
Unlocking State-Tracking in Linear RNNs
Through Negative Eigenvalues

Anonymous Author(s)
Affiliation
Address
email

Abstract

Linear Recurrent Neural Networks (LRNNs) such as Mamba, RWKV, GLA, mL-1

STM, and DeltaNet have emerged as efficient alternatives to transformers in large2

language modeling, offering linear scaling with sequence length and improved3

training efficiency. However, LRNNs struggle with state-tracking which is impor-4

tant for e.g. code comprehension and tracking chess pieces across a board. Even5

parity, the simplest state-tracking task, which non-linear RNNs like LSTMs han-6

dle effectively, cannot be solved by current LRNNs. Recently, Sarrof et al. (2024)7

demonstrated that the failure of LRNNs to solve parity stems from restricting the8

eigenvalue range of their diagonal state-transition matrices to [0, 1], and that incor-9

porating negative eigenvalues can resolve this issue. We generalize this result to10

full matrix LRNNs. We prove that no finite-precision LRNN with state-transition11

matrices having only positive real eigenvalues can solve parity. Notably, we prove12

that LRNNs can learn any regular language when their state-transition matrices13

are products of identity plus vector outer product matrices with eigenvalues in the14

range [−1, 1]. Our empirical results confirm that extending the eigenvalue range15

of models like Mamba and DeltaNet to include negative values not only enables16

them to solve parity but consistently improves their performance on state-tracking17

tasks. Furthermore, pre-training LRNNs with an extended eigenvalue range for18

language modeling achieves comparable performance and stability while showing19

promise for coding tasks.20

1 Introduction21

0 10000 20000
Training Steps

0.00
0.25
0.50
0.75
1.00

Sc
al

ed
 A

cc
ur

ac
y

Eigenvalue
Range

[0, 1]
[-1, 1]

Figure 1: Extending the eigen-
value range of the state transi-
tion matrices of diagonal LRNNs
improves performance from ran-
dom guessing (range [0, 1]), to
perfect score (range [−1, 1]) on
learning parity. Trained on se-
quences up to length 40; Tested
on lengths 40–256 (3 seeds).

Transformer architectures (Vaswani et al., 2017) have revolu-22

tionized NLP but scale quadratically in sequence length, posing23

computational challenges for long sequences. To address this,24

Linear Recurrent Neural Networks (LRNNs) have emerged as25

promising alternatives that offer linear scaling while maintaining26

competitive performance (Gu & Dao, 2023; Dao & Gu, 2024;27

Yang et al., 2024a; Peng et al., 2023; Deletang et al., 2023; Sun28

et al., 2024; Beck et al., 2024). LRNNs update their state via29

matrix-vector products with structured, learnable state-transition30

matrices, enabling parallelization techniques like the associa-31

tive scan (Blelloch, 1990) for efficient training. The structure32

of state-transition matrices largely determines LRNN capabili-33

ties. While successful models like Mamba (Gu & Dao, 2023),34

GLA (Yang et al., 2024a), and mLSTM (Beck et al., 2024) use35

diagonal matrices (diagonal LRNN), recent work explores more36

complex forms. Notably, non-diagonal matrices using general-37

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

ized Householder (GH) transformations, defined as I +uu⊤ where u is a learnable vector and I is38

the identity, show promise in models like DeltaNet (Yang et al., 2024b) and TTT-Linear (Sun et al.,39

2024), potentially enhancing expressiveness while preserving efficiency.40

Despite these successes, both transformers and current LRNNs face a fundamental limitation: they41

struggle to learn and track the state of even simple finite-state machines from sequences of state-42

transitions (Deletang et al., 2023). This limitation may impair performance on tasks such as entity43

tracking in narratives, handling nested structures in code, and other reasoning tasks that can benefit44

from maintaining and updating an internal state over time (Merrill et al., 2024). Even the simplest45

state-tracking task, computing the parity of a sequence of bits, cannot be solved by current LRNNs,46

while non-linear RNNs like LSTMs (Hochreiter & Schmidhuber, 1997) and sLSTM (Beck et al.,47

2024) can solve parity easily (Merrill et al., 2024). However, in-contrast to modern linear RNNs,48

non-linear RNNs lack an efficient method for parallelizing the training across sequence length.49

Recently, Sarrof et al. (2024) demonstrated that the inability of diagonal LRNNs to solve parity50

problems stems from the constraining the eigenvalues of their state-transition matrices to be posi-51

tive. Specifically, they proved that diagonal LRNNs, when implemented with finite precision and52

exclusively positive real eigenvalues, cannot solve the parity problem for sequences of arbitrary53

length. However, their work did not provide empirical evidence showing that diagonal LRNNs with54

negative eigenvalues can be successfully trained to overcome this limitation. We prove that the same55

limitation also affects LRNNs with non-diagonal state-transition matrices, and further prove that56

complex eigenvalues are necessary to solve the more challenging task of modular counting when57

the modulus is a power of two. Our findings also apply to the GH matrices employed by DeltaNet,58

as they share the same eigenvalue limitations. To overcome this, we propose a simple yet powerful59

solution: extend the range of possible eigenvalues from [0, 1] to [−1, 1]. This change enables state-60

tracking and significantly improves LRNNs’ expressivity without compromising their efficiency and61

training stability. We illustrate in Figure 1 that this change allows diagonal LRNNs to learn parity.62

We open-source the code for our experiments in this anonymous repository.63

Contributions:64

(i) We prove that any finite-precision LRNN with only positive real eigenvalues in the state-65

transition matrices (most LRNNs used in practice) cannot solve parity at arbitrary sequence lengths66

(Theorem 1), while complex eigenvalues are required to learn counting modulo 3 (Theorem 2).67

(ii) By extending the eigenvalue range to [−1, 1], we significantly improve LRNN state-tracking68

capabilities. We prove that LRNNs with state-transition matrices formed by products of generalized69

Householder (GH) matrices in the range [−1, 1] can learn any regular language (Theorem 4), in70

some cases with just a single layer (Theorem 3). Importantly, such an extension allows even prac-71

tical LRNNs, using just one GH matrix (like DeltaNet), to learn substantially harder tasks, such as72

the composition of permutations of two elements (swaps), compared to diagonal LRNNs.73

(iii) We show that the eigenvalue range of Mamba and DeltaNet can be extended to [−1, 1] with-74

out compromising efficiency or training stability. We test the modified methods on parity, modular75

arithmetic, and permutation composition, demonstrating improved state-tracking performance.76

(iv) We pre-train modified versions of DeltaNet (340M parameters) and Mamba (370M parameters)77

and show that they reach performance comparable to the original models on generative language78

modeling tasks, while DeltaNet shows improved perplexity on coding and math datasets. Notably,79

we gain 2 points of perplexity on CodeParrot (Tunstall et al., 2022).80

2 Background: Linear Recurrent Neural Networks (LRNNs)81

We describe LRNNs using notation inspired by Sarrof et al. (2024), focusing on the core linear82

recurrences while abstracting away non-linear computations for each token. LRNNs are, in fact,83

stacks of layers with common structure but distinct learnable parameters. For further related work84

on LRNNs, we refer to Appendix A. Each layer takes input vectors x1, . . . ,xt ∈ Rl and outputs85

ŷ1, . . . , ŷt ∈ Rp as:86

Ht = A(xt)Ht−1 +B(xt), ŷt = dec(Ht,xt)

H0 ∈ Cn×d, A : Rl → Cn×n, B : Rl → Cn×d, dec : Cn×d × Rl → Rp
(1)

Here, A,B and dec are learnable, generally non-linear functions, with dec usually expressed by a87

feed-forward neural network. This definition encompasses most LRNN variants, which differ in the88

2

https://anonymous.4open.science/r/negative_eigenvalues-3023/readme.md

A(xt) B(xt) ŷt

Mamba Diag (exp (−∆t,i exp(w1,i))) ∆t,ixt,ikt ψ(q⊤
t H

⊤
t +w2 ⊙ xt)

GLA Diag (αt) ktv
⊤
t ψ(q⊤

t H
⊤
t)

DeltaNet I − βtktk
⊤
t ktv

⊤
t ψ(q⊤

t H
⊤
t)

Table 1: Different LRNNs layers as instances of (1), where αt = sigmoid(Wαxt), ∆t =
softplus(W∆xt), βt = sigmoid(wβxt), while qt,kt,vt are the output of learnable and possibly
non-linear functions of xt. Also ψ : Rd → Rd is another learnable function usually containing an
MLP and a normalization, while W1 ∈ Rd, W∆ ∈ Rd×l, Wα ∈ Rn×l, wβ ∈ Rl and w2 ∈ Rd are
learnable parameters. For simplicity, for Mamba, we wrote the matrices for the recursion of each row
of the state Ht and set xt = (xt,1, . . . , xt,d), W1 = (w1,1, . . . ,w1,d) and ∆t = (∆t,1, . . . ,∆t,d).

form of A and B, dec parameterization, and use of positional encoding. Table 1 illustrates how89

three popular LRNNs fit this framework. For other architectures, see (Yang et al., 2024b, Table 4).90

The state-transition matrices A(xt) are typically diagonal or generalized Householder (GH), i.e.,91

identity plus vector outer product, as shown in Table 1, to enable efficient matrix-vector products on92

modern hardware. These matrices consistently have eigenvalues (and norm) in the range [0, 1].93

3 Theoretical Analysis94

We begin by highlighting the limitations of current LRNNs, demonstrating that they fail to meet95

a necessary condition for solving parity and modular counting problems: the eigenvalues of their96

state-transition matrices are restricted to the range [0, 1]. Subsequently, we illustrate how extending97

this eigenvalue range to [−1, 1] significantly enhances the expressive power of LRNNs.98

3.1 Limitations of Current LRNNs99

The parity yt ∈ {0, 1} of a sequence of ones and zeros x1 . . . xt ∈ {0, 1}t is 1 if the total num-100

ber of ones in the sequence is odd, and 0 if it’s even. Equivalent to addition modulo 2, it can be101

computed by summing the values in the input sequence and then applying the modulo 2 function:102

yt = (
∑t

i=1 xi) mod 2. We can also express this as the linear recursion103

ht = ht−1 + xt, h0 = 0, yt = ht mod 2 (2)

where ht contains the total number of ones. This solution can be implemented by an LRNN with one104

layer and scalar states by setting A(xt) = 1, B(xt) = xt, H0 = 0, and dec(Ht, xt) = Ht mod 2105

in Equation (1). However, implementing such a solution with finite precision presents an issue: the106

state ht can grow indefinitely with t, eventually reaching the limit of our precision range. Indeed,107

ht ∈ {0, . . . , t}, requiring log2(t + 1) bits for storage. Such solutions, referred to as shortcut108

solutions, are the only ones learnable by transformers when allowingO(log(t)) bits of precision and109

either depthO(log(t)) or widthO(t) (Liu et al., 2023). Moreover, the MLP in dec must approximate110

the modulus 2 function, which is challenging to learn due to its discontinuous and periodic nature.111

A more efficient solution, which implements the two-state FSA solving this problem, can still be112

realized by a finite-precision LRNN with one layer and scalar states (and consequently with vector113

states and diagonal state-transition matrices) using the recursion:114

ht = a(xt)ht−1 + b(xt), h0 = 0, b(1) = a(0) = 1, a(1) = −1, yt = ht. (3)

Note that the state-transition scalar a(1) is negative. However, current diagonal LRNNs do not allow115

negative values, and so are unable to learn parity. This raises the question: can non-diagonal LRNNs,116

such as DeltaNet, solve parity? The following result gives an answer to this question by providing117

necessary condition for a LRNN to solve parity. It generalizes (Sarrof et al., 2024, Theorem 2) to118

non-diagonal matrices, showing that there must be at least one eigenvalue which is not real and119

positive. This eigenvalue could simply have a nonzero imaginary part without necessarily being120

negative and real.121

Theorem 1 (Parity). A finite-precision LRNN with finitely many layers of the form (1) can solve122

parity for arbitrary input lengths, in particular it can recognize the language (11)∗, only if at every123

layer, A(xt) admits at least one eigenvalue λ with |λ| ≥ 1 and that is not real and positive.124

