 CONCLUSION

We reinterpreted the softmax layer of LLMs as an EBM, which lets us define spilled energy: the
discrepancy between energy values that should be equal across consecutive time steps. We show
theoretically and empirically that this discrepancy provides a strong, training-free signal for detecting
hallucinations and errors in LLM outputs. Through synthetic arithmetic experiments, we demonstrate
that spilled energy reliably separates correct from incorrect generations, outperforming baselines such
as logits and marginal energy. Across diverse real-world NLP benchmarks, spilled energy generalizes
robustly without requiring additional classifiers or task-specific training, unlike probing methods that
struggle with transfer. Overall, spilled energy offers a principled and practical framework for error
detection in LLMs and a new perspective on the internal energy dynamics of autoregressive models.
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to error and hallucination detection in Large Language Models. We do not train new models or
collect additional data; instead, we rely exclusively on publicly available datasets and widely used
benchmark models for evaluation.

We note that part of our evaluation includes the Math dataset, which was publicly accessible at the
time of experimentation but has since been taken down following a copyright claim. We emphasize
that this dataset was used solely for evaluation purposes of our method, and only prior to the date
of the takedown. No redistribution of the dataset was made, and our reported results are limited to
demonstrating methodological effectiveness.

Our work does not involve personally identifiable information, sensitive content, or human subjects,
and does not raise foreseeable risks of harm. We believe the proposed approach contributes positively
to research on trustworthy AI by providing a training-free and generalizable framework for error
detection in language models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All experimental details, including
model configurations, evaluation protocols, and datasets used, are described in the main text and
Appendix B. Upon acceptance of this work, we will publicly release the code implementing our
method, along with instructions to reproduce all reported experiments. This will allow the community
to verify our findings and build upon our work.
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arXiv preprint arXiv:2307.00184, 2023. 2

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015. 5

Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from
pretrained language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Findings of the Association for Computational Linguistics: ACL 2022, pp. 566–581, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.48.
URL https://aclanthology.org/2022.findings-acl.48/. 4

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and Sanja
Fidler. Movieqa: Understanding stories in movies through question-answering. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4631–4640, 2016. doi:
10.1109/CVPR.2016.501. 8

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time saves
nine: Detecting and mitigating hallucinations of llms by validating low-confidence generation,
2023. 9

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, 2018.
URL http://aclweb.org/anthology/N18-1101. 8

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models, 2025. URL https://arxiv.org/abs/2401.11817. 4

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018. 7

15

https://qwen.ai/blog?id=1e3fa5c2d4662af2855586055ad037ed9e555125
https://qwen.ai/blog?id=1e3fa5c2d4662af2855586055ad037ed9e555125
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://aclanthology.org/2023.emnlp-main.155/
https://aclanthology.org/2022.findings-acl.48/
http://aclweb.org/anthology/N18-1101
https://arxiv.org/abs/2401.11817


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuan-Jing Huang. Do large
language models know what they don’t know? In ACL, 2023. 2

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in
coreference resolution: Evaluation and debiasing methods. In Marilyn Walker, Heng Ji, and
Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pp. 15–20, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-2003. URL https://aclanthology.org/N18-2003/. 8

Yao Zhu, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin Jiang, Yaowu Chen, and Zhenguo Li.
Towards understanding the generative capability of adversarially robust classifiers. In ICCV, pp.
7708–7717, 2021. 3, 6, 16

A APPENDIX

A.1 PARTITION FUNCTIONS PROOF USED IN EQ. (4)

We extend the proof of Zhu et al. to the sequence-to-sequence setting by treating next-token prediction
as a multi-class classification problem. At step i, the input is the prefix {xi−1:1}, and the model
outputs logits over the vocabulary V of size V . For notational consistency, we define the following
energy terms:  Eℓ

θ(xi:1) = − log
(
exp

(
θ(xi−1:1)[id(xi)]

))
,

Em
θ (xi−1:1) = − log

(∑V
k=1 exp

(
θ(xi−1:1)[k]

))
.

