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ABSTRACT

We reinterpret the final softmax classifier over the vocabulary of Large Language
Models (LLM) as an Energy-based Model (EBM). This allows us to decompose the
chain of probabilities used in sequence-to-sequence modeling as multiple EBMs
that interact together at inference time. Our decomposition offers a principled
approach to measuring where the “energy spills” in LLM decoding, empirically
showing that spilled energy correlates well with factual errors, inaccuracies, biases,
and failures. Similar to Orgad et al. (2025), we localize the “exact” token associated
with the answer, yet, unlike them, who need to train a classifier and ablate which
activations to feed to it, we propose a method to detect hallucinations completely
training-free that naturally generalizes across tasks and LLMs by using the output
logits across subsequent generation steps. We propose two ways to detect hallu-
cinations: the first one that measures the difference between two quantities that
we call spilled energy, measuring the difference between energy values across
two generation steps that mathematically should be equal; the other is marginal
energy, which we can measure at a single step. Unlike prior work, our method
is training-free, mathematically principled, and demonstrates strong cross-dataset
generalization: we scale our analysis to state-of-the-art LLMs, including LLaMa-3,
Mistral, and Qwen-3, evaluating on nine benchmarks and achieving competitive
performance with robust results across datasets and different LLMs.

Q/A: *‘What is the capital of Italy? Answer:’’

Logit Spilled (Ours)

The capital of Italy is Rome v The capital of Italy is Rome 4

The capital of Italy is Sydney X The capital of Italy is Sydney X

‘‘A farmer has 12 chickens. Each chicken lays 2 eggs per day.
How many eggs will the farmer collect in 5 days?’’

Reasoning:

Logit

Spilled (Ours)

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 120 eggs in 5 days v

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x
2 x 5 = 120 eggs in 5 days 4

12 chickens lay 2 eggs per day . In
5 days , the farmer will collect 12 x

2 x 5 = 470 eggs in 5 days X 2 x 5 =470 eggs in 5 days X

Figure 1: Color-coded comparison of hallucination detection with LLaMa-3 8B using logit confidence
and our spilled energy. Our method generalizes well across topics (e.g., Q&A, reasoning) and
diverse LLMs. v indicates a correct answer and X an incorrect one. While our approach focuses on
the exact answer tokens (e.g. Rome/Sydney and 120/470, see Section 4.2), here we apply min—max
normalization to the full answer for visualization, as truthful hallucination.
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1 INTRODUCTION

The widespread adoption of Large Language Models (LLMs) across various domains has brought
increasing attention to their critical limitation: their tendency to generate incorrect or misleading
information—commonly referred to as “hallucinations.” This issue supports the idea that LLMs are
just stochastic parrots (Bender et al., 2021) answering in a way that is statistically plausible with
respect to the input prompt despite not having a real understanding of it. On the other side, recent
reasoning capabilities proper to ChatGPT 40 (OpenAl-Team, 2023) or Deepseek (Liu et al., 2024)
offer counter evidence to actually support this. Ongoing research seeks to characterize and categorize
hallucinations, setting them apart from other error types (Liu et al., 2022; Ji et al., 2023; Huang
et al., 2023; Rawte et al., 2023). At the same time, recent discussions have introduced terms such as
confabulations (Millidge, 2023) and fabrications (McGowan et al., 2023), sometimes attributing a
form of “intention” to LLMs—though the very idea of LLM “intentionality” and other human-like
qualities remains contested (Salles et al., 2020; Serapio-Garcia et al., 2023; Harnad, 2024). Research
on LLM hallucinations can be categorized into two main branches: the first one is the extrinsic branch,
where the hallucinations are measured with respect to the interpretation that humans give to those
errors (Bang et al., 2023; Ji et al., 2023; Huang et al., 2023; Rawte et al., 2023). The second branch
was started by Kadavath et al. (2022), proposing to study the hallucinations within the model itself.
Following Kadavath et al. (2022), the work in Li et al. (2024) proposes Inference-Time Intervention
(ITI) as a way to improve the “truthfulness” of LLMs at inference time. ITI functions by altering
model activations at inference time, steering them along specific directions within a restricted set
of attention heads. Our work is also different from Yin et al. (2023), since we care about detecting
errors in LLMs, whereas they introduce an automated methodology to detect when LLMs are aware
that they do not know how to answer.

In this work, we follow the definition of hallucinations given by Orgad et al. (2025) as any form of
error produced by an LLM—including factual mistakes, biased outputs, breakdowns in common-sense
reasoning, and related issues. Like them, we also confirm that the truthfulness signal is concentrated
in the “exact answer tokens.” Nevertheless, unlike them, we abandon the idea of using a probe
classifier (Belinkov, 2022) trained for each task and dataset. Given that LLMs are foundational
models, user interactions typically occur in the wild, making it difficult to predict which probe
classifier is best suited for detecting hallucinations in real-world scenarios. Furthermore, in this
setting, classifier weights should not only be updated dynamically for each task, but the optimal
token—layer combination is also dataset-dependent, which conflicts with the broad LLM applicability.
Indeed, in the work by Orgad et al. (2025), the article reports:

“We find that probing classifiers do not generalize across different tasks.”

In our paper, we propose to solve this problem with a training-free method that generalizes better
across different tasks and is mathematically principled using the framework of Energy-based Models
(EBMs). Fig. 1 reports a qualitative comparison across tasks, comparing to the logit confidence.
Additional samples are shown in Appendix D.3.

We reinterpret the final softmax classifier over the vocabulary of LLM as an EBM, taking inspiration
from what Grathwohl et al. (2020) did five years ago for classifiers. This perspective enables us to
decompose the sequence-to-sequence probability chain into multiple interacting EBMs that operate
jointly during inference. Through this decomposition, we introduce the notion of “spilled energy” in
LLM decoding and show empirically that such spill strongly correlates with errors. Given that our
method is solely based on the mathematics of EBMs and the chain rule of probability, we do not have
to train or tune our detector, striking a good generalization across tasks and LLMs. Building on this
foundation, our contributions are as follows:

¢ Training-free, LLM hallucination detection generalizing across tasks using the EBM framework.
We introduce a method for detecting hallucinations that requires no additional training, in contrast
to prior work that relies on trained classifiers and ablations of model activations. Our approach
directly reads values inside the LLLM, enabling natural generalization across tasks and performing
better than logit-based detection.

o Two energy-based metrics. We define two complementary measures of energy spills: (i) delta
energy A Fg(x;.1), which captures discrepancies between energy values across two time steps that
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Figure 2: How energy spills in LLMs. (a) Language Modeling p(x;.1) is attained as a decomposition
problem following the chain rule of probability, implemented as autoregressive: we recursively apply
a discriminative classifier over the vocabulary V to attain generative modeling with larger context
size i.e. p(x;|x;_1.1). (b) We reinterpret each discriminative classifier as a generative EBM, finding
a connection between two quantities that should be the same across time steps yet are different. We
call this difference “the spilled energy” AFg(x;.1) in Eq. (8). (¢) Given that we simply read values
inside the LLM, our approach is training-free and correlates well with hallucinations on a synthetic
math dataset with increasing difficulty; (d) histograms of spilled energy values, for incorrect and
correct answers on all nine datasets using min pooling for Llama-3-Instruct. The two distributions
are easily separable by using a simple threshold, resulting in a generalization across real-world tasks.

should be mathematically equivalent, and (ii) marginal energy Eg*(x;.1), which can be evaluated
at a single time step.

