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Abstract

Linear Recurrent Neural Networks (LRNNs) such as Mamba, RWKV, GLA, mL-
STM, and DeltaNet have emerged as efficient alternatives to Transformers in large
language modeling, offering linear scaling with sequence length and improved
training efficiency. However, LRNNs struggle to perform state-tracking which
may impair performance in tasks such as code evaluation or tracking a chess game.
Even parity, the simplest state-tracking task, which non-linear RNNs like LSTM
handle effectively, cannot be solved by current LRNNs. Recently, Sarrof et al.
(2024) demonstrated that the failure of LRNNs like Mamba to solve parity stems
from restricting the value range of their diagonal state-transition matrices to [0, 1]
and that incorporating negative values can resolve this issue. We extend this re-
sult to non-diagonal LRNNs, which have recently shown promise in models such
as DeltaNet. We prove that finite precision LRNNs with state-transition matrices
having only positive eigenvalues cannot solve parity, while complex eigenvalues
are needed to count modulo 3. Notably, we also prove that LRNNs can learn
any regular language when their state-transition matrices are products of identity
minus vector outer product matrices, each with eigenvalues in the range [−1, 1].
Our empirical results confirm that extending the eigenvalue range of models like
Mamba and DeltaNet to include negative values not only enables them to solve
parity but consistently improves their performance on state-tracking tasks. Fur-
thermore, pre-training LRNNs with an extended eigenvalue range for language
modeling achieves comparable performance and stability while showing promise
on code and math data. Our work enhances the expressivity of modern LRNNs,
broadening their applicability without changing the cost of training or inference.

1 Introduction

Transformer architectures (Vaswani et al., 2017) have revolutionized NLP but scale quadratically in
sequence length, posing computational challenges for long sequences. To address this, Linear Re-
current Neural Networks (LRNNs) have emerged as promising alternatives that offer linear scaling
while maintaining competitive performance (Gu & Dao, 2023; Dao & Gu, 2024; Yang et al., 2024a;
Peng et al., 2023; Deletang et al., 2023; Sun et al., 2024; Beck et al., 2024). LRNNs update their
state via matrix-vector products with structured and often input-dependent state-transition matrices.
The structure of the state-transition matrices largely determines the expressivity of LRNNs. While
successful models like Mamba (Gu & Dao, 2023) and GLA (Yang et al., 2024a) use diagonal matri-
ces (diagonal LRNN) which only mix tokens along the sequence dimension, recent work explores
more complex forms. Notably, non-diagonal matrices using generalized Householder (GH) trans-
formations, defined as I − uu⊤ where u is a learnable vector and I is the identity, enable models
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like DeltaNet (Schlag et al., 2021; Yang et al., 2024b) and TTT-Linear (Sun et al., 2024) to achieve
richer expressiveness through simultaneous token-channel mixing while maintaining efficiency.
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Figure 1: Extending the eigenvalue
range of the state transition matri-
ces of diagonal LRNNs improves
performance from random guessing
(range [0, 1]) to perfect score (range
[−1, 1]) on learning parity. Trained
on sequences up to length 40; Tested
on lengths 40–256 (3 seeds).

Despite these successes, both Transformers and current
LRNNs face a fundamental limitation: they struggle to learn
how to track the state of even simple finite-state machines
from sequences of state-transitions (Deletang et al., 2023).
This limitation may impair performance on tasks such as en-
tity tracking in narratives, handling nested structures in code,
and other reasoning tasks that can benefit from maintaining
and updating an internal state over time (Merrill et al., 2024).
Even the simplest state-tracking task, computing the parity
of a sequence of bits, cannot be solved by current LRNNs,
while non-linear RNNs like LSTM (Hochreiter & Schmidhu-
ber, 1997) and sLSTM (Beck et al., 2024) can track the state
of any finite state machine. However, parallelizing non-linear
RNNs across the sequence length presents significant chal-
lenges (Lim et al., 2024; Gonzalez et al., 2024).

Recently, Sarrof et al. (2024) demonstrated that the inability
of diagonal LRNNs to solve the parity problem stems from the fact that the eigenvalues of their
state-transition matrices are constrained to be positive. Specifically, they proved that finite precision
diagonal LRNNs with exclusively positive real eigenvalues, cannot solve the parity problem for
sequences of arbitrary length. However, their work did not provide empirical evidence showing that
diagonal LRNNs with negative eigenvalues can be successfully trained to overcome this limitation.
We prove that the same limitation also affects LRNNs with non-diagonal state-transition matrices,
and further prove that complex eigenvalues are necessary to solve the more challenging task of
modular counting (when the modulus is not a power of two). Our findings also apply to the GH
matrices employed by DeltaNet, as they share the same eigenvalue limitations. To overcome this,
we propose a simple yet powerful solution: extend the range of possible eigenvalues from [0, 1] to
[−1, 1]. This change enables state-tracking and significantly improves the expressivity of LRNNs
without compromising their efficiency and training stability. As illustrated in Figure 1, it allows
diagonal LRNNs to learn parity successfully. The code for part of our experiments is available
at https://github.com/automl/unlocking_state_tracking

In summary, we make the following contributions:
1. We prove that any finite precision LRNN with only positive real eigenvalues in the state-transition

matrices (most LRNNs used in practice) cannot solve parity at arbitrary sequence lengths (Theo-
rem 1), while complex eigenvalues are required to learn counting modulo 3 (Theorem 2).

2. By extending the eigenvalue range, we significantly improve the state-tracking capabilities of
LRNNs. We prove that LRNNs with state-transition matrices formed by products of generalized
Householder (GH) matrices, each with eigenvalues in the range [−1, 1], can learn any regular lan-
guage (Theorem 4), in some cases with just one layer (Theorem 3). Notably, this range extension
allows LRNNs, using just one GH matrix (like DeltaNet), to learn substantially harder tasks, as
the repeated composition of permutations of two elements, compared to diagonal LRNNs.

3. We show that the eigenvalue range of Mamba and DeltaNet can be extended to [−1, 1] without
compromising efficiency or training stability. We test the modified methods on parity, modular
arithmetic, and permutation composition, demonstrating improved state-tracking performance.

4. We pre-train modified versions of DeltaNet and Mamba (up to 1.3B parameters) and show that
they reach performance comparable to the original models on generative language modeling
tasks, while DeltaNet shows improved perplexity on coding and math datasets.

2 Related Work

Linear RNNs. Linear RNNs encompass state-space models and causal, linear attention mecha-
nisms. State-space models, originally used for continuous dynamical systems, inspired LRNN vari-
ants like S4 (Gu et al., 2022) and H4 (Fu et al., 2021) (see Tiezzi et al. (2024) for a survey). Recent
advancements, such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), introduced input-dependent
gating of the hidden state, significantly improving language modeling performance. Concurrently,
linear attention emerged as an alternative to classical softmax attention, with Katharopoulos et al.

2

https://github.com/automl/unlocking_state_tracking


(2020) demonstrating that causal, linear attention Transformers can be reformulated as RNNs with
linear scaling in sequence length. Building on this, Yang et al. (2024a) proposed Gated Linear Atten-
tion (GLA), adding a gating mechanism similar to Mamba, while DeltaNet (Yang et al., 2024b) and
TTT-Linear (Sun et al., 2024) explored more expressive gating with non-diagonal state-transition
matrices. Beck et al. (2024) recently proposed xLSTM, a successor LSTM (Hochreiter & Schmid-
huber, 1997) which combines non-linear and linear RNNs.

Expressivity Results. Several studies have explored the expressive power of Transformers and
RNNs (see e.g. (Merrill et al., 2020; Strobl et al., 2024; Bhattamishra et al., 2024)). Here, we focus
on the ones most relevant to our work. While Hahn (2020) proved that Transformers cannot model
periodic languages such as parity and some context-free languages at arbitrary sequence lengths,
Liu et al. (2023) demonstrated that Transformers can learn shortcut solutions for solvable finite state
automata, though these solutions lack generalizability to arbitrary sequence lengths and perform
poorly out-of-distribution. Unlike RNNs, the high parallelizability of Transformers prevents them
from learning unsolvable finite state automata (Merrill & Sabharwal, 2023). These findings typi-
cally use techniques from algebraic formal language theory (we refer to Liu et al. (2023) for a short
tutorial) and circuit complexity, using the log-precision assumption and a number of layers scaling
linearly or logarithmically with sequence length. While earlier research established Transformers’
Turing completeness, it relied on either arbitrary precision (Pérez et al., 2021) or arbitrary depth
and weight sharing (Giannou et al., 2023). Diagonal LRNNs can simulate any RNN with infinite
depth (Gu & Dao, 2023) and approximate regular enough functions when the state dimension grows
linearly with sequence length (Orvieto et al., 2024). However, things change when depth and state
size are fixed. Merrill et al. (2024) proved that finite-depth diagonal LRNNs, like Transformers,
cannot learn unsolvable finite state automata when restricted to log-precision arithmetic. The work
by Fan et al. (2024) highlights a similar limitation, while in a finite precision setting, Sarrof et al.
(2024) showed that diagonal LRNNs with positive values in the state-transition matrix, while capa-
ble of learning all star-free languages, cannot solve even the simple parity problem, a non-star-free
language recognizable by an automaton with two states. However, their analysis was limited to the
diagonal case and they did not test the benefit of negative eigenvalues in practice. Unlike these
works, we also study non-diagonal LRNNs that can still be trained efficiently at large scale. Irie
et al. (2021, 2023) empirically show how state-tracking can be enabled by modifying DeltaNet as a
fast weight programmer Schmidhuber (1992), but this makes its recurrence non-linear.

3 Background

3.1 Linear Recurrent Neural Networks (LRNNs)

We describe LRNNs using notation inspired by Sarrof et al. (2024), focusing on the core linear
recurrences while abstracting away non-linear computations for each token. LRNNs are, in fact,
stacks of layers with common structure but distinct learnable parameters. Each layer takes input
vectors x1, . . . ,xt ∈ Rl (outputs of the previous layer) and outputs ŷ1, . . . , ŷt ∈ Rp as:

Hi = A(xi)Hi−1 +B(xi), ŷi = dec(Hi,xi), for all i ∈ {1, . . . , t},
H0 ∈ Cn×d, A : Rl → Cn×n, B : Rl → Cn×d, dec : Cn×d × Rl → Rp

(1)

Here, A,B and dec are learnable, generally non-linear functions, with dec usually containing a
feed-forward neural network. This definition encompasses most LRNN variants, which differ in the
form of A, B and dec. Table 1 illustrates how three popular LRNNs fit this framework. For other
architectures see (Yang et al., 2024b, Table 4).
The state-transition matrices A(xt) are typically diagonal or generalized Householder (GH), i.e.,
identity minus vector outer product, as shown in Table 1, to enable efficient matrix-vector products
on modern hardware. These matrices consistently have eigenvalues (and norm) in the range [0, 1].

3.2 Formal Language Theory

Finite State Automata and Regular Languages. A (deterministic) finite state automaton (FSA)
is a tuple A=(Σ, Q, q0, δ) where Σ is a finite set of letters called alphabet, Q is a finite set of
states, q0 ∈Q is the starting state and δ :Q×Σ→Q is the state-transition function (see Hopcroft &
Ullman, 2001, for an introduction). We define the set Σ∗, whose elements are sequences called
words, as the smallest superset of Σ that contains the empty word ε and is closed under word
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Table 1: Instances of LRNNs layers in (1), where αt=sigmoid(Wαxt), ∆t=softplus(W∆xt),
βt=sigmoid(w⊤

β xt), while qt,kt ∈ Rn,vt ∈ Rd are output of learnable functions of xt. Also,
ψ : Rd → Rd is another learnable function usually containing an MLP and a normalization, while
W1 ∈ Rn×d, W∆ ∈ Rd×l, Wα ∈ Rn×l, wβ ∈ Rl and w2 ∈ Rd are learnable parameters. For
simplicity, we omitted 1D convolutions. For Mamba, the matrices in the first two columns represent
the recurrence for each row of Ht and we set kt=(kt,1, . . . , kt,n)

⊤, W1=(w1,1, . . . ,w1,n)
⊤, l = d.