(9)

The probability of the sequence up to position i can be expressed as

pθ(xi:1) =
exp(−Eℓ

θ(xi:1))

Zθ
, (10)

where Zθ is the global partition function (normalizing constant), defined over all possible continua-
tions of all prefixes:

Zθ =
∑

xi−1:1

∑
xi

exp(θ(xi−1:1)[id(xi)]) =
∑

xi−1:1

V∑
k=1

exp(θ(xi−1:1)[k]) . (11)

Similarly, the probability of the prefix xi−1:1 can be written using the marginal energy:

pθ(xi−1:1) =
exp(−Em

θ (xi−1:1))

Z̃θ

, (12)

where Z̃θ is the corresponding normalizing constant:

Z̃θ =
∑

xi−1:1

exp(−Em
θ (xi−1:1)) =

∑
xi−1:1

exp

(
log

V∑
k=1

exp
(
θ(xi−1:1)[k]

))
. (13)

By expanding the logarithm in Eq. (13), we obtain

Z̃θ =
∑

xi−1:1

V∑
k=1

exp(θ(xi−1:1)[k]) , (14)

which is identical to Eq. (11). Hence, the two partition functions coincide:

Zθ = Z̃θ. (15)
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A.2 THE ROLE OF TEMPERATURE IN SPILLED ENERGY

We now analyze how the temperature parameter τ affects the definition of spilled energy. Starting
from Eq. (3), the probability of the next token under temperature scaling is

log pθ(xi | xi−1:1) = log
exp
(
1
τ θ(xi−1:1)[Id(xi)]

)∑
k

exp
(
1
τ θ(xi−1:1)[k]

) (16)

=
1

τ
θ(xi−1:1)[Id(xi)]− log

∑
k

exp
(
1
τ θ(xi−1:1)[k]

)
. (17)

Accordingly, the spilled energy becomes

∆Eθ(xi:1) =
1

τ
θ(xi−1:1)[Id(xi)]− log

|V |∑
k=1

exp
(
1
τ θ(xi, . . . ,x1)[k]

)
. (18)

Limit case τ → ∞. When the temperature tends to infinity, the logits are scaled down towards
zero, making all tokens equally likely:

lim
τ→+∞

∆Eθ(xi:1) = lim
τ→∞

1

τ
θ(xi−1:1)[Id(xi)]− log

|V |∑
k=1

exp
(
1
τ θ(xi−1:1)[k]

)
(19)

= 0− log

|V |∑
k=1

exp(0) (20)

= − log |V |. (21)

Thus, for τ → ∞ the model degenerates into a uniform random classifier over the vocabulary.

Interpretation. Varying τ perturbs the balance between the two energy terms, introducing a system-
atic error in ∆Eθ. From the perspective of the Boltzmann distribution, scaling by 1

τ corresponds to
injecting or removing energy from the system. At high temperatures (τ → ∞), the system approaches
maximum entropy, where all tokens have equal probability. At low temperatures (τ → 0+), the
distribution collapses onto the maximum logit token, making the model highly deterministic.

Error accumulation. As we generate tokens sequentially, we accumulate deviations in ∆Eθ:

log pθ(xi−1:1) =
1

τ
θ(xi−1:1)[Id(xi)]− log

∑
k

exp
(
1
τ θ(xi−1:1)[k]

)
+

i∑
j=1

∆Eθ(xj:1). (22)

Hence, temperature scaling not only modifies the probabilities but also reshapes the cumulative error
landscape traced by spilled energy.

A.3 WHY SPILLED ENERGY SHOULD BE ZERO?

TL;DR Consider Eq. (2) in our paper and the simplification that occurs between the two probabilities
between step i and step i− 1: that simplification occurs because the probability in the denominator
at step i is the same as the probability in the numerator at step i− 1 in order to perform language
modeling correctly. We measure those inside and LLMs in terms of energy, and the spilled energy is
the amount by which they differ.

