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ABSTRACT

We reinterpret the final softmax classifier over the vocabulary of Large Language
Models (LLM) as an Energy-based Model (EBM). This allows us to decompose the
chain of probabilities used in sequence-to-sequence modeling as multiple EBMs
that interact together at inference time. Our decomposition offers a principled
approach to measuring where the “energy spills” in LLM decoding, empirically
showing that spilled energy correlates well with factual errors, inaccuracies, biases,
and failures. Similar to Orgad et al. (2025), we localize the “exact” token associated
with the answer, yet, unlike them, who need to train a classifier and ablate which
activations to feed to it, we propose a method to detect hallucinations completely
training-free that naturally generalizes across tasks and LLMs by using the output
logits across subsequent generation steps. We propose two ways to detect hallu-
cinations: the first one that measures the difference between two quantities that
we call spilled energy, measuring the difference between energy values across
two generation steps that mathematically should be equal; the other is marginal
energy, which we can measure at a single step. Unlike prior work, our method
is training-free, mathematically principled, and demonstrates strong cross-dataset
generalization: we scale our analysis to state-of-the-art LLMs, including LLaMa-3,
Mistral, and Qwen-3, evaluating on nine benchmarks and achieving competitive
performance with robust results across datasets and different LLMs.

Q/A: *‘What is the capital of Italy? Answer:’’

Logit Spilled (Ours)

The capital of Italy is Rome v The capital of Italy is Rome 4

The capital of Italy is Sydney X The capital of Italy is Sydney X

‘‘A farmer has 12 chickens. Each chicken lays 2 eggs per day.
How many eggs will the farmer collect in 5 days?’’

Reasoning:

Logit

Spilled (Ours)

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 120 eggs in 5 days v

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 120 eggs in 5 days 4

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x

2 x 5 = 470 eggs in 5 days X 2 x 5 =470 eggs in 5 days X

Figure 1: Color-coded comparison of hallucination detection with LLaMa-3 8B using logit confidence
and our spilled energy. Our method generalizes well across topics (e.g., Q&A, reasoning) and
diverse LLMs. v indicates a correct answer and X an incorrect one. While our approach focuses on
the exact answer tokens (e.g. Rome/Sydney and 120/470, see Section 4.2), here we apply min—max
normalization to the full answer for visualization, as truthful hallucination.
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1 INTRODUCTION

The widespread adoption of Large Language Models (LLMs) across various domains has brought
increasing attention to their critical limitation: their tendency to generate incorrect or misleading
information—commonly referred to as “hallucinations.” This issue supports the idea that LLMs are
just stochastic parrots (Bender et al., 2021) answering in a way that is statistically plausible with
respect to the input prompt despite not having a real understanding of it. On the other side, recent
reasoning capabilities proper to ChatGPT 40 (OpenAl-Team, 2023) or Deepseek (Liu et al., 2024)
offer counter evidence to actually support this. Ongoing research seeks to characterize and categorize
hallucinations, setting them apart from other error types (Liu et al., 2022; Ji et al., 2023; Huang et al.,
2023b; Rawte et al., 2023). At the same time, recent discussions have introduced terms such as
confabulations (Millidge, 2023) and fabrications (McGowan et al., 2023), sometimes attributing a
form of “intention” to LLMs—though the very idea of LLM “intentionality” and other human-like
qualities remains contested (Salles et al., 2020; Serapio-Garcia et al., 2023; Harnad, 2024). Research
on LLM hallucinations can be categorized into two main branches: the first one is the extrinsic branch,
where the hallucinations are measured with respect to the interpretation that humans give to those
errors (Bang et al., 2023; Ji et al., 2023; Huang et al., 2023b; Rawte et al., 2023). The second branch
was started by Kadavath et al. (2022b), proposing to study the hallucinations within the model itself.
Following Kadavath et al. (2022b), the work in Li et al. (2024) proposes Inference-Time Intervention
(ITI) as a way to improve the “truthfulness” of LLMs at inference time. ITI functions by altering
model activations at inference time, steering them along specific directions within a restricted set
of attention heads. Our work is also different from Yin et al. (2023), since we care about detecting
errors in LLMs, whereas they introduce an automated methodology to detect when LLMs are aware
that they do not know how to answer.

In this work, we follow the definition of hallucinations given by Orgad et al. (2025) as any form of
error produced by an LLM—including factual mistakes, biased outputs, breakdowns in common-sense
reasoning, and related issues. Like them, we also confirm that the truthfulness signal is concentrated
in the “exact answer tokens.” Nevertheless, unlike them, we abandon the idea of using a probe
classifier (Belinkov, 2022) trained for each task and dataset. Given that LLMs are foundational
models, user interactions typically occur in the wild, making it difficult to predict which probe
classifier is best suited for detecting hallucinations in real-world scenarios. Furthermore, in this
setting, classifier weights should not only be updated dynamically for each task, but the optimal
token—layer combination is also dataset-dependent, which conflicts with the broad LLM applicability.
Indeed, in the work by Orgad et al. (2025), the article reports:

“We find that probing classifiers do not generalize across different tasks.”

In our paper, we propose to solve this problem with a training-free method that generalizes better
across different tasks and is mathematically principled using the framework of Energy-based Models
(EBMs). Fig. 1 reports a qualitative comparison across tasks, comparing to the logit confidence.
Additional samples are shown in Appendix D.4.

We reinterpret the final softmax classifier over the vocabulary of LLM as an EBM, taking inspiration
from what Grathwohl et al. (2020) did five years ago for classifiers. This perspective enables us to
decompose the sequence-to-sequence probability chain into multiple interacting EBMs that operate
jointly during inference. Through this decomposition, we introduce the notion of “spilled energy” in
LLM decoding and show empirically that such spill strongly correlates with errors. Given that our
method is solely based on the mathematics of EBMs and the chain rule of probability, we do not have
to train or tune our detector, striking a good generalization across tasks and LLMs. Building on this
foundation, our contributions are as follows:

¢ Training-free, LLM hallucination detection generalizing across tasks using the EBM framework.
We introduce a method for detecting hallucinations that requires no additional training, in contrast
to prior work that relies on trained classifiers and ablations of model activations. Our approach
directly reads values inside the LLLM, enabling natural generalization across tasks and performing
better than logit-based detection.

o Two energy-based metrics. We define two complementary measures of energy spills: (i) delta
energy A Fg(x;.1), which captures discrepancies between energy values across two time steps that
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Figure 2: How energy spills in LLMs. (a) Language Modeling p(x;.1) is attained as a decomposition
problem following the chain rule of probability, implemented as autoregressive: we recursively apply
a discriminative classifier over the vocabulary V to attain generative modeling with larger context
size i.e. p(x;|x;_1.1). (b) We reinterpret each discriminative classifier as a generative EBM, finding
a connection between two quantities that should be the same across time steps yet are different. We
call this difference “the spilled energy” AFg(x;.1) in Eq. (8). (¢) Given that we simply read values
inside the LLM, our approach is training-free and correlates well with hallucinations on a synthetic
math dataset with increasing difficulty; (d) histograms of spilled energy values, for incorrect and
correct answers on all nine datasets using min pooling for Llama-3-Instruct. The two distributions
are easily separable by using a simple threshold, resulting in a generalization across real-world tasks.

should be mathematically equivalent, and (ii) marginal energy Eg*(x;.1), which can be evaluated
at a single time step.

¢ Scalable and generalizable analysis. Our framework is mathematically principled, training-free,
and exhibits strong cross-dataset generalization. We scale our analysis to state-of-the-art LLMs,
including Llama 3-8B-Instruct and Mistral-7B-Instruct, and demonstrate competitive performance
across nine benchmarks, showing robustness across datasets and architectures.