¢ Scalable and generalizable analysis. Our framework is mathematically principled, training-free,
and exhibits strong cross-dataset generalization. We scale our analysis to state-of-the-art LLMs,
including Llama 3-8B-Instruct and Mistral-7B-Instruct, and demonstrate competitive performance
across nine benchmarks, showing robustness across datasets and architectures.

Fig. 2(a) illustrates the core idea of our method: rather than using a naive approach, such as simply
recording the logit or training a probe classifier at the activations of the answer token, we first
reinterpret the LLM as an autoregressive EBM via the chain rule of probabilities. We then further
decompose each conditional probability, incorporating insights from Grathwohl et al. (2020). At
the time step of the exact token 7 — 1, we extract the energy, which corresponds to the logit, and
compare it with the marginal energy at the next time step ¢, corresponding to the denominator of the
softmax. According to the chain rule, these two quantities should be identical; however, they differ in
the LLM implementation—Fig. 2(b). We find that the discrepancy, which we term spilled energy
AFEg(x;.1), correlates strongly with instances where the LLM produces an incorrect output—see
Fig. 2(c). Moreover, its detection signal separates well correct and incorrect classes across datasets,
reflecting the model’s confidence, as shown in Fig. 2(d).

2 RELATED WORK

EBM applications to Trustworthy AI. EBMs have been applied to improve the reliability and inter-
pretability of Deep Nets. For example, Energy-Based Out-of-Distribution Detection (OOD) (Liu
et al., 2020) uses the energy score as a more robust alternative to the softmax confidence. At the same
time, Grathwohl et al. (2020) presents how to reinterpret a discriminative classifier as EBM to train
models both discriminative and generative. Following this work, Zhu et al. (2021) gives new insights
into the role of energy when training EBMs and robust classifiers using adversarial training. Instead,
Mirza et al. (2024; 2025) explain adversarial attacks by reinterpreting the softmax classifier as an
EBM, showing that these perturbations correspond to shifts in the underlying energy landscape.
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Foundations of Hallucination in LLMs. LLMs are prone to diverse errors—including bias, reasoning
failures, and generation of factually incorrect information unsupported by reliable sources. Karpowicz
(2025) frames hallucination and imagination as mathematically identical phenomena, both emerging
from a necessary violation of information conservation. Also Xu et al. (2025) provides a formal
learning-theoretic proof that hallucinations are unavoidable. They define a formal world in which
both the LLM and the ground-truth are computable functions, showing through classic results in
computability theory, that no LLM can learn all such functions. As a consequence, hallucination
is not just a practical artifact but a fundamental limitation of LLMs, valid even under idealized
conditions. Recently Kalai et al. (2025) showed that hallucinations come from the statistical problem
of the pretraining methodology: minimizing the cross entropy naturally causes errors because it does
not train the model to express uncertainty and say “I do not know.” Kalai et al. (2025) proposes to
change the evaluation practices to not reward models for guessing, but rather to mimic the human
exams that penalize only wrong answers.

Detecting and Mitigating LLM Hallucinations. Orgad et al. (2025) train classifiers on the internal
representations of the LLMs to predict, based on the features, the correctness of the answer. Given an
LLM in a white-box setting, an input prompt, and the generated response ¢, the classifier’s task is
to predict whether ¢ is a hallucination. Orgad et al. suggested that LLMs may encode more factual
knowledge in their latent subspaces than is revealed in their outputs. Gekhman et al. (2025) propposed
a framework for studying hidden knowledge. Finally, Santilli et al. (2025) point out that uncertainty
quantification in language models is often evaluated using metrics like AuUROC. This shares biases
between detection methods and correctness functions (e.g., length effects) that systematically distort
results. One way to mitigate hallucinations is to act at the decoding stage, where the output generation
can be steered Subramani et al. (2022). Steering vectors provide a straightforward way to control
a model by adding a fixed vector to its activations (Dunefsky & Cohan, 2025). Fu et al. (2025)
introduced DeepConf, a test-time method that leverages model-internal confidence signals to filter out
low-quality reasoning traces during or after generation. Kuhn et al. (2023b); Fadeeva et al. (2024);
Farquhar et al. (2024), and its follow-up by Kossen et al. (2025) in which they approximate the
semantic entropy in a more efficient way. Constrained decoding approaches Li et al. (2023); Peng
et al. (2023) modify token selection policies. Similarly, reinforcement learning with fact-based
rewards Ouyang et al. (2022) has been used to bias decoding trajectories toward verifiable outcomes.
Incorrect answers may also be given due to an ambiguous prompt: Kuhn et al. (2023a)’s CLAM
framework uses few-shot prompts to classify a question’s ambiguity and then asks the user to clarify.

3 BACKGROUND AND PRELIMINARIES

3.1 ENERGY-BASED MODELS

We give an overview of Energy-based Models (EBMs) and their use in discriminative classifiers.

EBMs. Energy-Based Models are a class of probabilistic models in which the probability distribution
over data points x is defined in terms of an energy function Fg(x). The energy function, parameter-
ized by a neural network 6 (Lecun et al., 2006), assigns a scalar energy to each configuration of x,
where lower energy values correspond to higher likelihood. The resulting probability distribution

is given by pg(x) = %ﬁ“x)) where Zg denotes the partition function (normalizing constant),
defined as Zg = Y exp(—FEpg(x)) for discrete x, or equivalently Zg = [ exp(—Eg(x)) dx for
continuous x. Standard neural networks are often deterministic function approximators, mapping

x — y, EBMs instead define a full probability distribution over data or latent variables.