A(xt) B(xt) dec(Ht,xt)

Mamba Diag (exp (−∆t ⊙ exp(w1,i))) kt,i∆t ⊙ xt ψ(H⊤
t qt +w2 ⊙ xt)

GLA Diag (αt) ktv
⊤
t ψ(H⊤

t qt)
DeltaNet I − βtktk

⊤
t βtktv

⊤
t ψ(H⊤

t qt)

concatenation. We extend the state-transition function to δ :Q×Σ∗ →Q by defining δ(q, ε)= q and
δ(q,w)= δ(δ(q, w1 . . . wi−1), wi) for any w = w1 . . . wi ∈ Σ∗ with i ≥ 2. We say that δ(q0,w) is
the state that A reaches after reading the word w ∈ Σ∗. A language L ⊆ Σ∗ is said to be recognized
by A if there exists a recognizing set R⊆Q such that L= {w∈Σ∗ : δ(q0,w)∈R}. Regular
languages are the ones that can be recognized by an FSA. Given an FSA A, the set T (A)= {δ(·,w) :
w ∈ Σ∗} of functions ρ :Q→Q, together with the function composition operation forms a monoid
called transition monoid, i.e. it is associative, closed and contains the identity δ(·, ε). This monoid
has a finite number of elements, since |Q|<∞. Moreover, if δ(·, w) is bijective for every w ∈ Σ,
then T (A) forms a group, i.e. it contains the inverse of each element.

State-Tracking and Monoid Word Problems. State-tracking is the problem of determining the
state of a system only by observing a sequence of updates applied to it. Formally, it can be expressed
as a monoid word problem (Merrill et al., 2024), where given a monoid (M, ·) (M is the set and ·
is the associative operation), we want to send words m1 . . .mt ∈ M∗, describing the sequence of
updates, to their product m1 ·m2 · · ·mt ∈M , representing the state of the system after the updates.
If M is finite there is a corresponding FSA (M,M, e, δ) that solves the word problem, where the
starting state is e (the identity element), and the transition function is δ(m1,m2) = m2 · m1 for
m1,m2 ∈ M . In this work, we focus on group word problems, i.e. problems where the monoid is
also a group. In particular, on the cyclic group Zm, i.e. addition modulom, and the symmetric group
Sm, i.e. the group of permutations onm elements. Parity is equivalent to the S2 word problem, while
many state-tracking problems such as tracking chess moves or code evaluation, can be shown to be
harder than the S5 word problem, which cannot be solved by Transformers and diagonal LRNNs
even in log-precision for arbitrary word lengths (Merrill et al., 2024; Merrill & Sabharwal, 2023).

One LRNN Layer is an automaton. Given an alphabet Σ ⊂ N, we can view one layer of an
LRNN in (1) as the automaton Alin = (Σ,H,H0, δlin), where δlin(H, w) = A(w)H + B(w),
which is extended as we saw previously1, and H = {δlin(H0,w) : w ∈ Σ∗} ⊆ Rn×d. We say that
an LRNN layer in (1) implements the FSA A = (Σ, Q, q0, δ) if Alin can mimic the state transitions
of A2. Formally, if there exists a surjective function g : H → Q, such that for any H ∈ H, w ∈ Σ

δ(g(H), w) = g(δlin(H, w)) = g(A(w)H +B(w))

Every language L recognized by A can also be recognized by this LRNN layer with a sufficiently
powerful dec. In particular if R⊆Q is the recognizing set for L and q0 = g(H0), then the decoder
dec(Ht, wt) = 1{g(Ht) ∈ R}, will correctly determine if w ∈ L. Therefore, implementing A is at
least as hard as recognizing L. A principal goal of this work is to show that current LRNNs cannot
recognize simple languages such as parity (negative results) while appropriate modifications to the
state-transition matrices, enable LRNNs to implement broader classes of FSA (positive results), with
certain classes of FSA requiring a single layer. Note, that while LRNNs with one layer can recognize
any regular language, the state transition matrices might not fit into the structure imposed by current
LRNNs, such as those in Table 1 (see Appendix A.3 for more details).

1We let δlin : Rn×d ×Σ→Rn×d and extend it to δlin : Rn×d ×Σ∗ →Rn×d, then we define H.
2This definition is equivalent to that of FSA homomorphism, see (Maler & Pnueli, 1994, Definition 3).
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4 Theoretical Analysis

We begin by highlighting the limitations of current LRNNs, demonstrating that they fail to meet
a necessary condition for solving parity and modular counting problems: the eigenvalues of their
state-transition matrices are restricted to the range [0, 1]. Subsequently, we illustrate how extending
this eigenvalue range to [−1, 1] significantly enhances the expressive power of LRNNs.

4.1 Limitations of Current LRNNs

The parity yt ∈ {0, 1} of a sequence of ones and zeros x1 . . . xt ∈ {0, 1}t is 1 if the total num-
ber of ones in the sequence is odd, and 0 if it’s even. Equivalent to addition modulo 2, it can be
computed by summing the values in the input sequence and then applying the modulo 2 function:
yt = (

∑t
i=1 xi) mod 2. We can also express this as the linear recurrence

ht = ht−1 + xt, h0 = 0, yt = ht mod 2 (2)

where ht contains the total number of ones. This solution can be implemented by an LRNN with
one layer and scalar states by setting A(xt) = 1, B(xt) = xt, H0 = 0, and dec(Ht, xt) =
Ht mod 2 in (1). However, implementing such a solution with finite precision presents an issue:
the state ht can grow indefinitely with t, eventually reaching the limit of our precision range. Indeed,
ht ∈ {0, . . . , t}, requiring log2(t+ 1) bits for storage. Moreover, in practice dec must approximate
the modulus 2 function, which is challenging to learn due to its discontinuous and periodic nature.
Such solutions, referred to as shortcut solutions, are the only ones learnable by Transformers when
allowing O(log(t)) bits of precision and either depth O(log(t)) or width O(t) (Liu et al., 2023).

A more efficient solution, which implements the two-state FSA solving this problem, can still be
realized by a finite precision LRNN with one layer and scalar states (and consequently also with
vector states and diagonal state-transition matrices) using the recursion

ht = a(xt)ht−1 + b(xt), h0 = b(0) = 0, b(1) = a(0) = 1, a(1) = −1, yt = ht. (3)

Note, that the state-transition scalar a(1) is negative, while current diagonal LRNNs do not allow
negative values, and so are unable to learn parity (Sarrof et al., 2024). This raises the question: can
non-diagonal LRNNs, such as DeltaNet, solve parity?

The following result answers this question by providing a necessary condition for an LRNN to solve
parity. It generalizes Sarrof et al. (2024, Theorem 2) to non-diagonal matrices, showing that there
must be at least one eigenvalue that is not real and positive. This eigenvalue could simply have a
nonzero imaginary part without necessarily being real and negative.

Theorem 1 (Parity). A finite precision LRNN with finitely many layers as in (1) can solve parity
for arbitrary input lengths, in particular, it can recognize the language (11)∗, only if in at least one
layer, there exist x such that A(x) has at least one eigenvalue λ /∈ {x ∈ R : x ≥ 0}.

The proof in Appendix B.1 uses the same core idea as the one in (Sarrof et al., 2024, Theorem 2).
For one layer, we show that when x = 1k and the conditions for the eigenvalues of A(1) are not
met, the mapping k 7→ Hk and consequently also the one k 7→ ŷk will be constant for large enough
k and in finite precision, while k 7→ yk, with yk being the parity of x, alternates between 0 and 1.
To show this, we use the expression for the powers of the Jordan canonical form of A(1).

We now study the problem of counting modulom, an easier version of addition modulomwhere the
input of length k never changes and is x = 1k, while the correct output is yk = (

∑k
i=1 xi) mod m.

The following theorem shows that to solve this problem, products of state-transition matrices must
have at least one eigenvalue with nonzero imaginary part.

Theorem 2 (Modular Counting). A finite precision LRNN with L layers, each as in (1), can count
modulo m, i.e. it can recognize the language (1m)∗, with m not a power of two, only if there exist
i ∈ {1, . . . , L} and x1, . . . ,x2i−1 such that for the i-th layer the product A(x1)A(x2) · · ·A(x2i−1)
has at least one eigenvalue λ with nonzero imaginary part, i.e. λ /∈ R.

The proof is in Appendix B.2. WhenL = 1 a key step is to show that if A(1) has real (even negative)
eigenvalues, the sequences {H2k}k∈N and {H2k+1}k∈N have a well defined limit. The proof for
L > 1 layers is done by induction using our assumption on the product of state-transition matrices.
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Theorems 1 and 2 identify a fundamental limitation of current design choices on the structure of
the state-transition matrices of LRNNs. Specifically, the LRNNs outlined in Table 1 are incapable
of solving parity, as the eigenvalues of their state-transition matrices are confined to the interval
[0, 1]. Further, even if we allow negative eigenvalues, LRNNs using common structures for the state
transition matrices, such as diagonal or triangular with real entries, cannot solve counting modulom.
In contrast, as we will show, LRNNs with state-transition matrices that are (products of) generalized
Householder matrices, each with eigenvalues in the range [−1, 1], are much more expressive.

4.2 Allowing Negative Eigenvalues

We focus on two classes of LRNNs determined by the structure of their state-transition matrices:
diagonal (such as Mamba, Mamba2, and GLA) and generalized Householder (GH, as in DeltaNet).
In particular, if we let s : Rl → [0, 1]n, ϕ : Rl → [0, 1] and v : Rl → Rn, being learnable functions
such that ∥v(x)∥ = 1 for every x ∈ Rl, then the state transition matrices of each layer of many
LRNNs, such as those in Table 1, can be written as either

Adiag(x) := Diag(s(x)), or AGH(x) := I − ϕ(x)v(x)v(x)⊤,

where Adiag(x) is diagonal with eigenvalues s(x)i ∈ [0, 1], while AGH(x) is GH with all eigen-
values equal to one except for the one associated to the eigenvector v(x), which is equal to
1 − ϕ(x) ∈ [0, 1]. To address the limitations discussed in the previous section, we propose the
following modification that can be easily applied to LRNNs belonging to either class.

A−
diag(x) := Diag(2s(x)−1), A−

GH(x) := I − 2ϕ(x)v(x)v(x)⊤. (4)

This modification causes that A−
diag(x) has eigenvalues 2s(x)i − 1 ∈ [−1, 1] and A−

GH(x) has
all eigenvalues equal to one, except for one that is equal to 1 − 2ϕ(x) ∈ [−1, 1]. Thus, we have
extended the range of eigenvalues from [0, 1] to [−1, 1].

LRNNs with the modified state transition matrices can implement the solution to parity in (3) by
setting s(1) = 0 and ϕ(1) = 1 so that if we consider a scalar recursion, then A−

diag(1) = −1.
However, Theorem 2 shows that we cannot count modulo 3 with diagonal state transition matrices,
even when allowing negative eigenvalues. Despite this, it is well known that counting modulom can
be achieved by rotating a vector in R2 by an angle of 2π/m radians, and we can express a rotation
matrix as a product of two reflection matrices, which are GH matrices with eigenvalues in {−1, 1}.
In other words, for any m ∈ N there exist unit norm vectors v1,v2 ∈ R2 such that

R(θ) :=
[
cos θ − sin θ
sin θ cos θ

]
=
(
I − 2v1v

⊤
1

) (
I − 2v2v

⊤
2

)
, θ =

2π

m
.

If we set the state-transition matrix in (1) to A(1) = R(θ), an LRNN with one layer can count
modulo m, since if we also set H0 = (1, 0)⊤ and dec(H, x) = argmaxi D

⊤
i H , with Di =

R(iθ)H0 for all i ∈ {0, . . . ,m− 1}, then for the input x = 1t we get

ŷt = dec(Ht, 1) = dec(A(1)tH0, 1) = dec(R(tθ)H0, 1) = t mod m.

Therefore, in the upcoming section, we examine the impact of our change to the eigenvalue range
on state-transition matrices constructed as repeated products of GH matrices.

4.3 Expressivity of Products of Generalized Householder Matrices

For any n, k ∈ N, we define the set of all matrices in Rn×n that can be expressed as a product of k
GH matrices, each having the only interesting eigenvalue in the range Ω ⊆ R, as

Mn
k (Ω) :=

{
C1C2 · · ·Ck : Ci = I − βiviv

⊤
i , (1− βi) ∈ Ω, vi ∈ Rn, ∥vi∥ = 1

}
. (5)

We observe that if M ∈ Mn
1 ({−1}), then M is a reflection (or Householder) matrix, and that for

any x ∈ Rl, AGH(x) ∈ Mn
1 ([0, 1]) and A−

GH(x) ∈ Mn
1 ([−1, 1]) so that with our change we also

include reflections. Moreover, Mn
k (Ω) ⊆ Mn

k′(Ω′) if Ω ⊆ Ω′ and either k′ = k or k′ ≥ k, 1 ∈ Ω.