Fig. 2(a) illustrates the core idea of our method: rather than using a naive approach, such as simply
recording the logit or training a probe classifier at the activations of the answer token, we first
reinterpret the LLM as an autoregressive EBM via the chain rule of probabilities. We then further
decompose each conditional probability, incorporating insights from Grathwohl et al. (2020). At
the time step of the exact token 7 — 1, we extract the energy, which corresponds to the logit, and
compare it with the marginal energy at the next time step ¢, corresponding to the denominator of the
softmax. According to the chain rule, these two quantities should be identical; however, they differ in
the LLM implementation—Fig. 2(b). We find that the discrepancy, which we term spilled energy
AFEg(x;.1), correlates strongly with instances where the LLM produces an incorrect output—see
Fig. 2(c). Moreover, its detection signal separates well correct and incorrect classes across datasets,
reflecting the model’s confidence, as shown in Fig. 2(d).

2 RELATED WORK

EBM applications to Trustworthy AI. EBMs have been applied to improve the reliability and inter-
pretability of Deep Nets. For example, Energy-Based Out-of-Distribution Detection (OOD) (Liu
et al., 2020) uses the energy score as a more robust alternative to the softmax confidence. At the same
time, Grathwohl et al. (2020) presents how to reinterpret a discriminative classifier as EBM to train
models both discriminative and generative. Following this work, Zhu et al. (2021) gives new insights
into the role of energy when training EBMs and robust classifiers using adversarial training. Instead,
Mirza et al. (2024; 2025) explain adversarial attacks by reinterpreting the softmax classifier as an
EBM, showing that these perturbations correspond to shifts in the underlying energy landscape.
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Foundations of Hallucination in LLMs. LLMs are prone to diverse errors—including bias, reasoning
failures, and generation of factually incorrect information unsupported by reliable sources. Karpowicz
(2025) frames hallucination and imagination as mathematically identical phenomena, both emerging
from a necessary violation of information conservation. Also Xu et al. (2025) provides a formal
learning-theoretic proof that hallucinations are unavoidable. They define a formal world in which
both the LLM and the ground-truth are computable functions, showing through classic results in
computability theory, that no LLM can learn all such functions. As a consequence, hallucination
is not just a practical artifact but a fundamental limitation of LLMs, valid even under idealized
conditions. Recently Kalai et al. (2025) showed that hallucinations come from the statistical problem
of the pretraining methodology: minimizing the cross entropy naturally causes errors because it does
not train the model to express uncertainty and say “I do not know.” Kalai et al. (2025) proposes to
change the evaluation practices to not reward models for guessing, but rather to mimic the human
exams that penalize only wrong answers.

Detecting and Mitigating LLM Hallucinations. Orgad et al. (2025) train classifiers on the internal
representations of the LLMs to predict, based on the features, the correctness of the answer. Given an
LLM in a white-box setting, an input prompt, and the generated response ¢, the classifier’s task is
to predict whether ¢ is a hallucination. Orgad et al. suggested that LLMs may encode more factual
knowledge in their latent subspaces than is revealed in their outputs. Gekhman et al. (2025) propposed
a framework for studying hidden knowledge. Finally, Santilli et al. (2025) point out that uncertainty
quantification in language models is often evaluated using metrics like AuUROC. This shares biases
between detection methods and correctness functions (e.g., length effects) that systematically distort
results. One way to mitigate hallucinations is to act at the decoding stage, where the output generation
can be steered Subramani et al. (2022). Steering vectors provide a straightforward way to control
a model by adding a fixed vector to its activations (Dunefsky & Cohan, 2025). Fu et al. (2025)
introduced DeepConf, a test-time method that leverages model-internal confidence signals to filter out
low-quality reasoning traces during or after generation. Kuhn et al. (2023b); Fadeeva et al. (2024);
Farquhar et al. (2024), and its follow-up by Kossen et al. (2025) in which they approximate the
semantic entropy in a more efficient way. Constrained decoding approaches Li et al. (2023); Peng
et al. (2023) modify token selection policies. Similarly, reinforcement learning with fact-based
rewards Ouyang et al. (2022) has been used to bias decoding trajectories toward verifiable outcomes.
Incorrect answers may also be given due to an ambiguous prompt: Kuhn et al. (2023a)’s CLAM
framework uses few-shot prompts to classify a question’s ambiguity and then asks the user to clarify.

3 BACKGROUND AND PRELIMINARIES

3.1 ENERGY-BASED MODELS

We give an overview of Energy-based Models (EBMs) and their use in discriminative classifiers.

EBMs. Energy-Based Models are a class of probabilistic models in which the probability distribution
over data points x is defined in terms of an energy function Fg(x). The energy function, parameter-
ized by a neural network 6 (Lecun et al., 2006), assigns a scalar energy to each configuration of x,
where lower energy values correspond to higher likelihood. The resulting probability distribution

is given by pg(x) = %ﬁ“x)) where Zg denotes the partition function (normalizing constant),
defined as Zg = Y exp(—FEpg(x)) for discrete x, or equivalently Zg = [ exp(—Eg(x)) dx for
continuous x. Standard neural networks are often deterministic function approximators, mapping

x — y, EBMs instead define a full probability distribution over data or latent variables.

One of the strengths of EBMs is their flexibility in modeling arbitrary distributions without being tied
to a specific parametric form. This flexibility comes from the fact that the energy function F(x) can
be defined in various ways. Training involves learning the parameters of the energy function such
that the probability distribution pg(x) matches the empirical distribution of the data. This is typically
done using techniques like contrastive divergence, score matching, or maximum likelihood.

Notation. Let )V denote the vocabulary of the LLM, i.e., the set of all tokens that can be processed as
input and generated at each decoding step, with size |V| = V. We shorten the sequence of tokens
{xNn,...,x1} as X = {xn.1}, and x; € V denotes the token in the i-th position along the sequence.
We model the LLM as a function  : RV*V — RY implemented by a transformer, or any other
sequence-to-sequence mechanism. For a sequence {x;.1 } as input, we write O(XM) [k] to denote the
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predicted logit assigned to the k-th token class in V for the ¢ + 1 token in the sequence, as is standard
in autoregressive LLM training (Ouyang et al., 2022).

3.2 AUTOREGRESSIVE LARGE LANGUAGE MODELS

Generative modeling has been pursued through a variety of approaches beyond autoregression
(AR). Variational Autoencoders (VAEs) (Kingma & Welling, 2014) learn a probabilistic latent
variable model by encoding inputs into a latent space and decoding samples back to the data domain.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) frame generation as a min-max
game between a generator and a discriminator. The diffusion process has been incorporated into
neural nets (Sohl-Dickstein et al., 2015) and, more recently, Diffusion Models (Ho et al., 2020)
have emerged as a powerful class of generative models. While these paradigms differ in how they
approximate the data distribution, AR models are special in their kind and take a more direct route
by factorizing the joint probability of sequences into conditionals, making them especially suitable
for language modeling. We now focus on the AR formulation that underlies most LLMs. Textual
data is segmented into a sequence of tokens X = {x;,...,X1 }, and a language modeling objective
is employed to maximize the likelihood of such data (Radford & Narasimhan, 2018). In other
words, we model the joint probability of tokens in the sequence X, through a conditional probability
parameterized by 0:

p(xi1) = p(X; | Xi—1:1) ... p(x2 | X1) p(x1) = HPO(Xi | xi—1:1) po(x1). ey

- N————

* discriminative model
What we find interesting about this factorization is that, although it seeks to attain generative modeling,
i.e., p(x;.1), it actually uses recursively discriminative classifiers, parametrized by a transformer

network 6, that predicts a discrete distribution of the next token x; over the vocabulary V, given
previous tokens x;_1.1. This is used to model each conditional probability.