Please see the definition below. Let us assume a sequence of three tokens x2,x1,x0 . If we do
language modeling with autoregression, minimizing the negative log-likelihood, we have:

− log p(x2,x1,x0) = − log p(x2|x1,x0)︸ ︷︷ ︸
step 2

p(x1|x0)p(x0)
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Now, every conditional probability on the right side is implemented with a transformer ending in a
softmax discriminative classifier. Equations (3) and (5) in our paper allow us to re-interpret:

step 2: − log p(x2|x1,x0) = − log
p(x2,x1,x0)

p(x1,x0)
= − log

[
exp

(
θ(x1,x0)[id(x2)]

)∑V
k exp

(
θ(x1,x0)[k]

) ] = (23)

= El(x2,x1,x0)− Em(x1,x0). (24)

In other words, we reinterpret:

⋄ the numerator p(x2,x1,x0) as the energy El(x2,x1,x0), which is the logit (l) of the
softmax at timestep 2;

⋄ The denominator as the energy Em(x1,x0) obtained with the marginalization (m) across
the vocabulary V . This value can be read “read” simply by taking the denominator of the
softmax at timestep 2. Please remember this term.

It is better to indicate them as energies (since they are not probabilities), and given their logarithmic
properties, we obtain a difference. We use the notation l for logits and m for marginalization.

Now, when we go across steps and we connect two-time steps, this is where the magic happens:

step 1: − log p(x1|x0) = − log p(x1,x0)
p(x0)

= El(x1,x0)− Em(x0).

We see that at timestep 1, the value El(x1,x0) appears again, but measured at the logit level.

In other words, across the time-steps 2 and 1, the quantity E(x1,x0) is measured twice:

⋄ at timestep 2, as the marginalization

⋄ at timestep 1, as the logit.

In the architecture or in the loss, there is no mechanism that forces this to be the same, but they should
be equal, given the language modeling objective. This is the same as saying that in Equation (2) of
our paper, the probabilities across time steps need to be simplified as we indicate.

In other words, this:

p(x2,x1,x0) = p(x2|x1,x0)p(x1|x0)p(x0)

implies:

E(x2,x1,x0) = El(x2,x1,x0) −Em(x1,x0) + El(x1,x0)︸ ︷︷ ︸
should be zero

−Em(x0) + El(x0)︸ ︷︷ ︸
should be zero

To model the energy of a sequence El(x2,x1,x0) correctly, then:

⋄ −Em(x1,x0) + El(x1,x0) = 0 (spilled energy at timestep 2 if non-zero)

⋄ −Em(x0) + El(x0) = 0 (spilled energy at timestep 1 if non-zero)

so that E(x2,x1,x0) = El(x2,x1,x0).

B REPRODUCIBILITY

For comparability, we adopt the same experimental setting as Orgad et al. (2025), whose implemen-
tation is publicly available at https://github.com/technion-cs-nlp/LLMsKnow. This
ensures that our baselines and evaluation procedures follow an established and validated protocol.

In addition, we will release our own codebase, which includes:
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⋄ computation of the proposed energy-based measures;

⋄ scripts for reproducing the synthetic arithmetic preliminary experiments.

The code and instructions will be made available upon acceptance of this work to facilitate full
reproducibility of our results.

B.1 EXACT ANSWER TOKEN DETECTION DETAILS

To analyze the spilled energy specifically on the tokens carrying the semantic weight of the answer,
we must first localize the ”exact answer” span [u,w] within the longer generated sequence ŷ. We
adopt the methodology proposed by Orgad et al. (2025), utilizing a combination of heuristics and an
auxiliary instruction-tuned LLM to perform this extraction.

Extraction Strategy Depending on the nature of the task, we employ two strategies to identify the
exact answer substring s:

⋄ Heuristic Matching: For tasks with a closed set of possible labels (e.g., classification
tasks or multiple-choice QA), we perform string matching to locate the label within the
generation.

⋄ LLM-based Extraction: For open-ended generation tasks (e.g., TriviaQA, Math), where
the answer form varies, we employ an instruction-tuned model (Mistral-7B-Instruct) to
extract the short answer from the long-form generation.