3

Notice that Mamba, mLSTM, GLA and even non-diagonal LRNNs such as DeltaNet do not satisfy125

such requirement. The proof in Appendix C.1 uses the same core idea in the one of (Sarrof et al.,126

2024, Theorem 2). For one layer, we show that when x = 1k and the conditions for the eigenvalues127

of A(1) are not met, each element of state Hk in finite precision will be constant for large enough128

k. Thus, ŷk cannot be equal to yk (for k large enough) no matter the choice of dec. To show this, we129

use the expression for the powers of the Jordan Canonical form of A(1), to prove that each element130

of A(1)k either converges or diverges to a point in the complex infinity when k → ∞.131

We now study the problem of counting modulom, which can be seen as an easier version of addition132

modulo m. For this problem the input of length k never changes and is equal to x = 1k, while133

the correct output is yk =
∑k

i=1 xi mod m. The following theorem establishes that to solve this134

problem, the state-transition matrices of the LRNN must have at least one eigenvalue with a nonzero135

imaginary part and modulus greater than or equal to one.136

Theorem 2 (Modular Counting). A finite-precision LRNN with finitely many layers can solve mod-137

ular counting with modulus greater than 2 for arbitrary input lengths, in particular it can recognize138

the language (1m)∗ with m not a power of two, only if at every layer A(xt) admits at least one139

eigenvalue λ with nonzero imaginary part and such that |λ| ≥ 1.140

Note that all LRNNs allowing only symmetric or triangular state-transition matrices with real entries141

do not satisfy the assumptions of Theorem 2. For one layer, the proof in Appendix C.2 is similar142

that of Theorem 1 but we consider the two sequences H2k and H2k+1, showing that they have143

a defined limit when k→∞, even when A(1) admits negative eigenvalues less or equal than −1.144

Theorems 1 and 2 identify a fundamental limitation of current design choices on the structure of the145

state-transition matrices of LRNNs. Specifically, the most popular approaches outlined in Table 1146

are incapable of solving parity problems, as the eigenvalues of their state-transition matrices are147

confined to the interval [0, 1]. Further, even if we allow negative eigenvalues that are still real,148

we cannot solve counting modulus m. However, as we will see in the next section, LRNNs with149

state-transition matrices that are products of generalized Householder (GH) matrices, each with150

eigenvalues in [−1, 1], are more powerful than LRNNs with diagonal state-transition matrices.151

3.2 Allowing Negative Eigenvalues152

In this section, we explore the implications of extending the eigenvalue range to include negative153

values. We focus on two classes of LRNNs: those with diagonal state-transition matrices, which are154

currently the most prevalent (including GLA, Mamba, and Mamba2), and those with generalized155

Householder (GH) state-transition matrices, as recently proposed in the DeltaNet architecture. In156

particular, if we let s : Rl → [0, 1]n and ϕ : Rl → [0, 1], v : Rl → Rn, being learnable functions157

such that ∥v(x)∥ = 1 for every x ∈ Rl, then the state transition matrices of each layer of many158

LRNNs, such as those in Table 1, can be written as either159

Adiag(x) := Diag(s(x)), or AGH(x) := I − ϕ(x)v(x)v(x)⊤,

where Adiag(x) is diagonal and has every eigenvalue s(x)i ∈ [0, 1] and AGH(x) is GH and has160

all eigenvalues equal to one except for the one associated to the eigenvector v(x), which is equal161

to 1 − ϕ(x) ∈ [0, 1]. To address the limitations discussed in the previous section, we propose the162

following modification that can be easily applied to any LRNN belonging to either class.163

A−
diag(x) := Diag(2s(x)− 1), A−

GH(x) := I − 2ϕ(x)v(x)v(x)⊤. (4)

Note that A−
diag(x) has eigenvalues 2s(x)i − 1 ∈ [−1, 1] and A−

GH(x) has all eigenvalues equal164

to one, except for one that is equal to 1 − 2ϕ(x) ∈ [−1, 1]. Thus, we have extended the range of165

eigenvalues from [0, 1] to [−1, 1]. We know from the previous section, that LRNNs with the modified166

state transition matrices can implement the solution to the parity problem by setting s(1) = 0 and167

ϕ(1) = 1 so that if we consider a scalar recursion, then A−
diag(1) = A−

GH(1) = −1. However,168

we have also shown that since the eigenvalues are real, we cannot solve counting modulo m with169

m ≥ 3. Despite this, we note that counting modulo m is linked to rotation by an angle of 2π/m170

radians in R2, and we can express a rotation as a product of two reflections, each of which can171

be written as a GH matrix. In other words, for any integer m ≥ 3 there exist unit norm vectors172

v1,v2 ∈ R2 such that173

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
=
(
I − 2v1v

⊤
1

) (
I − 2v2v

⊤
2

)
, θ =

2π

m
.

4

Interestingly, this construction can be done only with GH matrices having one eigenvalue equal174

to −1. If we set the state-transition matrix in eq. (1) to A(1) = R(θ), an LRNN with one layer175

can count modulo m, since if we also set H0 = (1, 0)⊤, M = (H0,R(θ)H0, . . . ,R((m −176

1)θ)H0)
⊤ ∈ Rm×2, B(1) = 0 and dec(H, x) = argmaxi M

⊤
i H − 1, then for the input x = 1t177

we get178

ŷt = dec(Ht, 1) = dec(A(1)tH0, 1) = dec(R(tθ)H0, 1) = t mod m.

Therefore, we examine the impact of our change to the eigenvalue range on state-transition matrices179

constructed as repeated products of GH matrices.180

3.3 Products of Generalized Householder Matrices181

We define the set of all matrices in Rn×n that can be expressed as a product of k GH matrices with182

a given range Ω ⊆ R of allowed eigenvalues:183

Mk(Ω) :=
{
C1C2 · · ·Ck : Ci = I − βiviv

⊤
i , (1− βi) ∈ Ω, vi ∈ Rn, ∥vi∥ = 1

}
. (5)

We first observe that if MH ∈ M1({−1}), then MH is a reflection, or Householder matrix, and184

that for any x ∈ Rl, AGH(x) ∈ M1([0, 1]) and A−
GH(x) ∈ M1([−1, 1]) so that with our change185

we also include reflections. Note also that Mk(Ω) ⊆ Mk′(Ω′) if either k′ ≥ k and 1 ∈ Ω, or if186

Ω ⊆ Ω′. Repeated products of diagonal matrices with values in the range [−1, 1] remain diagonal,187

with eigenvalues in the same range. More interestingly, our next result shows that products of188

GH matrices can represent any matrix with Euclidean norm less than or equal to 1. Without our189

modification, however, or even just by restricting to Mk((−1, 1]), they are limited to matrices where190

any eigenvalue is either equal to 1 or has modulus strictly smaller than 1.191

Proposition 1 (Expressivity of products of GH matrices). The following hold for Mk in eq. (5):192

1. For any k ∈ N and N ∈ Mk([−1, 1]), ∥N∥ ≤ 1.193

2. For any M ∈ Rn×n with ∥M∥≤ 1, then M ∈ M3n([−1, 1]) and if M is orthogonal194

then M ∈ Mn({−1, 1}), while M ∈ Mn−1({−1, 1}) when M is a permutation matrix.195

3. Any eigenvalue λ of N ∈ Mk((−1, 1]) is either 1 or satisfies |λ| < 1 and if in addition196

N ∈ Mk([0, 1]), then λ ∈ R.197

The proof in Appendix D.1 uses linear algebra arguments, the SVD decomposition, and the fact that198

that every n × n orthogonal matrix can be written as a product of n reflections. A consequence of199

Proposition 1 is that if for every layer of an LRNN there exists k ∈ N such that the map A from200

inputs to state transition matrix is such that A : Rl → Mk((−1, 1]) ⊂ Rn×n, then the LRNN201

cannot learn to count modulo m, with m ≥ 3, due to Theorem 2. On the contrary, if we allow202

A : Rl → Mk([−1, 1]) and k is large enough, we can show that an LRNN with one layer can203

implement any FSA whose transition monoid is a group and that with multiple layers the LRNN can204

recognize any regular language. This is the content of the following two theorems.205

Theorem 3. Every FSA A = (Σ, Q, q0, δ) whose transition monoid T (A) is also a group, can be206

implemented by a finite-precision LRNN with one layer and A : Σ → Mk−1({−1, 1}) ⊂ Rn×n,207

where n is the smallest natural number such that T (A) is isomorphic to a subgroup of Sn, and208

k = maxw∈Σ

∑
q∈Q 1{δ(q, w) ̸= q} is the maximum number of changed states after applying a209

single transition. Moreover, if T (A) is isomorphic to the cyclic group Zm, then we can set A : Σ →210

M2([−1, 1]) ⊂ R2×2. If m = 2 (parity) we can set A : Σ → {−1, 1}.211

The proof in Appendix D.2 uses matrix representations of groups to map each state-transition func-212

tion to the corresponding matrix representation. This can always be done using permutation matri-213

ces, but for cyclic groups we can also use 2 × 2 rotation matrices. In the case of permutations, if214

every state-transitions permutes at most k states then the corresponding permutation matrix will be215

in Mk−1({−1, 1}), since if it is not the identity, it can be written as a product of at most k − 1216

permutations of two elements (swaps), each in M1({−1}). A consequence of Theorem 3 is that if217

every transition function of the FSA has a permutation representation corresponding to a swap or to218

the identity, then a LRNN layer with A = A−
GH, can implement it. This is useful in practice because219

the cost of the recursion increases k-fold if we use a product of k GH matrices compared to just one.220

Also, for many problems, state-transition for the FSA might either be simple or be encoded using221

multiple letters. For example, for addition modulo 5, a word may look like “3+2+6=1” (two letters222

per addition operations). This makes it possible even for an LRNN with state-transition matrices in223

5

M1([−1, 1]) to model complex transitions. Indeed if each transition uses k letters, then if we set224

B ≡ 0 and A : Rl → M1([−1, 1]) in eq. (1), then225

Ht = C(xt, . . . , xt−k)Ht−k, C(xt, . . . , xt−k) := A(x1)A(x2) · · ·A(xt−k) ∈ Mk([−1, 1]),

which allows to model permutations that change up to k + 1 elements.226

Theorem 4. Every FSA A = (Σ, Q, q0, δ) can be implemented by a finite-precision LRNN with227

s ≤ 2|Q| layers, each of the form 1, where n ≤ |Q|, p ≤ s, d = 1, A : Rl → Mn([−1, 1]) ⊂ Rn×n228

and B : Rl → Nn. Therefore, LRNNs with state transition matrices that are repeated products of229

GH matrices each with eigenvalues in the range [−1, 1] can recognize any regular languages.230

The proof in Appendix D.4 exploits the landmark Theorem by Krohn & Rhodes (1965), which states231

that every FSA can be decomposed as a cascade of simpler FSAs whose state-transition functions232

are either one-to-one or constant. Each layer of the LRNN will implement each FSA of the cascade233

using n × n permutation matrices, with n being the number of states of the FSA, which are in234

Mn−1({−1, 1}), for the one-to-one transitions, while for constant (state-independent) transitions it235

will set the state-transition matrix to 0 ∈ Mn({0}) and set B in (1) accordingly. Note that we can236

obtain the matrix 0 ∈ Rn×n only inefficiently as a product of n GH matrices, while it can also be237

obtained with a single diagonal matrix. This points towards LRNNs hybrids using a mix of GH and238

diagonal matrices, whose exploration we leave for future work.239

Discussion The results in Theorems 3 and 4 for LRNNs are in sharp contrast with the ones for240

transformers (Liu et al., 2023; Merrill & Sabharwal, 2023) and diagonal LRNNs (Merrill et al.,241

2024), which always require either the number of layers or the precision growing with the sequence242

length, and in most cases can only solve group word problems where the group is solvable, i.e.243

excluding Sn with n ≥ 5. Moreover, we note that compared to LRNNs without any restriction244

to the norm of the state-transition matrices, which need only one layer to recognize any regular245

language, our result requires both the number of layers and the width of the LRNN to be (in the246

worst case) exponential in the number of states of the FSA, although we conjecture that the number247

of layers can probably be reduced to at most linear using a more refined decomposition.248

4 Experiments249

Table 2: Summary of modifications to
the state-transition matrices A(xt) to
extend the eigenvalue range from [0, 1]
(Table 1) to [−1, 1]. We set s(xt) =
exp (−∆t,i exp(w1,i)).