4 How ENERGY SPILLS IN LLMS

When predicting the token at position i, the conditional probability modeled by € can be decomposed
using the probabilities of the sequences. As a result, the marginal term from step 7 cancels out with
the sequence probability from the decomposition at the previous step ¢ — 1, which means we have:

stepi — 1
(xi:1) (xi:1)
Po(Xi:1 Po(Xi:1) P 7—1:1
p(x;.1) = po(Xi|Xi—1.1) = _— = ... s =p(X4e1)-
( Zl) 1:[ ( Z‘ ‘ 11) HPG(Xi—l:l) pﬁz—m? Pe(Xi—2:1) ( “)

step %

@)

This indeed confirms that Eq. (1) results in the correct formulation for language modeling, which is
p(x;:1). Following the mathematics, these quantities should cancel out along the sequence, but we
will now show that, in practice, this constraint is not explicitly optimized for, and we can exploit it for
hallucination detection.

4.1 INTERPRETING LLMS AS ENERGY-BASED MODELS (EBMS)

Let us continue the expansion from Eq. (2). Writing the conditional as the ratio between the joint
distribution in the numerator and the marginal distribution in the denominator, we note that this ratio
is actually implemented in LLMs as a softmax classifier that digests the embedding of the prior
sentence x;_1.; and predicts the next token x;, thus this chain of equality holds true. We can then
apply the “trick” from Grathwohl et al. (2020) as:

po(xi|Xi_1.1) = ptz(x 1)) = eXE (xi—11) [1d(xs)] where id: {0,1}V — [1,...,V]. 3)

Po(Xi—1:1
' > expO(xi—1.1)[k]
k=1

id is the map that takes as input a one-hot encoding vector x; for a word token at position ¢ in the
text and outputs its index in the vocabulary. A typical cross-entropy loss only optimizes with the
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supervision provided by the ground-truth token, through the vocabulary index id(x;). This loss
ignores all other quantities or constraints related to the complete sequence X, i.e., ignores all the time
steps higher than ¢ + 1.

We can write the conditional probability of Eq. (3) as a ratio of two EBMs as:

oxp(~Ef(xi1)) Z(6)
exp(—Eg'(Xi-1:1)) Z(60)
Following Zhu et al. (2021), the partition functions simplify since log Z(6) = log Z(8)'.

log pe(x;|x;—1:1) = log = —Ej(xi1) + Eg'(xi_1.1)- 4

EY, Ep are computed from the output of the model, but with two big differences: Ej as a single logit
extracted using the id of the sampled token, Eg* by marginalizing over all ids in the vocabulary.

The two energies can be derived from the softmax of the logits, by connecting Eq. (4) and Eq. (3):

— logpg(xi | Xiflzl) = - 10g (e)g(j)f;)((lg(lxl@)_[jf)([):]))])> N ©
g \4

= <O(xi_11) [10(x)] + log Y exp O(xi-1.) K ©
k=1

Ef(xi:1)

—Eg(xi-1:1)

where 0(x;_1.1) produces the logits over the entire vocabulary V), and id(x;) allows us to extract
the logit of the sampled token at decoding step i.

We can think of Eé(xm) as the energy of the sampled tokens {x;.1 }, and Eg'(x;_1.1) as the energy
Eg(x;.1), marginalized over all possible x;. Considering the decoding at step i in Eq. (4), we get:
v
Eﬁ(xm = _0(Xi71:1)[id(xi)}a Eg'(xi—1:1) = — logZexp B(Xiflcl)[k} @)
k=1
Using the chain rule and Eq. (6), we can write the negative log-likelihood in terms of energies as:

—logp(xn.1) = —log Hpo(Xi|X1:—1;1) = ZES(XM) — Egt(xi—1:1)

without considering the base case pg(x1). Now, if we develop the above equation as done for
Eq. (2), we write the total energy of a sequence of length N as Fg(xy.1). Observe that the two
energies, not interacting at the same step but at steps ¢ and ¢ — 1, should be equal, but they
are measured in the LLM at different generation steps and from different components.

timestep i+1 timestep %
Bo(xn) = S0 Bo(Xi11) — By (xin) = ... Bg(xit11) — E§'(xia) + E§(xi1) — By (Xi—1) ...
AEg(xi:1)
At timestep ¢ + 1, first —Ej*(x;.1) is measured, taking the denominator in the softmax as in the right

part of Eq. (6), whereas at timestep ¢, the second Ef; (x;.1) is taken, reading the logit in the softmax,
left part of Eq. (6). We thus define the discrepancy between the two quantities as spilled energy:

Definition 4.1 (Spilled Energy A FEg(x;.1)). The spilled energy in an LLM is the difference
between two energies that, in principle, should be equal, but given that they are measured 1)
at different time steps ii) in different components, could be different.

ABe(xi1) £ —Eg' (xin) + Bg(xin) = —log ) exp(8(xis1)[k]) +0(xi—1.1)[1d(xi)]
—_—

timestep ¢

timestep ¢+41

®)

Since both terms on the right side should be equal to Fg(x;.1), delta values should always be zero
when we are correctly modeling the energy at timestep ¢. A shorter explanation for why spilled
energy needs to be zero is given in Appendix A.3.

"For a formal proof, please see Appendix A.1.
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4.2 DETECTING HALLUCINATIONS WITH SPILLED ENERGY

EBM:s have previously been used to assess neural network credibility (Liu et al., 2020), and calibration
for LLMs has been explored by the Anthropic team (Kadavath et al., 2022b). However, dominant
training-free baselines such as logits or “p(true)” remain weak. We likewise adopt a training-free
approach, but rely on Eq. (8) and its variants as discriminants.

We feed the prompt {x;_1,...,X;} to the LLM 0 and obtain the completion {xp, . ..,x;}. Follow-
ing Orgad et al. (2025), we focus on the “exact answer” tokens—those in [¢ + 1, V] that contain the
precise answer (e.g., Rome in Fig. 1), denoted [u,w] C [i 4+ 1, N]. For instance, it would be the
tokens associated with Rome in the question in Fig. 1. We identify this span by prompting the LLM
for a brief answer. When the answer spans multiple tokens, we apply a pooling strategy, which we
ablate in Section 5. We propose measuring two values that correlate well with hallucinations:

1. the marginal energy Ey*(X;.1);
2. the spilled energy AE,4(x;.1) by definition of Eq. (8).

We also attempt to combine the two metrics into scaled spilled energy A E, where the spilled energy
is multiplied by the absolute value of the marginal energy as AE;(x;.1) = |Eg'(xi:1) | AEg(Xi:1).
The metrics proposed here are independent, new for LLMs, and can all be tested efficiently. These
measures can be computed over the full sequence, but for error detection, as discussed in Section 5.2,
we must extract the values in the localized exact interval [u, w] to avoid false positives. Note that
Ef; (x;.1) is the classic baseline which in literature is referred to as “logits” or “logits confidence”.

5 EXPERIMENTS

To evaluate spilled energy, we consider two complementary settings. First, a controlled synthetic
environment, where we generate both correct and incorrect multi-digit arithmetic solutions. Second,
established real-world benchmarks, where errors arise naturally across diverse reasoning and com-
prehension tasks. Together, these experiments test whether insights from the clean synthetic setup
transfer to the complexity of open-domain language understanding.

5.1 SPILLED ENERGY UNDER SYNTHETIC ARITHMETIC

Experimental Setting. We first evaluate spilled energy in a controlled setting: multi-digit arithmetic
problems with more than 14 digits. For each instance, we generate both correct and incorrect
solutions. We tested three different LLMs: Llama-3 8B (Dubey et al.), Qwen-3 8B (Qwen-Team),
and Mistral-7B-Instruct v0.3 (Jiang et al.). Incorrect solutions are obtained by introducing random
numerical errors of varying magnitude. Specifically, we define three error ranges that differ in their
difficulty of detection:

o Easy: random offset in the range [1000, 10000], which are typically easier to identify.
© Medium: random offset in the range [100, 1000], where detection requires closer inspection.
¢ Hard: random offset in [1, 10], much harder to detect since they appear plausible at first glance.

This design allows us to systematically probe whether spilled energy can distinguish between correct
and incorrect generations across different levels of error subtlety.