One of the strengths of EBMs is their flexibility in modeling arbitrary distributions without being tied
to a specific parametric form. This flexibility comes from the fact that the energy function F(x) can
be defined in various ways. Training involves learning the parameters of the energy function such
that the probability distribution pg(x) matches the empirical distribution of the data. This is typically
done using techniques like contrastive divergence, score matching, or maximum likelihood.

Notation. Let )V denote the vocabulary of the LLM, i.e., the set of all tokens that can be processed as
input and generated at each decoding step, with size |V| = V. We shorten the sequence of tokens
{xNn,...,x1} as X = {xn.1}, and x; € V denotes the token in the i-th position along the sequence.
We model the LLM as a function  : RV*V — RY implemented by a transformer, or any other
sequence-to-sequence mechanism. For a sequence {x;.1 } as input, we write O(XM) [k] to denote the
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predicted logit assigned to the k-th token class in V for the ¢ + 1 token in the sequence, as is standard
in autoregressive LLM training (Ouyang et al., 2022).

3.2 AUTOREGRESSIVE LARGE LANGUAGE MODELS

Generative modeling has been pursued through a variety of approaches beyond autoregression
(AR). Variational Autoencoders (VAEs) (Kingma & Welling, 2014) learn a probabilistic latent
variable model by encoding inputs into a latent space and decoding samples back to the data domain.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) frame generation as a min-max
game between a generator and a discriminator. The diffusion process has been incorporated into
neural nets (Sohl-Dickstein et al., 2015) and, more recently, Diffusion Models (Ho et al., 2020)
have emerged as a powerful class of generative models. While these paradigms differ in how they
approximate the data distribution, AR models are special in their kind and take a more direct route
by factorizing the joint probability of sequences into conditionals, making them especially suitable
for language modeling. We now focus on the AR formulation that underlies most LLMs. Textual
data is segmented into a sequence of tokens X = {x;,...,X1 }, and a language modeling objective
is employed to maximize the likelihood of such data (Radford & Narasimhan, 2018). In other
words, we model the joint probability of tokens in the sequence X, through a conditional probability
parameterized by 0:

p(xi1) = p(X; | Xi—1:1) ... p(x2 | X1) p(x1) = HPO(Xi | xi—1:1) po(x1). ey

- N————

* discriminative model
What we find interesting about this factorization is that, although it seeks to attain generative modeling,
i.e., p(x;.1), it actually uses recursively discriminative classifiers, parametrized by a transformer

network 6, that predicts a discrete distribution of the next token x; over the vocabulary V, given
previous tokens x;_1.1. This is used to model each conditional probability.

4 How ENERGY SPILLS IN LLMS

When predicting the token at position i, the conditional probability modeled by € can be decomposed
using the probabilities of the sequences. As a result, the marginal term from step 7 cancels out with
the sequence probability from the decomposition at the previous step ¢ — 1, which means we have:

stepi — 1
(xi:1) (xi:1)
Po(Xi:1 Po(Xi:1) P 7—1:1
p(x;.1) = po(Xi|Xi—1.1) = _— = ... s =p(X4e1)-
( Zl) 1:[ ( Z‘ ‘ 11) HPG(Xi—l:l) pﬁz—m? Pe(Xi—2:1) ( “)

step %

@)

This indeed confirms that Eq. (1) results in the correct formulation for language modeling, which is
p(x;:1). Following the mathematics, these quantities should cancel out along the sequence, but we
will now show that, in practice, this constraint is not explicitly optimized for, and we can exploit it for
hallucination detection.

4.1 INTERPRETING LLMS AS ENERGY-BASED MODELS (EBMS)

Let us continue the expansion from Eq. (2). Writing the conditional as the ratio between the joint
distribution in the numerator and the marginal distribution in the denominator, we note that this ratio
is actually implemented in LLMs as a softmax classifier that digests the embedding of the prior
sentence x;_1.; and predicts the next token x;, thus this chain of equality holds true. We can then
apply the “trick” from Grathwohl et al. (2020) as:

po(xi|Xi_1.1) = ptz(x 1)) = eXE (xi—11) [1d(xs)] where id: {0,1}V — [1,...,V]. 3)

Po(Xi—1:1
' > expO(xi—1.1)[k]
k=1

id is the map that takes as input a one-hot encoding vector x; for a word token at position ¢ in the
text and outputs its index in the vocabulary. A typical cross-entropy loss only optimizes with the
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supervision provided by the ground-truth token, through the vocabulary index id(x;). This loss
ignores all other quantities or constraints related to the complete sequence X, i.e., ignores all the time
steps higher than ¢ + 1.

We can write the conditional probability of Eq. (3) as a ratio of two EBMs as:

exp(~Ef(xi1)) Z(6)
exp(—Eg'(xi-1:1)) Z(0)
Following Zhu et al. (2021), the partition functions simplify since log Z(6) = log Z(8)'.

log pe(x;|xi—1.1) = log = —E§(xi1) + Eg(xi—1.1)- “)

Ef;, Eg* are computed from the output of the model, but with two big differences: Eg as a single logit
extracted using the id of the sampled token, Eg* by marginalizing over all ids in the vocabulary.

The two energies can be derived from the softmax of the logits, by connecting Eq. (4) and Eq. (3):

exp(0(x;—1:1)[1d(x;)])
—logpe(x; | xi—1:1) = —log ( P ) = (5)
> exp(6(xi—1.1)[k])
’ 174
—0(x;_1.1) [1d(x;)] +1og Y _ expO(xi_1.1)[K] (6)
Eé(xizl) k=1 )
—Egt(xi-11

where 6(x;_1.1) produces the logits over the entire vocabulary V, and id(x;) allows us to extract
the logit of the sampled token at decoding step <.

We can think of E}(x;.1) as the energy of the sampled tokens {x;.1 }, and EJ*(x;_1.1) as the energy
Eg(x;.1), marginalized over all possible x;. Considering the decoding at step i in Eq. (4), we get:
v
Eg(xi1) = —0(x; 1) [1d(x)], Bg'(xi11) = —log Y exp O(x;_1.1)[k]. @)
k=1
Using the chain rule and Eq. (6), we can write the negative log-likelihood in terms of energies as:

—logp(xn.1) = —log Hpe(Xi|Xz'—1;1) = ZES(XM) — Egt(xi—11)

without considering the base case pg(x1). Now, if we develop the above equation as done for
Eq. (2), we write the total energy of a sequence of length N as Eg(xy.1). Observe that the two
energies, not interacting at the same step but at steps ¢ and ¢ — 1, should be equal, but they
are measured in the LLM at different generation steps and from different components.

timestep i+1 timestep ¢

Eo(xn1) = Zivz_ll ES(xit11) — EF(xi1) = ... Bp(xiy11) — E§(xin) + Ey(xi1) — E§ (Xi—1.1) .-

AEg(xi:1)
At timestep ¢ + 1, first —E5*(x;.1) is measured, taking the denominator in the softmax as in the right
part of Eq. (6), whereas at timestep ¢, the second Eg (x;.1) is taken, reading the logit in the softmax,
left part of Eq. (6). We thus define the discrepancy between the two quantities as spilled energy:

Definition 4.1 (Spilled Energy A Fg(x;.1)). The spilled energy in an LLM is the difference
between two energies that, in principle, should be equal, but given that they are measured 1)
at different time steps ii) in different components, could be different.