[0, 1] [−1, 1]

Mamba Diag(s(xt)) Diag(2s(xt)− 1)
DeltaNet I − βtktk

⊤
t I − 2βtktk

⊤
t

We investigate the effects of expanding the eigenvalue250

range of state-transition matrices from [0, 1] to [−1, 1], as251

explained in Section 3.2, on both synthetic tasks and lan-252

guage modeling. Our experiments involve Mamba, and253

DeltaNet, with variants trained using both the original254

and extended eigenvalue ranges, as shown in Table 2. We255

label these variants accordingly. Note, that the changes256

increase the expressivity of Mamba and DeltaNet while257

coming at no additional computational cost. Detailed im-258

plementation information can be found in Appendix E.1.259

4.1 Chomsky Hierarchy260

We conducted experiments with some of the formal language tasks proposed by Deletang et al.261

(2023) and similarly used to benchmark xLSTM (Beck et al., 2024). Our focus was on tasks where262

mLSTM (a linear RNN) previously underperformed while sLSTM (a non-linear RNN) succeeded,263

specifically parity, modular arithmetic (regular languages) and modular arithmetic with brackets264

(context-free language). As in Beck et al. (2024), we trained each model with sequence lengths265

ranging from 3 to 40 and evaluated on lengths from 40 to 256, to assess length generalization. We266

compared mLSTM and sLSTM with two models: Mamba and DeltaRule. Our findings, presented267

in Table 3, demonstrate that expanding the range of eigenvalues from [0, 1] to [-1, 1] enables all268

examined models to fully solve the parity task. For modular arithmetic, this expansion led to sub-269

stantial performance improvements for Mamba and DeltaNet. It is worth noting that we were unable270

to replicate the sLSTM results reported by Beck et al. (2024) for the modular arithmetic tasks. in271

Figure 2, we also report performance vs sequence length for DeltaNet. We provide details on the272

tasks and experimental setup in Appendix E.2.273

6

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Parity

Eigenvalue
Range

[0, 1]
[-1, 1]

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/o Brackets

Eigenvalue
Range

[0, 1]
[-1, 1]

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/ Brackets

Eigenvalue
Range

[0, 1]
[-1, 1]

Figure 2: DeltaNet variants’ performance (scaled accuracy) on formal language tasks across se-
quence lengths. Models trained on sequences up to length 40 (red dashed line). Test on 8192
randomly sampled sequences, lengths 40-256. Curves show mean and 95% confidence interval.

4.2 State-Tracking274

Table 3: Performance comparison of various re-
current models on regular and context-free lan-
guage tasks. We report the best of 3 runs with
different seeds (Table 5 in the Appendix reports
the median). Scores represent scaled accuracy,
with 1.0 indicating perfect performance and 0.0
random guessing. The positive impact of allow-
ing negative eigenvalues ([−1, 1] range) versus re-
stricting to positive eigenvalues ([0, 1] range) is
evident across different architectures. Results in
parenthesis are as reported in Beck et al. (2024).

Parity Mod. Arithm.
(w/o brackets)

Mod. Arithm.
(w/ brackets)

mLSTM 0.087 (0.04) 0.122 (0.04) 0.120 (0.03)
sLSTM 1.000 (1.00) 0.135 (1.00) 0.133 (0.57)

Mamba [0, 1] 0.000 0.003 0.018
Mamba [−1, 1] 1.000 0.111 0.036
DeltaNet [0, 1] 0.017 0.187 0.182
DeltaNet [−1, 1] 1.000 0.612 0.339

We perform experiments on group word prob-275

lems, relying on the code provided by Merrill276

et al., 2024. In particular, we focus on the277

S5 group, which is the first unsolvable sym-278

metric group where current LRNN and trans-279

formers are known to perform poorly. We also280

report results for the addition modulo 60, i.e.281

the cyclic group Z60, in Appendix E.3.2. We282

note that parity is S2. In these experiments,283

the input to the model is a sequence of group284

elements, while the supevision is given by an-285

other sequence of group elements, each being286

the product of the previous ones in the input.287

Since solving S5 would require LRNNs with288

state-transition matrices that are repeated prod-289

ucts of 4 GH matrices, each with eigenvalues290

[−1, 1], we also consider three simplified se-291

tups: (i) allowing as inputs only permutations292

up to 2 elements (identity and swaps), (ii) al-293

lowing only permutations up to 3 elements, (iii) using 4 tokens for each permutation by having each294

token followed by a special token repeated 3 times. Additional details are in Appendix E.3. We295

stress that, even when restricting the inputs, possible outputs remains the same, since swaps are296

generators of the group.297

Results Figure 3 shows that, as predicted by Theorem 3, restricting the inputs to only swap per-298

mutations allows DeltaNet [−1, 1] with one layer to fully learn the task (since its state transition299

matrix can model a swap), while DeltaNet [0, 1] only manages to fit the training length, even with300

5 layers. On the contrary, just by including also permutations of 3 elements we notice a substantial301

decrease in the performance of all models, although extending the range is still advantageous and302

DeltaNet [−1, 1] with 5 layers reaches a good length generalization. Moreover, using 4 tokens per303

group element seems also beneficial compared to standard S5, since DeltaNet [−1, 1] with 5 layers304

manages to extrapolate very well until around length 120, which corresponds to 30 group elements,305

while all model trained on standard S5 have 0 sequence accuracy prior to sequence length 20. We306

also report that Mamba, being a diagonal model, performs poorly on all setups, with and without307

increased eigenvalue range.308

4.3 Language Modeling309

Experimental Setup We train DeltaNet models with 340M parameters and Mamba models with310

370M parameters, each using both original and extended eigenvalue ranges. The training is done311

on 32B tokens from the FineWeb-100B dataset (Penedo et al., 2024). For training details we re-312

fer to Appendix E.4.1. Given our previous theoretical and experimental findings, we hypothesize313

that models (especially DeltaNet) with extended eigenvalue range will perform better on language314

modeling tasks that require state-tracking such as coding or mathematics, compared to unmodified315

models. To test this hypothesis, we evaluate the perplexity of these models in a length extrapolation316

setup using various datasets: CodeParrot (Tunstall et al., 2022) for coding, Math-Hard (Hendrycks317

et al., 2021) for mathematics, TriviaQA (Joshi et al., 2017), and SlimPajama (Soboleva et al., 2023).318

Results Both models trained stably even with our modification and without changing the learning319

rate. The validation perplexity was comparable, albeit slightly lower, throughout training (See Fig-320

7

102

Sequence Length

0

50

100
S5 only swaps

DeltaNet [-1,1] 1L
DeltaNet [-1,1] 5L
DeltaNet [0,1] 5L
Mamba [-1,1] 5L
Mamba [0,1] 5L
Full matrix simple

101 102

Sequence Length

0

50

100
S5 swaps, 3-perm.

101 102

Sequence Length (# tokens)

0

50

100
S5 4 tokens per trans.

100 101 102

Sequence Length

0

50

100
S5

Figure 3: Validation sequence accuracy for different lengths on S5 after 30 (2 leftmost plots) and 90
epochs of training (1 seed). The dashed vertical line indicates the sequence length used during train-
ing (32 except for the third plot from the left where it is 64 since we use 4 tokens per permutation).
each method is labeled with name, eigenvalues range and number of layers. the dashed vertical line
indicates the sequence length used during training. Full matrix simple, is a simple one-layer baseline
where the state update matrices are unstructured and has no control on the eigenvalues.

0 3000
Sequence Length

20

22

24

26

Pe
rp

le
xi

ty

CodeParrot

Eigenvalue
Range

[0, 1]
[1, 1]

0 3000
Sequence Length

26

28

30

32

Pe
rp

le
xi

ty

Math-Hard

Eigenvalue
Range

[0, 1]
[1, 1]

0 3000
Sequence Length

16

18

20

Pe
rp

le
xi

ty

Trivia QA

Eigenvalue
Range

[0, 1]
[1, 1]

0 3000
Sequence Length

15

16

17

18

Pe
rp

le
xi

ty

SlimPajama

Eigenvalue
Range

[0, 1]
[1, 1]

Figure 4: Performance vs sequence length of DeltaNet variants on different datasets. DeltaNet with
eigenvalue range [-1, 1] shows improved perplexity on coding and math tasks compared to the [0,
1] baseline. The dashed vertical line indicates the training context length of 2048 tokens.

ure 7). The experiments in Figure 4 demonstrate that on coding and math datasets, DeltaNet with321

an eigenvalue range of [−1, 1] achieves lower perplexity than the baseline with range [0, 1]. For322

TriviaQA, the perplexity of DeltaNet [−1, 1] is slightly higher. Note that this is a task relying on323

memorization, not linked to state-tracking and hence we do not expect an improvement. On SlimPa-324

jama, we observe no significant difference between the two DeltaNet variants. For Mamba instead,325

we see a general degradation of the performance on these tasks compared to the unmodified version326

(Figure 8 in the Appendix). To ensure our models are comparable with those obtained by Yang327

et al. (2024b), we evaluate them on the same benchmark tasks from lm-harness (Gao et al., 2024)328

in Table 4. It’s worth noting that we trained on 32B tokens of FineWeb, while Yang et al. (2024b)329

reported results from training on 15B tokens of SlimPajama. We find that our models perform worse330

in terms of perplexity on WikiText and LAMBADA, while achieving better average accuracy on331

classic benchmarks. Furthermore, we report that DeltaNet [0,1] performs better on recall-intensive332

tasks SWDE and SQuAD, where our eigenvalue extension degrades performance.333

5 Conclusion334

We showed the substantial impact of extending the eigenvalue range of state-transition matrices in335

LRNNs from [0, 1] to [−1, 1]. This modification significantly enhances the expressivity of LRNNs336

in state-tracking tasks with no additional overhead in training or inference. While Mamba success-337

fully solves the parity problem, its diagonal matrix structure inherently limits further performance338

gains. In contrast, DeltaNet, by leveraging its non-diagonal matrix structure, excels across a broader339

spectrum of tasks. Our results underscore the critical role of non-diagonal state-transition matri-340

ces in augmenting state-tracking capabilities, highlighting a promising direction for future LRNN341

advancements, and potential impact in tasks such as natural language processing, time-series fore-342

casting and reinforcement learning. In our language modeling experiments, we did not observe any343

performance gains with the Mamba model. Furthermore, diagonal models such as Mamba2 and344

GLA utilize the positivity of state transition matrices to compute repeated products in log space, a345

technique our modification does not directly support. This limitation may introduce potential in-346

stabilities in certain cases (refer to Appendix E.1 for more details). Further research is needed to347

assess the impact of training large-scale language models with state-tracking capabilities. To this348

end, we aim to understand the potential downsides of increased expressivity, which could guide hy-349

brid model design. For example, we hypothesize a fundamental trade-off between state-tracking and350

memorization, which holds theoretical interest.351

8

References352

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-353

mer, and Christopher Ré. Language models enable simple systems for generating structured views354

of heterogeneous data lakes. Proceedings of the VLDB Endowment, 17(2):92–105, 2023.355

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,356

Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-357

tended Long Short-Term Memory. In Advances in Neural Information Processing Systems. Cur-358

ran Associates, Inc., 2024.359

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about360

physical commonsense in natural language. Proceedings of the AAAI Conference on Artificial361

Intelligence, 34(05):7432–7439, Apr. 2020.362

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of363

Computer Science, Carnegie Mellon University, 1990.364

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and365

Oyvind Tafjord. Think you have solved question answering? Try arc, the ai2 reasoning challenge.366

arXiv preprint arXiv:1803.05457, 2018.367

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms368

through structured state space duality. In International Conference on Machine Learning. PMLR,369