Results. We observe that spilled energy values separate correct from incorrect solutions with high
reliability across all error ranges and across all LLMs. In particular, spilled energy consistently
assigns lower values to correct generations and higher values to incorrect ones, producing a clear
margin of separation. Compared to standard baselines such as logits, spilled energy achieves superior
discriminative power, especially for errors in the more challenging range [1, 10], see Fig. 3. We offer
more results in Fig. 5. Larger, better-detailed ROC and histograms are in Figs. 6 and 7 respectively.

5.2 CROSS-DATASET RESULTS IN REAL-WORLD BENCHMARKS

Experimental Setting. We evaluate our methods on a diverse set of established NLP benchmarks,
including Math (Hendrycks et al.), TriviaQA (Joshi et al.), HotpotQA (Yang et al.), Winogrande
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Figure 3: Histograms of Spilled Energy values across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right, making it harder to detect
errors). All sums are performed on 13-digit integers. In the fourth column, we show ROC curves for
Hallucination Detection across the error ranges (colors) and methods (line styles).
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Figure 4: (a) AuROC performance as percentages of probing classifiers on exact answer tokens by
Orgad et al. for LlaMA-3-Instruct. (b) depicts the performance difference between our Spilled AE
with Min pooling and theirs. Positive values indicate cases where Spilled A F outperforms Orgad
et al.. This comparison highlights the generalization capabilities of our method, compared to probing
classifiers. Legend: low performance I high performance.

(Sakaguchi et al.), Winobias (Zhao et al.), Movies (Tapaswi et al.), MNLI (Williams et al.) and IMDB
(Maas et al.). These datasets span a wide range of reasoning and error-detection tasks, allowing
us to test whether the patterns observed in the synthetic arithmetic setting extend to real-world,
open-domain scenarios. Here too, we evaluate multiple LLMs that are either instruction-aligned or
not aligned, such as LLaMA-3 (Dubey et al.), and Mistral (Jiang et al.). As emphasized by Orgad
et al., it is essential to first localize the tokens most relevant to the final answer before applying error
detection. Since exact answer tokens may consist of multiple tokens, we further adopt a pooling



Under review as a conference paper at ICLR 2026

Table 1: Hallucination detection performance, in terms of AuROC, across nine benchmarks and four
different LLMs. We measure the generalization across all tasks by computing the average.

Pool HotpotQA HotpotQA-WC  IMDB Math MNLI Movies  TriviaQA Winobias Winogrande  Average
LLaMA-Instruct Dubey et al. (2024)
p(true) — 5831032 51.66+1.05  50.72+1.20 49.5342.6 52334008 59304055 45.99:051 45474155 4833100658 51.29+40156
Orgadetal.  Mean 66.56:0.10  59.00+5.1 69.78 1176 66.56+17.01 60.56+12.55 66.44 1506 63221111 67.33 1107 58.00+7.70 64.16+03.00
Logit E* Max 72.85:212  9l.11:152 42084507 57.814ss2 25524500 43974155 68.89+1.06 39.95:041 49.40:2.16 54.62+15.07
Marginal E™ Max 76.72+1.35 27.08+5.06 89.90+125 96.17+0.63 80.13+1.57 57.67+2 4747 +1.83 65.72424.39
Marginal E™ Min 7591+1.62 70.55:205 61214520 72214160 73.38+1.56 47.19 53.98+2.30 62.93+21.80
Spilled AE;, Max 53.65+1.40 2 35441501 58.81:oss 70.30+£1.40 48.70:2.44 36.53 44324170 48.87+11.26
Spilled AE. Min 85.98-1.09 i 65584302 73.95+:107 89.3441.00 8707153 60.72+274 55.11+205 731641564
LLaMA Dubey et al. (2024)
p(true) —  52.83-07 4933056 52304055 58.63+1.26 53.78:0.70 60.76+0.00 62942051 50.02+1.21 53.47+051 54.90+0177
Orgadetal.  Mean 61.22:0.05  56.78+s.70  72.67+15.01 69.67+15.07 60.33+ 64.00+5.10 6644520 60.89+12.60 53.56+1.36 62.84-05.7
Logit E* Max 53.47:203 49.02:170 48271132 57381600 91761001 57.42:143 527772058 50744150 51174185 56.89+12.70
Marginal E™ Max 78.00=130  76.90=1.00  48.29+1.16 68.77+x35 10.93+1.02 80.70+1.08 67.49=1.60 5191250 51.28+2.47 59.36+20.60
Marginal E™ Min 58392270  59.20+105  51.71+t106 34132878 97421050 50.3712.43 69.88+1.40 49.05 49.00+2.30 57.68+16.75
Spilled AE;, Min 77.75+152  7944:005 43394150 72.87+610 99.97+0.05 61.564205 77.55+1.60 52.34+2 48.17+1.62 68.12417.15
Spilled AE Min 79.04:175  80.83:157  43.22+167 7436550 9997008 61.97+051 7854157 52.11+055 48214162 68.69+17.4x
Mistral-Instruct Jiang et al. (2023)
p(true) —  56.67:0s0  53.4l:00s 48841078 51.63:1120 54.93 60.642047 6359057 56341002 56921057 55.88+01.45
Orgadetal.  Mean 64.78+10.56  56.78+7.05  82.67+11.65 68.78+11.45 64.22+12.12 64.89+11.55 65.44+12.10 61.00+1225 61.44+11.51 65.56+06.51
Logit E* Max 77241166  83.84:166 22284051 57.67+s.00 78.98:158 76.89+1.40 80.35:185 455310060 48.17+1.07 63.44410.00
Marginal £™ Max 64.63:1.07  33.42:100 81331232 26521008 17.621120 86.60+1.20 65.46-0205 56.41+ta40 51141171 53.6810058
Marginal E™ Min 87.58+1.35 97941062 18.67+2 67.58 337 97961055 84901137 87751173 49.19:507 48.49:186 711210568
Spilled AE; Max 49.13:250 3637240 46451056 29.05:257 53794155 55244007 46.73+1.05 53.30:5066 51204150 46.814524
Spilled AE Min 91.12:110  97.47:07s  59.77+257 66.63+5.46 95951055 9499005 91L75:1.01 50.74+515 49.00+1.00 77.49+10.42
Mistral Jiang et al. (2023)

p(true) — 5421076 51.68:0.76  50.40:0.50 45.86+2.05 51.94+050 49124063 58.00+0.67 53.76+1.17 47.29+0.55 51.36+05.73
Orgadetal.  Mean 61.78:027 5744005 76.22:12.52 65.78+15.07 56.67+11.55 64.2245.01 64.33210.40 58.0012.20 5456450 62.1100.2
Logit E* Max 49.54:100 52472160 32724080 57214580 92.49 30.52+2.00 39734203 46.53:5:50 444141242 49.51 41708
Marginal E™ Max 83.57:1.13  86.83:170 45314040 62264420 96.03:10.53 99.27+021 92.26:1.51 51.31:s35 54491048 74591100
Marginal E™ Min 87.52:151  90.91:155  54.69:040 86.21+11.05 98.80:0.35 94411062 83.66+216 52151171 4637002 771941005
Spilled AE; Max 60.54:151  60.18+1.5 43471276 71931562 45941040 78841155 67.92:150 57241572 51.88+11.00 59.77 11108
Spilled AE Min 84.24+11s  83.74:1401 57431000 7826:205 96.69:0.62 8447117 81274153 50.62+1.72 487241175 73.94116.18

strategy across the localized span to obtain a final score per sentence. We compare spilled and
marginal energy against baselines such as the probing classifiers of Orgad et al., logit confidence of
Varshney et al. and p(true) of Kadavath et al..

Ablation of the exact answer token. We provide an ablation experiment on the impact of selecting
the exact answer tokens. Table 2 reports average AuROC over 9 benchmarks and 3 LLMs with the
exact answer, along with another column that offers the improvement provided by using the exact
answer. Like prior work, we confirm that searching for the exact answer provides a notable boost: the
improvement is very pronounced (~ 24%) for spilled and marginal energy, while the logit baseline
receives a modest increase of 9%.