AEg(x;1) 2 —EJ(xi1) + Ej5(xi:1) = —logz exp(0(x;.1)[k]) + O(x;—1.1)[1d(x;)]
—_———

timestep ¢+1 TOESIED

®)

Since both terms on the right side should be equal to Eg(x;.1), delta values should always be zero
when we are correctly modeling the energy at timestep 7.

"For a formal proof, please see Appendix A.1.
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4.2 DETECTING HALLUCINATIONS WITH SPILLED ENERGY

EBM:s have previously been used to assess neural network credibility (Liu et al., 2020), and calibration
for LLMs has been explored by the Anthropic team (Kadavath et al., 2022). However, dominant
training-free baselines such as logits or “p(true)” remain weak. We likewise adopt a training-free
approach, but rely on Eq. (8) and its variants as discriminants.

We feed the prompt {x;_1,...,X;} to the LLM 0 and obtain the completion {xp, . ..,x;}. Follow-
ing Orgad et al. (2025), we focus on the “exact answer” tokens—those in [¢ + 1, V] that contain the
precise answer (e.g., Rome in Fig. 1), denoted [u,w] C [i 4+ 1, N]. For instance, it would be the
tokens associated with Rome in the question in Fig. 1. We identify this span by prompting the LLM
for a brief answer. When the answer spans multiple tokens, we apply a pooling strategy, which we
ablate in Section 5. We propose measuring two values that correlate well with hallucinations:

1. the marginal energy Ey*(X;.1);
2. the spilled energy AE,4(x;.1) by definition of Eq. (8).

We also attempt to combine the two metrics into scaled spilled energy A E, where the spilled energy
is multiplied by the absolute value of the marginal energy as AE;(x;.1) = |Eg'(xi:1) | AEg(Xi:1).
The metrics proposed here are independent, new for LLMs, and can all be tested efficiently. These
measures can be computed over the full sequence, but for error detection, as discussed in Section 5.2,
we must extract the values in the localized exact interval [u, w] to avoid false positives. Note that
Ef; (x;.1) is the classic baseline which in literature is referred to as “logits” or “logits confidence”.

5 EXPERIMENTS

To evaluate spilled energy, we consider two complementary settings. First, a controlled synthetic
environment, where we generate both correct and incorrect multi-digit arithmetic solutions. Second,
established real-world benchmarks, where errors arise naturally across diverse reasoning and com-
prehension tasks. Together, these experiments test whether insights from the clean synthetic setup
transfer to the complexity of open-domain language understanding.

5.1 SPILLED ENERGY UNDER SYNTHETIC ARITHMETIC

Experimental Setting. We first evaluate spilled energy in a controlled setting: multi-digit arithmetic
problems with more than 14 digits. For each instance, we generate both correct and incorrect
solutions. We tested three different LLMs: Llama-3 8B (Dubey et al.), Qwen-3 8B (Qwen-Team),
and Mistral-7B-Instruct v0.3 (Jiang et al.). Incorrect solutions are obtained by introducing random
numerical errors of varying magnitude. Specifically, we define three error ranges that differ in their
difficulty of detection:

o Easy: random offset in the range [1000, 10000], which are typically easier to identify.
© Medium: random offset in the range [100, 1000], where detection requires closer inspection.
¢ Hard: random offset in [1, 10], much harder to detect since they appear plausible at first glance.

This design allows us to systematically probe whether spilled energy can distinguish between correct
and incorrect generations across different levels of error subtlety.

Results. We observe that spilled energy values separate correct from incorrect solutions with high
reliability across all error ranges and across all LLMs. In particular, spilled energy consistently
assigns lower values to correct generations and higher values to incorrect ones, producing a clear
margin of separation. Compared to standard baselines such as logits, spilled energy achieves superior
discriminative power, especially for errors in the more challenging range [1, 10], see Fig. 3. We offer
more results in Fig. 4. Larger, better-detailed ROC and histograms are in Figs. 5 and 6 respectively.

5.2 CROSS-DATASET RESULTS IN REAL-WORLD BENCHMARKS

Experimental Setting. We evaluate our methods on a diverse set of established NLP benchmarks,
including Math (Hendrycks et al.), TriviaQA (Joshi et al.), HotpotQA (Yang et al.), Winogrande
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Figure 3: Histograms of Spilled Energy values across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right, making it harder to detect
errors). All sums are performed on 13-digit integers. In the fourth column, we show ROC curves for
Hallucination Detection across the error ranges (colors) and methods (line styles).

(Sakaguchi et al.), Winobias (Zhao et al.), Movies (Tapaswi et al.), MNLI (Williams et al.) and IMDB
(Maas et al.). These datasets span a wide range of reasoning and error-detection tasks, allowing
us to test whether the patterns observed in the synthetic arithmetic setting extend to real-world,
open-domain scenarios. Here too, we evaluate multiple LLMs that are either instruction-aligned or
not aligned, such as LLaMA-3-Instruct (Dubey et al.), Mistral-Instruct, and Mistral (Jiang et al.). As
emphasized by Orgad et al., it is essential to first localize the tokens most relevant to the final answer
before applying error detection. Following this principle, we restrict our analysis to the identified
exact answer tokens and compare spilled energy against baselines such as the probing classifiers of
Orgad et al. and logit confidence. Since exact answer tokens may consist of multiple tokens, we
further adopt a pooling strategy across the localized span to obtain a final score per sentence.

Ablation of the exact answer token. We provide an ablation experiment on the impact of selecting
the exact answer tokens. Table 2 reports average AuROC over 9 benchmarks and 3 LLMs with the
exact answer, and then another column that offers the improvement provided by using the exact
answer. Like prior work, we confirm that searching for the exact answer provides a notable boost: the
improvement is very pronounced (~ 25%) for spilled and marginal energy, while the logit baseline
receives a modest increase of 9%.