Our next result shows that products of GH matrices can represent any matrix with Euclidean norm
less than or equal to 1. However, there are some restriction if we only allow each GH matrix in
the product to have positive eigenvalues. In contrast, repeated products of upper (lower) triangular
matrices with eigenvalues in [−1, 1] remain upper (lower) triangular, with eigenvalues in the same
range.
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Proposition 1 (Expressivity of products of GH matrices). The following hold for Mn
k in (5):

1. For any N ∈ Mn
k ([−1, 1]), ∥N∥ ≤ 1.

2. For any M ∈ Rn×n with ∥M∥≤ 1, then M ∈ Mn
3n([−1, 1]) and if M is orthogonal

then M ∈ Mn
n({−1, 1}), while M ∈ Mn

n−1({−1, 1}) when M is a permutation matrix.
3. Any eigenvalue λ of N ∈ Mn

k ((−1, 1]) is either 1 or satisfies |λ| < 1 and if in addition
N ∈ Mn

k ([0, 1]) and k ≤ 2, then λ ∈ [0, 1] ⊂ R.

The proof in Appendix C.1 uses mainly linear algebra arguments such as the SVD decomposition
and the fact that every n× n orthogonal matrix can be written as a product of n reflections.
A consequence of Proposition 1 is that if for every layer of an LRNN, there exists n, k ∈ N such
that the map A from inputs to state-transition matrices is such that A : Rl → Mn

k ([0, 1]), then if
k ≤ 2 the LRNN cannot learn parity, due to Theorem 1, and for any k the state transition matrices
are either the identity or not orthogonal, and hence unable to represent reflections or rotations. In
contrast, if we allow A : Rl → Mn

k ([−1, 1]) and k is large enough, the following theorem shows
that an LRNN with one layer can implement any FSA whose transition monoid is a group, and that
n = k = 2 is enough for cyclic groups (modular addition).

Theorem 3. Every FSA A = (Σ, Q, q0, δ) whose transition monoid T (A) is a group, can
be implemented by a finite precision LRNN with one layer and A : Σ → Mn

k−1({−1, 1}),
where n is the smallest natural number such that T (A) is isomorphic to a subgroup of Sn, and
k = maxw∈Σ

∑
q∈Q 1{δ(q, w) ̸= q} is the maximum number of changed states after applying

a single transition. Moreover, if T (A) is isomorphic to the cyclic group Zm, then we can set
A : Σ → M2

2([−1, 1]) and if m = 2 (parity) we can set A : Σ → {−1, 1}.

In the proof in Appendix C.2, we map each state-transition function to its matrix representation.
This can always be done using permutation matrices, but for cyclic groups, we can also use rotation
matrices. In the case of permutations, if every state-transitions permutes at most k states then the
corresponding permutation matrix will be in Mn

k−1({−1, 1}), since it is either the identity or can
be written as a product of at most k− 1 permutations of two elements (swaps), each in Mn

1 ({−1}).
A consequence of Theorem 3 is that if every transition function of the FSA has a permutation
representation corresponding to a swap or the identity, then an LRNN layer with A = A−

GH, can
implement it. This is useful in practice because the time complexity of the LRNN having a product
of k GH matrices as one state-transition matrix increases linearly with k. Also, for natural language
tasks, the state-transitions for the FSA might be either simple or encoded using multiple letters.
For example, for addition modulo 5, a word may look like “3+2+4=4” (two letters per addition).
This allows an LRNN with state-transition matrices in Mn

1 ([−1, 1]) to model complex transitions.
Indeed, if each transition uses k letters and we set B ≡ 0 and A : Rl → Mn

1 ([−1, 1]) in (1), then
the LRNN layer can model permutations that change up to k + 1 elements since

Ht = C(xt, . . . , xt−k)Ht−k, C(xt, . . . , xt−k) := A(xt)A(xt−1) · · ·A(xt−k) ∈ Mn
k ([−1, 1]).

In Appendix D we also show that, interestingly, an LRNN with two layers (instead of just one), each
having only reflections (instead of rotations) as state-transition matrices, can solve addition modulo
m. We now present an important result on the expressivity of LRNNs with multiple layers.

Theorem 4. LRNNs with state transition matrices that are repeated products of GH matrices, each
with eigenvalues in the range [−1, 1], can recognize any regular language. In particular, every FSA
A = (Σ, Q, q0, δ) can be implemented by a finite precision LRNN with s ≤ 2|Q| layers, each of the
form 1, where n ≤ |Q|, p ≤ s, d = 1, A : Rl → Mn

n([−1, 1]) and B : Rl → Nn.

The proof in Appendix C.4 exploits the landmark Theorem by Krohn & Rhodes (1965), which states
that every FSA can be decomposed as a cascade of simpler FSAs whose state-transition functions
are either one-to-one or constant. Each layer of the LRNN will implement one FSA (with n states)
of the cascade using n× n permutation matrices, which are in Mn

n−1({−1, 1}), for the one-to-one
transitions, while for constant (state-independent) transitions it will set the corresponding state-
transition matrix to 0 ∈ Mn

n({0}) and the function B appropriately. Note, that we can obtain the
zero matrix only inefficiently as a product of n GH matrices, while it could also be obtained with
a single diagonal matrix. This points towards hybrids LRNNs using a mix of GH and diagonal
matrices, whose exploration we leave for future work.

7



Discussion The results in Theorems 3 and 4 for LRNNs are in sharp contrast with the ones for
Transformers (Liu et al., 2023; Merrill & Sabharwal, 2023) and diagonal LRNNs (Merrill et al.,
2024), which require either the number of layers or the precision growing with the input sequence
length, and can only implement an FSA if all groups in its transition monoid are solvable, i.e.
excluding groups isomorphic to Sn with n ≥ 5. Moreover, compared to LRNNs without any
restriction to the norm of the state-transition matrices, which need only one layer to recognize any
regular language, our result requires both the number of layers and the width of the LRNN to be
(in the worst case) exponential in the number of states of the FSA, although we conjecture that the
number of layers might be reduced to at most linear using a more refined decomposition.

5 Experiments

Table 2: Summary of modifications to the state-
transition matrices A(xt) to extend the eigen-
value range from [0, 1] (Table 1) to [−1, 1]. We
set s(xt) = exp (−∆t exp(w1,i)).

[0, 1] [−1, 1]

Mamba Diag(s(xt)) Diag(2s(xt)−1)
DeltaNet I − βtktk

⊤
t I − 2βtktk

⊤
t

We investigate the effects of expanding the
eigenvalue range of state-transition matrices
from [0, 1] to [−1, 1], as explained in Sec-
tion 4.2, on both synthetic tasks and language
modeling. Our experiments involve Mamba,
and DeltaNet, with variants trained using both
the original and extended eigenvalue ranges, as
shown in Table 2. We label these variants ac-
cordingly. Note that the changes increase the
expressivity of Mamba and DeltaNet while coming at no additional computational cost. Detailed
information on the implementation can be found in Appendix E.4.

5.1 Chomsky Hierarchy

Table 3: Performance comparison of various re-
current models on formal language tasks. We re-
port the best of 3 runs (Table 5 in the Appendix
reports the median). Scores are scaled accuracy,
with 1.0 indicating perfect performance and 0.0
random guessing. The positive impact of allow-
ing negative eigenvalues ([−1, 1] range) versus re-
stricting to positive eigenvalues ([0, 1] range) is
evident for both Mamba and DeltaNet. Results in
parenthesis are as reported in Beck et al. (2024).

Parity Mod. Arithm.
(w/o brackets)

Mod. Arithm.
w/ brackets)

Transformer 0.022 0.031 0.025

mLSTM 0.087 (0.04) 0.040 (0.04) 0.034 (0.03)
sLSTM 1.000 (1.00) 0.787 (1.00) 0.173 (0.57)

Mamba [0, 1] 0.000 0.095 0.092
Mamba [−1, 1] 1.000 0.241 0.136
DeltaNet [0, 1] 0.017 0.314 0.137
DeltaNet [−1, 1] 1.000 0.971 0.200

We conducted experiments with some of the
formal language tasks proposed by Deletang
et al. (2023) and similarly used to benchmark
xLSTM (Beck et al., 2024). Our focus was
on tasks where mLSTM (an LRNN) previously
underperformed while sLSTM (a non-linear
RNN) succeeded, specifically parity, modular
arithmetic without brackets (both regular lan-
guages). and modular arithmetic with brack-
ets (context-free language). As in Beck et al.
(2024), we trained each model with sequence
lengths ranging from 3 to 40 and evaluated on
lengths from 40 to 256, to assess length gen-
eralization. Note that our theoretical results
cover just regular languages, excluding modu-
lar arithmetic with brackets.

We compared a Transformer, mLSTM and
sLSTM against two variants each of Mamba
and DeltaNet - with and without eigenvalue
range extension. Our findings, presented in Table 3, demonstrate that expanding the range of eigen-
values from [0, 1] to [−1, 1] enables all examined models to fully solve the parity task, confirming
Theorem 1. For both modular arithmetic tasks, this expansion led to substantial performance im-
provements for Mamba and especially DeltaNet, since the latter has non-diagonal state-transition
matrices that are more suited for these tasks (see Theorem 3). In Figure 4 in the Appendix, we visu-
alize the length extrapolation performance of each model on all considered tasks. Note that we were
unable to reproduce the sLSTM results reported by Beck et al. (2024) for the modular arithmetic
tasks. Additional experiments and details on the tasks in Appendix E.1.

5.2 State-Tracking

We perform experiments on group word problems, relying on the code provided by Merrill et al.,
2024. In particular, we focus on the S5 group, which is the first unsolvable symmetric group where
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Figure 2: Sequence accuracy for varying sequence lengths on S5 after 100 epochs of training. We
report the best of 3 seeds for each method (in Figure 5 we report all seeds). The dashed vertical line
indicates the sequence length used during training (32 except for the third plot from the left where
it is 64). Each method is labeled with name, eigenvalue range, and number of layers. The dashed
vertical line indicates the sequence length used during training. ”Full matrix simple” is a one-layer
baseline where the state update matrices are full and we have no control over the eigenvalue range.

current LRNN and Transformers are known to perform poorly. We also report results for the addition
modulo 60, i.e. the cyclic group Z60, in Appendix E.2.2. We note that parity is S2. In these
experiments, the input to the model is a sequence of group elements, while the supervision is given
by another sequence of group elements, each being the product of the previous ones in the input.
Since solving S5 would require LRNNs with state-transition matrices that are repeated products of
4 GH matrices (see Theorem 3), each with eigenvalues [−1, 1], we also consider three simplified
setups: (i) allowing as inputs only permutations up to 2 elements (identity and swaps), (ii) allowing
only permutations up to 3 elements, (iii) using 4 tokens for each permutation. Additional details are
in Appendix E.2. We stress that, even when restricting the inputs, possible outputs remain the same,
since swaps are generators of the group.

Results Figure 2 shows that, as predicted by Theorem 3, restricting the inputs to only swap permu-
tations allows DeltaNet [−1, 1] with even one layer to fully learn the task (since its state-transition
matrix can model a swap), while DeltaNet [0, 1] with 5 layers generalizes just slightly beyond the
training length. In contrast, by including also permutations of 3 elements, we notice a substantial
decrease in the performance of all models. Interestingly, extending the range is still advantageous in
this case and DeltaNet [−1, 1] with 5 layers reaches a good length generalization. Moreover, using
4 tokens per group element seems also beneficial compared to standard S5, since DeltaNet [−1, 1]
with 5 layers manages to extrapolate very well until around length 200, which corresponds to 50
group elements, while on standard S5 all models have 0 sequence accuracy prior to sequence length
30. We also report that Mamba, a diagonal LRNN, performs poorly on all setups, with and without
increased eigenvalue range.

5.3 Language Modeling

Experimental Setup We train DeltaNet models with 340M and 1.3B parameters and Mamba models
with 370M parameters, each using both original and extended eigenvalue ranges. Training is done on
the full FineWeb-100B dataset (Penedo et al., 2024). We chose FineWeb rather than FineWeb-Edu
since it contains more code. We aligned our training pipeline with Yang et al. (2024b); see Ap-
pendix E.3.1 for details. Given our previous theoretical and experimental findings, we hypothesize
that models (especially DeltaNet) with extended eigenvalue range will perform better on language
modeling tasks linked to state-tracking such as coding or mathematics, compared to unmodified
models. To test this hypothesis, we evaluate the perplexity of these models in a length extrapolation
setup using various datasets: CodeParrot (Tunstall et al., 2022) for coding, Math-Hard (Hendrycks
et al., 2021) for mathematics, TriviaQA (Joshi et al., 2017), and SlimPajama (Soboleva et al., 2023).