Cross-dataset results. We next evaluate in the more general setting of cross-dataset transfer, which
better reflects real-world usage. For methods requiring training, we report the average performance
on each dataset when trained separately on each remaining datasets (e.g., performance on IMDB
is the average accuracy of classifiers trained on each of the other nine datasets). Fig. 4 shows a
confusion matrix of cross-dataset performance, where the rows represent the training dataset and the
columns represent the testing dataset, and where red means good performance and blue low accuracy.
The model tested is LlaMA-3-Instruct. Fig. 4a shows that probing classifiers, as soon as they go
out-of-distribution from the dataset on which they are trained, perform only marginally better than
random guessing. The sharp drop observed in the off-diagonal elements supports our premise that this
standard, in-distribution setup significantly overestimates the utility of trained probes for broad LLM
deployment. Meanwhile, Fig. 4b displays the improvement of Spilled A E over the probing classifier,
where a positive red result means improvement of our method. Ours exhibits greater performance
across most datasets without requiring training. The generalization is proved with a strong increment
over the off-diagonal. Moreover, in some cases, such as TriviaQA, HotpotQA, and Movies, we have
improvements even on the diagonal. Other confusion matrices are available in Appendix D.2.

Table 1 summarizes results across nine benchmarks. The result reported in each cell is the average of
the accuracies of Fig. 4a within a column. Spilled energy consistently outperforms logit confidence,
and substantially surpasses the probing classifiers of Orgad et al. (2025). While this latter performs
well when trained and tested on the same dataset, their performance drops sharply under cross-dataset
evaluation, as reflected in their higher standard deviations. By contrast, ours requires no training and
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Table 3: Hallucination detection performance on the Gemma Model Instruct for different parameters
of the model, 1B and 4B.
Pool IMBD Movies  TriviaQA Winogrande Winobias ~ MNLI Math  HotpotQA HotpotQA-WC  Average

Gemma-Instruct 4B Kamath et al. (2025)

Logit E* Max 50.09+0.45 60.88-+3.06 53.95+2.10 49.77+0.15 54434050 27.00+2.16 78.64+5.47 62.84-1.0 64.49-002  55.79+15
Marginal E™ Max 49.14+270 83.02+1.56 84.14+1.50 51.49+1.07 47.97+1.50 100.00-0.00 74.57 560 83.70+0.77 85951205  73.33+17.04
Marginal E™ Min 50.86:2.70 51.29+3.30 55331150 48.12+150 51.91:2.10 99.01+050 76.03+5.27 62.59 100  71.841272  63.00+15.75
Spilled AE, Max 50.89:1.65 50.77:5.72 56.08:42.45 50.59+1.72 53.53+2.51 95.61+056 43.94:5.21 50.87+1.5 51.21+168 55941435
Spilled AE. Min 50.89:1.65 86.13-125 89.01+1.06 50.18+1.07 53.10:5.05 99.66+0.21 82.29-2.16 89.10+1 7 82.70+1.35  75.89+17.05
Gemma-Instruct 1B Kamath et al. (2025)
Logit B¢ Max 46.33+0.52 48.12+11.45 58.89+1.61 50.50-2.45 53.49+3.71 49.28-2.12 6512662 62.24-362  75.67+1.96 56.63+0.13
Marginal E™ Max 4542175 9415541 83.66+1.5> 50.23:355 49.93+156 9817030 64.21:6.67 86.87+1.50 82331127 7277103
Marginal E™ Min 54.58 175 28.93 1450 39.80+2.51 49.84+13: 50.39+1.50 56.33+1.60 63.20+4.27 41.58+255  61.56+ 1. 49.58 +10.47
Spilled AE; Max 45.17+2.57 33.27 1140 49.01 4167 52.27 1356 499141250 77.48 1102 40.49+1.17 49.18 305 35774215 48.06+12.13
Spilled AE. Min 45.02:2.45 82.82+12.01 80.73+2.16 5248575 49.77+252 92931170 56.82:6.00 85.64+223  71.86+1.77  68.67 165

generalizes robustly across diverse benchmarks. We observe that instruction-tuned models tend to
amplify the margin by which spilled energy outperforms other methods, whereas on non-aligned
Mistral, spilled energy may rank slightly behind marginal energy. We also compare pooling strategies
and find that min pooling yields the best overall performance across methods. Table 3 shows our
method generalizes to Gemma over different LLM size, 1B and 4B.

Impact of Instruction Tuning. We observe a difference in Pool Average % Exact

the behavior in the base models and their instruction-tuned w/ exact  answer
ones. While instruction-tuning generally improves genera- answer  increase
tion quality, it can degrade the calibration of classical confi- o g Max  56.12 4923

dence metrics, as described in Huang et al. (2023a); Hoetal.  Orgadetal. Mean  63.67

(2025). For instance, examining the average performance  “Nawinal £ Min 6723 +20,02
in Table 1, the logit baseline Eg decreases from 56.89% to Marginal E™ Max  63.34 +3,62
54.62% for LLaMA-3, indicating that fine-tuning may lead  Spilled AE. Min  73.32  +24.06
to overconfidence. In contrast, Spilled Energy (A Ejp) con-

sistently benefits from instruction tuning, showing improved Table 2: Improvement in the AuROC
detection rates across both LLaMA-3 (68.69% to 73.16%) Wwith the exact answer. Average across
and Mistral (73.94% to 77.49%). 4 LLMs and 9 benchmarks.

Variance and Generalization. A notable observation in Table | is the higher standard deviation
associated with marginal and spilled energy compared to the probing classifiers in the average column.
This variance is not a weakness but a reflection of the method’s training-free nature. Since A Fjy relies
on the intrinsic energy landscape of the LLM, its magnitude and sensitivity are naturally dependent on
the specific domain (e.g., the sharp energy peaks in Math and HotpotQA versus the flatter distributions
in Winobias and IMDB). Probing classifiers, by contrast, have high-variance when cross-testing yet
the average of cross-testing results is mostly constant just above random chance (= 62 — 64%).

Limitations. A current limitation of spilled energy is that it sometimes produces false positives on
tokens that are not semantically informative, as shown in Appendix D.4. We observe this effect
most prominently on punctuation tokens (e.g., commas, periods) and on words at the beginning of
sentences. In these cases, the probability mass over the next token is naturally spread across many
plausible options, leading to inflated spilled energy values even in otherwise correct generations. This
highlights the importance of accurately identifying the exact answer tokens, as detection is most
reliable when restricted to the parts of the output that carry the semantic content of the answer.

6 CONCLUSION

We reinterpreted the softmax layer of LLMs as an EBM, which lets us define spilled energy: the
discrepancy between energy values that should be equal across consecutive time steps. We show
theoretically and empirically that this discrepancy provides a strong, training-free signal for detecting
hallucinations and errors in LLM outputs. Through synthetic arithmetic experiments, we demonstrate
that spilled energy reliably separates correct from incorrect generations, outperforming baselines such
as logits and marginal energy. Across diverse real-world NLP benchmarks, spilled energy generalizes
robustly without requiring additional classifiers or task-specific training, unlike probing methods that
struggle with transfer. Overall, spilled energy offers a principled and practical framework for error
detection in LLMs and a new perspective on the internal energy dynamics of autoregressive models.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses on methodological contributions
to error and hallucination detection in Large Language Models. We do not train new models or
collect additional data; instead, we rely exclusively on publicly available datasets and widely used
benchmark models for evaluation.

We note that part of our evaluation includes the Math dataset, which was publicly accessible at the
time of experimentation but has since been taken down following a copyright claim. We emphasize
that this dataset was used solely for evaluation purposes of our method, and only prior to the date
of the takedown. No redistribution of the dataset was made, and our reported results are limited to
demonstrating methodological effectiveness.