Prompting for Extraction Following Orgad et al. (2025), we prompt the auxiliary model with the
original question q and the generated long answer ŷ using the following template:

Prompt for Exact Answer Extraction

Extract from the following long answer the short answer, only the
relevant tokens. If the long answer does not answer the question,
output NO ANSWER.

Q: [Question 1]
A: [LLM long answer 1]
Exact answer: [Short exact answer 1]

Q: [Question 2]
A: [LLM long answer that does not answer the question]
Exact answer: NO ANSWER

Q: [Question]
A: [LLM long answer]
Exact answer:

Verification and Token Mapping To ensure robustness, we verify that the extracted string s is
a valid substring of the original generation ŷ. If the extraction is invalid or the model outputs ”NO
ANSWER,” we retry the extraction up to five times. If a valid substring is still not found, the sample is
excluded from the analysis to avoid identifying incorrect tokens.

Once the substring s is validated, we map it to the corresponding token indices [u,w] in the original
sequence. The spilled energy analysis is then performed specifically over this interval, or pooled
across it (e.g., via min-pooling) as described in Section 5.2.

Answer Extraction Performance For answer localization, we achieve accuracy comparable to the
results of Orgad et al. (2025). We report in Table 4 the extraction success rate across the full datasets
using Mistral-7B-Instruct. Note that some datasets have been excluded (e.g., IMDB, Winobias,
Winogrande) since they have a finite set of possible answers that can be used to easily locate the exact
answer within the model’s generation.
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Table 4: Answer Extraction Success Rate across tasks for Mistral-Instruct.

Dataset Success Rate (%)
TriviaQA 90.29
HotpotQA 87.37
Movies 93.61
MNLI 92.99
Math 87.59
HotpotQA-WC 92.38

C LLM USAGE

Large language models were used exclusively for text polishing and minor exposition refinements.
All substantive research content, methodology, and scientific conclusions were developed entirely by
the authors.

D SUPPLEMENTARY MATERIAL

This supplementary material is intended to complement the main paper by providing further motiva-
tion for our assumptions and design choices, as well as additional ablation studies or additional plots,
such as ROCs and histograms, that could not fit in the main paper.

D.1 ADDITIONAL RESULTS FOR SYNTHETIC ARITHMETIC

In Fig. 5 we augmented Fig. 3 in the main paper, adding also the results for Mistral-7B-Instruct v0.3
and LLaMa-3-8B. The same findings of the figure in the paper also translate to this LLM, meaning
that our method generalizes across LLMs.

Fig. 6 and Fig. 7 also extend and provide more details of Fig. 3 in the main paper by showing,
respectively, the histograms and the ROC at a better resolution and displayed in different frames.
Also, we have added results for Mistral-7B-Instruct v0.3 and LLaMa-3-8B.
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Figure 5: Histograms of Spilled Energy values across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right, making it harder to detect errors),
as described in Section 5.1. In the fourth column, we show ROC curves for Hallucination Detection
across the error ranges (colors) and methods (line styles).
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Figure 6: Histograms of Spilled Energy values for Correct and Incorrect answers
across models on Math Sums, increasing difficulty from left to right. We compute sums on 13-digit
integers, for incorrect answers we add a random offset sampled uniformly from the error interval:
Easy ∼ U(1e3, 1e4) - Medium ∼ U(1e2, 1e3) - Hard ∼ U(1, 10); for more details see Section 5.1.
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Figure 7: ROC curves for Hallucination Detection across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right). All sums are performed on
13-digit integers. Legend: Spilled (ours) Spilled ∆E Logit Eℓ Marginal Em

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 CROSS-TESTING COMPARISON WITH HEATMAPS
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Figure 8: Fig. 8a presents the cross-dataset performance of the method proposed by Orgad et al.
(2025) using Llama-3. Fig. 8b depicts the performance difference between their method and our
Spilled ∆E with Min pooling. Positive values indicate cases where Spilled ∆E outperforms the
method of Orgad et al. (2025). All the numbers are expressed as percentages.