Results All models trained stably with our modification and without changing the learning rate.
The validation perplexity of the proposed variants was comparable, albeit slightly worse than that
of the original models throughout training (see Figure 7 in the Appendix). The experiments in Fig-
ure 3 demonstrate that on coding and math datasets, DeltaNet with an eigenvalue range of [−1, 1]
achieves lower perplexity than the baseline with range [0, 1] for both model sizes. For TriviaQA,
the perplexity of DeltaNet [−1, 1] is slightly higher. Note, that this is a task relying on memoriza-
tion, not linked to state-tracking, and hence we do not expect an improvement. On SlimPajama,
we also observe slight improvement with our modification. For Mamba instead, our modifications
consistently degrades the performance on these tasks (Figure 8 in the Appendix). To ensure that
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Figure 3: Performance vs sequence length of DeltaNet variants (370M (top) and 1.3B (bottom)
parameters) on four datasets. DeltaNet with eigenvalue range [−1, 1] improves perplexity in coding
and math compared to the [0, 1] baseline. Dashed vertical line at training context length (2048).

Table 4: Performance comparison using lm-harness benchmark (Gao et al., 2024) (SlimPajama (SPJ)
reproduced from Yang et al. (2024b), Fine-Web (FW) ours). Results are shown for the original and
extended eigenvalue range. Our models show comparable performance across tasks.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg. SWDE SQUAD FDA
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ ↑ cont. ↑ cont. ↑ cont. ↑

15
B

to
ke

ns
SP

J 340M params
Transformer++ 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2 42.2 22.1 21.4
Mamba [0, 1] 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 41.8 12.4 23.0 2.1
GLA [0, 1] 29.47 45.53 31.3 65.1 33.8 51.6 44.4 24.6 41.8 24.0 24.7 7.3
DeltaNet [0, 1] 28.24 37.37 32.1 64.8 34.3 52.2 45.8 23.5 42.1 26.4 28.9 12.8

10
0B

to
ke

ns
F

W

340M params
DeltaNet [0, 1] 24.68 31.49 33.7 70.3 45.1 51.3 50.0 26.1 46.1 35.2 28.7 11.8
DeltaNet [−1, 1] 24.54 31.15 34.0 69.9 44.6 51.9 50.0 24.4 45.8 37.2 33.1 6.6

370M params
Mamba [0, 1] 24.84 24.69 35.6 70.6 48.4 51.2 53.4 24.8 47.3 21.6 27.7 2.8
Mamba [−1, 1] 25.02 24.71 36.2 70.5 47.8 53.3 54.7 26.7 48.2 20.9 24.8 2.5

10
0B

to
ke

ns
SP

J 1.3B params
Transformer++ 16.85 13.44 48.9 70.8 49.6 53.6 56.0 26.5 50.9 66.6 31.5 27.4
Mamba [0, 1] 17.06 13.89 46.2 72.2 40.1 54.1 59.0 28.2 50.0 41.4 35.2 6.2
GLA [0, 1] 17.22 14.47 46.9 71.8 49.8 53.9 57.2 26.6 51.0 50.6 42.6 19.9
DeltaNet [0, 1] 16.87 12.21 48.9 71.2 50.2 53.6 57.2 28.3 51.6 49.5 37.4 17.2

10
0B

T
F

W 1.3B params
DeltaNet [0, 1] 18.54 14.32 43.5 73.7 56.2 56.9 58.2 29.9 53.1 49.1 35.1 8.6
DeltaNet [−1, 1] 18.57 12.73 43.7 73.3 55.8 56.8 56.9 27.9 52.4 48.8 33.9 12.3

our models are comparable with those obtained by Yang et al. (2024b), we evaluate them on the
same benchmark tasks from lm-harness (Gao et al., 2024) in Table 4. Note, that we trained on 100B
tokens of FineWeb, while Yang et al. (2024b) reported results from training on 15B and 100B tokens
of SlimPajama.

At 340-370M parameters, with the extended range both architectures show enhanced performance
in some of the tasks: Mamba in the second subset of tasks (+2.1% average accuracy) and DeltaNet
in retrieval tasks (+2% SWDE, +4.4% SQUAD). At 1.3B parameters, extending the eigenvalue
range of DeltaNet shows mixed results, suggesting that the increased expressivity may need training
beyond 100B tokens to fully unlock the model’s capacity.

6 Conclusion

In this work, we showed the substantial impact of extending the eigenvalue range of state-transition
matrices in LRNNs from [0, 1] to [−1, 1]. This modification provably enhances LRNN expressivity
in state-tracking tasks, without adding overhead in training or inference. While Mamba successfully
solves the parity problem, its diagonal matrix structure limits further performance gains. In contrast,
DeltaNet, by leveraging its non-diagonal matrix structure enabling simultaneous token and channel
mixing, excels across a broader spectrum of tasks. Our results underscore the critical role of non-
diagonal state-transition matrices in augmenting state-tracking capabilities, highlighting a promising
direction for future LRNN advancements.

Limitations and Future work Our modification is not directly compatible with a numerical tech-
nique used by some diagonal LRNNs such as Mamba2, GLA and mLSTM. In partticular, these mod-
els rely on positive state-transition matrices to compute cumulative products in log space, which im-
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proves numerical accuracy and potentially training stability (see Appendix E.4 for details). Further
research is needed to assess the impact of training large-scale language models with state-tracking
capabilities. To this end, we aim to understand the potential downsides of increased expressivity.
For example, we hypothesize a fundamental trade-off between state-tracking and associative recall,
which is also of theoretical interest and could guide hybrid model design. Moreover, the theoretical
expressivity of DeltaNet [−1, 1] with multiple layers is still unclear. We showed that it can solve
addition modulo m (in Appendix D) which is equivalent to the Z3 group word problem, but we do
not know if it can also solve word problems for the symmetric groups Sn with n ≥ 3.
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Supplementary Material

The supplementary material is structured as follows.

• Appendix A contains additional details on the notation used, on Table 1, the relationship
between RNNs and regular languages, the assumption of finite precision, the states, and the
decoder function.

• Appendices B and C contain the proofs for the theoretical results in Sections 4.1 and 4.3.
• Appendix D contains a theorem showing that a 2 Layer LRNN having reflections as state-

transition matrices can solve addition modulo m.
• Appendix E contains additional details on the experiments and additonal results.

A Additional Background

A.1 Notation

We denote with C,R,N the sets of complex, real, and natural numbers, respectively. We use low-
ercase letters for scalar quantities (e.g. x ∈ R), bold lowercase letters for (column) vectors (e.g.
v ∈ Rn), and bold uppercase letters for matrices (e.g. M ∈ Rn×d). Some functions with matrix
(vector) outputs, such as A and B in (1), are also bold upper (lower) case letters to emphasize the
fact that they output matrices (vectors). We use ⊙ to indicate the element-wise (Hadamard) product
between two vectors or matrices. We denote with ∥v∥ the Euclidean norm of the vector v ∈ Rn.
When M ∈ Rn×d, ∥M∥ also refers to the Euclidean norm, corresponding to the largest singular
value. The vector ei ∈ Rn is the i-th vector of the canonical bases in Rn, i.e. the one-hot vector
with 1 only in the i-th component and 0 in the others. We define the binomial coefficient for every
k, j ∈ N with j ≤ k as (

k

0

)
:= 1,

(
k

j

)
:=

k(k − 1) . . . (k − j + 1)

j!
.

We also define for a Boolean s and x ∈ R

1{s} :=

{
1 if s is true
0 if s is false

, sign(x) :=

{
1 if x ≥ 0

−1 if x < 0
.

We define sigmoid(x) := 1/(1 + e−x) and softplus(x) := ln(1 + ex).

We sometimes use regular expressions (see e.g. Hopcroft & Ullman, 2001), to represent their cor-
responding regular language. So that e.g. (11)∗ = {11}∗, where {11} is the set containing the
word 11 and ∗ is the Kleene star operation, is the language containing the empty word ϵ and all the
words with an even number of ones, while (1m)∗ = {1m}∗ is the language containing the words
with a number of ones divisible by m since 1m indicates the word containing 1 repeated m times. A
language is star-free if it can be expressed with a regular expression that does not contain the Kleene
star.

A.2 Details of Table 1

The Mamba recurrence in Equations 3 and 4 in (Gu & Dao, 2023) is applied independently to
each channel of the input sequence. Expressing the full recurrence in the matrix-form of (1) is
challenging, as it would require concatenating the rows of the matrix Ht. For simplicity, in Table 1
we write instead the recurrence for each row of Ht. In particular, Let xt ∈ Rd be the input of
the layer, W∆ ∈ Rd×d, w2 ∈ Rd, W1 = (w1, . . . ,wn)

⊤ ∈ Rn×d be learnable parameters, qt ∈
Rn,kt = (kt,1, . . . , kt,n)

⊤ ∈ Rn be learnable functions of the input and ∆t = softplus(W∆xt).
Then, if we set Ht = (ht,1, . . . ,ht,n)

⊤ ∈ Rn×d and H0 = 0, we can write the recurrence for the
i-th row of Ht and the output as

ht,i = Ai(xt)ht−1,i +Bi(xt), ŷt = ψ(H⊤
t qt +w2 ⊙ xt))

where Ai(xt) and Bi(xt) are the matrices stated in Table 1, i.e.

Ai(xt) := Diag (exp (−∆t ⊙ exp(w1,i))) ∈ Rd×d, Bi(xt) := kt,i∆t ⊙ xt ∈ Rd.

15



Alternatively, as done in (Yang et al., 2024b, Table 4), one could write the full matrix recurrence as:

Ht = exp
(
−1∆⊤

t ⊙ exp(W1)
)︸ ︷︷ ︸

A(xt)

⊙Ht−1 + kt(∆t ⊙ xt)
⊤︸ ︷︷ ︸

B(xt)

.

where 1 is the vector of n ones. However, such a recurrence is not in the form (1), since we have
replaced the matrix-matrix product A(xt)Ht with the element-wise product A(xt)⊙Ht. Note that
we follow the implementation of B(xt) used in the official Mamba codebase, which simplifies the
expression originally presented in Equation 4 of (Gu & Dao, 2023) as described by the authors in a
GitHub Issue3.

A.3 Regular Languages and Recurrent Neural Networks

RNNs Can Recognize Any Regular Language A layer of a general RNN can be formulated
similarly to (1) just by replacing the linear state update with a generic state-transition function g as:

ht = g(ht−1,xt), h0 ∈ Rn.

It is apparent that any FSA can be implemented by an RNN layer if g is sufficiently expressive to
model its state transition function.

LRNNs Can Recognize Any Regular Language As explained in (Liu et al., 2023, Appendix A.2)
and in the proof of (Merrill et al., 2024, Theorem 5), we can implement any FSA A = (Σ, Q, q0, δ),
and thus recognize any regular language, using matrix-vector multiplication and hence also a single-
layer LRNN by using one-hot vectors as the LRNN states and having Boolean state transition ma-
trices. More specifically, in (1), we can set n = |Q|, H0 = (1, 0 . . . , 0)⊤ and for any letter w∈Σ,
B(w)= 0 and A(w)∈Rn×n being the matrix with entries A(w)q′,q =1{δ(w, q)= q′}. However,
such construction cannot be implemented by modern LRNNs (see e.g. the ones in Table 1) since in
general A(w) can have a norm greater than one and might not be symmetric or triangular.

A.4 Finite Precision

For our positive results on LRNNs expressivity (Theorems 3 and 4), by finite precision we mean that
since we have a finite number of quantities involved in the computations, then there exists a finite
set D ⊂ R that contains them and thus we do not require computations to be done in the reals but
we can use D as datatype. In particular, D does not depend on the length of the input sequence. In
practice, such data type is chosen beforehand, e.g. floating point numbers requiring a given number
of bits of precision, which may not capture all quantities in our constructions.