Our work does not involve personally identifiable information, sensitive content, or human subjects,
and does not raise foreseeable risks of harm. We believe the proposed approach contributes positively
to research on trustworthy Al by providing a training-free and generalizable framework for error
detection in language models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All experimental details, including
model configurations, evaluation protocols, and datasets used, are described in the main text and
Appendix B. Upon acceptance of this work, we will publicly release the code implementing our
method, along with instructions to reproduce all reported experiments. This will allow the community
to verify our findings and build upon our work.
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A APPENDIX

A.1 PARTITION FUNCTIONS PROOF USED IN EQ. (4)

We extend the proof of Zhu et al. to the sequence-to-sequence setting by treating next-token prediction
as a multi-class classification problem. At step 4, the input is the prefix {x;_1.1}, and the model
outputs logits over the vocabulary V of size V. For notational consistency, we define the following
energy terms:

E{;(xi:l) = — log(exp (0(x7_11)[1d(xl)])) y

)
g (xi-11) = —log (X1 exp (6(xi-1.) K]) )
The probability of the sequence up to position ¢ can be expressed as
exp(—E5(x;.
po(Xi1) = M (10)

Zg ’

where Zg is the global partition function (normalizing constant), defined over all possible continua-
tions of all prefixes:

Zg = Z ZGXP(G(Xi—M )[id(x;)] Z Zexp (xi—1:1)[K]) - (11

Xi-1:1 Xi X;—1:1 k=1

Similarly, the probability of the prefix x;_1.; can be written using the marginal energy:

po(Xi—1.1) = exp(_Eng(Xiil:l)), (12)
]

where Ze is the corresponding normalizing constant:

Zo = Z exp(—Eg' (Xi—1:1) Z eXp(logZeXp (xi—11 [k])) . (13)
Xi—1:1 Xi—1:1
By expanding the logarithm in Eq. (13), we obtain

Zo= > Zexp (x;_1.1)[K]) (14)

X;—1:1 k=1

which is identical to Eq. (11). Hence, the two partition functions coincide:

Zo = Zo. 15)
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A.2 THE ROLE OF TEMPERATURE IN SPILLED ENERGY

We now analyze how the temperature parameter 7 affects the definition of spilled energy. Starting
from Eq. (3), the probability of the next token under temperature scaling is

exp(%e(xi—m)[ld(xi)})

log pp(x; | Xi—1:1) = log (16)
zk:exp(%a(xi,lzl)[k])
1
= - —0(x;_1.1)[Id(x;)] logZexp O(xi—1:1)[k]) . (17)
Accordingly, the spilled energy becomes
1 [V
AFEy(x;1) = 7_H(XZ 1:1)[Id(x;)] logZexp (xi, ..., x1)[k]) . (18)

Limit case 7 — oo. When the temperature tends to infinity, the logits are scaled down towards
zero, making all tokens equally likely:

V]
TEIJPOO AEy(x;1) = Tlg{)lo 0(xz 1.1)[Id(x;)] logZexp xl,m)[k]) (19)
V]
=0—1log» exp(0) (20)
= log|V]. 1)

Thus, for 7 — oo the model degenerates into a uniform random classifier over the vocabulary.

Interpretation. Varying 7 perturbs the balance between the two energy terms, introducing a system-
atic error in A E}y. From the perspective of the Boltzmann distribution, scaling by % corresponds to
injecting or removing energy from the system. At high temperatures (7 — 00), the system approaches
maximum entropy, where all tokens have equal probability. At low temperatures (7 — 07), the
distribution collapses onto the maximum logit token, making the model highly deterministic.

Error accumulation. As we generate tokens sequentially, we accumulate deviations in A Fy:

1 i
log po(xi—1:1) = TB(XZ 1:1)[1d(x;)] logZexp 0(x;1.1)[k]) + ZAEO(Xj:1)~ (22)
j=1

Hence, temperature scaling not only modifies the probabilities but also reshapes the cumulative error
landscape traced by spilled energy.

A.3 WHY SPILLED ENERGY SHOULD BE ZERO?

TL;DR Consider Eq. (2) in our paper and the simplification that occurs between the two probabilities
between step ¢ and step ¢« — 1: that simplification occurs because the probability in the denominator
at step ¢ is the same as the probability in the numerator at step ¢ — 1 in order to perform language
modeling correctly. We measure those inside and LLMs in terms of energy, and the spilled energy is
the amount by which they differ.

Please see the definition below. Let us assume a sequence of three tokens X2, x1,Xo . If we do
language modeling with autoregression, minimizing the negative log-likelihood, we have:

—log p(x2,%1,%0) = — log p(x2|x1, X0) p(x1]x0)p(%0)
—_——

step 2
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Now, every conditional probability on the right side is implemented with a transformer ending in a
softmax discriminative classifier. Equations (3) and (5) in our paper allow us to re-interpret:

0 id
step2: — log p(x2|x1,%0) = —logw = —log exp (01, x0) i (x2)]) = (23)

p(x1,%0) Sy exp (8(x1,%0)[k])
= El(x27X1,XO) — E™(x1,%0). (24)

In other words, we reinterpret:
o the numerator p(x2,X1,Xo) as the energy E'(x2,X1,%g), which is the logit (I) of the
softmax at timestep 2;

¢ The denominator as the energy E™ (x1,X() obtained with the marginalization (m) across
the vocabulary V. This value can be read “read” simply by taking the denominator of the
softmax at timestep 2. Please remember this term.

It is better to indicate them as energies (since they are not probabilities), and given their logarithmic

properties, we obtain a difference. We use the notation [ for logits and m for marginalization.

Now, when we go across steps and we connect two-time steps, this is where the magic happens:
P(x1,X0)

step1: — logp(x1|x¢) = —log oy = E'(x1,%0) — E™(x0).

We see that at timestep 1, the value E'(x;,X() appears again, but measured at the logit level.

In other words, across the time-steps 2 and 1, the quantity F(x1,Xg) is measured twice:

© at timestep 2, as the marginalization
¢ at timestep 1, as the logit.
In the architecture or in the loss, there is no mechanism that forces this to be the same, but they should

be equal, given the language modeling objective. This is the same as saying that in Equation (2) of
our paper, the probabilities across time steps need to be simplified as we indicate.

In other words, this:

p(x2,X1,X0) = p(X2|X1,X0)p(X1[X0)P(X0)

implies:

E(x2,x1,x0) = EZ(XQ,Xl,XO) —Em(Xl,Xo) + El(Xl,Xo) —Em(Xo) + El(Xo)

should be zero should be zero
To model the energy of a sequence E'(x2, X1, Xg) correctly, then:

o —E™(x1,%0) + E'(x1,%0) = 0 (spilled energy at timestep 2 if non-zero)

o —E™(x0) + E'(x0) = 0 (spilled energy at timestep 1 if non-zero)

so that E(Xg,Xl,Xo) = EZ(XQ,Xl,Xo).

B REPRODUCIBILITY

For comparability, we adopt the same experimental setting as Orgad et al. (2025), whose implemen-
tation is publicly available at https://github.com/technion-cs-nlp/LLMsKnow. This
ensures that our baselines and evaluation procedures follow an established and validated protocol.

In addition, we will release our own codebase, which includes:
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o computation of the proposed energy-based measures;

o scripts for reproducing the synthetic arithmetic preliminary experiments.

The code and instructions will be made available upon acceptance of this work to facilitate full
reproducibility of our results.

B.1 EXACT ANSWER TOKEN DETECTION DETAILS

To analyze the spilled energy specifically on the tokens carrying the semantic weight of the answer,
we must first localize the “exact answer” span [u, w] within the longer generated sequence §j. We
adopt the methodology proposed by Orgad et al. (2025), utilizing a combination of heuristics and an
auxiliary instruction-tuned LLM to perform this extraction.

Extraction Strategy Depending on the nature of the task, we employ two strategies to identify the
exact answer substring s:

o Heuristic Matching: For tasks with a closed set of possible labels (e.g., classification
tasks or multiple-choice QA), we perform string matching to locate the label within the
generation.

o LLM-based Extraction: For open-ended generation tasks (e.g., TriviaQA, Math), where
the answer form varies, we employ an instruction-tuned model (Mistral-7B-Instruct) to
extract the short answer from the long-form generation.