Cross-dataset results. We next evaluate in the more general setting of cross-dataset transfer, which
better reflects real-world usage. For methods requiring training, we report the average performance
on each dataset when trained on the remaining datasets (e.g., performance on IMDB is the average
of classifiers trained on each of the other nine datasets). Table 1 summarizes results across nine
benchmarks. Spilled energy consistently outperforms /ogit confidence, and substantially surpasses
the probing classifiers of Orgad et al. (2025). While probing classifiers perform well when trained
and tested on the same dataset, their performance drops sharply under cross-dataset evaluation, as
reflected in their higher standard deviations. By contrast, spilled energy requires no training and
generalizes robustly across diverse benchmarks, providing a lightweight and broadly applicable
solution for error detection in LLMs. We also observe that instruction-tuned models tend to amplify
the margin by which spilled energy outperforms other methods, whereas on non-aligned models
such as Mistral, spilled ranks slightly behind marginal energy. Although this suggests a possible
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Pool HotpotQA HotpotQA-WC  IMDB Math MNLI Movies  TriviaQA Winobias Winogrande Average (%)
LLaMA-3-Instruct (Dubey et al., 2024)

Logit E* Max 72.85:212  91.11+152  42.08+507 57.81:352 25.52:500 43.97+1.35 68.89:1.06 39951241 49.40:2.1¢ 54.622.6
Orgadetal.  Mean 66.5610.10  59.00:s14  69.78+14.76 66.56+17.04 60.56+12.55 66.44 1506 63221111 67.33+11.07 58.00:7.70  64.16 7
Spilled AE; Max 53.65+1.4 36.28+2.00  55.80-4.32 3544-541 58.81+05: 70304140 4870244 36.53+208 44.32+17 48.87+2.50
Marginal E™ Max 76.72+1.35  30.74+3.45  85.63:230 27.08:506 89.90:125 96.17:0.65 80.13+157 57.67+200 4747155  65.72:23
Marginal E™ Min 75914162 97.57+0 14.37 230 7055245 61214324 72214160 73.38+156 47.19:271 53.98:2 .5 62.93+2.1
Spilled AE. Min 85981100  93.00:161  47.66:106 65.58:5.02 73.95:107 89.34+11.00 87071135 60.72127: 5511205  T3.16:2.1
Mistral-Instruct (Jiang et al., 2023)
Logit E* Max 77241166 83841166 222842510 57.67:320 78.98:155 76.89:1.40 80.35:155 455310060 48171107 6344007
Orgadetal.  Mean 64.78+1056  56.78+7.05  82.67+11.65 68.78:11.45 64.22:12.12 64.89+11.55 65441210 61.00+12.25 61.44-11.51 6556112
Spilled AE;, Max 49.134250 363742040  46.45:256 29.05:257 53.79+155 55244017 46.73+1.05 53.30+5.66 51.20+1s 46.81 256
Marginal E™ Min 87.58+135 97941062  18.67:227 67.58:357 97.96+055 84.90+1.57 87.75:1.75 49.19+507 484915 7112419
Marginal E™ Max 64.63+107  3342:100  81.33:252 26.52:208 17.62+120 86.60+1.20 65464225 564141140 5114417 53.68:2.14
Spilled AE Min 91121110 97.47:07s 5977257 66.63:5.46 959510535 9499005 91751101 50741515 49.00:100  77.49:1.75
Mistral (Jiang et al., 2023)
Logit E* Max 49541102 52471160 32.72:0s0 5721:380 92.49:105 30.52:000 39.73:205 46.531550 4441000 495140506
Orgad et al. Mean 61.78+0.27 57441605 76.22+12.52 65.78+15.27 56.67 1183 64.22+501 64.33+10.40 58.00+12.20 545615 62.11 23
Spilled AE, Max 60.54+1.51  60.18+1150 4347076 71931362 4594200 78.84+155 67.92:1.32 57241572 51.88+1.0 59.77+2.32
Marginal E™ Min 87.52+151  90.91:155  54.69:249 86.21:1.05 98.80:0.:35 94.41 062 83.66+216 52151174 4637202  77.19+1 55
Marginal E™ Max 83.57+1.15  86.83+1.70 45315249 62265420 96.03:0.55 9927021 92264131 51314555 54490458 74.59:1 .05
Spilled AE Min 84.24+115  83.74+141 5743200 7826+2.05 96.69+0.> 8447117 81.27+18s 50.62+1.72 4872175 73.94:11

Table 1: Hallucination detection performance, in terms of AuROC, across nine benchmarks and
different LLMs. We measure the generalization across all tasks by computing the average.

interaction with alignment, we cannot claim a definitive link. Finally, we compare pooling strategies
and find that min pooling yields the best overall performance across methods.

Limitations. A current limitation of spilled energy is that it sometimes produces false positives on
tokens that are not semantically informative, as shown in Appendix D.3. We observe this effect
most prominently on punctuation tokens (e.g., commas, periods) and on words at the beginning of
sentences. In these cases, the probability mass over the next token is naturally spread across many
plausible options, leading to inflated spilled energy values even in otherwise correct generations. This
highlights the importance of accurately identifying the exact answer tokens, as detection is most
reliable when restricted to the parts of the output that carry the semantic content of the answer.

6 CONCLUSION

In this work, we reinterpreted the softmax layer of LLMs as

. R . . Pool A % Exact
an EBM, which allowed us to formalize the notion of spilled 0oL Average b BXac

w/ exact  answer

energy: the discrepancy between two energy values that answer  increase
should, in principle, be egual across cor.ls.ecutive time.steps. Logit I Max 558610041 +8.97
We showed both theoretically and empirically that this dis-  Orgadetal.  Mean 639441087 —
crepancy provides a powerful, training-free signal for detect- Spilled AE, Max S51.82.0000 4043
ing hallucinations and errors in LLM outputs. Through con-  Marginal E* Min  70.41-0156  +23.2
trolled synthetic arithmetic experiments, we demonstrated =~ Marginal E™ Max 64.67-02.11  +4.95

that spilled energy separates correct from incorrect genera-  Spilled AE Min  74.86-01.56  +25.6
tions with high reliability, outperforming standard baselines

such as logits and marginal energy, even when errors are Table 2: Improvement in the AuROC
subtle and difficult to detect. Extending the analysis to a provided by searching for the exact
wide range of real-world NLP benchmarks, we found that answer. Average across 3 LLMs and
spilled energy generalizes robustly across tasks and datasets, 9 benchmarks.