In our negative results of Theorems 1 and 2 instead, we can pick the finite set D ⊂ R arbitrarily,
e.g. floating point numbers, and we also make the use of the function cast : R → D, defined in (6).
that we extend to C by applying it separately to real and imaginary part and to vector and matrices
by applying it element-wise. The cast function is used because some computations of the state of
the LRNN will be allowed to be in infinite precision and then transformed to finite precision using
cast as specified in the proofs. This function provides a simplification of the actual conversion that
happens in practice.

We believe that the finite precision setup is not only realistic but also allows a better focus on the
drawbacks of modern LRNN. Note that for Transformers, results usually rely instead on the weaker
notion of log-precision (Liu et al., 2023), meaning that the size of D grows logarithmically with
the sequence length. This is mainly due to their limited expressivity compared to LRNNs. We also
note that concerning the state-transition matrices of modern LRNNs (see Table 1), the values at the
extremes of the eigenvalue range are technically not included (because of the use of the sigmoid and
softplus functions). However, since we are working with finite precision, we can still include them
by choosing the appropriate datatype D, which in practice includes key values such as 0, 1, and −1.

A.4.1 Initial State, Matrix-valued States, and The Decoder function

When introducing the LRNN layer in (1), we mention that A, B and dec are learnable functions.
However, to learn the constructions in our theoretical results, we need also H0 ⊆ Cn×d to be

3https://github.com/state-spaces/mamba/issues/19
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learnable. We do this only to simplify the results, since the same effect can also be achieved by
using a special token $ at the beginning of each sequence input to the model, called the beginning
of sequence token and setting, H0 = 0 for each LRNN layer so that B(x1) will have the same role
as the learnable H0 in our constructions. This practice is standard and used in all our experiments.

While we mention that the states Ht are generally matrices of dimension n× d, for our theoretical
constructions (excluding the first two theorems), we set d = 1, so that states are vector-valued.
Hence, for the problems that we consider, we find that having a matrix-valued state (d > 1) brings
no theoretical advantage.

To compute the output ŷt from the state Ht and the vector xt of an LRNN layer in (1), we use
the function dec, to abstract away the computations that are done on Ht and xt, since they are not
part of the recurrence. In this work, we do not consider the internal structure of dec, but it usually
contains a normalization and a feed-forward neural network and it can approximate any function.
In our negative results on LRNNs expressivity in Theorems 1 and 2 our choice of arbitrary decoder
guarantees the stronger results. For our positive results instead we either do not consider the decoder
(Theorem 3) or we make use of a linear decoder (Theorem 4). We point out that to recognize regular
languages efficiently and with a smaller LRNN state it is beneficial to have a more powerful (non-
linear) decoder, as in the case of word problems for cyclic or permutation groups. However, such a
decoder may be hard to learn.

B Parity and Modular Counting – Proofs

We report the proofs for the theorems in Section 4.1. We start by defining the function cast : R → D,
for a finite set D ⊂ R, which provides a simple model for the conversion of real numbers into a finite
precision representation.

cast(x) = min
z∈Dmin

z, Dmin := argmin
z∈D

|z − x|. (6)

Note that Dmin might not be a singleton. We naturally extend this function on complex numbers
by applying it separately to the real and imaginary part, and then to complex-valued matrices by
applying it element-wise. The following lemma is a key element of the proofs of Theorems 1 and 2.
The sequence ak in the lemma takes the form of the imaginary or real part of the elements of the
k-th power of a matrix with real eigenvalues (λi will be one eigenvalue), expressed using the Jordan
canonical form. See Appendix B.1 for more details on the Jordan Canonical Form. Intuitively, the
lemma shows that if some of the λi-s are negative then for k large enough, ak in finite precision
will alternate between two values. Instead, if the λi-s are only nonnegative, ak in finite precision
becomes constant for large enough k.
Lemma 1. Let n, m̄ ∈ N and for every k > m̄ let

ak :=

n∑
i=1

ci

(
k

mi

)
λk−mi
i , with ci, λi ∈ R,mi ∈ N,mi ≤ m̄, ∀i ∈ {1, . . . , n},

then there exist k̄ ∈ N such that for every k ≥ k̄ there exist ā1, ā2 ∈ D such that

cast(a2k) = ā1, cast(a2k+1) = ā2.

Furthermore, if λi ≥ 0 for every i ∈ {1, . . . , n}, then cast(ak) = ā1 = ā2 for k ≥ k̄.

Proof. If ci = 0 for every i, or λi = 0 for every i, then ak = 0 for all k and the statement is
trivially satisfied. Without loss of generality we can assume that that ci ̸= 0 and λi ̸= 0 for every
i ∈ {1, . . . , n}, since for each i where this is not true we can remove the corresponding term in the
sum (since it will be 0) and use smaller value for n. We divide the proof into two parts.

Positive powers: Assume that λi > 0 for all i ∈ {1, . . . , n}. This yields that for every i and every
k>m̄,

(
k
mi

)
λk−mi
i > 0. Since the cast function is piecewise constant with a finite number of pieces,

we can divide the real line into a finite number of intervals where cast is constant. We now show
that for k large enough, the interval where ak belongs, and hence cast(ak), does not vary with k.

Without loss of generality we assume that for every i, j ∈ {1, . . . , n} we have that (mi, λi) ̸=
(mj , λj), since otherwise we can factor out

(
k
mi

)
λk−mi
i and use a smaller n. Note that

(
k
mi

)
λk−mi
i =
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k(k−1)···(k−mi+1)
mi!

λk−mi
i and hence gi(k) =

(
k
mi

)
λk−mi
i for large k behaves like the function

kmiλk, i.e. the product of a polynomial and an exponential function of k. Without loss of gen-
erality, we therefore take the order of the indices of the terms in the sum such that the functions gi
are in decreasing order of growth:

λi > λj or λi = λj ,mi > mj ∀i, j : i > j.

By factoring out g1(k), i.e. the fastest growing term, from ak we get

ak =

(
k

m1

)
λk−m1
1 (c1 + bk) bk :=

n∑
i=2

ci

(
k
mi

)
λk−mi
i(

k
m1

)
λk−m1
1

,

with limk→∞ bk = 0 and therefore, since for every i and every k > m̄,
(

k
mi

)
λk−mi
i > 0 and c1 ̸= 0,

there exist k̂ ∈ N such that for every k ≥ k̂, sign(ak) = sign(c1 + bk) = sign(c1). Now let
D = {z1, . . . , zd} with z1 < z2 < · · · < zd and let y1 = −∞, yd+1 = ∞ and yi = (zi−1 + zi)/2
for i ∈ {2, . . . , d}. From its definition, cast is a piecewise constant function such that cast(x) = zi
for every x ∈ (yi, yi+1). We now consider three cases according to the values of λ1 and m1.

1) If λ1 > 1 or λ1 = 1,m1 > 0, then limk→∞
(

k
m1

)
λk−mi
1 = ∞ and there exists k̄ ≥ k̂ such

that for every k ≥ k̄, either ak > yd (if sign(c1) = 1) or ak < y2 (if sign(c1) = −1) and hence
cast(ak) = ā ∈ {z1, zd}.

2) If λ1 < 1 then limk→∞
(

k
m1

)
λk−mi
1 = 0 and hence there exist ϵ > 0, j ∈ {1, . . . , d}, k̄ > k̂ such

that for every k ≥ k̄, ak ∈ Ω ⊆ (yj , yj+1), where Ω = (0, ϵ) if sign(c1) = 1 and Ω = (−ϵ, 0) if
sign(c1) = −1. Therefore, cast(ak) = zj for every k ≥ k̄.

3) If λ1 = 1,m1 = 0, then
(

k
m1

)
λk−mi
1 = 1 for every k and hence

ak = c1 + bk, bk =

n∑
i=2

ci

(
k

mi

)
λk−mi
i with λi < 1 ∀i ∈ {2, . . . , n}

Note that bk has now the same structure as ak, just with one less term in the sum, therefore we can
factor out the term

(
λ2

m2

)
λk−m2 and, since λ2 < 1, apply the same reasoning as for the second case

(λ1 < 1) to c1 + bk and prove that there exist ϵ > 0, j ∈ {1, . . . , d}, k̄ > k̂ such that for every
k ≥ k̄, we have that sign(bk) = sign(c2), ak ∈ Ω ⊆ (yj , yj+1), where Ω = (c1, ϵ) if sign(c2) = 1
and Ω = (−ϵ, c1) if sign(c2) = −1. Therefore cast(ak) = zj for every k ≥ k̄.

In summary, we proved that when λi ≥ 0 for every i, there exist ā ∈ D, k̄ ∈ N such that for every
k ≥ k̄ ak = ā, which concludes the first part of the proof.

Some powers can be negative: Consider the general case where λi ∈ R can be negative. We can
write

ak =

n∑
i=1

ci

(
k

mi

)
sign(λi)

k−mi |λi|k−mi .

Since sign(x)2k−mi and sign(x)2k+1−mi do not vary with k we consider the two subsequences

a2k =

n∑
i=1

ĉi

(
2k

mi

)
|λi|2k−mi , ĉi = cisign(λi)

2k−mi

a2k+1 =

n∑
i=1

c̃i

(
2k + 1

mi

)
|λi|2k+1−mi , c̃i = cisign(λi)

2k+1−mi ,

and we can apply the same proof as for the case when λi > 0 for every i to each of the subsequences
above, which gives the final result in the case λi ∈ R for every i.

B.1 Proof of Theorem 1

The language (11)∗ contains all sequences with an even number of ones. An FSA recognizing the
language, for the sequence 1k will output yk = 1 if k is even and yk = 0 if k is odd. Consider
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an LRNN with one layer as in (1). We will prove that if A(1) has only nonnegative eigenvalues,
then there exists a k > 0 such that for every k ≥ k, the finite precision version of the state Hk

corresponding to the sequence 1k does not depend on k and is equal to H . Hence, no matter the
choice of dec, also the finite precision version of ŷk will not vary with k and thus for some k′ ≥ k̄,
ŷk′ ̸= k′ mod 2 = yk′ . An inductive argument can then be used for the case of LRNNs with
multiple (finitely many) layers, using the fact that the input of the next layer will be constant for k
large enough, as the input of the first layers.

By unrolling the recursion in 1 we obtain a closed-form expression for the state

Hk =

k−1∑
i=1

(
k−1∏

j=i+1

A(xj)

)
B(xi) +

(
k∏

i=1

A(xi)

)
H0,

where we set
∏k−1

j=k A(xj) = I to avoid clutter. We follow Merrill et al. (2024) and make the
simplifying assumption that in finite precision the state at time k is computed by first evaluating all
products involving the matrices A(xj) separately and in infinite precision, then casting them into
finite precision, and finally executing the sum also in infinite precision and casting the result in finite
precision. This avoids having to deal with the individual matrix sums and products in finite precision,
which would break associativity and be harder to analyze. Hence, if we set x1 . . .xk = 1k, we get
the following exact and finite precision expressions for the state at time k.

Hk =

k−1∑
i=0

A(1)iB(1) +A(1)kH0, Ĥk = cast

(
k−1∑
i=0

cast
(
A(1)iB(1)

)
+ cast

(
A(1)kH0

))
,

where cast, defined in (6), is an operation that converts matrices with complex values element-wise
into finite precision by e.g. converting separately real and imaginary parts.

Using the Jordan canonical form theorem (see e.g. Horn & Johnson, 2012, Chap. 3.1) we can write
A(1) = PJP−1, where J is block diagonal made of the Jordan blocks J1, . . . ,Js with s ≤ n,
Ji ∈ Rki×ki and with corresponding complex eigenvalues λ1 . . . λs (with multiplicity taken into
account). Such decomposition is useful because it allows, for k ≥ maxi ki − 1, to write

A(1)k = PJkP−1, Jk
i =



λki
(
k
1

)
λk−1
i

(
k
2

)
λk−2
i · · · · · ·

(
k

ki−1

)
λk−ki+1
i

λki
(
k
1

)
λk−1
i · · · · · ·

(
k

ki−2

)
λk−ki+2
i

. . . . . .
...

...
. . . . . .

...
λki

(
k
1

)
λk−1
i

λki


.

Then, from the structure of the Jordan decomposition, the imaginary and real part of each element
of the matrices A(1)kB(1) and A(1)kH0 will be a linear combination of elements of the Jordan
blocks taking the same form of ak in Lemma 1. Therefore since λi ≥ 0 for every i, we can apply
Lemma 1 component-wise and conclude that there exists τ ∈ N, Ĉ ∈ Cn×d and D̂ ∈ Cn×d such
that for every k ≥ τ , Ĉk = cast(A(1)kB(1)) = Ĉ and D̂k = cast(A(1)kH0) = D̂ and hence

Ĥk = cast

(
τ−1∑
i=0

Ĉi + D̂ + (1− τ)Ĉ + kĈ

)
.