tri
vi

aq
a

ho
tp

ot
qa

m
ov

ie
s

wi
no

bi
as

wi
no

gr
an

de

m
nl

i

im
db

m
at

h

ho
tp

ot
qa

_w
c

Test dataset

triviaqa

hotpotqa

movies

winobias

winogrande

mnli

imdb

math

hotpotqa_wc

Tr
ai

n 
da

ta
se

t

84 64 73 50 54 51 80 72 54

77 80 72 53 53 52 66 56 61

68 57 80 51 54 53 78 55 60

57 63 65 89 53 52 80 52 52

52 51 55 55 66 52 89 54 53

58 58 58 51 52 88 56 75 53

60 50 57 63 54 52 95 78 55

58 64 56 57 52 55 61 96 55

65 69 62 53 53 55 81 54 74
50

60

70

80

90

(a)

tri
vi

aq
a

ho
tp

ot
qa

m
ov

ie
s

wi
no

bi
as

wi
no

gr
an

de

m
nl

i

im
db

m
at

h

ho
tp

ot
qa

_w
c

Test dataset

triviaqa

hotpotqa

movies

winobias

winogrande

mnli

imdb

math

hotpotqa_wc

Tr
ai

n 
da

ta
se

t

-2.73 20.24 11.47 0.62 -5.28 45.69 -22.57 6.26 29.74

4.27 4.24 12.47 -2.38 -4.28 44.69 -8.57 22.26 22.74

13.27 27.24 4.47 -0.38 -5.28 43.69 -20.57 23.26 23.74

24.27 21.24 19.47 -38.38 -4.28 44.69 -22.57 26.26 31.74

29.27 33.24 29.47 -4.38 -17.28 44.69 -31.57 24.26 30.74

23.27 26.24 26.47 -0.38 -3.28 8.69 1.43 3.26 30.74

21.27 34.24 27.47 -12.38 -5.28 44.69 -37.57 0.26 28.74

23.27 20.24 28.47 -6.38 -3.28 41.69 -3.57 -17.74 28.74

16.27 15.24 22.47 -2.38 -4.28 41.69 -23.57 24.26 9.74

30

20

10

0

10

20

30

40

(b)

Figure 9: Fig. 9a presents the cross-dataset performance of the method proposed by Orgad et al.
(2025) using Mistral. Fig. 9b depicts the performance difference between their method and our
Spilled ∆E with Min pooling. Positive values indicate cases where Spilled ∆E outperforms the
method of Orgad et al. (2025). All the numbers are expressed as percentages.

D.3 ADDITIONAL RESULTS FOR CROSS-TESTING WITH REAL WORLD BENCHMARKS

Table 5 shows how our method compares with the baselines methods, Orgad et al. (2025) and Logit
Eℓ. This table was obtained by using various pooling methods in the pooling frame from which we
measure the hallucination. More details below alongside the examples based on Fig. 11:

⋄ Min: minimum energy value in the pooling frame. Energy Measured: −3

⋄ Max: maximum energy value in the pooling frame. Energy Measured: 11
⋄ Mean: mean among all the energies in the pooling frame. Energy Measured: 2.08
⋄ Last Token: energy on the last token of the pooling frame. Energy Measured: −3
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Figure 10: Fig. 10a presents the cross-dataset performance of the method proposed by Orgad et al.
(2025) using Mistral-Instruct. Fig. 10b depicts the performance difference between their method and
our Spilled ∆E with Min pooling. Positive values indicate cases where Spilled ∆E outperforms the
method of Orgad et al. (2025). All the numbers are expressed as percentages.