2024.370

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,371

Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural Networks and the Chomsky372

Hierarchy. In The Eleventh International Conference on Learning Representations, 2023.373

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.374

Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh375

International Conference on Learning Representations, 2021.376

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-377

ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-378

nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang379

Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for380

few-shot language model evaluation, 07 2024.381

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv382

preprint arXiv:2312.00752, 2023.383

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured384

state spaces. In International Conference on Learning Representations, 2022.385

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn386

Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.387

In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks388

Track (Round 2), 2021.389

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation, 9(8):390

1735–1780, 1997.391

Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press, 2012.392

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly393

supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-394

ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,395

2017.396

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are397

rnns: Fast autoregressive transformers with linear attention. In International Conference on Ma-398

chine Learning, pp. 5156–5165. PMLR, 2020.399

9

Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition theorem400

for finite semigroups and machines. Transactions of the American Mathematical Society, 116:401

450–464, 1965.402

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers403

learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-404

tions, 2023.405

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. When open information extraction meets406

the semi-structured web. NAACL-HLT. Association for Computational Linguistics, 2019.407

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In408

International Conference on Learning Representations, 2017.409

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-410

ference on Learning Representations, 2019.411

Oded Maler and Amir Pnueli. On the cascaded decomposition of automata, its complexity and its412

application to logic. ACTS Mobile Communication, 48, 1994.413

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-414

formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.415

William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space Models.416

In Forty-first International Conference on Machine Learning, 2024.417

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality418

of linear recurrences followed by non-linear projections: Finite-width guarantees and benefits of419

complex eigenvalues. In Forty-first International Conference on Machine Learning, 2024.420

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,421

Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:422

Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting423

of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.424

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin425

Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the426

finest text data at scale, 2024.427

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Bider-428

man, Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. Rwkv: Rein-429

venting rnns for the transformer era. In The 2023 Conference on Empirical Methods in Natural430

Language Processing, 2023.431

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Ma-432

chine Learning Research, 22(75):1–35, 2021.433

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions434

for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational435

Linguistics (Volume 2: Short Papers), pp. 784–789, 2018.436

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-437

sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.438

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models:439

A Formal Language Perspective. Advances in Neural Information Processing Systems, 2024.440

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.441

SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, June 2023.442

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei443

Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): RNNs with expressive444

hidden states. arXiv preprint arXiv:2407.04620, 2024.445

10

Alexandre Torres. mamba.py: A simple, hackable and efficient Mamba implementation in pure446

PyTorch and MLX., 2024. URL https://github.com/alxndrTL/mamba.py.447

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Natural language processing with trans-448

formers. ” O’Reilly Media, Inc.”, 2022.449

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,450

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-451

mation Processing Systems, volume 30. Curran Associates, Inc., 2017.452

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Atten-453

tion Transformers with Hardware-Efficient Training. In Forty-first International Conference on454

Machine Learning, 2024a.455

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing Linear Trans-456

formers with the Delta Rule over Sequence Length. Advances in Neural Information Processing457

Systems, 36, 2024b.458

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-459

chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association460

for Computational Linguistics, pp. 4791–4800, 2019.461

11

https://github.com/alxndrTL/mamba.py

A Related Work462

Linear RNNs. Linear RNNs have emerged as scalable alternatives to transformers, encompass-463

ing state-space models and linear attention mechanisms. State-space models, originally used for464

continuous dynamical systems, inspired LRNN variants like S4 (Gu et al., 2022) and H4 (Fu et al.,465

2021). Recent advancements, such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), introduced input-466

dependent gating of the hidden state, significantly improving language modeling performance. Con-467

currently, linear attention emerged as an alternative to classical softmax attention, with Katharopou-468

los et al. (2020) demonstrating that causal, linear attention transformers can be reformulated as469

RNNs with linear scaling in sequence length. Building on this, Yang et al. (2024a) proposed Gated470

Linear Attention (GLA), adding a gating mechanism similar to Mamba, while DeltaNet (Yang et al.,471

2024b) and TTT-Linear (Sun et al., 2024) explored more expressive gating with non-diagonal state-472

transition matrices. Recent work has combined non-linear and linear RNNs, as seen in xLSTM473

(Beck et al., 2024), a successor to the traditional LSTM (Hochreiter & Schmidhuber, 1997).474

Expressivity Results. Several studies have explored the expressive power of transformers. Liu475

et al. (2023) demonstrated that transformers can learn shortcut solutions for solvable finite state476

automata, though these solutions lack generalizability to arbitrary sequence lengths and perform477

poorly out-of-distribution. Unlike RNNs, transformers’ high parallelizability prevents them from478

learning unsolvable finite state automata Merrill & Sabharwal (2023). These findings typically use479

algebraic formal language theory and circuit complexity (we refer to Liu et al. (2023), for a tutorial480

on these topics), using the log-precision assumption and a finite number of layers scaling linearly481

or logarithmically with sequence length. While earlier research established transformers’ Turing482

completeness, it relied on either arbitrary precision (Deletang et al., 2023) or infinite depth (Pérez483

et al., 2021).484

Diagonal LRNNs can simulate any RNN with infinite depth Gu & Dao (2023) and approximate reg-485

ular enough functions when the state dimension grows linearly with sequence length (Orvieto et al.,486

2024). However, things change when depth state size are fixed. Merrill et al. (2024) demonstrated487

that finite-depth diagonal LRNNs, like transformers, cannot learn unsolvable finite state automata488

when restricted to log-precision arithmetic. In a finite-precision setting, Sarrof et al. (2024) showed489

that diagonal LRNNs with positive values in the state-transition matrix, while capable of learning490

all star-free languages, cannot solve even the simple parity problem, a non-star-free language recog-491

nizable by a solvable automaton with two states. However, their analysis was limited to the diagonal492

case and they did not test the benefit of negative eigenvalues in practice. Differently from these493

works, we also study non-diagonal LRNNs that can still be trained efficiently at large scale.494

B Additional Background495

B.1 Notation496

We use lower case letters for scalar quantities (e.g. x ∈ R), bold lower case letters for (column)497

vectors (e.g. v ∈ Rn), and bold upper case letters for matrices (e.g. M ∈ Rn×d). Some functions498

with matrix (vector) outputs, such as A and B in Equation (1), are also bold upper (lower) case499

letters to put emphasis on the fact that they output matrices (vectors). We denote with ∥v∥ the500

euclidean norm of the vector v ∈ Rn. When M ∈ Rn×d, ∥M∥ also refers to the euclidean norm,501

corresponding to the largest singular value. We also define for a boolean s502

1{s} :=

{
1 if s is true
0 if s is false .

We define sigmoid(x) := 1/(1 + e−x) and softplus(x) := ln(1 + ex).503

We sometimes use regular expressions to represent their corresponding formal language. So that504

e.g. (11)∗ = {11}∗ is the set of words containing the empty word ϵ the words with an even number505

of ones. When 1m is the word containing 1 repeated m times.506

B.2 Formal Language Theory507

Finite State Automata and Regular Languages. A (deterministic) finite state automaton (FSA)508

is a tuple A=(Σ, Q, q0, δ) where Σ is a finite set of letters called alphabet, Q is a finite set of509

12

states, q0 ∈Q is the starting state and δ :Q×Σ→Q is the state-transition function. We define510

the set Σ∗, whose elements are sequences called words, as the smallest superset of Σ that con-511

tains the empty word ε and is closed under word concatenation. We extend the state-transition512

function to δ :Q×Σ∗ →Q by defining δ(q, ε)= q and δ(q,w)= δ(δ(q, w1 . . . wi−1), wi) for any513

w = w1 . . . wi ∈ Σ∗ with i ≥ 2. We say that δ(q0,w) is the state that A reaches after read-514

ing the word w ∈ Σ∗. A language L ⊆ Σ∗ is said to be recognized by A if there exists a515

recognizing set R⊆Q such that L= {w∈Σ∗ : δ(q0,w)∈R}. A language is called regular (or516

rational) if there exists a finite state automaton that can recognize it. Given a FSA A, the set517

T (A)= {δ(·,w) : w ∈ Σ∗} of functions ρ :Q→Q, together with the function composition op-518

eration forms a Monoid called transition monoid, i.e. it is associative, closed and contains the519

identity δ(·, ε). Such monoid has a finite number of elements, since |Q|<∞. Moreover, if δ(·, w)520

is bijective for every w ∈ Σ, then T (A) forms a group, i.e. it contains the inverse for each element.521

State-Tracking and Monoid Word Problems. State-tracking is the problem of determining the522

state of a system only by observing a sequence of updates applied to it. Merrill et al. (2024) showed523

that it can be formally captured by monoid word problems, where given a monoid (M, ·) (M is524

the set and · is the associative operation), we want to send words m1 . . .mt ∈ M∗, describing the525

sequence of updates, to their productm1 ·m2 ·. . .·mt ∈M , representing the state of the system after526

the updates. If M is finite there is a corresponding FSA (M,M, e, δ) that solves the word problem,527

where the alphabet is equal to the set of states, the starting state is e (the identity element), and the528

transition function is δ(m1,m2) = m2 ·m1 form1,m2 ∈M . In this work, we focus on group word529

problems, i.e. problems where the monoid is also a group. In particular, on the cyclic group Zm,530

i.e. addition modulo m and symmetric groups Sm, i.e. the group of permutations on m elements.531

Parity is equivalent to the S2 word problem, while many state-tracking problems such as tracking532

chess moves or code evaluation, can be shown to be harder than the S5 word problem, which cannot533

be solved by transformers and diagonal LRNNs even in log-precision (Merrill et al., 2024; Merrill534

& Sabharwal, 2023).535

One LRNN Layer is an FSA. Given an alphabet Σ ⊂ N, we can view one layer of an LRNN in536

(1) as the FSA Alin = (Σ,H,H0, δlin), where δlin(H, w) = A(w)H +B(w), which is extended537

as we saw previously1, and H = {δlin(H0,w) : w ∈ Σ∗}. We say that a LRNN layer in (1)538

implements the FSA A = (Σ, Q, q0, δ) if Alin can mimic the state transitions of A2. Formally, if539

there exist a surjective function g : H → Q, such that for any H ∈ H, w ∈ Σ540

δ(g(H), w) = g(δlin(H, w)) = g(A(w)H +B(w))

Every language L recognized by A can also be recognized by this LRNN layer with a sufficiently541

powerful dec. In particular if R⊆Q is the recognizing set for L and H0 is such that q0 = g(H0),542

then the decoder dec(Ht, wt) = 1{g(Ht) ∈ R}, will correctly determine if w ∈ L. Therefore,543

implementing A is harder than recognizing L. A principal goal of this work is to show that that cur-544

rent LRNNs cannot recognize simple languages such as parity (negative results) while appropriate545

modifications to the state-transition matrices, enable LRNNs to recognize broader classes of FSA546

(positive results), with certain classes of FSA requiring a single layer. Notice, that while LRNNs547

with one layer can recognize any regular language, the state transition matrix might not fit into the548

structure imposed by current LRNNs, such as those in Table 1 (see Appendix B.3).549

B.3 Regular Languages and Recurrent Neural Networks550

RNNs Can Recognize Any Regular Language A layer of a general RNN can be formulated551

similarly to eq. (1) just by replacing the linear state update with a generic state-transition function g552

as:553

ht = g(ht−1,xt), h0 ∈ Rn.