Prompting for Extraction Following Orgad et al. (2025), we prompt the auxiliary model with the
original question ¢ and the generated long answer y using the following template:

Extract from the following long answer the short answer, only the
relevant tokens. If the long answer does not answer the question,
output NO ANSWER.

Q: [Question 1]
A: [LLM long answer 1]
Exact answer: [Short exact answer 1]

Q: [Question 2]
A: [LLM long answer that does not answer the question]
Exact answer: NO ANSWER

Q: [Question]
A: [LLM long answer]
Exact answer:

Verification and Token Mapping To ensure robustness, we verify that the extracted string s is
a valid substring of the original generation . If the extraction is invalid or the model outputs ”NO
ANSWER,” we retry the extraction up to five times. If a valid substring is still not found, the sample is
excluded from the analysis to avoid identifying incorrect tokens.

Once the substring s is validated, we map it to the corresponding token indices [u, w] in the original
sequence. The spilled energy analysis is then performed specifically over this interval, or pooled
across it (e.g., via min-pooling) as described in Section 5.2.

Answer Extraction Performance For answer localization, we achieve accuracy comparable to the
results of Orgad et al. (2025). We report in Table 4 the extraction success rate across the full datasets
using Mistral-7B-Instruct. Note that some datasets have been excluded (e.g., IMDB, Winobias,
Winogrande) since they have a finite set of possible answers that can be used to easily locate the exact
answer within the model’s generation.
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Table 4: Answer Extraction Success Rate across tasks for Mistral-Instruct.

Dataset Success Rate (%)
TriviaQA 90.29
HotpotQA 87.37
Movies 93.61
MNLI 92.99
Math 87.59
HotpotQA-WC 92.38

C LLM USAGE

Large language models were used exclusively for text polishing and minor exposition refinements.
All substantive research content, methodology, and scientific conclusions were developed entirely by
the authors.

D SUPPLEMENTARY MATERIAL

This supplementary material is intended to complement the main paper by providing further motiva-
tion for our assumptions and design choices, as well as additional ablation studies or additional plots,
such as ROCs and histograms, that could not fit in the main paper.

D.1 ADDITIONAL RESULTS FOR SYNTHETIC ARITHMETIC

In Fig. 5 we augmented Fig. 3 in the main paper, adding also the results for Mistral-7B-Instruct v0.3
and LLaMa-3-8B. The same findings of the figure in the paper also translate to this LLM, meaning
that our method generalizes across LLMs.

Fig. 6 and Fig. 7 also extend and provide more details of Fig. 3 in the main paper by showing,
respectively, the histograms and the ROC at a better resolution and displayed in different frames.
Also, we have added results for Mistral-7B-Instruct v0.3 and LLaMa-3-8B.
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Figure 5: Histograms of Spilled Energy values across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right, making it harder to detect errors),
as described in Section 5.1. In the fourth column, we show ROC curves for Hallucination Detection

across the error ranges (colors) and methods (line styles).
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Figure 6: Histograms of Spilled Energy values for Correct and Incorrect answers

across models on Math Sums, increasing difficulty from left to right. We compute sums on 13-digit
integers, for incorrect answers we add a random offset sampled uniformly from the error interval:
Easy ~ U(1e3, led) - Medium ~ U(1e2, 1e3) - Hard ~ (1, 10); for more details see Section 5.1.
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Figure 7: ROC curves for Hallucination Detection across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right). All sums are performed on
13-digit integers. Legend: Spilled (ours) Spilled AE == Logit E* wes Marginal E™
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D.2 CROSS-TESTING COMPARISON WITH HEATMAPS
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Figure 8: Fig. 8a presents the cross-dataset performance of the method proposed by Orgad et al.
(2025) using Llama-3. Fig. 8b depicts the performance difference between their method and our
Spilled AE with Min pooling. Positive values indicate cases where Spilled AE outperforms the
method of Orgad et al. (2025). All the numbers are expressed as percentages.
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Figure 9: Fig. 9a presents the cross-dataset performance of the method proposed by Orgad et al.
(2025) using Mistral. Fig. 9b depicts the performance difference between their method and our
Spilled AE with Min pooling. Positive values indicate cases where Spilled AE outperforms the
method of Orgad et al. (2025). All the numbers are expressed as percentages.

D.3 ADDITIONAL RESULTS FOR CROSS-TESTING WITH REAL WORLD BENCHMARKS

Table 5 shows how our method compares with the baselines methods, Orgad et al. (2025) and Logit
E*. This table was obtained by using various pooling methods in the pooling frame from which we
measure the hallucination. More details below alongside the examples based on Fig. 11:

¢ Min: minimum energy value in the pooling frame. Energy Measured: —3
¢ Max: maximum energy value in the pooling frame. Energy Measured: 11
o Mean: mean among all the energies in the pooling frame. Energy Measured: 2.08
¢ Last Token: energy on the last token of the pooling frame. Energy Measured: —3
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Figure 10: Fig. 10a presents the cross-dataset performance of the method proposed by Orgad et al.
(2025) using Mistral-Instruct. Fig. 10b depicts the performance difference between their method and
our Spilled AE with Min pooling. Positive values indicate cases where Spilled A E outperforms the
method of Orgad et al. (2025). All the numbers are expressed as percentages.

Pool HotpotQA HotpotQA-WC  IMDB Math MNLI Movies  TriviaQA  Winobias Winogrande  Average
LLaMA-Instruct