Pool HotpotQA HotpotQA-WC IMDB Math MNLI Movies TriviaQA Winobias Winogrande Average

LLaMA-Instruct

Orgad et al. (2025) Mean 66.56±9.10 59.00±8.14 69.78±14.76 66.56±17.04 60.56±12.53 66.44±8.06 63.22±11.11 67.33±11.97 58.00±7.79 64.16±3.90

Spilled ∆E Min 85.98±1.09 93.00±1.61 47.66±4.06 65.58±3.02 73.95±1.97 89.34±1.04 87.07±1.33 60.72±2.74 55.11±2.05 73.16±15.64

Marginal Em Max 76.72±1.38 30.74±3.45 85.63±2.39 27.08±5.06 89.90±1.25 96.17±0.63 80.13±1.87 57.67±2.94 47.47±1.83 65.72±24.39

Marginal Em Min 75.91±1.62 97.57±0.75 14.37±2.39 70.55±2.43 61.21±3.24 72.21±1.60 73.38±1.86 47.19±2.71 53.98±2.30 62.93±21.89

Logit Eℓ Max 72.85±2.12 91.11±1.52 42.08±5.07 57.81±3.82 25.52±3.00 43.97±1.38 68.89±1.96 39.95±2.41 49.40±2.16 54.62±18.97

Spilled ∆E Max 54.34±1.58 47.68±2.81 52.34±4.06 40.33±3.05 56.44±2.81 68.56±1.87 47.54±2.40 38.40±2.61 44.97±1.51 50.07±8.66

LLaMA

Orgad et al. (2025) Mean 61.22±9.95 56.78±8.70 72.67±13.91 69.67±15.07 60.33±13.77 64.00±8.40 66.44±8.20 60.89±12.60 53.56±4.36 62.84±5.71

Logit Eℓ Min 87.93±1.01 91.24±0.80 51.73±1.32 42.99±5.68 97.01±0.43 99.86±0.16 84.53±0.87 49.29±1.46 48.52±1.78 72.57±22.36

Spilled ∆E Min 79.04±1.78 80.83±1.87 43.22±1.67 74.36±5.54 99.97±0.08 61.97±2.81 78.54±1.57 52.11±2.58 48.21±1.62 68.69±17.48

Spilled ∆Es Min 77.75±1.52 79.44±2.05 43.39±1.82 72.87±6.10 99.97±0.08 61.56±2.95 77.55±1.62 52.34±2.57 48.17±1.62 68.12±17.15

Marginal Em Max 78.00±1.30 76.90±1.09 48.29±1.16 68.77±8.33 10.93±1.42 80.70±1.98 67.49±1.69 51.91±2.32 51.28±2.47 59.36±20.69

Marginal Em Min 58.39±2.79 59.20±1.95 51.71±1.16 34.13±8.78 97.42±0.51 50.37±2.43 69.88±1.40 49.05±2.20 49.00±2.30 57.68±16.75

Logit Eℓ Max 53.47±2.13 49.02±1.79 48.27±1.32 57.38±6.09 91.76±0.91 57.42±1.43 52.77±2.58 50.74±1.51 51.17±1.83 56.89±12.70

Logit Eℓ ALT 43.56±1.95 39.74±1.73 48.27±1.32 57.41±6.06 91.71±0.94 43.11±1.57 43.62±2.57 50.74±1.51 51.17±1.83 52.15±14.88

Logit Eℓ Last Token 43.56±1.95 39.74±1.73 48.27±1.32 57.41±6.06 91.71±0.94 43.11±1.57 43.62±2.57 50.74±1.51 51.17±1.83 52.15±14.88

Marginal Em ALT 61.59±1.88 58.64±1.60 48.29±1.16 67.93±9.32 10.75±1.44 61.39±1.80 49.73±1.45 51.19±2.59 51.44±2.50 51.22±15.61

Marginal Em Last Token 61.59±1.88 58.64±1.60 48.29±1.16 67.93±9.32 10.75±1.44 61.39±1.80 49.73±1.45 51.19±2.59 51.44±2.50 51.22±15.61

Marginal Em Mean 58.27±2.50 58.64±1.58 48.29±1.16 68.32±8.35 6.12±0.70 66.55±3.22 45.67±1.38 51.80±2.29 51.29±2.46 50.55±17.33

Mistral-Instruct

Orgad et al. (2025) Mean 64.78±10.56 56.78±7.95 82.67±11.63 68.78±11.43 64.22±12.12 64.89±11.55 65.44±12.10 61.00±12.23 61.44±11.31 65.56±6.84