Therefore, any FSA can be implemented by an RNN layer if g is sufficiently expressive to model its554

state transition function.555

LRNNs Can Recognize Any Regular Language As explained in (Liu et al., 2023, Appendix A.2)556

and in (Merrill et al., 2024, Theorem 5), we can always implement any FSA, and thus recognize any557

regular language, using matrix-vector multiplication and hence also a one layer LRNN by choosing558

1We let δlin : Rn×d ×Σ → Rn×d and extend it to δlin : Rn×d ×Σ∗ → Rn×d since we didn’t define H yet
2This definition is equivalent to that of FSA homomorphism, see (Maler & Pnueli, 1994, Definition 3)

13

n = |Q|, H0 = (1, 0 . . . , 0)⊤ and by letting, for any w∈Σ, B(w)= 0 and A(w)∈Rn×n the ma-559

trix with entries A(w)q′,q =1{δ(w, q)= q′}. However, such construction cannot be implemented560

by modern LRNNs since in general A(w) can have norm greater than one and might not be sym-561

metric. Both conditions are not allowed by the state-transition matrices in modern LRNNs (see e.g.562

the ones in Table 1).563

B.4 Finite Precision564

For our positive results on LRNNs expressivity (Theorems 3 and 4), by finite precision we mean that565

since all quantities involved in the computations are a finite number, there exist a finite set D ⊂ R566

that contains them and and thus we do not require computations to be done in the reals but we can567

use D as datatype. In particular, D does not depend on the length of the input sequence. In practice,568

such datatype is chosen beforehand, e.g. floating point numbers requiring a given number of bits,569

which may not capture all quantities in our constructions.570

In our negative results of Theorems 1 and 2 instead, we can pick the finite set D is arbitrarily, e.g.571

floating point numbers, and we also make the use of the function cast : R → D, that we extend572

to C by applying it separately to real and imaginary part and to vector and matrices by applying it573

element wise. The cast function is used because some computations of the state of the LRNN will574

be allowed to be in infinite precision and then transformed to finite-precision using cast as specified575

in the proofs.576

We believe that the finite precision setup is not only realistic but also allows a better focus on the577

drawbacks of modern LRNN. We note that for transformers, results usually rely instead on the no-578

tion of log-precision, meaning that the size of D grows logarithmically with the sequence length.579

This is mainly due to their limited expressivity compared to LRNNs. We also note that concern-580

ing the state-transition matrices of modern LRNNs (see Table 1), the values at the extremes of the581

eigenvalue range are technically not included (because of the use of the sigmoid and softplus func-582

tions). However, since we are working with finite precision, we can still include them by choosing583

the appropriate datatype D, which also in practice includes key values such as 0, 1 and −1.584

B.4.1 The Decoder function585

In (1), to compute the output ŷt from the state Ht and the vector xt, of an LRNN layer, we use586

the function dec, to abstract away the computations that is done on Ht and xt, since they are not587

part of the recurrence. In this work, we do not consider the internal structure of dec, but it usually588

contains a normalization and a feed-forward neural network and thus it can usually approximate any589

function.590

In our negative results on LRNNs expressivity Theorems 1 and 2, our choice of arbitrary decoder591

guarantees the stronger results. For our positive results instead we either do not consider the decoder592

(Theorem 3) or we make use of a linear decoder (Theorem 4). We point our that to recognize regular593

languages efficiently and with a smaller LRNN state it is beneficial to have a more powerful (non-594

linear) decoder, as in the case of word problems for cyclic or permutation groups. However, such595

decoder might probably be harder to approximate.596

C Parity and Modular Counting – Proofs597

We report the full proofs for the theorems in Section 3.1.598

C.1 Proof of Theorem 1599

The language (11)∗ contains all sequences with an even number of ones. An FSA recognizing the600

language, for the sequence 1k will output yk = 1 if k is even and yk = 0 if k is odd. Consider an601

LRNN with one layer as in (1). We will prove that if the assumptions on the eigenvalues of A(1)602

are not satisfied, then there exists a k > 0 such that for every k ≥ k, the finite-precision version603

of the state Hk corresponding to the sequence 1k does not depend on k and is equal to H . Hence,604

no matter the choice of dec, also the finite-precision version of ŷk will not vary with k and thus for605

some k′ ≥ k̄, ŷk′ ̸= k′ mod 2 = yk′ . An inductive argument can then be used for the case of606

14

LRNNs with multiple (finitely many) layers, using the fact that the input of the next layer will be607

constant for k large enough, as the input of the first layers.608

By unrolling the recursion in 1 we obtain a closed form expression for the state609

Hk =

k−1∑
i=1

(
k−1∏

j=i+1

A(xj)

)
B(xi) +

(
k∏

i=1

A(xi)

)
H0,

where we set
∏k−1

j=k A(xj) = I to avoid clutter. We follow Merrill et al. (2024) and make the sim-610

plifying assumption that Hk is computed using the above expression by first evaluating all products611

involving the matrices A(xj) separately and in infinite precision, then casting them into finite preci-612

sion, and finally executing the sum also in infinite precision and casting the result in finite precision.613

Hence, if we set x1 . . .xt = 1k, we get the following the exact and finite precision expressions for614

the state at time k.615

Hk =

k−1∑
i=0

A(1)iB(1) +A(1)kH0, Ĥk = cast

(
k−1∑
i=0

cast
(
A(1)iB(1)

)
+ cast

(
A(1)kH0

))
,

where cast is an operation which rounds matrices with complex values elementwise into finite-616

precision. In particular, we consider the case where both the real and imaginary parts are casted617

separately.618

Using the Jordan Canonical Form (e.g. Horn & Johnson, 2012) we can write A(1) = PJP−1,619

where J is block diagonal made of the Jordan blocks J1, . . . ,Js with s ≤ n, Ji ∈ Rki×ki and620

with corresponding complex eigenvalues λ1 . . . λs. Such decomposition is useful because it allows621

to write matrix powers as622

A(1)k = PJkP−1, Jk
i =



λki
(
k
1

)
λk−1
i

(
k
2

)
λk−2
i · · · · · ·

(
k

ki−1

)
λk−ki+1
i

λki
(
k
1

)
λk−1
i · · · · · ·

(
k

ki−2

)
λk−ki+2
i

.
...

...
.

...
λki

(
k
1

)
λk−1
i

λki


.

Therefore, to study limk→∞ A(1)k, we can study the behaviour of the elements of the Jordan blocks623

when k → ∞. If |λi| < 1 then all elements of Jk
i converge to zero, since the exponential is faster624

than the binomial
(
k
j

)
with fixed j. Thus limk→∞ Jk

i = 0. If instead λi ∈ R and λi > 1, then625

all nonzero elements of the Jordan block diverge to +∞. Finally, when λi ∈ R and λi = 1,626

the diagonal elements are λki = 1, while the other nonzero elements diverge to ∞. Therefore we627

have that if |λi| < 1 or λi is real and positive then there exists J i ∈ {0, 1,∞}ki×ki such that628

limk→∞ Jk
i = J i. Now, assume that for every i either |λi| < 1 or λi ∈ R with λi ≥ 1. Then, from629

the structure of the Jordan decomposition, each element of the matrices A(1)kB(1) and A(1)kH0630

will be a linear combination (with complex coefficients) of sequences of real numbers with well631

defined limits (either 0, 1 or +∞), and thus, when k → ∞ either converges to a point in C or632

diverges to a specific point in the complex infinity.633

Now let Ĉk = cast(A(1)kB(1)) and D̂k = cast(A(1)kH0), then since cast operates elementwise634

and has bounded and finite range we have that there exists τ ∈ N, Ĉ ∈ Cn×d and D̂ ∈ Cn×d such635

that for every k ≥ τ , Ĉk = Ĉ and D̂k = D̂ and636

Ĥk = cast

k−1∑
i=0

Ĉi + D̂ + (k − k + 1)Ĉ

 .

Note that only the last term inside cast varies with k and in particular each element of the matrix637

inside cast converges to a point in C, that is the union of C and the complex infinity. Therefore,638

since we are applying again the cast operation we obtain that there exists H ∈ Cn×d and k̄ ≥ τ639

such that for every k ≥ k̄ we have Ĥk = H , which concludes the proof.640

15

C.2 Proof of Theorem 2641

Let Ĥk and ŷk := cast(dec(Ĥk, xk)) be the finite-precision versions of the state Hk and (scalar)642

output of a one-layer LRNN on the input x = x1 . . . xk = 1k. Let also yk = 1{k mod m = 0}643

be the correct output recognizing the word. We will show that if the assumptions on the eigenvalues644

are not satisfied, there exist H1,H2 ∈ Cn×n, ȳ1, ȳ2 ∈ Rp and τ ∈ N such that for all k ≥ τ645

Ĥk :=

{
H1 if k mod 2 = 0

H2 otherwise
, ŷk =

{
ȳ1 if k mod 2 = 0

ȳ2 otherwise.
(6)

where without loss of generality we take ȳ1, ȳ2 ∈ {0, 1}. If ȳ1 = ȳ2, then, similarly to parity,646

ŷk = ŷk+1 for all k > τ , while if k mod m = m − 1, then 1 = yk+1 ̸= yk = 0. Otherwise if647

ȳ1 ̸= ȳ2 then if we assume that k mod d = 1 and ŷk = yk = 0, then 1 = ŷk+1 ̸= yk+1 = 0 since648

m > 2. Therefore proving the result for a one-layer LRNN. Then we will use an inductive argument649

for the case of finitely many layers.650

The proof can proceed similar to Theorem 1. Indeed, using the k-th power formula for the Jordan651

Decomposition of the matrix A(1) with eigenvalues λ1, . . . , λs we can prove that if 1 ≤ i ≤ s,652

|λi| < 1 or λi ∈ R and λi ≥ 1, then when k → ∞ each element of the corresponding Jordan block653

of A(1)k either converges to a single value or diverges to +∞. If instead λi ∈ R and λi ≤ −1,654

the diagonal element of the corresponding jordan block takes the form ck = (−1)k|λi|k, while the655

ones in above the diagonal diagonal take the form zk =
(
k
j

)
(−1)k−t|λi|k−t with t, j ≤ n. It can be656

shown that if we let c̄ ∈ {1,∞}, then657

lim
k→∞

c2k = c̄, lim
k→∞

c2k+1 = −c̄, lim
k→∞

z2k = ∞, lim
k→∞

z2k+1 = −∞.

Therefore we can apply the same reasoning of Theorem 1 using the finite-precision assumption to658

show that there exist τ̄ ∈ N, C1,C2,D1,D2 ∈ Cn×d such that for every k ≥ τ we have659

Ĉk := cast(A(1)kB) =

{
C1 if k mod 2 = 1

C2 if k mod 2 = 0
D̂k := cast(A(1)kH0) =

{
D1 if k mod 2 = 1

D2 if k mod 2 = 0

Finally if for simplicity we consider τ mod 2 = 0, we have that for 2k ≥ τ660

Ĥ2k = cast

(
τ−1∑
i=1

Ĉi +
(
k − τ

2
+ 1
)
C2 +

(
k − τ

2

)
C1 + kD2

)

Ĥ2k+1 = cast

(
τ−1∑
i=1

Ĉi +
(
k − τ

2
+ 1
)
(C2 +C1) + kD1

)

where we note that the limit for k → ∞ of the term inside cast is well defined. Thus there exist661

H1,H2 ∈ Cn×d and k̄ ≥ τ such that eq. (6) is satisfied, concluding the proof for the case of a662

single layer.663

Multiple Layers Note that since for one layer we have two sequences (even and odd) of outputs664

converging in finite time, there exist a, b ∈ Rp such that for all k ≥ k̄ we have665

ŷ2k = a, ŷ2k+1 = b.

Therefore, consider an additional layer that takes as input x(2)
1 , . . . ,x

(2)
k , with x

(2)
i = ŷi and outputs666

ŷ
(2)
1 , . . . , ŷ

(2)
k as667

H
(2)
k = A(2)(x

(2)
k)H

(2)
k−1 +B(2)(x

(2)
k), ŷ

(2)
k = dec(2)(H

(2)
k ,x

(2)
k)

without loss of generality assume for simplicity that k̄ = 1 and that ŷ(2)
2k = a and ŷ

(2)
2k+1 = b. We668

also set A1 = A(2)(a), A2 = A(2)(b) and B1 = B(2)(a), B2 = B(2)(b) and C1 = A1A2,669

C2 = A1B2 +B1. Then we can write670

H
(2)
2k = A1H

(2)
2k−1 +B1 = A1A2H

(2)
2k−2 +A1B2 +B1

H
(2)
2k = C1H

(2)
2(k−1) +C2 =

k−1∑
i=0

Ci
1C2 +Ck

1H0

16

Furthermore for the odd sequences of states we have671

H
(2)
2k+1 = A2H

(2)
2k +B2 =

k−1∑
i=0

A2C
i
1C2 +Ck

1H0 +B2.