achieving superior performance without requiring additional classifiers or task-specific training.
Compared to probing approaches, which struggle with cross-dataset transfer, our method provides
a lightweight, scalable, and broadly applicable alternative. Overall, our findings highlight spilled
energy as a mathematically principled and practically effective framework for error detection in LLMs.
Beyond hallucination detection, this perspective opens up promising directions for understanding the
internal energy dynamics of autoregressive models, guiding future work on more trustworthy and
interpretable Al systems.
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A APPENDIX

A.1 PARTITION FUNCTIONS PROOF USED IN EQ. (4)

We extend the proof of Zhu et al. to the sequence-to-sequence setting by treating next-token prediction
as a multi-class classification problem. At step ¢, the input is the prefix {x;_1.1}, and the model
outputs logits over the vocabulary V of size V. For notational consistency, we define the following
energy terms:

Ef;(xm) = flog(exp (O(Xi_l:l)[id(xi)])) ,

©)
B (xi-11) = — log (X4 exp (6(xi-1)[K]) )
The probability of the sequence up to position ¢ can be expressed as
exp(—E%(x;.
po(Xi1) = M (10)

Zo ’
where Zg is the global partition function (normalizing constant), defined over all possible continua-
tions of all prefixes:

Zg = Z Zexp(@(xi_l 1)[1d(x;)] Z Zexp (xi—1.1)[K]) - (11)
Xi—1:1 X Xij—1:1 k=1
Similarly, the probability of the prefix x;_1.; can be written using the marginal energy:
exp(—Eg' (Xi—1:1))

pB(Xi—lzl) = Za ) (12)

where Zg is the corresponding normalizing constant:
Z@ - Z exp(—Eg" (Xi_1.1) Z exp(logZexp (Xi—1.1 [k])) . (13)
Xi—1:1 Xi—1:1
By expanding the logarithm in Eq. (13), we obtain

Zo = Z Zexp (xi—1.1)[K]) , (14)

Xi—1:1 k=1

which is identical to Eq. (11). Hence, the two partition functions coincide:
Zo = Zo. (15)
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A.2 THE ROLE OF TEMPERATURE IN SPILLED ENERGY

We now analyze how the temperature parameter 7 affects the definition of spilled energy. Starting
from Eq. (3), the probability of the next token under temperature scaling is

exp(20(x;_1.1)[Id(x;)])

lo X; | xi-1.1) =1lo (16)
gp@( | 11) g ZGXP(%O(Xi_Lﬁ[H)
k
1
— 0(x;—1.0)[1d(x:)] ogZexp (xi-11)[k]) (17)
Accordingly, the spilled energy becomes
1 14
AFEy(x;1) = - = 0(x;—1.1)[ld(x;)] logZexp (Xiyeons 1)[k]) . (18)

Limit case 7 — oco. When the temperature tends to infinity, the logits are scaled down towards
zero, making all tokens equally likely:

14
lim ABp(x;1) = lim 70(x7 1) [1d(x;)] logZeXp 0(x;—1.1)[k]) (19)
v
=0—1log > exp(0) (20)
—log|V]. 1)

Thus, for 7 — oo the model degenerates into a uniform random classifier over the vocabulary.

Interpretation. Varying 7 perturbs the balance between the two energy terms, introducing a system-
atic error in A Ey. From the perspective of the Boltzmann distribution, scaling by % corresponds to
injecting or removing energy from the system. At high temperatures (7 — 00), the system approaches
maximum entropy, where all tokens have equal probability. At low temperatures (7 — 07), the
distribution collapses onto the maximum logit token, making the model highly deterministic.

Error accumulation. As we generate tokens sequentially, we accumulate deviations in A Ey:

1 %
logpg(xq;_lzl) TO(Xz 1: 1) Id X, logZexp Xq_l:l)[k]) + ZAEO(Xj:l)- (22)
7j=1

Hence, temperature scaling not only modifies the probabilities but also reshapes the cumulative error
landscape traced by spilled energy.

B REPRODUCIBILITY

For comparability, we adopt the same experimental setting as Orgad et al. (2025), whose implemen-
tation is publicly available at ht tps://github.com/technion-cs-nlp/LLMsKnow. This
ensures that our baselines and evaluation procedures follow an established and validated protocol.

In addition, we will release our own codebase, which includes:

¢ computation of the proposed energy-based measures;

¢ scripts for reproducing the synthetic arithmetic preliminary experiments.

The code and instructions will be made available upon acceptance of this work to facilitate full
reproducibility of our results.
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C LLM USAGE

Large language models were used exclusively for text polishing and minor exposition refinements.
All substantive research content, methodology, and scientific conclusions were developed entirely by
the authors.

D SUPPLEMENTARY MATERIAL

This supplementary material is intended to complement the main paper by providing further motiva-
tion for our assumptions and design choices, as well as additional ablation studies or additional plots,
such as ROCs and histograms, that could not fit in the main paper.

D.1 ADDITIONAL RESULTS FOR SYNTHETIC ARITHMETIC

In Fig. 4 we augmented Fig. 3 in the main paper, adding also the results for Mistral-7B-Instruct v0.3
and LLaMa-3-8B. The same findings of the figure in the paper also translate to this LLM, meaning
that our method generalizes across LLMs.

Fig. 5 and Fig. 6 also extend and provide more details of Fig. 3 in the main paper by showing,
respectively, the histograms and the ROC at a better resolution and displayed in different frames.
Also, we have added results for Mistral-7B-Instruct v0.3 and LLaMa-3-8B.

Spilled Energy — Easy
[ Correct Incorrect ] Mistral-7B-Instruct v0.3 | » Logit Energy --- Medium
Marginal Energy =~ - Hard
. 120 120
120 1.0
100 100 100 .
80 80 80 08
60 60 60 £ 0.6
10 10 10 - ”'%
20 20 20 0.2
0 0 0 0.0= >
—~1 0 1 2 3 —1 0 1 2 3 —1 0 1 2 3 10°% 1072 1070 100
Spilled Energy Spilled Energy Spilled Energy FPR
(a) Easy (b) Medium (c) Hard (d) ROC
Llama-3 8B
200 200 200 L0
2 ’ 0.8
150 150 150 =06
£ 0.
100 100 100 =04
50 50 50 0.2
0 0 0 0.0 = 2
—2-10 1 2 3 4 5 -2 -10 1 2 3 4 5 —2-10 1 2 3 4 5 0° 102 10! 10°
Spilled Energy Spilled Energy Spilled Energy FPR
(e) Easy (f) Medium (g) Hard (h) ROC