Spilled ∆E Min 91.12±1.10 97.47±0.78 59.77±2.57 66.63±3.46 95.95±0.83 94.99±0.93 91.75±1.01 50.74±3.15 49.00±1.92 77.49±19.42

Marginal Em Min 87.58±1.35 97.94±0.62 18.67±2.27 67.58±3.37 97.96±0.55 84.90±1.37 87.75±1.73 49.19±3.97 48.49±1.86 71.12±25.68

Logit Eℓ Max 77.24±1.66 83.84±1.66 22.28±2.54 57.67±3.29 78.98±1.58 76.89±1.49 80.35±1.88 45.53±2.60 48.17±1.97 63.44±19.99

Marginal Em Max 64.63±1.97 33.42±1.90 81.33±2.32 26.52±2.28 17.62±1.20 86.60±1.20 65.46±2.25 56.41±4.44 51.14±1.71 53.68±22.53

Logit Eℓ Last Token 55.77±2.38 71.26±2.28 22.28±2.54 71.21±2.42 47.78±2.26 42.93±1.96 58.36±3.52 45.65±2.94 48.30±2.04 51.50±14.26

Logit Eℓ ALT 55.77±2.38 71.26±2.28 22.28±2.54 71.21±2.42 47.78±2.26 42.93±1.96 58.36±3.52 45.65±2.94 48.30±2.04 51.50±14.26

Mistral

Orgad et al. (2025) Mean 61.78±9.27 57.44±6.95 76.22±12.82 65.78±15.27 56.67±11.83 64.22±8.91 64.33±10.40 58.00±12.29 54.56±4.36 62.11±6.21

Marginal Em Min 87.52±1.31 90.91±1.58 54.69±2.49 86.21±1.96 98.80±0.35 94.41±0.62 83.66±2.16 52.15±1.74 46.37±2.02 77.19±19.05

Marginal Em Max 83.57±1.13 86.83±1.70 45.31±2.49 62.26±4.29 96.03±0.83 99.27±0.24 92.26±1.31 51.31±3.35 54.49±2.48 74.59±19.91

Spilled ∆E Min 84.24±1.18 83.74±1.41 57.43±2.99 78.26±2.93 96.69±0.62 84.47±1.17 81.27±1.83 50.62±1.72 48.72±1.75 73.94±16.18

Spilled ∆E Max 61.50±1.88 63.60±1.68 42.57±2.99 76.27±3.42 47.01±2.48 81.84±1.60 68.07±1.30 58.71±3.69 51.13±1.87 61.19±12.30

Spilled ∆Es Max 60.54±1.81 60.18±1.84 43.47±2.76 71.93±3.62 45.94±2.40 78.84±1.53 67.92±1.32 57.24±3.72 51.88±1.90 59.77±11.08

Table 5: Hallucination detection performance, in terms of AuROC, across nine benchmarks and
different LLMs. We measure the generalization across all tasks by computing the average.

⋄ After Last Token: energy of the first token after the pooling method. Energy Measured: 1
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Pooling Window

3    1    4           0.5     5    -5  1    1    0.5      11    4     -1  -3  1  
What is the capital of Italy? The capital of Italy is Rome   .

Figure 11: Example of the Pooling Window

D.4 ADDITIONAL QUALITATIVE RESULTS

In this section, we offer additional results of the detection performance following what is shown in
Fig. 1. We report both success cases and failure cases. While it is difficult to draw conclusions and
predict when, why, and on which topics spilled energy may work or not, we noticed that it appears to
perform reliably on knowledge-based factual content but exhibits difficulties with reasoning tasks
and numerical information, despite working well on math questions as demonstrated in Section 5.1.
Further investigation is required to better understand and validate these patterns.

D.4.1 SUCCESS CASES

Question: ‘‘Which planet is known as the Red Planet ?’’

Logits: The Red Planet is Mars . ✓

Ours: The Red Planet is Mars . ✓

Logits: The Red Planet is Jupiter . ✗

Ours: The Red Planet is Jupiter . ✗

Question: ‘‘What is the largest mamm al in the world ?’’