We notice that the sequences H(2)
2k and H

(2)
2k+1 are in a form similar to Hk of the first layer and when672

allowing for real but possibly negative eigenvalues we can use the same reasoning using the powers673

of the Jordan canonical form to show that if we let Ĥ(2)
2k and Ĥ

(2)
2k+1 being their finite-precision674

counterparts, then there exist H
(2)

1 ,H
(2)

2 ,H
(2)

3 ,H
(2)

4 ∈ Rn×d, k̄2 ≥ 0 such that for every k ≥ k̄675

Ĥ
(2)
2k =

{
H

(2)

1 if 2k mod 2 = 0

H
(2)

2 if 2k mod 2 = 1
, Ĥ

(2)
2k+1 =

{
H

(2)

3 if (2k + 1) mod 2 = 0

H
(2)

4 if (2k + 1) mod 2 = 1
.

Therefore, for k ≥ k̄2, the the function k 7→ H
(2)

k will be periodic with period four and hence no676

matter the choice of dec(2), also the function k 7→ ŷ
(2)
k will be periodic with period 4. Consequently,677

with two layers one can recognize the language (1m)∗ only when m = 1, m = 2, m = 4, since that678

is the only case where k 7→ yk has a period which is a divisor of 4. We can extend this argument679

inductively to the case of an LRNN with L layers, to say that there exists k̄L ≥ 0 such that for every680

k ≥ k̄L, if we let y(L)
k be the output of the last layer, the function k 7→ ŷ

(L)
k is periodic with period681

2L and thus it can recognize the language (1m)∗ only when 2L mod m = 0, which happens only682

when there exists p ≤ L such that m = 2p and hence m is a power of two, ending the proof.683

D Products of Generalized Householder Matrices – Proofs684

We provide proofs for the results stated in Section 3.3.685

D.1 Proof of Proposition 1686

First item It can be shown by noting that if C ∈ M1([−1, 1]), then ∥C∥ ≤ 1 and using the687

sub-multiplicative property of the euclidean norm, i.e the fact that ∥AB∥ ≤ ∥A∥∥B∥.688

Second item Note that any real matrix has a singular value decomposition. Hence we can write689

M = USV ⊤

with U ,V ∈ Rn×n orthogonal and S = Diag(σ1, . . . , σn) with σi ∈ [0, 1], since ∥M∥ ≤ 1.690

It follows from the n-reflections theorem3 that we can write U and V as either the identity I ∈691

M1({1}) or the product of at most n reflections, each of which is in M1({−1}). Hence U ,V ∈692

Mn({−1, 1}). We can also write the matrix S as the product of n GH matrices as693

S = S1S2 . . .Sn, Si = I − (1− σi)eie
⊤
i

where ei is the i-th element of the canonical basis of Rn. Hence, S ∈ Mn([0, 1]). The proof of the694

first part is concluded since we wrote each of U ,S,V as a product of at most nGH matrices. If M is695

orthogonal we apply the n-reflections theorem directly. While we note that if M = P ∈ {0, 1}n×n696

with P being a permutation matrix different from the identity, it can be written as products of at697

most n − 1 swaps, i.e. permutation matrices permuting only two elements. Therefore we have that698

there exists an integer k ≤ n− 1 and indices i1, . . . , ik and j1, . . . , jk such that il ̸= jl and699

P =

k−1∏
l=1

Piljl , ,Pij = (I − 2vijv
⊤
ij) vijl =


1/
√
2 if l = i

−1/
√
2 if l = j

0 otherwise
,

where we set vij = (vij1, . . . , vijn). Note that since ∥vij∥ = 1, Pij ∈ Mk({−1}) with k ≤ n. For700

the the case where M = I we can use the fact that I ∈ M1({1})701

3This is a specialization of the Cartan–Dieudonné Theorem to Rn, see Theorem 3 in https://faculty.
uml.edu/dklain/orthogonal.pdf for a proof.

17

https://faculty.uml.edu/dklain/orthogonal.pdf
https://faculty.uml.edu/dklain/orthogonal.pdf

Third item Let N = C1C2 · · ·Ck ∈ Mk((−1, 1]), with Ci = I − βikik
⊤
i with ∥ki∥ = 1 and702

βi ∈ [0, 2). If N = I the statement is satisfied, otherwise, let V = span{ki : i ∈ {1, . . . , k}, βi >703

0}. Any unit vector v ∈ Rn can then be written as v = v1 + v2 with v1 ∈ V , v2 ∈ V⊤ and704

∥v1∥ , ∥v2∥ ≤ 1. Now, if v1 = 0, then Nv = v, and hence v is an eigenvector with eigenvalue705

1. Instead, if v1 ̸= 0, then there exists i′ such that βi′ ∈ (0, 2) and v⊤ki′ = v⊤
1 ki′ ∈ (0, 1] and if706

i′ < k either βj = 0 or v⊤kj = 0 for all j ∈ {i′ + 1, . . . , k}. Moreover, we have that707

∥Ci′v∥2 = ∥v − βi′ki′k
⊤
i′ v∥2 = 1− βi′(2− βi′)(v

⊤ki)
2 < 1,

where the last line comes from the fact that minx∈[0,2] x(2 − x) = 1 and is only reached at 0708

and 2 while βi′ ∈ (0, 2). Therefore, since for every i, ∥Ci∥ ≤ 1 and the euclidean norm is sub-709

multiplicative we have710

∥Nv∥ = ∥C1C2 . . .Ckv∥ = ∥C1C2 . . .Ci′v∥ ≤ ∥C1∥ · · · ∥Civ∥ < 1.

Therefore, if v is also an eigenvector with eigenvalue λ ∈ C, then ∥Nv∥ = |λ| < 1. Hence, we711

proved that for every eigenvector with eigenvalue λ either λ = 1 or |λ| < 1. It remains to show712

that all eigenvalues of N ∈ Mk([0, 1]) are real. For k = 1 it follows due to N being symmetric,713

for k ≥ 2 let D = C1C2 · · ·Ck−1 so that N = DCk and let v be any eigenvector of N with714

eigenvalue λ and ∥v∥ = 1. Then it holds that715

v⊤CkNv = λv⊤Ckv.

Therefore if v⊤Ckv ̸= 0, then λ = v⊤CkNv/v⊤Ckv ∈ R. Otherwise when v⊤Ckv = 0 it716

follows that717

v⊤Ckv = ∥v∥2 − βk(k
⊤
k v)

2 = 1− βk(k
⊤
k v)

2 = 0,

which is true only if βk = 1 and either v = kk or v = −kk and thus Ckv = ±Ckkk = 0 and718

hence λ = 0, which concludes the proof.719

D.2 Proof of Theorem 3720

We first recall the notion of group isomorphism. Two groups (G, ∗) and (H, ·) where G,H are721

the sets and ⋆ and · are the associative operations, are isomorphic, if there exist a bijective map722

f : G→ H such that for every g ∈ G, h ∈ H723

f(g ∗ h) = f(g) · f(h).

We view the LRNN layer in eq. (1) as the FSA Alin = (Σ,H,H0, δlin), where δlin(H, w) =724

A(w)H +B(w), which is extended in the usual way, and H = {δlin(H0,w) : w ∈ Σ∗}. Since725

T (A) is a group, from Cayley’s theorem we have that it is isomorphic to a subgroup of Sn, which726

is the set of permutations on a set of a set of n elements. Furthermore, each element in Sn can727

be represented as an n × n permutation matrix. Since in general n ̸= |Q|, we cannot let H to728

be a set of one hot vectors each corresponding to states in Q. Instead, we let H0 = (1, . . . , n)⊤,729

P ⊂ {0, 1}n×n be the set of permutation matrices and define B ≡ 0 and A : Σ → P to be the730

function mapping each letter w ∈ Σ to the permutation matrix corresponding to δ(·, w). With this731

choice we can see that the function f : T (Alin) → T (A) such that f(δlin(·,w)) = δ(·,w) for732

every w ∈ Σ∗ is one-to-one (biejctive), and from our choice of H0, also the map h : T (Alin) → H733

such that for every w ∈ Σ∗, h(δlin(·,w)) = δlin(H0,w) is also bijective. Moreover, the map734

ϕ : T (A) → Q such that ϕ(δ(·,w)) = δ(q0,w) is surjective because we consider states that are735

only reachable from q0, i.e. Q = {δ(q0,w) : w ∈ Σ∗}. Hence if we set g = ϕ ◦ f ◦ h−1, then736

g : H → Q is surjective and for every w ∈ Σ and H ∈ H we have that737

g(δlin(H, w)) = δ(g(H), w)

Thus, we have shown that such LRNN implements A and it does so with finite precision because738

the entries of all vectors and matrices are bounded integers. The proof is concluded by noting that739

permutation matrices have euclidean norm equal to one and real entries.740

Moreover, Let k = maxw∈Σ

∑
q∈Q 1{δ(q, w) ̸= q} = maxw∈Σ

∑n
i=1 1{(A(w)H0)i = H0,i}741

be the maximum number of displaced element of the permutation associated with the alphabet Σ.742

Then, we know that every A(w) ∈ Mk−1({−1, 1}).743

18

If in addition there existsm ∈ N such that T (A) is isomorphic to a subgroup of the cyclic group Zm744

with elements {0, . . . ,m − 1}, we can modify the construction above to use a smaller dimension.745

If m = 2, then Z2 has elements {0, 1}, and A implements the parity automaton. Thus, we can746

set H0 = −1, A(0) = 1, A(1) = −1 and g(1) = 1 while g(0) = 1, which means that we747

can use a scalar recursion. Otherwise, if m ≥ 3, we can modify the construction above by setting748

H0 = (1, 0)⊤ and, if for simplicity we assume Σ ∈ {0, . . . ,m− 1}, for every w ∈ Σ we let A(w)749

be the 2× 2 rotation matrix corresponding to δ(·, w):750

A(w) = R(θ) =

[
cos θw − sin θw
sin θw cos θw

]
, θw =

2πw

m
,

such that R(θ) ∈ M2({−1}) (from Proposition 1).751

D.3 Krhon-Rhodes Theorem752

Before presenting the proof for Theorem 4, we provide the statement for the landmark result of753

Krohn-Rhodes (Krohn & Rhodes, 1965), after giving the definition of cascade product of two FSA.754

Definition 1 (Cascade product). Given two FSA A = (Σ, Q, q0, δ) and B = (Q×Σ, Q′, q′0, δ
′), we755

define the cascade product FSA as C = B ◦ A = (Σ, Q×Q′, (q0, q
′
0), δ

′′) where for any w ∈ Σ756

δ′′((q, q′), w) := (δ(q, w), δ(q′, (q, w)))

Theorem 5 (Krohn-Rhodes, Theorem 4 in Maler & Pnueli (1994)). For every FSA A =757

(Σ, Q, q0, δ) there exists s ≤ 2|Q| and a cascade product FSA C = A(s) ◦ · · · ◦ A(1) =758

(Σ, Q×, q×0 , δ
×), with A(i) =

(
Σ(i), Q(i), q

(i)
0 , δ(i)

)
, with |Q(i)| ≤ |Q|, and a function W : Q× →759

Q such that for any w ∈ Σ∗, δ(q0,w) = W(δ×(q×0 ,w)) and each A(i) is permutation-reset au-760

tomaton, which means that for everyw(i) ∈ Σ(i), δ(i)(·, w(i)) is either a bijection (i.e. a permutation761

over Q) or constant, ie. δ(·, w(i)) = q(w) ∈ Q(i).762

D.4 Proof of Theorem 4763

We apply the Krohn-Rhodes theorem (Theorem 5) to write A as the cascade product FSA C =764

A(s) ◦ · · · ◦A(1) with each FSA A(i) =
(
Σ(i), Q(i), q

(i)
0 , δ(i)

)
being permutation-reset and we show765

how the LRNN can implement C.766

We now show how the i-th layer of the LRNN with the structure in 1 can implement A(i).767

Let n = |Q(i)| and without loss of generality assume that Σ = {1, 2, . . . , |Σ|} and Q(i) =768

{1, 2, . . . , n} with q(i)0 = 1. For every w ∈ Σ(i) we set A(i)(w) ∈ {0, 1}n×n, B(i)(w) ∈ {0, 1}n769

such that q, q′ ∈ Q(i)770

A(i)(w)q′,q = 1{δ(q, w) = q′}, B(i)(w)q′ = 0, if δ(i)(·, w) is bijective, or

A(i)(w)q′,q = 0, B(i)(w)q′ = 1{q′ = q(w)}, if δ(i)(·, w) ≡ q(w).