Note that only the matrix kĈ varies with k and for large enough k, the real and imaginary parts of
each element of kĈ will be either 0, smaller than minx∈R cast(x) or larger than maxx∈R cast(x).
Therefore, we obtain that there exists H ∈ Cn×d and k̄ ≥ τ such that for every k ≥ k̄ we have
Ĥk = H , which concludes the proof.

B.2 Proof of Theorem 2

One Layer Let Ĥk and ŷk := cast(dec(Ĥk, xk)) be the finite precision versions of the state Hk

and (scalar) output of a one-layer LRNN on the input x = x1 . . . xk = 1k. Let also yk = 1{k
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mod m = 0} be the correct output recognizing the word x. We will show that if the assumptions
on the eigenvalues are not satisfied, i.e. if for any x, every eigenvalue λ of A(x) is real, then there
exist H1,H2 ∈ Cn×n, ȳ1, ȳ2 ∈ Rp and τ ∈ N such that for all k ≥ τ

Ĥk :=

{
H1 if k mod 2 = 0

H2 otherwise
, ŷk =

{
ȳ1 if k mod 2 = 0

ȳ2 otherwise
(7)

where without loss of generality we take ȳ1, ȳ2 ∈ {0, 1}. If ȳ1 = ȳ2, then, similarly to parity, ŷk =
ŷk+1 for all k > τ , while since m > 2, if k mod m = m−1, then 1 = yk+1 ̸= yk = 0. Otherwise
if ȳ1 ̸= ȳ2 then if we assume that k mod d = 1 and ŷk = yk = 0, then 1 = ŷk+1 ̸= yk+1 = 0
since m > 2. This will prove the result for a one-layer LRNN. Then, we will proceed with the proof
of finitely many layers.

To prove (7), we set

Ĥk = cast

(
k−1∑
i=0

cast
(
A(1)iB(1)

)
+ cast

(
A(1)kH0

))
,

and proceed similarly to Theorem 1. Indeed, using the k-th power formula for the Jordan Decompo-
sition of the matrix A(1) with eigenvalues λ1, . . . , λs, the imaginary and real part of each element of
the matrices A(1)kB(1) and A(1)kH0 will be a linear combination of elements of the Jordan blocks
taking the same form of ak in Lemma 1. Therefore since our assumptions with L = 1 imply that
λi ∈ R for every i, we can apply Lemma 1 to show that there exist τ̄ ∈ N, C1,C2,D1,D2 ∈ Cn×d

such that for every k ≥ τ we have

Ĉk := cast(A(1)kB) =

{
C1 if k mod 2 = 1

C2 if k mod 2 = 0
D̂k := cast(A(1)kH0) =

{
D1 if k mod 2 = 1

D2 if k mod 2 = 0

Finally, if for simplicity we consider τ mod 2 = 0, we have that for 2k ≥ τ

Ĥ2k = cast

(
τ−1∑
i=1

Ĉi +
(
k − τ

2
+ 1
)
C2 +

(
k − τ

2

)
C1 + kD2

)

Ĥ2k+1 = cast

(
τ−1∑
i=1

Ĉi +
(
k − τ

2
+ 1
)
(C2 +C1) + kD1

)

where by factoring out k inside cast, we note that for large enough k, the real and imaginary parts
of each element of the matrices inside cast will be either constant, smaller than minx∈R cast(x) or
larger than maxx∈R cast(x). Thus there exist H1,H2 ∈ Cn×d and k̄ ≥ τ such that (7) is satisfied,
concluding the proof for the case of a single layer.

Multiple Layers Note that for one layer we have two subsequences (one of even and one of odd
elements) of the output sequence ŷ1, ŷ2, . . . converging after a finite number of elements. This
means that there exist a, b ∈ Rp such that for all k ≥ k̄ we have

ŷ2k = a, ŷ2k+1 = b.

Now, consider an additional layer that takes as input x(2)
1 , . . . ,x

(2)
k , with x

(2)
i = ŷi and outputs

ŷ
(2)
1 , . . . , ŷ

(2)
k as

H
(2)
k = A(2)(x

(2)
k )H

(2)
k−1 +B(2)(x

(2)
k ), ŷ

(2)
k = dec(2)(H

(2)
k ,x

(2)
k ).

Without loss of generality, assume for simplicity that k̄ = 1 and that x̂(2)
2k = a and x̂

(2)
2k+1 = b for

all k. If we set
A1 := A(2)(a), A2 := A(2)(b),

B1 := B(2)(a), B2 := B(2)(b),

C1 := A1A2, C2 := A1B2 +B1,
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then we can write the states of the second layer at even indices as

H
(2)
2k = A1H

(2)
2k−1 +B1 = A1A2H

(2)
2k−2 +A1B2 +B1

= C1H
(2)
2(k−1) +C2 =

k−1∑
i=0

Ci
1C2 +Ck

1H0

Furthermore, for the states at odd indices, we have

H
(2)
2k+1 = A2H

(2)
2k +B2 =

k−1∑
i=0

A2C
i
1C2 +A2C

k
1H0 +B2.

We notice that the sequences H
(2)
2k and H

(2)
2k+1 are in a form similar to Hk of the first layer. If

the assumption on the eigenvalues of the state-transition matrices of the second layer does not hold,
this means that for all x,y each eigenvalue of A(2)(x)A(2)(y), including C1, is real (but possibly
negative). Therefore, we can proceed similarly to the case of one layer, i.e. using the powers of
the Jordan canonical form of C1, to show that if we let Ĥ(2)

2k and Ĥ
(2)
2k+1 being the finite precision

counterparts of H(2)
2k and H

(2)
2k+1, then there exist H

(2)

1 ,H
(2)

2 ,H
(2)

3 ,H
(2)

4 ∈ Cn×d, k̄2 ≥ 0 such
that for every k ≥ k̄

Ĥ
(2)
2k =

{
H

(2)

1 if k mod 2 = 0

H
(2)

2 if k mod 2 = 1
, Ĥ

(2)
2k+1 =

{
H

(2)

3 if k mod 2 = 0

H
(2)

4 if k mod 2 = 1
.

Therefore, for k ≥ k̄2, the function k 7→ H
(2)

k will be periodic with period a divisor of four and
hence no matter the choice of dec(2), also the function k 7→ ŷ

(2)
k will be periodic with period

a divisor of 4. Consequently, with two layers one can recognize the language (1m)∗ only when
m = 1, m = 2, or m = 4, since those are the only cases where k 7→ yk has a period which is a
divisor of 4. Thanks to the assumption on the eigenvalues of the products of state-transition matrices,
we can extend this argument inductively to the case of an LRNN with L layers. In particular, for
the i-th layer, the induction hypothesis is that we assume k 7→ x

(i)
k , mapping k to the k-th input to

the layer, to be periodic with period a divisor of 2i−1 for k large enough. Hence, there will be 2i−1

subsequences of states containing powers of the product of 2i−1 state-transition matrices. From
our hypothesis on the eigenvalues of products of state-transition matrices, such product will have
only real eigenvalues and hence each subsequence will have 2 converging subsequences resulting in
k 7→ H

(i)
k and consequently k 7→ ŷ

(i)
k and hence k 7→ x

(i+1)
k , for k large enough, being periodic

with period a divisor of 2i. Therefore, for the L-th layer, there exists k̄L ≥ 0 such that for every
k ≥ k̄L, the function k 7→ ŷ

(L)
k is periodic with a period which is a divisor of 2L and thus it can

recognize the language (1m)∗ only when 2L mod m = 0, which happens only when there exists
p ≤ L such that m = 2p and hence m is a power of two, ending the proof.

C Products of Generalized Householder Matrices – Proofs

We provide proofs for the results stated in Section 4.3.

C.1 Proof of Proposition 1

First item It can be shown by noting that if C ∈ Mn
1 ([−1, 1]), then ∥C∥ ≤ 1 and using the

sub-multiplicative property of the Euclidean norm, i.e the fact that ∥AB∥ ≤ ∥A∥∥B∥.

Second item Note that any real matrix has a singular value decomposition. Hence we can write

M = USV ⊤

with U ,V ∈ Rn×n orthogonal and S = Diag(σ1, . . . , σn) with σi ∈ [0, 1], since ∥M∥ ≤ 1.
It follows from the n-reflections theorem4 that we can write U and V as either the identity I ∈

4This is a specialization of the Cartan–Dieudonné Theorem to Rn, see Theorem 3 in https://faculty.
uml.edu/dklain/orthogonal.pdf for a proof.
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Mn
1 ({1}) or the product of at most n reflections, each of which is in Mn

1 ({−1}). Hence U ,V ∈
Mn

n({−1, 1}). We can also write the matrix S as the product of n GH matrices as

S = S1S2 . . .Sn, Si = I − (1− σi)eie
⊤
i

where ei is the i-th element of the canonical basis of Rn. Hence, S ∈ Mn
n([0, 1]). The proof of the

first part is concluded since we wrote each of U ,S,V as a product of at most n GH matrices. If M
is orthogonal we apply the n-reflections theorem directly. We also note that if M = P ∈ {0, 1}n×n

with P being a permutation matrix different from the identity, it can be written as products of at
most n − 1 swaps, i.e. permutation matrices permuting only two elements. Therefore we have that
there exists an integer k ≤ n− 1 and indices i1, . . . , ik and j1, . . . , jk such that il ̸= jl and

P =

k−1∏
l=1

Piljl , ,Pij = (I − 2vijv
⊤
ij) vijl =


1/
√
2 if l = i

−1/
√
2 if l = j

0 otherwise
,

where we set vij = (vij1, . . . , vijn). Note that since ∥vij∥ = 1, Pij ∈ Mn
k ({−1}) with k ≤ n. For

the the case where M = I we can use the fact that I ∈ Mn
1 ({1}).

Third item Let N = C1C2 · · ·Ck ∈ Mn
k ((−1, 1]), with Ci = I − βiziz

⊤
i with ∥zi∥ = 1 and

βi ∈ [0, 2). If N = I the statement is satisfied, otherwise, let V = span{zi : i ∈ {1, . . . , k}, βi >
0}. Any unit vector v ∈ Rn can then be written as v = v1 + v2 with v1 ∈ V , v2 ∈ V⊤ and
∥v1∥ , ∥v2∥ ≤ 1. Now, if v1 = 0, then Nv = v, and hence v is an eigenvector with eigenvalue
1. Instead, if v1 ̸= 0, then there exists i′ ∈ {1, . . . , k} (we take the largest one one) such that
βi′ ∈ (0, 2) and v⊤zi′ = v⊤

1 zi′ ∈ (0, 1] and if i′ < k, then either βj = 0 or z⊤
j v = 0 so that

Cjv = v for all j ∈ {i′ + 1, . . . , k}. Moreover, we have that

∥Ci′v∥2 = ∥v − βi′zi′z
⊤
i′ v∥2 = 1− βi′(2− βi′)(v

⊤zi′)
2 < 1,

where the last line comes from the fact that minx∈[0,2] x(2 − x) = 1 and is only reached at x = 0
and x = 2, while βi′ ∈ (0, 2). Therefore, since for every i, ∥Ci∥ ≤ 1 and the Euclidean norm is
sub-multiplicative we have

∥Nv∥ = ∥C1C2 . . .Ckv∥ = ∥C1C2 . . .Ci′v∥ ≤ ∥C1∥ · · · ∥Ci′v∥ < 1.

Therefore, if v is also an eigenvector with eigenvalue λ ∈ C, then ∥Nv∥ = |λ| < 1. Hence, we
proved that for every eigenvector with eigenvalue λ either λ = 1 or |λ| < 1.

It remains to show that all eigenvalues of N ∈ Mn
2 ([0, 1]) are in [0, 1]. From the assumptions N =

C1C2 with C1,C2 symmetric and positive semi-definite, therefore C1 has a unique symmetric and
positive semi-definite square root C1/2

1 such that C1/2
1 C

1/2
1 = C1. If C1 is non-singular (invertible)

then
C1C2 = C

1/2
1 C

1/2
1 C2C

1/2
1 C

−1/2
1 .