Logits: The largest mamm al in the world is the Blue Whale ✓

Ours: The largest mamm al in the world is the Blue Whale ✓

Logits: The largest mamm al in the world is the House Cat . ✗

Ours: The largest mamm al in the world is the House Cat . ✗

Question: ‘‘Who painted the Mona Lisa?’’

Logits: The Mona Lisa was painted by Leonardo da Vinci . ✓

Ours: The Mona Lisa was painted by Leonardo da Vinci . ✓

Logits: The Mona Lisa was painted by Pablo Esc obar . ✗

Ours: The Mona Lisa was painted by Pablo Esc obar . ✗

Question: ‘‘What gas do plants breathe in for photosyintesis ?’’
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Logits: They breathe in carbon dioxide ✓

Ours: They breathe in carbon dioxide ✓

Logits: They breathe in oxygen ✗

Ours: They breathe in oxygen ✗
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Question: ‘‘In which continent is Egypt Located ?’’

Logits: Egypt is located in Africa ✓

Ours: Egypt is located in Africa ✓

Logits: Egypt is located in Europe ✗

Ours: Egypt is located in Europe ✗

Question: ‘‘What is the fastest land animal ?’’

Logits: The fastest land animal is the che et ah ✓

Ours: The fastest land animal is the che et ah ✓

Logits: The fastest land animal is the lion ✗

Ours: The fastest land animal is the lion ✗

Question: ‘‘What is the hardest natural substance on Earth ?’’

Logits: The hardest natural substance is diamond ✓

Ours: The hardest natural substance is diamond ✓

Logits: The hardest natural substance is gold ✗

Ours: The hardest natural substance is gold ✗

Question: ‘‘Which ocean is the largest ?’’

Logits: The largest ocean is the Pacific Ocean ✓

Ours: The largest ocean is the Pacific Ocean ✓

Logits: The largest ocean is the Indian Ocean ✗

Ours: The largest ocean is the Indian Ocean ✗

D.4.2 FAILURE CASES

Question: ‘‘Who was the first person to walk on the mood ?’’

Logits: Neil Armstrong ✓

Ours: Neil Armstrong ✓

Logits: Buzz Ald rin ✗

Ours: Buzz Ald rin ✗

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Reasoning: ‘‘Marta has 2 sisters and 2 brothers. How many sisters has
one of the brothers of Marta?’’

Logits: Mart a has 2 sisters and 2 brothers . Each brother has the same 2 sisters
. So , one of Mart a ’s brothers has 2 sisters . ✓

Ours: Mart a has 2 sisters and 2 brothers . Each brother has the same 2 sisters .
So , one of Mart a ’s brothers has 2 sisters . ✓

Logits: Mart a has 2 sisters and 2 brothers . Each brother has the same 3 sisters
. So , one of Mart a ’s brothers has 3 sisters . ✗

Ours: Mart a has 2 sisters and 2 brothers . Each brother has the same 3 sisters .
So , one of Mart a ’s brothers has 3 sisters . ✗

Reasoning: ‘‘If there are 3 cars and each car has 4 wheels , how many
wheels are there in total ? ’’

Logits: Each car has 4 wheels . So , for 3 cars , the total number of wheels is 3
x 4 = 12 wheels . ✓

Ours: Each car has 4 wheels . So , for 3 cars , the total number of wheels is 3
x 4 = 12 wheels . ✓

Logits: Each car has 8 wheels . So , for 3 cars , the total number of wheels is 3
x 8 = 14 wheels . ✗

Ours: Each car has 8 wheels . So , for 3 cars , the total number of wheels is 3
x 8 = 14 wheels . ✗

Reasoning: ‘‘What is the square root of 64?’’

Logits: The square root of 64 is 8 ✓

Ours: The square root of 64 is 8 ✓

Logits: The square root of 64 is 10 ✗

Ours: The square root of 64 is 10 ✗

Question: ‘‘What blood tyoe is known as the universal donor ?’’

Logits: O negative ✓

Ours: O negative ✓

Logits: AB positive ✗

Ours: AB positive ✗
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