Then, for every word w(i) = w
(i)
1 . . . w

(i)
t ∈ Σ(i)∗, we set g : Rn → R, such that g(x) =771

(1, . . . , n)⊤x and772

H
(i)
t = A(i)(w

(i)
t)H

(i)
t−1 +B(i)(w

(i)
t), H

(i)
0 = (1, 0 . . . , 0)⊤ ∈ Rn

y(i) = dec(i)(H
(i)
t , w

(i)
t) = (g(H

(i)
t), w

(i)
t) = (δ(i)(q

(i)
0 ,w(i)), w(i))

So that such construction implements A(i). In addition, by letting w = w1 . . . wt ∈ Σ∗ be the input773

to the LRNN, i.e. w(1)
j = wj , and and setting the output of each layer as the input to the next, i.e.774

w
(i)
j = y

(i−1)
j for i ≥ 2, for the output of the last layer we get775

y
(s)
t = dec(s)(Ht, w

(s)
t)

= (δ(s)(q
(s)
0 ,w(s)), y

(s−1)
t)

= (δ(s)(q
(s)
0 ,w(s)), δ(s−1)(q

(s−1)
0 ,w(s−1)), y

(s−2)
t)

= (δ(s)(q
(s)
0 ,w(s)), . . . , δ(1)(q

(1)
0 ,w), wt) ∈ Ns+1,

19

where we removed the nested parenthesis for simplicity. Hence, the first s elements of y(s)t are776

exactly the output of the cascade FSA C. Note that our construction can be implemented in finite777

precision, since we only used matrices/vectors with entries either in {0, 1}, requiring only one bit,778

or in Q(i) ⊂ N, that can also be implemented using finite precision with |Q(i)| integers, requiring779

log2(|Q(i)|) bits. Note that we can exclude the last element of y(s)t to get a dimension Ns.780

It is also the case that
∥∥A(i)(w)

∥∥ ≤ 1 for every w ∈ Σ(i) since A(i)(w) is either a permutation781

matrix (
∥∥A(i)(w)

∥∥ = 1) or the zero matrix (
∥∥A(i)(w)

∥∥ = 0). Also, for every permutation matrix782

P ∈ {0, 1}n×n which permutes only k ≤ n elements we have that P ∈ Mk−1({−1, 1}).783

Furthermore, for the zero matrix we have784

0 =

n∏
i=1

(I − eie
⊤
i) ∈ Mn({0})

It follows that A(i)(w) ∈ Mn([−1, 1]) for i ∈ {1, . . . , s}.785

E Experiments786

E.1 Implementation787

We build on the original code for Mamba4 and DeltaNet5. For DeltaNet, implementing the extended788

eigenvalue range is straightforward, since there is no need to modify the Triton kernel. However,789

Mamba requires modifications to the CUDA code of the associative scan for both forward and back-790

ward passes which however had no impact computational cost. We ensured the accuracy of the mod-791

ifications by comparing the results with a naive implementation using a for-loop. For initial testing792

of the extended eigenvalue range, we used the pure pytorch implementation of Mamba by Torres793

(2024).794

Products in Log-space We note that some diagonal models such as Mamba2 (Dao & Gu, 2024),795

GLA Yang et al. (2024a), mLSTM Beck et al. (2024) take advantage of the fact that all values of the796

state-transition matrices are positive to compute their repeated products in log-space. Our change797

would not allow to do this directly, and early tests on the chunkwise parallel form of GLA showed798

degraded performance. Therefore, for this work, we decided to focus on Mamba and DeltaNet since799

they do not compute the products in log-space. We mention however, that at the cost of increased800

computation time, it would be possible to do products in log-space by converting each value in801

the diagonal state-transition matrix to the product of its absolute value and sign. This way, absolute802

values can be multiplied in log space, while products of signs is coincidentally equivalent to addition803

modulo 2, i.e. parity, and hence can be done stably. We leave the investigation of this approach to804

future work. Furthermore, we also believe that our change may be less suited to method which use805

a normalized RNN state, such as mLSTM.806

E.2 Chomsky Hierarchy807

Here, we provide details on the state-tracking tasks and experimental protocol of Section 4.1.808

E.2.1 Details on the experimental setup809

Like Beck et al. (2024), we trained each model with sequence lengths ranging from 3 to 40 and810

evaluated on lengths from 40 to 256, to understand the length generalization capabilities. We com-811

pared mLSTM and sLSTM with two models: Mamba (Gu & Dao, 2023) and DeltaRule (Yang et al.,812

2024b). All models contain 2 blocks, with 4 heads for the xLSTM and DeltaRule models. We set813

the embedding and heads’ dimension to 128 across all experiments. For Mamba and DeltaRule,814

we also enable the 1-D depthwise-separable convolution layer with kernel size equal to 4 after the815

query/key/value projection. We train each model using AdamW (Loshchilov & Hutter, 2019) with-816

out gradient clipping, using 3 different learning rates (1e-2, 1e-3, 1e-4), with 3 different seeds each.817

4https://github.com/state-spaces/mamba
5https://github.com/sustcsonglin/flash-linear-attention

20

https://github.com/state-spaces/mamba
https://github.com/sustcsonglin/flash-linear-attention

Table 4: Performance comparison using lm-harness benchmark (Gao et al., 2024) (top row repro-
duced from Yang et al. (2024b), bottom ours). Results shown for original and extended eigenvalue
range. Our models show comparable performance across tasks.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg. SWDE SQUAD FDA
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ ↑ cont. ↑ cont. ↑ cont. ↑

15
B

to
ke

ns
SP

J 340M params
Transformer++ 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2 42.2 22.1 21.4
Mamba [0, 1] 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 41.8 12.4 23.0 2.1
GLA [0, 1] 29.47 45.53 31.3 65.1 33.8 51.6 44.4 24.6 41.8 24.0 24.7 7.3
DeltaNet [0, 1] 28.24 37.37 32.1 64.8 34.3 52.2 45.8 23.5 42.1 26.4 28.9 12.8

32
B

to
ke

ns
Fi

ne
W

eb 340M params
DeltaNet [0, 1] 28.71 42.63 28.5 67.5 40.4 51.3 46.8 24.5 43.2 34.3 30.0 10.5
DeltaNet [−1, 1] 29.01 46.38 28.3 68.0 39.1 51.0 48.4 23.4 43.0 31.3 26.3 9.6

370M params
Mamba [0, 1] 32.04 42.82 29.1 67.4 39.6 52.7 47.0 24.4 43.4 14.2 20.1 1.3
Mamba [−1, 1] 32.41 55.09 26.5 67.6 39.2 53.0 46.8 24.0 42.9 12.5 18.2 1.3Table 5: Performance comparison of various recurrent models on regular and context-free language

tasks. We report the median ± median absolute deviation of 3 independent runs with different
random seeds. Scores represent scaled accuracy, with 1.0 indicating perfect performance and 0.0
random guessing. The positive impact of allowing negative eigenvalues ([−1, 1] range) versus re-
stricting to positive eigenvalues ([0, 1] range) is evident across different model architectures.

Parity Mod. Arithmetic
(w/o brackets)

Mod. Arithmetic
(w/ brackets)

mLSTM 0.018 ± 0.035 0.093 ± 0.028 0.097 ± 0.022

sLSTM 1.000 ± 0.000 0.130 ± 0.004 0.082 ± 0.003

Mamba [0, 1] 0.000 ± 0.000 0.000 ± 0.005 0.016 ± 0.002

Mamba [−1, 1] 1.000 ± 0.000 0.079 ± 0.032 0.029 ± 0.007

DeltaNet [0, 1] 0.010 ± 0.005 0.126 ± 0.002 0.174 ± 0.008

DeltaNet [−1, 1] 0.999 ± 0.006 0.422 ± 0.189 0.212 ± 0.008

We pick the best based on the median of the 3 seeds for every learning rate value. We use a batch818

size of 1024 (except for sLSTM, where we use 512) and a cosine annealing learning rate sched-819

ule (Loshchilov & Hutter, 2017) (mininum learning rate: 1e-6) after 10% warm-up steps. The820

weight decay is set to 0.1 during training. We train on every task for 100k steps in total. At each821

training step, we make sure to generate a valid random sample from the task at hand (see below).822

E.2.2 Details on the evaluated tasks823

In Section 4.1 we conducted empirical evaluations on 3 tasks –namely parity, modular arithmetic824

without brackets and with brackets – from various levels of the Chomsky Hierarchy, as proposed825

by Deletang et al. (2023) and similarly used in xLSTM (Beck et al., 2024). Details for each task are826

given below, where |Σ| is the vocabulary size and Accrand is the accuracy of random guessing:827

• Parity (|Σ| = 2, Accrand = 0.5). The parity yt ∈ {0, 1} of a sequence of ones and zeros828

x = x1 . . . xt ∈ {0, 1}t is equal to 1 (resp. 0) if the total number of ones in the sequence is odd829

(resp. even). It is equivalent to addition modulo 2, it can be computed by summing all previous830

values and then using the modulo 2 function as yt = (
∑t

i=1 xi) mod 2.831

• Modular Arithmetic w/o Brackets (|Σ| = 10,Accrand = 1/(|Σ|−5)). Given a set of special to-832

kens Σs = {+,−, ∗,=, [PAD]} and a modulus m ≥ 1, we compute the remainder yt = xmod m,833

where x = x1 . . . xt ∈ Σt and yt ∈ {1, . . . ,m − 1}. Here, Σ = Σs ∪ {0, . . . ,m − 1}. In our834

experiments m = 5. An example sequence is as follows:835

2− 3− 3 ∗ 2 = 3 [PAD]

• Modular Arithmetic w/o Brackets (|Σ| = 12, Accrand = 1/(|Σ| − 7)). Same definition as the836

modular arithmetic without brackets with a set of special tokens Σs = {+,−, ∗,=,), (, [PAD]}. In837

our experiments m = 5. An example sequence is as follows:838

((((3+ 3) +−1) +−2)− ((3− (−3)) + ((1) + 4))) = 2 [PAD]

21

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Parity

mLSTM
sLSTM

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/o Brackets

mLSTM
sLSTM

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/ Brackets

mLSTM
sLSTM

(a) mLSTM and xLSTM

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Parity

Eigenvalue
Range

[0, 1]
[-1, 1]

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/o Brackets

Eigenvalue
Range

[0, 1]
[-1, 1]

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/ Brackets

Eigenvalue
Range

[0, 1]
[-1, 1]

(b) Mamba

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Parity

Eigenvalue
Range

[0, 1]
[-1, 1]

0 100 200
Sequence Length

0.0

0.5

1.0

Sc
al

ed
 A

cc
ur

ac
y

Mod. Arithmetic w/o Brackets

Eigenvalue
Range

[0, 1]
[-1, 1]

0 100 200
Sequence Length

0.0

0.5

1.0
Sc

al
ed

 A
cc

ur
ac

y

Mod. Arithmetic w/ Brackets

Eigenvalue
Range

[0, 1]
[-1, 1]

(c) DeltaNet

Figure 5: Performance (scaled accuracy) vs sequence length of mLSTM, sLSTM, Mamba and
DeltaNet variants on different formal language tasks. Trained on sequences up to length 40 (dashed
vertical red line). At test time, we sample uniformly at random 8192 sequences with lengths between
40 and 256. The curves show the mean and 95% CI.