Figure 4: Histograms of Spilled Energy values across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right, making it harder to detect errors),
as described in Section 5.1. In the fourth column, we show ROC curves for Hallucination Detection
across the error ranges (colors) and methods (line styles).
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Llama-3 8B
200 200 200
150 150 150
100 100 100
50 50 50
0—2 -1 0 1 2 3 4 5 0—2 -1 0 1 2 3 4 5 0—2 -1 0 1 2 3 4 5
Spilled Energy Spilled Energy Spilled Energy
(a) Easy (b) Medium (c) Hard

Llama-3-8B-Instruct

200 200 200
150 150 150
100 100 100
50 50 50
0 ; 0 ; 0 )
-2-10 1 2 3 4 5 -2-10 1 2 3 4 5 -2-10 1 2 3 4 5
Spilled Energy Spilled Energy Spilled Energy
(d) Easy (e) Medium (f) Hard
Qwen3-8B
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200 200 200
150 150 150
100 100 100
50 50 50
0 0 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Spilled Energy Spilled Energy Spilled Energy
(g) Easy (h) Medium (i) Hard

Mistral-7B-Instruct v0.3

120 120 120
100 100 100
S0 80 80
60 60 60
40 40 40
20 20 20
0 0 0

—1 0 1 2 3 -1 0 1 2 3 —1 0 1 2 3

Spilled Energy Spilled Energy Spilled Energy
(j) Easy (k) Medium (1) Hard
Figure 5: Histograms of Spilled Energy values for Correct and Incorrect answers

across models on Math Sums, increasing difficulty from left to right. We compute sums on 13-digit
integers, for incorrect answers we add a random offset sampled uniformly from the error interval:
Easy ~ U(1e3, led) - Medium ~ U(1e2, 1e3) - Hard ~ (1, 10); for more details see Section 5.1.
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Figure 6: ROC curves for Hallucination Detection across models (rows) on Math Sums with different
error ranges in the answer (columns, decreasing range left to right). All sums are performed on
13-digit integers. Legend: Spilled (ours) Spilled AE == Logit E* wes Marginal E™
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Pool HotpotQA HotpotQA-WC  IMDB Math MNLI Movies  TriviaQA  Winobias Winogrande  Average
LLaMA-3-Instruct (Dubey et al., 2024)
Orgad et al Mean  66.56:010  59.00:514  69.78+1476 66.56+17.04 60.56+12.53 66441506 632241111 673311107 58.00:770 64.16411 11
Spilled AE Min 85.98+-100  93.00+1 6 47.66+1.06 65.58=302 73.95:107 89.34+1.01 87.07- 55114205 7316210
Marginal E™  Max 7672135 3074505 85.63+230 27.08-5.06 89.90-125 96.17-0.63 80.13+1 .57 47474183 65.7242.31
Marginal E™  Min 7591162 97.570.75 o 70.55:205 61214500 72212160 73.38+1 53984230  62.93+2.10
Logit E* Max 72851002 9111152 42081507 57.81isso 25524500 43972135 68.89+1 0 49.40-206  54.6212.60
Spilled AE Max 54341155 47.68:0x 52341506 40332505 56441050 68.56+11.57 47.541240 38. 44971150 50.07 1252
Spilled AE, Max 53.65+ 36.28:2.00  55.80+432 35.44:341 58.81:25: 70304140 48.70+2.44 44320170 48.871250
Marginal E™  Mean  44.64:170 4821050  85.63:230 23251556 60.37:1.05 58291141 46121200 46.41 1200 46.99 1212
Logit E* Last Token 43.04:1 .5 719250097 42.08 59.89:5.83 19.741208 21.5742.02 39.97 1250 49.47 1005 43351502
Logit E* ALT  43.04:187 71924007 42.08:507 59.89:5s3 19.741008 21571202 39.974250 49.47 1225 43.3515.12
Mistral-Instruct (Jiang et al., 2023)
Orgad et al. Mean  64.78+10 56.78:7.05  82.67:11.65 68.7811.43 642251212 64.89211.55 654411200 61.00-£12.25 61.44-11 .31 65564112
Spilled AE Min 91.12 9747075 59774057 66.63+546 95951053 94991003 9LT5ci01 50744505 49.00+102  77.49+1 75
Marginal E™ Min 87.58 9794062 18.67+207 67.58:3:57 97.96+055 84.90+1 37 87.75+175 49.19+307 48.49+186 71124100
Logit E* Max 7724166 8384+166 22281251 57.67-320 7898155 76.89 4817107 63.44.10.07
Marginal E™  Max 64.63+107  3342:100  81.33+232 26.52:208 17.62+120 86.60+1 20 51144171 53.68+2.14
Logit E* Last Token 55.77+2.3s 22284050 7121000 47.78+226 42.93+1 0 48.30+2.01  51.50+2.48
Logit E* ALT 55.77 =238 22.28:051 71202002 47781206 42,9341 0 48.30+2.01  51.50+2.45
Spilled AE, Max 49.13:2 46.45:256 29.05:257 53.79 55241007 51200180 46.81 105
Spilled AE Max 49.492 55 40.25:256 30.82:253 49.28+1.61 53.5612.02 51.3811.07  46.29-10.35
Logit E* Mean 45561 7% 22274053 58.59-031 53.85:013 31.88420 48.401.00  45.7140.07
Mistral (Jiang et al., 2023)

Orgad et al. Mean  61.78:027  57.44-605 762211252 65.78+1527 56.67 41185 64221501 64.33 21000 58.00£12.20 54561056 621141025
Marginal E™  Min 87.52:151 9091155 54.69:240 86.21:1.06 98.80:1055 9441060 83.66:006 52.15 46.372.02 77091155
Marginal E™  Max 83571105 86.83:170 45314040 6226:420 96.03:1053 99271024 922641 51 54.49 045 74.5911.05
Spilled AE Min 8424115 83.74:14 5743000 78.26+2.05 96.69+0.c2 8447117 81274158 48.72 73.94+
Spilled AE Max 61.50+1 55 63.60+168 425741200 7627542 47.014245 81.84+160 68.07+130 511341187 61.1942.32
Spilled AE, Max 60.54+151 60184151 43471076 71932562 45941040 78844155 67.92 51.88+100 59.77+212
Logit B* Max 49.54 52471 32724050 57212550 9249 30.52+2.00 39.73+2.03 44414202 49.51+256
Spilled AE  Last Token 40.79+155  50.34-0.2  42.57+200 55.15:5.00 46474247 49.75:200 45.25:17 51.07 156 48.87 0.7
Spilled AE ALT  40.79+155  50.34-2035  42.57+200 55.15-5400 46.47+247 49.75+0.010 4525+17 51.07 156 48.87+0.47
Spilled AE, ALT 41751150  50.64:2.20 i 51232500 45494257 49.74+106 46,9815 51.67+151  48.68-2 .45
Spilled AE, Last Token 41.75-150  50.64-2.20 5123540 45494037 4974106 46.98+1 .5 51.67+181  48.6812.45
Logit E* ALT 3931126 44.80+2.05 54.35:007 9229+1105 23.69+ 32,5841 50 44422002 45.6310.37
Logit E* Last Token 39.31:126  44.80:2.05 54.35:007 9229+105 23.69+ 32.58+150 44422002 45.6310.37