Orgad etal. (2025)  Mean — 66.56:0.10  59.00:514  69.78:14.76 66.56+17.01 60.56=1253 66.44-506 63.22+11.11 673321107 58.00:7.70  64.16+5.00
Spilled AE Min 8598100 93.00+161  47.66:106 65581502 73.95:107 89.34:1.01 87.07+155 60.72+271 5511205 73161501
Marginal £™ Max 76721135 30741545 85.63:030 27.081506 89.90:125 9617065 80.13:157 57.67:001 47471183 65.72:0450
Marginal E™ Min 7591162 97.57:075 14372250 7055425 612105210 72.21:160 73384156 47.19+071 53984250 62.93: 2150
Logit E* Max 72.85:202  9L.dliis2 42.08:507 57.81isse 25521300 43.97:155 68.89:1.06 39951041 49.40:216 54.62:15.07
Spilled AE Max 54341155 47.68:2:51 52341000 40331505 56440510 68.56:157 47.5410.00 38.40+0061 4497150 50.07 1x06
LLaMA
Orgadetal. (2025)  Mean — 61.22:005  56.78:570  72.67+15.01 69.67+15.07 60.33213.77 64.00-540 66.44:520 60.89-1200 53561350 62.844571
Logit E* Min 87.93:101 9124100 51.73:152 429915065 97.01:045 99.86:0.16 84531057 4929:146 48.52:17s 72570050
Spilled AE Min 79.04175 80.8311s7 432211067 74361550 9997005 61.97:051 78541157 52114055 48214162 68.69+17.as
Spilled AE, Min 7775152 7944205 43.39:150 72874610 9997005 61.56:205 77.55+1.62 52344057 48174162 68.12:17.15
Marginal E™ Max 78.00=150  76.90+100 48291116 68771535 10931142 80.70:105 67.49:1.60 51914052 51284047 59.36:20.00
Marginal E™ Min 5839270  59.20+105  51.71:1a6 34.131s7: 974210510 50.37:2.43 69.88+1.00 49.05:220 49.00+230 57.68+16.75
Logit B¢ Max 5347205 49.024170 48271152 57.38:6.00 91.764001 57420145 52771255 50740150 51174155 56.89 1270
Logit B¢ ALT 43564105 3974173 48274132 5741606 91.71:001 43114157 7 50.74+151 51174183 521541088
Logit B¢ Last Token 43.56:1.05 39741175 4827+132 5741606 91711004 43112157 50741150 51.17+153 521541485
Marginal E™ ALT 61.59:155  58.64:100 48291116 67931050 107511410 61.39:1x0 5 51194250 51441250 512241561
Marginal £™ Last Token 61.59:1sx  58.64:160  48.29:106 67.93:052 10.75:100 61.39:1 50 5 51192250 51.44:250 51.22:156
Marginal E™ Mean  58.27:250  58.641155 48291116 68321535 6121070 66.55:520 45671155 51.80:000 51294046 50.55:17.5s
Mistral-Instruct
Orgadetal. (2025)  Mean  64.78 1056 56.7817.05  82.67 1165 68.78 11145 64.22:12.12 64.89+11.55 654411210 61.00+:1225 61.44:1151 65561651
Spilled AE Min 91.12:100  97.47+07x 59.77:257 66.6315.16 95951085 9499005 91751100 50745505 49.00+1.02 77.49- 1000
Marginal E™ Min 87.58+155  97.94+0.62 18.67 207 67.58+537 97.96- 84.90+137 87751173 49.19413.07 4849156 71.12+05.68
Logit E* Max 7724160 83.84:106 22281251 57.67+320 78.98:155 76.89:1.40 4553000 48.17+1.07 634411000
Marginal £™ Max 64.63:107 33421100 81331232 26521008 17.62:120 86.60:1 20 5 56.41:100 51142171 53.68:0255
Logit E* Last Token 55.77:055  71.264208 22284051 71214040 47.78:200 42.9341.06 45.65:2.01 48.30+2.01 51.50+14.26
Logit E* ALT 55772258 T1.26:208 22281051 T121i0a2 47782006 42,931 06 45.65:201 48.30:201 51.50+1426
Mistral
Orgad etal. (2025)  Mean  61.78:027  57.44:605  76.22:12.50 65.78 41507 56.67 1153 64.22+501 64.33 11040 58.00+1220 5456156  62.11+6.21
Marginal E™ Min 87.52:151  9091:155 54.69:2.00 86.21+1.06 9880055 94.41 062 83.66+216 52.15+170 46371202 771941005
Marginal E™ Max 8357115 86.83+170 4531400 62.26:120 96.03:0.53 9927021 92261131 51.31is55 54.49:00s8 74.59:10.01
Spilled AE Min 84.24+1.05 83741101 5743:000 78264205 96.69:0.62 8447117 81.27+1xs 50.62+1.72 48724175 73.94+16.0s
Spilled AE Max 61.50:155  63.60+1.05 42572200 76271540 47.01:245 81.84:160 68.07+1.50 5871560 51131187 61.19+12.50
Spilled AE, Max 60.54 1 .51 60.18+1 .51 4347076 719315062 4594000 7884155 67921152 57241572 51.88+1.00 59.77 1108

Table 5: Hallucination detection performance, in terms of AuROC, across nine benchmarks and
different LLMs. We measure the generalization across all tasks by computing the average.

o After Last Token: energy of the first token after the pooling method. Energy Measured: 1
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Pooling Window

31 4 05 5 -5 11 05 11 4 -1 -3 ]I
What is the capital of Italy?(The capital of Italy is Rome

Figure 11: Example of the Pooling Window

D.4 ADDITIONAL QUALITATIVE RESULTS

In this section, we offer additional results of the detection performance following what is shown in
Fig. 1. We report both success cases and failure cases. While it is difficult to draw conclusions and
predict when, why, and on which topics spilled energy may work or not, we noticed that it appears to
perform reliably on knowledge-based factual content but exhibits difficulties with reasoning tasks
and numerical information, despite working well on math questions as demonstrated in Section 5.1.
Further investigation is required to better understand and validate these patterns.

D.4.1 SuUccgss CASES

Question: ‘*“‘Which planet is known as the Red Planet ?''

Logits: The Red Planet is Mars . v/
Ours: The Red Planet is Mars . v/

Logits: The Red Planet is Jupiter . X
Ours: The Red Planet is Jupiter . X

Question: ‘“‘What is the largest mamm al in the world ?'’

Logits: The largest mamm al in the world is the Blue Whale v

Ours: The largest mamm al in the world is the Blue Whale v/

Logits: The largest mamm al in the world is the House Cat . X

Ours: The largest mamm al in the world is the House Cat . X

Question: ‘‘Who painted the Mona Lisa?’’

Logits: The Mona Lisa was painted by Leonardo da Vinci . v

QOurs: The Mona Lisa was painted by Leonardo da Vinci . v/

Logits: The Mona Lisa was painted by Pablo Esc obar . X
QOurs: The Mona Lisa was painted by Pablo Esc obar . X

Question: ‘‘What gas do plants breathe in for photosyintesis ?’’

26



Under review as a conference paper at ICLR 2026

Logits: They breathe in carbon dioxide v/
Ours: They breathe in carbon dioxide v/

Logits: They breathe in oxygen X
QOurs: They breathe in oxygen X
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Question: ‘‘In which continent is Egypt Located ?'’

Logits: Egypt is located in Africa v/
Ours: Egypt is located in Africa v/

Logits: Egypt is located in Europe X
Ours: Egypt is located in Europe X

Question: ‘“‘What is the fastest land animal 2’7’

Logits: The fastest land animal is the che et ah v/
Ours: The fastest land animal is the che et ah v/

Logits: The fastest land animal is the lion X
Ours: The fastest land animal is the lion X

Question: ‘‘What is the hardest natural substance on Earth 2’7

Logits: The hardest natural substance is diamond v
Ours: The hardest natural substance is diamond v/

Logits: The hardest natural substance is gold X
Ours: The hardest natural substance is gold X

Question: *“‘Which ocean is the largest 2’7’

Logits: The largest ocean is the Pacific Ocean v/
Ours: The largest ocean is the Pacific Ocean v

Logits: The largest ocean is the Indian Ocean X
QOurs: The largest ocean is the Indian Ocean X

D.4.2 FAILURE CASES

Question: ‘‘Who was the first person to walk on the mood ?’’

Logits: Neil Armstrong v/
Ours: Neil Armstrong v/

Logits: Buzz Ald rin X
Ours: Buzz Ald rin X

28



Under review as a conference paper at ICLR 2026

Reasoning: ‘‘Marta has 2 sisters and 2 brothers. How many sisters has
one of the brothers of Marta?’’

Logits: Mart a has 2 sisters and 2 brothers . Each brother has the same 2 sisters
. So , one of Mart a ’s brothers has 2 sisters . v/

Ours: Mart a has 2 sisters and 2 brothers . Each brother has the same 2 sisters .
So , one of Mart a ’s brothers has 2 sisters . v/

Logits: Mart a has 2 sisters and 2 brothers . Each brother has the same 3 sisters
. So , one of Mart a ’s brothers has 3 sisters . X

Ours: Mart a has 2 sisters and 2 brothers . Each brother has the same 3 sisters .
So , one of Mart a ’s brothers has 3 sisters . X

.

Reasoning: ‘‘If there are 3 cars and each car has 4 wheels , how many
wheels are there in total 2 7’/

Logits: Each car has 4 wheels . So , for 3 cars , the total number of wheels is 3
X 4 = 12 wheels . /

Ours: Each car has 4 wheels . So , for 3 cars , the total number of wheels is 3
X 4 = 12 wheels . /

Logits: Each car has 8 wheels . So , for 3 cars , the total number of wheels is 3
X 8 = 14 wheels . X

Ours: Each car has 8 wheels . So , for 3 cars , the total number of wheels is 3
X 8 = 14 wheels . X

.

Reasoning: ‘‘What is the square root of 642"’

Logits: The square root of 64 is 8 /
Ours: The square root of 64 is 8 v/

Logits: The square root of 64 is 10 X
Ours: The square root of 64 is 10 X

Question: ‘‘What blood tyoe is known as the universal donor 2’7’

Logits: O negative v/
QOurs: O negative v/

Logits: AB positive X
Ours: AB positive X
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