E.3 State-Tracking839

E.3.1 Details of the Experiments840

For the experiments in Figure 3, we map each element of the group S5 to an integer from 0 to 119,841

where 0 corresponds to the identity permutation, and then construct inputs and output sequences of842

integers x1, . . . xt and y1, . . . , yt as follows843

• S5 We sample xi uniformly at random from {0, . . . , 119}. yi is computed as the product844

of the permutations corresponding to x1, . . . , xi.845

• S5 only swaps As S5 but xi is sampled from the permutations that permute up to two846

elements (swaps and identity).847

• S5 swaps, 3-permutations As S5 but xi is sampled from the permutations that permute up848

to three elements.849

• S5 4 tokens per transition If i mod 4 = 0, then xi is sampled uniformly at random from850

{0, . . . , 119}, otherwise xi = 120 (special token). For i > 3, yi+3 is the product of the851

premutations corresponding to x1, . . . , xi, where 120 is treated as the identity permutation.852

yi = 0 for i ∈ {1, 2, 3}.853

22

101 102

Sequence Length (# of tokens)

0

20

40

60

80

100
60 with 2 tokens per transition

DeltaNet [-1,1] (5 layers)
DeltaNet [0,1] (5 layers)
Mamba [-1,1] (5 layers)
Mamba [0,1] (5 layers)

101 102

Sequence Length

0

20

40

60

80

100
60

Figure 6: Validation sequence accuracy at different sequence lengths on the cyclic group Z60 (1
seed). Dashed vertical lines indicate the sequence length used for training (left 32, right 64). Using
2 tokens per transition seems to help only marginally in this case. In this Mamba [-1,1] performed
better than DeltaNet. The variants with eigenvalues in [0,1] performed worse.

For each input we also add a beginning of sequence token. For each setup we always sample 1.6M854

examples for training and 40K examples of length 500 for testing. We note that we are using a855

substantially larger training set compared to Merrill & Sabharwal (2023), to reduce the chances of856

overfitting.857

We train all models using AdamW with weight decay 0.01, learning rate 0.0001, gradient clipping858

to 1.0 and a batch size of 512.859

Both models use an embedding dimension of 128 and 4 heads for DeltaNet. In the case of DeltaNet860

we do not use the 1-D convolutions for these experiments. Other parameters are kept as defaults.861

Full Matrix Baseline. For the full matrix baseline we use a single layer and map directly each862

token xi to a learnable full state-transition matrix A(xi) via one-hot encoding. We then compute,863

for i ∈ {1, . . . , t} the recursion864

Hi = A(xi)Hi−1, H0 = I ∈ Rn×n

where n is set to 32 for efficiency reason (memory and compute time grow quickly with n). After865

that we flatten each Hi into a vector and apply first a projection on the unit ball and then a linear866

decoder to get the final outputs. Since this model uses a full matrix, with n ≥ 5 it should be fully able867

to learn S5 without restricting the permutation in input. However in some situations the performance868

degrade quickly after some length, probably due to the fact that the norm of the learned A(xi) is not869

close enough to one.870

E.3.2 Cyclic Groups871

We report in Figure 6 some experiments on group word problems with the group Z60. For this872

experiment we also consider the simplified version where each transition is encoded using 2 tokens.873

This is done as in the experiments of S5 with 4 tokens, but using two tokens instead of 4. Using one874

additional token should allow DeltaNet [-1,1] with more layers to learn the rotations needed to solve875

the task. However, using more tokens does not seem to help in this case. Extending the eigenvalue876

range seems to help in both settings, although surprizingly, Mamba [-1,1], even though it has a877

diagonal state-transition matrix, seems to perform best. We conjecture that in this case, the models878

might learn the shortcut solutions, also because they do not generalize well to longer sequences.879

E.4 Language Modeling880

E.4.1 Details on the experimental setup881

Each model is trained for 200,000 steps with a per-GPU batch size of 10, distributed across 8 Nvidia882

A100 GPUs, using a context length of 2048. For optimization, we use AdamW (Loshchilov &883

Hutter, 2019) with learning rates of 3.1e-3 for DeltaNet and 5e-4 for Mamba (higher rates led to884

training instability). The learning rate was adjusted using cosine annealing (Loshchilov & Hutter,885

2017) following a linear warm-up period of 5000 steps. We applied a weight decay of 0.1 throughout886

the training process.887

23

0 200000
Training Steps

2.6

2.7

2.8

2.9

3.0

Lo
ss

 (t
ra

in
)

0 200000
Training Steps

2.6

2.7

2.8

2.9

3.0

Lo
ss

 (v
al

)

0 200000
Training Steps

14

16

18

20

Pe
rp

le
xi

ty
 (v

al
) Eigenvalue

Range
[1, 1]
[0, 1]

(a) DeltaNet

0 200000
Training Steps

2.6

2.7

2.8

2.9

3.0

Lo
ss

 (t
ra

in
)

0 200000
Training Steps

2.6

2.7

2.8

2.9

3.0

Lo
ss

 (v
al

)
0 200000

Training Steps

14

16

18

20

Pe
rp

le
xi

ty
 (v

al
) Eigenvalue

Range
[1, 1]
[0, 1]

(b) Mamba

Figure 7: Learning curves of Mamba and DeltaNet when training on 32B tokens of Fine-Web 100B.

E.4.2 Details on the evaluated tasks888

To produce the results in Table 4, we use the lm-harness benchmark (Gao et al., 2024), focusing on889

the same tasks as Yang et al. (2024b): LAMBADA (LMB) (Paperno et al., 2016), PIQA (Bisk et al.,890

2020), HellaSwag (Hella.) (Zellers et al., 2019), Winogrande (Wino.) (Sakaguchi et al., 2021), and891

ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018). Additionally, we evaluate the892

performance on recall-intensive tasks (like Yang et al. (2024b)), including FDA (Arora et al., 2023),893

SWDE (Lockard et al., 2019), and SQUAD (Rajpurkar et al., 2018), to provide a comprehensive894

evaluation of our models’ capabilities.895

E.4.3 Additional results896

0 3000 6000 9000
Sequence Length

28

30

32

34

Pe
rp

le
xi

ty

CodeParrot

Eigenvalue
Range

[0, 1]
[1, 1]

0 3000 6000 9000
Sequence Length

40

45

50

Pe
rp

le
xi

ty

Math-Hard

Eigenvalue
Range

[0, 1]
[1, 1]

0 3000 6000 9000
Sequence Length

16

17

18

19

20

Pe
rp

le
xi

ty

Trivia QA

Eigenvalue
Range

[0, 1]
[1, 1]

0 3000 6000 9000
Sequence Length

17.0

17.5

18.0

18.5

19.0

Pe
rp

le
xi

ty

SlimPajama (6B)

Eigenvalue
Range

[0, 1]
[1, 1]

Figure 8: Length extrapolation performance of Mamba variants on different datasets. Mamba with
eigenvalue range [−1, 1] shows worse perplexity on coding and math tasks compared to the [0, 1]
baseline. The dashed, vertical line indicates the training context length of 2048 tokens.

E.5 Implementation of Extended Eigenvalue Range897

24

220 if constexpr (!kIsComplex) {
221 - thread data[i] = make float2(exp2f(delta vals[r][i] * A val[r]),
222 + thread data[i] = make float2(2.0f * exp2f(delta vals[r][i] * A val[r]) - 1.0f,
223 !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
224 if constexpr (!Ktraits::kIsEvenLen) {
225 if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
226 thread_data[i] = make_float2(1.f, 0.f);
227 }
228 }
229 }

Figure 9: Modifications to the forward pass of the Mamba associative scan . These changes extend
the eigenvalue range from [0, 1] to [−1, 1], enhancing the model’s expressive capacity. Adapted
from selective scan fwd kernel.cuh.

253 - const float delta a exp = exp2f(delta vals[i] * A scaled)
254 + const float delta a exp = 2.0f * exp2f(delta vals[i] * A scaled) - 1.0f

272 - typename Ktraits::BlockScanT(smem scan).InclusiveScan(
273 + typename Ktraits::BlockScanT(smem scan).ExclusiveScan(
274 thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
275);

288 - const float a = thread data[i].y - (!kIsVariableB ? delta vals[i] * float(u vals[i]) :
289 - delta vals[i] * float(u vals[i]) * B vals[i]);
290 + float delta a exp = 2.0f * exp2f(delta vals[i] * A scaled) - 1.0f;
291 + const float ddelta a exp = delta a exp + 1;
292 + const float a = ddelta a exp * thread data[i].y;
293 + const float hi = delta a exp * thread data[i].y + (!kIsVariableB ? delta vals[i] *
294 + float(u vals[i]) : delta vals[i] * float(u vals[i]) * B vals[i]);

288 - const float a = thread data[i].y - (!kIsVariableB ? delta vals[i] * float(u vals[i]) :
289 - delta vals[i] * float(u vals[i]) * B vals[i]);
290 + float delta a exp = 2.0f * exp2f(delta vals[i] * A scaled) - 1.0f;
291 + const float ddelta a exp = delta a exp + 1;
292 + const float a = ddelta a exp * thread data[i].y;
293 + const float hi = delta a exp * thread data[i].y + (!kIsVariableB ? delta vals[i] *
294 + float(u vals[i]) : delta vals[i] * float(u vals[i]) * B vals[i]);

291 if constexpr (!kIsVariableB || !kIsVariableC) {
292 if constexpr (!kIsVariableB) { // dBC_val is dB_val
293 - dBC val += dout vals[i] * (!kIsVariableC ? thread data[i].y : thread data[i].y * C vals[i]);
294 + dBC val += dout vals[i] * (!kIsVariableC ? hi : hi * C vals[i]);
295 } else { // dBC_val is dC_val
296 - dBC val += dout vals[i] * thread data[i].y;
297 + dBC val += dout vals[i] * thread data[i].y;
298 }
299 }
300 if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
301 if constexpr (kIsVariableC) {
302 - dC vals[i] = dout vals[i] * (!kIsVariableB ? thread data[i].y * B val : thread data[i].y);
303 + dC vals[i] = dout vals[i] * (!kIsVariableB ? hi * B val : hi);
304 }

Figure 10: Necessary changes to selective scan bwd kernel.cuh

196 if self.use_beta:
197 - beta = rearrange(self.b proj(hidden states), ’b l h -> b h l’).sigmoid()
198 + beta = 2 * rearrange(self.b proj(hidden states), ’b l h -> b h l’).sigmoid()
199 else:
200 beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])

Figure 11: Simple modification to the beta calculation in DeltaNet (Source) allowing the extension
of the eigenvalues to the range [−1, 1] . The original implementation (in red) is replaced with an
adjusted version (in green).

25

https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan_bwd_kernel.cuh
https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan_bwd_kernel.cuh
https://github.com/sustcsonglin/flash-linear-attention/blob/3bafa4fcb505391d19cb7c47aa9bc9fa8e598b15/fla/layers/delta_net.py#L196

	Introduction
	Background: Linear Recurrent Neural Networks (LRNNs)
	Theoretical Analysis
	Limitations of Current LRNNs
	Allowing Negative Eigenvalues
	Products of Generalized Householder Matrices

	Experiments
	Chomsky Hierarchy
	State-Tracking
	Language Modeling

	Conclusion
	Related Work
	Additional Background
	Notation
	Formal Language Theory
	Regular Languages and Recurrent Neural Networks
	Finite Precision
	The Decoder function

	Parity and Modular Counting – Proofs
	Proof of thm:parity
	Proof of thm:modcount

	Products of Generalized Householder Matrices – Proofs
	Proof of th:ghexpress
	Proof of thm:groups
	Krhon-Rhodes Theorem
	Proof of thm:regular

	Experiments
	Implementation
	Chomsky Hierarchy
	Details on the experimental setup
	Details on the evaluated tasks

	State-Tracking
	Details of the Experiments
	Cyclic Groups

	Language Modeling
	Details on the experimental setup
	Details on the evaluated tasks
	Additional results

	Implementation of Extended Eigenvalue Range