Table 3: Hallucination detection performance, in terms of AuROC, across nine benchmarks and
different LLMs. We measure the generalization across all tasks by computing the average.
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What is the capital of Italy?{The capital of Italy is Rome) .

Figure 7: Example of the Pooling Window

D.2 ADDITIONAL RESULTS FOR CROSS-TESTING CON REAL WORLD BENCHMARKS

Table 3 shows how our method compares with the baselines methods, Orgad et al. (2025) and Logit
E*. This table was obtained by using various pooling methods in the pooling frame from which we
measure the hallucination. More details below alongside the examples based on Fig. 7:

<o
<
<
<
<
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Min: minimum energy value in the pooling frame. Energy Measured: —3
Max: maximum energy value in the pooling frame. Energy Measured: 11
Mean: mean among all the energies in the pooling frame. Energy Measured: 2.08

Last Token: energy on the last token of the pooling frame. Energy Measured: —3

After Last Token: energy of the first token after the pooling method. Energy Measured: 1
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D.3 ADDITIONAL QUALITATIVE RESULTS

In this section, we offer additional results of the detection performance following what is shown in
Fig. 1. We report both success cases and failure cases. While it is difficult to draw conclusions and
predict when, why, and on which topics spilled energy may work or not, we noticed that it appears to
perform reliably on knowledge-based factual content but exhibits difficulties with reasoning tasks
and numerical information, despite working well on math questions as demonstrated in Section 5.1.
Further investigation is required to better understand and validate these patterns.

D.3.1 Succgss CASES

Question: ‘*‘Which planet is known as the Red Planet ?'’

Logits: The Red Planet is Mars . v/
Ours: The Red Planet is Mars . v/

Logits: The Red Planet is Jupiter . X
Ours: The Red Planet is Jupiter . X

.

Question: ‘“‘What is the largest mamm al in the world ?'’

- )

Logits: The largest mamm al in the world is the Blue Whale v/

Ours: The largest mamm al in the world is the Blue Whale v/

Logits: The largest mamm al in the world is the House Cat . X

Ours: The largest mamm al in the world is the House Cat . X

Question: ‘‘Who painted the Mona Lisa?’’

Logits: The Mona Lisa was painted by Leonardo da Vinci . v/

QOurs: The Mona Lisa was painted by Leonardo da Vinci . v/

Logits: The Mona Lisa was painted by Pablo Esc obar . X
Ours: The Mona Lisa was painted by Pablo Esc obar . X

Question: ‘‘What gas do plants breathe in for photosyintesis ?’’

Logits: They breathe in carbon dioxide v/
Ours: They breathe in carbon dioxide v/

Logits: They breathe in oxygen X
Ours: They breathe in oxygen X
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Question: ‘‘In which continent is Egypt Located ?'’

Logits: Egypt is located in Africa v/
Ours: Egypt is located in Africa v/

Logits: Egypt is located in Europe X
Ours: Egypt is located in Europe X

Question: ‘“‘What is the fastest land animal 2’7’

Logits: The fastest land animal is the che et ah v/
Ours: The fastest land animal is the che et ah v/

Logits: The fastest land animal is the lion X
Ours: The fastest land animal is the lion X

Question: ‘‘What is the hardest natural substance on Earth 2’7

Logits: The hardest natural substance is diamond v
Ours: The hardest natural substance is diamond v/

Logits: The hardest natural substance is gold X
Ours: The hardest natural substance is gold X

Question: *“‘Which ocean is the largest 2’7’

Logits: The largest ocean is the Pacific Ocean v/
Ours: The largest ocean is the Pacific Ocean v

Logits: The largest ocean is the Indian Ocean X
QOurs: The largest ocean is the Indian Ocean X

D.3.2 FAILURE CASES

Question: ‘‘Who was the first person to walk on the mood ?’’

Logits: Neil Armstrong v/
Ours: Neil Armstrong v/

Logits: Buzz Ald rin X
Ours: Buzz Ald rin X
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Reasoning: ‘‘Marta has 2 sisters and 2 brothers. How many sisters has
one of the brothers of Marta?’’

Logits: Mart a has 2 sisters and 2 brothers . Each brother has the same 2 sisters
. So , one of Mart a ’s brothers has 2 sisters . v/

Ours: Mart a has 2 sisters and 2 brothers . Each brother has the same 2 sisters .
So , one of Mart a ’s brothers has 2 sisters . v/

Logits: Mart a has 2 sisters and 2 brothers . Each brother has the same 3 sisters
. So , one of Mart a ’s brothers has 3 sisters . X

Ours: Mart a has 2 sisters and 2 brothers . Each brother has the same 3 sisters .
So , one of Mart a ’s brothers has 3 sisters . X

.

Reasoning: ‘‘If there are 3 cars and each car has 4 wheels , how many
wheels are there in total 2 7’/

Logits: Each car has 4 wheels . So , for 3 cars , the total number of wheels is 3
X 4 = 12 wheels . /

Ours: Each car has 4 wheels . So , for 3 cars , the total number of wheels is 3
X 4 = 12 wheels . /

Logits: Each car has 8 wheels . So , for 3 cars , the total number of wheels is 3
X 8 = 14 wheels . X

Ours: Each car has 8 wheels . So , for 3 cars , the total number of wheels is 3
X 8 = 14 wheels . X

.

Reasoning: ‘‘What is the square root of 642"’

Logits: The square root of 64 is 8 /
Ours: The square root of 64 is 8 v/

Logits: The square root of 64 is 10 X
Ours: The square root of 64 is 10 X

Question: ‘‘What blood tyoe is known as the universal donor 2’7’

Logits: O negative v/
QOurs: O negative v/

Logits: AB positive X
Ours: AB positive X
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