Thus, C1C2 is similar to C
1/2
1 C2C

1/2
1 and shares its eigenvalues. Moreover C1/2

1 C2C
1/2
1 is sym-

metric positive semi-definite (having real nonnegative eigenvalues) because C
1/2
1 and C2 are sym-

metric and v⊤C
1/2
1 C2C

1/2
1 v = z⊤C2z ≥ 0 with z = C

1/2
1 v since C2 is positive semi-definite.

Instead, if C1 is singular, for t > 0 the matrix C1 + tI is positive definite and non-singular. Hence
(C1 + tI)C2 has real and nonnegative eigenvalues. Since C1C2 = limt→0(C1 + tI)(C2) and the
eigenvalues are a continuous function of the entry of the matrix, C1C2 has positive real eigenval-
ues. Since the modulus of any eigenvalue is smaller or equal than the norm of the matrix, which is
smaller than one from the first point of the theorem, the statement follows.

C.2 Proof of Theorem 3

We first recall the notion of group isomorphism. Two groups (G, ∗) and (H, ·) where G,H are
the sets and ⋆ and · are the associative operations, are isomorphic, if there exists a bijective map
f : G→ H such that for every g ∈ G, h ∈ H

f(g ∗ h) = f(g) · f(h).

We view the LRNN layer in (1) as the automaton Alin = (Σ,H,H0, δlin), where δlin(H, w) =
A(w)H +B(w), which is extended in the usual way, and H = {δlin(H0,w) : w ∈ Σ∗}. Since
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we assumed that T (A) is a group, from Cayley’s theorem we have that it is isomorphic to a subgroup
of Sn, which is the set of permutations on a set of n elements. Furthermore, each element in Sn

can be represented as an n × n permutation matrix. Since in general n ̸= |Q|, we cannot let H to
be a set of one hot vectors each corresponding to states in Q. Instead, we let H0 = (1, . . . , n)⊤,
P ⊂ {0, 1}n×n be the set of permutation matrices and set B ≡ 0 and A : Σ → P to be the function
mapping each letter w ∈ Σ to the permutation matrix corresponding to δ(·, w). With this choice we
can see that the function f : T (Alin) → T (A) such that f(δlin(·,w)) = δ(·,w) for every w ∈ Σ∗

is one-to-one (biejctive), and from our choice of H0, the map h : T (Alin) → H such that for every
w ∈ Σ∗, h(δlin(·,w)) = δlin(H0,w) is also bijective. Moreover, the map ϕ : T (A) → Q such
that ϕ(δ(·,w)) = δ(q0,w) is surjective because we consider states that are only reachable from the
initial state q0, i.e. Q = {δ(q0,w) : w ∈ Σ∗}. Hence if we set g = ϕ ◦ f ◦ h−1, then g : H → Q
is surjective and for every w ∈ Σ and H ∈ H we have that

g(δlin(H, w)) = δ(g(H), w)

Thus, we have shown that such LRNN implements A and it does so with finite precision
because the entries of all vectors and matrices are bounded integers. Moreover, Let k =
maxw∈Σ

∑
q∈Q 1{δ(q, w) ̸= q} = maxw∈Σ

∑n
i=1 1{(A(w)H0)i = H0,i} be the maximum num-

ber of displaced element of the permutation associated with the alphabet Σ. Then, this means that
each permutation can be written as a product of at most k− 1 permutations of two elements. Hence,
for every w ∈ Σ, A(w) ∈ Mn

k−1({−1, 1}).

If in addition there existsm ∈ N such that T (A) is isomorphic to a subgroup of the cyclic group Zm

with elements {0, . . . ,m − 1}, we can modify the construction above to use a smaller dimension.
If m = 2, then Z2 has elements {0, 1}, and A implements the parity automaton. Thus, we can
set H0 = −1, A(0) = 1, A(1) = −1 and g(1) = 1 while g(−1) = 0, which means that we
can use a scalar recursion. Otherwise, if m ≥ 3, we can modify the construction above by setting
H0 = (1, 0)⊤ and, if for simplicity we assume Σ ∈ {0, . . . ,m− 1}, for every w ∈ Σ we let A(w)
be the 2× 2 rotation matrix corresponding to δ(·, w):

A(w) = R(θw) =

[
cos θw − sin θw
sin θw cos θw

]
, θw =

2πw

m
,

such that R(θw) ∈ M2
2({−1}) (from Proposition 1). This concludes the proof.

C.3 Krohn-Rhodes Theorem

Before presenting the proof for Theorem 4, we provide the statement for the landmark result of
Krohn-Rhodes (Krohn & Rhodes, 1965), after giving the definition of cascade product of two FSA.
Definition 1 (Cascade product). Given two FSA A = (Σ, Q, q0, δ) and B = (Q×Σ, Q′, q′0, δ

′), we
define the cascade product FSA as C = B ◦ A = (Σ, Q×Q′, (q0, q

′
0), δ

′′) where for any w ∈ Σ

δ′′((q, q′), w) := (δ(q, w), δ(q′, (q, w)))

Theorem 5 (Krohn-Rhodes, Theorem 4 in Maler & Pnueli (1994)). For every FSA A =
(Σ, Q, q0, δ) there exists s ≤ 2|Q| and a cascade product FSA C = A(s) ◦ · · · ◦ A(1) =

(Σ, Q×, q×0 , δ
×), with A(i) =

(
Σ(i), Q(i), q

(i)
0 , δ(i)

)
, with |Q(i)| ≤ |Q|, and a function W : Q× →

Q such that for any w ∈ Σ∗, δ(q0,w) = W(δ×(q×0 ,w)) and each A(i) is permutation-reset au-
tomaton, which means that for everyw(i) ∈ Σ(i), δ(i)(·, w(i)) is either a bijection (i.e. a permutation
over Q) or constant, ie. δ(·, w(i)) = q(w(i)) ∈ Q(i).

C.4 Proof of Theorem 4

We apply the Krohn-Rhodes theorem (Theorem 5) to write A as the cascade product FSA C =

A(s) ◦ · · · ◦A(1) with each FSA A(i) =
(
Σ(i), Q(i), q

(i)
0 , δ(i)

)
being permutation-reset and we show

how the LRNN can implement C by first showing how its i-th layer, with the structure in (1), can
implement A(i).

Let n = |Q(i)| and without loss of generality assume that Σ = {1, 2, . . . , |Σ|} and Q(i) =

{1, 2, . . . , n} with q(i)0 = 1. For every w ∈ Σ(i) we set A(i)(w) ∈ {0, 1}n×n, B(i)(w) ∈ {0, 1}n
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such that for every q, q′ ∈ Q(i)

A(i)(w)q′,q = 1{δ(q, w) = q′}, B(i)(w)q′ = 0, if δ(i)(·, w) is bijective, or

A(i)(w)q′,q = 0, B(i)(w)q′ = 1{q′ = q(w)}, if δ(i)(·, w) ≡ q(w).

Then, for every word w(i) = w
(i)
1 . . . w

(i)
t ∈ Σ(i)∗, we set g : Rn → R, such that g(x) =

(1, . . . , n)⊤x and

H
(i)
t = A(i)(w

(i)
t )H

(i)
t−1 +B(i)(w

(i)
t ), H

(i)
0 = (1, 0 . . . , 0)⊤ ∈ Rn

y(i) = dec(i)(H
(i)
t , w

(i)
t ) = (g(H

(i)
t ), w

(i)
t ) = (δ(i)(q

(i)
0 ,w(i)), w(i))

So that such construction implements A(i). In addition, by letting w = w1 . . . wt ∈ Σ∗ be the
input to the LRNN, i.e. w(1)

j = wj , and setting the output of each layer as the input to the next, i.e.

w
(i)
j = y

(i−1)
j for i ≥ 2, for the output of the last layer we get

y
(s)
t = dec(s)(Ht, w

(s)
t )

= (δ(s)(q
(s)
0 ,w(s)), y

(s−1)
t )

= (δ(s)(q
(s)
0 ,w(s)), δ(s−1)(q

(s−1)
0 ,w(s−1)), y

(s−2)
t )

= (δ(s)(q
(s)
0 ,w(s)), . . . , δ(1)(q

(1)
0 ,w), wt) ∈ Ns+1,

where we removed the nested parenthesis for simplicity. Hence, the first s elements of y(s)t are
exactly the output of the cascade FSA C. Note that our construction can be implemented in finite
precision since we only used matrices/vectors with entries either in {0, 1}, requiring only one bit,
or in Q(i) ⊂ N, that can also be implemented using finite precision with |Q(i)| integers, requiring
log2(|Q(i)|) bits. Note that we can exclude wt from the output y(s)t by changing dec(s), to bring the
dimension of the output, end hence the width of the LRNN, to Ns.

It is also the case that
∥∥A(i)(w)

∥∥ ≤ 1 for every w ∈ Σ(i) since A(i)(w) is either a permutation
matrix (

∥∥A(i)(w)
∥∥ = 1 ) or the zero matrix (

∥∥A(i)(w)
∥∥ = 0). Also, for every permutation matrix

P ∈ {0, 1}n×n which permutes only k ≤ n elements we have that P ∈ Mn
k−1({−1, 1}).

Furthermore, for the zero matrix, we have

0 =

n∏
i=1

(I − eie
⊤
i ) ∈ Mn

n({0})

It follows that A(i)(w) ∈ Mn
n([−1, 1]) for every i ∈ {1, . . . , s} and w ∈ Σ(i).

D LRNNs Can Do Modular Addition Using Only Reflections

In this section, we explain how an LRNN with two layers and using only Householder state transition
matrices (reflections) can compute addition modulo m ∈ N, i.e it can map words x1, . . . , xt with
xi ∈ {0, . . . ,m− 1} into yt = (

∑m
i=1 xi) mod m for arbitrary t ∈ N. This corresponds to solving

the group word problem associated with the cyclic group Zm. We note that our modification of
DeltaNet, namely DeltaNet [-1,1] can therefore solve addition modulo m with 2 layers.

If the state transition matrices can be generic rotation matrices, then a LRNN can perform addition
modulo m using just one layer by mapping each element of Zm to the corresponding 2× 2 rotation
matrix as shown in Appendix C.2. Such construction requires a number of states for the LRNN
equal to m, i.e. the number of elements of the group Zm. However, since here we assume that state
transition matrices are reflections, we cannot map each element of the group to a rotation (since
those are a product of 2 reflections) and our construction for the LRNN will require two layers.
Specifically, the first layer will count modulo 2, i.e. it will output the sequence y(1)

1 , . . . ,y
(1)
t where

y
(1)
i = (xi, i mod 2), while the second layer will have 2m states and will use two different reflection

matrices for each group element, depending on the value of y(1)i,2 = i mod 2. Formally, we have the
following result.
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Theorem 6 (Modular addition with reflections). An LRNN with two layers in the form (1), where
A : N → {−1} for the first layer and A : R2 → M2

1({−1}) for the second layer, with M2
1 defined

in (5), can perform addition modulo m. In particular, the LRNN will have 2 scalar states in the first
layer and 2m states, each being a vector in R2, in the second layer.

Proof. The first layer of the LRNN will implement counting modulo 2 as follows.

h
(1)
0 = 0, h

(1)
t = −h(1)t−1 + 1, y

(1)
t = dec(1)(ht, xt) = (xt, ht).

We note that the state-transition matrix (the scalar −1) is a reflection since {−1} = M1
1({−1}).

For the second layer, we have instead

h
(2)
0 = (1, 0)⊤, h

(2)
t = A(2)(y

(1)
t )h

(2)
t−1, y

(2)
t = dec(2)(h

(2)
t ,y

(1)
t )

A(2)(y) = H(θ(y1, y2)) =

[
cos θ(y1, y2) sin θ(y1, y2)
sin θ(y1, y2) − cos θ(y1, y2)

]
dec(2)(h,y) = argmax

i∈{0,...,m−1}
max(c⊤i h,d

⊤
i h)

where y = (y1, y2)
⊤ ∈ {0, . . . ,m−1}×{0, 1}, H(α) is the 2×2 reflection matrix that reflects all

vectors by a line having an angle of α/2 with the line passing from the origin and the vector (1, 0)⊤
and θ : {0, . . . ,m− 1} × {0, 1} → R determines the angle of the reflection and is defined as

θ(i, 1) =
(1− 2i)π

m
, θ(i, 0) =

(1 + 2i)π

m
, for all i ∈ {0, . . . ,m− 1}.

Moreover C = {c0, . . . , cm−1} and D = {d0, . . . ,dm−1} are the two sets of states corresponding
to reflections and rotations respectively and are defined as

d0 = h
(2)
0 = (1, 0)⊤, c0 = H(π/m)d0,

di = R(2iπ/m)d0, ci = R(−2iπ/m)c0 for all i ∈ {0, . . . ,m− 1},

where R(β) is a rotation matrix with angle β ∈ R.

Let α, γ ∈ R, the following are standard identities of products of rotations and reflections.

R(α)R(γ) = R(α+ γ), H(α)H(γ) = R(α− γ),

R(α)H(γ) = H (α+ γ) H(γ)R(α) = H (γ − α) .

From our choice of θ, di and ci, using the identities above and the the fact that R is a periodic
function with period 2π we have that

H(θ(j, 1))di = H(θ(j, 1))R(2iπ/m)d0

= H(θ(j, 1))R(2iπ/m)H(π/m)c0
= H(θ(j, 1))H(θ(i, 0))c0
= R(θ(j, 1)− θ(i, 0))c0
= R(−2(i+ j)π/m)c0 = ci+j mod m,

(8)

and similarly
H(θ(j, 0))ci = H(θ(j, 1))R(−2iπ/m)c0

= H(θ(j, 0))R(−2iπ/m)H(π/m)d0

= H(θ(j, 0))H(θ(i, 1))d0

= R(θ(j, 0)− θ(i, 1))d0

= R(2(i+ j)π/m)d0 = di+j mod m,

(9)

for every i, j ∈ {0, . . . ,m− 1}. We will now prove by induction that

h
(2)
t =

{
cyt if t mod 2 = 1

dyt if t mod 2 = 0
. (10)
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where we recall that yi := (
∑i

j=1 xj) mod m and that, by definition, h(2)
0 = d0 and h

(2)
i =

H(θ(xi, i mod 2))h
(2)
i−1, since y

(1)
i = (xi, i mod 2). For the base case we have that

h
(2)
1 = H(θ(x1, 1))h

(2)
0 = H(θ(x1, 1))d0 = cx1 mod m = cy1

h
(2)
2 = H(θ(x2, 0))h

(2)
1 = H(θ(x2, 0))cx1 mod m = dx1+x2 mod m = dy2

,

where we have used (8) and (9). As induction hypothesis, suppose that for i ≥ 2

h
(2)
i =

{
cyi

if i mod 2 = 1

dyi
if i mod 2 = 0

then, using again (8) and (9), we obtain

h
(2)
i+1 =

{
H(θ(xi+1, 1))h

(2)
i = H(θ(xi+1, 1))cyi

= cxi+1+yi mod m = cyi+1
if i mod 2 = 1

H(θ(xi+1, 0))h
(2)
i = H(θ(xi+1, 0))dsi = dxi+1+yi mod m = dyi+1

if i mod 2 = 0
.

which completes our proof by induction yielding (10). Finally, using the definition of dec(2), (10)
and as long as di ̸= cj , di ̸= dj and ci ̸= cj for every i, j with i ̸= j, which is guaranteed by our
choice of θ, we have that dec(2)(h(2)

t ,y
(1)
t ) = (

∑i
j=1 xj) mod m = yt, ending the proof.

E Experiments

E.1 Chomsky Hierarchy

Here, we provide details on the formal language tasks and experimental protocol of Section 5.1.

E.1.1 Details on the experimental setup

Like Beck et al. (2024), we trained each model with sequence lengths ranging from 3 to 40 and eval-
uated on lengths from 40 to 256, to understand the length generalization capabilities. We compared
mLSTM and sLSTM with two models: Mamba (Gu & Dao, 2023) and DeltaNet (Yang et al., 2024b).
Moreover, we also include a Transformer (Vaswani et al., 2017) baseline. For parity, all models con-
tain 2 blocks (layers), with 4 heads for the xLSTM and DeltaNet models. We set the embedding and
heads’ dimensions to 128. For Mamba and DeltaNet, we also enable the 1-D depthwise-separable
convolution layer with kernel size equal to 4 after the query/key/value projection. For modular
arithmetic, we increase the number of layers to 3 and use a gradient clipping norm of 1.0 for Trans-
former, Mamba, and DeltaNet, while for mLSTM and sLSTM we decrease the embedding size and
number of heads to 64 and 1, respectively, as well as use a standard initialization for the bias param-
eters. We train each model using AdamW (Loshchilov & Hutter, 2019) without gradient clipping,
using 3 different learning rates (1e-2, 1e-3, 5e-4 1e-4), with 3 different seeds each. We pick the
best based on the median of the 3 seeds for every learning rate value. We use a batch size of 1024
(except for mLSTM, where we use 512 due to OOM error) and a cosine annealing learning rate
schedule (Loshchilov & Hutter, 2017) (minimum learning rate: 1e-6) after 10% warm-up steps. The
weight decay is set to 0.1 during training. We train on every task for 100k steps in total. At each
training step, we make sure to generate a valid random sample from the task at hand (see below).

E.1.2 Details on the evaluated tasks

In Section 5.1 we conducted empirical evaluations on 3 tasks –namely parity, modular arithmetic
without brackets and with brackets – from various levels of the Chomsky Hierarchy, as proposed
by Deletang et al. (2023) and similarly used in xLSTM (Beck et al., 2024). Details for each task are
given below, where |Σ| is the vocabulary size and Accrand is the accuracy of random guessing:

• Parity (|Σ| = 2, Accrand = 0.5). The parity yt ∈ {0, 1} of a sequence of ones and zeros
x = x1 . . . xt ∈ {0, 1}t is equal to 1 (resp. 0) if the total number of ones in the sequence is odd
(resp. even). It is equivalent to addition modulo 2, it can be computed by summing all previous
values and then using the modulo 2 function as yt = (

∑t
i=1 xi) mod 2.
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Table 5: Performance comparison of various recurrent models on regular and context-free language
tasks. recurrent models on formal language tasks. We report the median ± median absolute deviation
of 3 independent runs with different random seeds. Scores represent scaled accuracy, with 1.0
indicating perfect performance and 0.0 random guessing. The positive impact of allowing negative
eigenvalues ([−1, 1] range) versus restricting to positive eigenvalues ([0, 1] range) is evident across
different model architectures.

Parity Mod. Arithmetic
(w/o brackets)

Mod. Arithmetic
(w/ brackets)

Transformer 0.003 ± 0.013 0.018 ± 0.009 0.025 ± 0.000

mLSTM 0.018 ± 0.035 0.027 ± 0.013 0.034 ± 0.001

sLSTM 1.000 ± 0.000 0.124 ± 0.000 0.153 ± 0.020

Mamba [0, 1] 0.000 ± 0.000 0.066 ± 0.029 0.072 ± 0.008

Mamba [−1, 1] 1.000 ± 0.000 0.214 ± 0.027 0.126 ± 0.010

DeltaNet [0, 1] 0.010 ± 0.005 0.214 ± 0.056 0.113 ± 0.009

DeltaNet [−1, 1] 0.999 ± 0.006 0.826 ± 0.146 0.129 ± 0.016

• Modular Arithmetic w/o Brackets (|Σ| = 10, Accrand = 1/5). Given a set of special tokens
Σs = {+,−, ∗,=, [PAD]} and a modulus m ≥ 1, we set Σ = Σs ∪{0, . . . ,m− 1} and yt is equal
to the result of the operations modulo m in the sequence x = x1, . . . ,xt with xi ∈ Σ. In our
experiments m = 5. An example sequence is as follows:

2− 3− 3 ∗ 2 = 3 [PAD]

• Modular Arithmetic w/ Brackets (|Σ| = 12, Accrand = 1/5). Same definition as the modular
arithmetic without brackets with a set of special tokens Σs = {+,−, ∗,=, ), (, [PAD]}. In our
experiments m = 5. An example sequence is as follows:

((((3+ 3) +−1) +−2)− ((3− (−3)) + ((1) + 4))) = 2 [PAD]

E.2 State-Tracking

E.2.1 Details of the Experiments

For the experiments in Section 5.2, we map each element of the group S5 to an integer from 0 to 119,
where 0 corresponds to the identity permutation, and then construct inputs and output sequences of
integers x1, . . . xt and y1, . . . , yt as follows

• S5 We sample xi uniformly at random from {0, . . . , 119}. yi is computed as the product
of the permutations corresponding to x1, . . . , xi applied in order from 1 to i.

• S5 only swaps As S5 but xi is sampled from the permutations that permute up to two
elements (swaps and identity).

• S5 swaps, 3-permutations As S5 but xi is sampled from the permutations that permute up
to three elements.

• S5 4 tokens per transition If i mod 4 = 0, then xi is sampled uniformly at random from
{0, . . . , 119}, otherwise xi = 120 (special token). For i > 3, yi+3 is the product of the
permutations corresponding to x1, . . . , xi, where 120 is treated as the identity permutation.
yi = 0 for i ∈ {1, 2, 3}.

For each setup, we randomly sample 1.6M examples for and 40K examples of length 500 to con-
struct the train and test dataset. We note that we are using a substantially larger training set com-
pared to (Merrill & Sabharwal, 2023), to reduce the chances of overfitting. We run 3 seeds for
each method, changing the network initialization and sampling of the minibatches. The train and
validation datasets are kept the same across runs.

We train all models using AdamW with weight decay 0.01, learning rate 0.0001, gradient clipping
to 1.0, and a batch size of 512. Both DeltaNet and Mamba models use an embedding dimension of
128 and 4 heads for DeltaNet. In the case of DeltaNet, we do not use 1-D convolutions for these
experiments. Other parameters are kept as default.

Full Matrix Baseline. For the full matrix baseline we use a single layer and map directly each token
xi to a learnable full state-transition matrix A(xi) ∈ Rn×n via one-hot encoding. We then compute,
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Figure 4: Performance (scaled accuracy) vs sequence length of Transformer, mLSTM, sLSTM,
Mamba and DeltaNet variants on different formal language tasks. Trained on sequences up to length
40 (dashed vertical red line). At test time, we sample uniformly at random 8192 sequences with
lengths between 40 and 256. The curves show the mean and 95% CI. Note, that the Transformer
model fails to length extrapolate, but performs nearly perfectly within the training context length.

for i ∈ {1, . . . , t} the recursion

Hi = A(xi)Hi−1, H0 = I ∈ Rn×n

where n is set to 32 for efficiency reasons (memory and compute time grow quickly with n). After
that, we flatten each Hi into a vector and apply first a projection on the unit ball and then a linear
decoder to get the final outputs. The projection was added to increase stability since we do not
bound the norm of A(xi). Since this model uses a full matrix, with n ≥ 5 it should be fully able
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to learn S5 without restricting the transitions in input or using more tokens per transition. However,
in some situations, the performance degrades quickly after some input sequence length, probably
because the norm of the learned A(xi) is not close enough to one and hence part of the state either
vanish or explode for long sequences.

Plots with all runs. We report the plots with all 3 runs per method in Figure 5 (In Figure 2 we
reported only the best one for each method). Despite our efforts to decrease the variance of the
results by increasing training time and dataset size, we report that there is still some variability. For
example, one of the runs of DeltaNet [−1, 1] (5L) on S5 with 4 tokens per transition did not achieve
a good accuracy.
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Figure 5: Validation sequence accuracy across different lengths on S5 after 100 epochs of training
(3 seeds). The dashed vertical line indicates the sequence length used during training. Each method
is labeled with name, eigenvalue range, and number of layers. The dashed vertical line indicates the
sequence length used during training.

E.2.2 Cyclic Groups
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Figure 6: Validation sequence accuracy at different sequence lengths on the cyclic group Z60 (1
seed). Dashed vertical lines indicate the sequence length used for training (left 32, right 64). Using 2
tokens per transition seems to help only marginally in this case. Mamba [-1,1] is the best-performing
model. The variants with eigenvalues in [0,1] performed worse.

We report in Figure 6 some experiments on group word problems with the group Z60. For this
experiment, we also consider the simplified version where each transition is encoded using 2 tokens.
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This is done as in the experiments of S5 with 4 tokens, but using 2 tokens instead of 4. Extending the
eigenvalue range seems to help in both settings, although surprisingly, Mamba [-1,1], even though
it has a diagonal state-transition matrix, seems to perform best. We conjecture that in this case, the
models might learn the shortcut solutions, also because they do not generalize very well to longer
sequences.

E.3 Language Modeling

E.3.1 Details on the experimental setup

We use the training pipeline which is part of the flash-linear-attention library (flame) (Yang & Zhang,
2024) and which in turn is based on HuggingFace accelerate (Gugger et al., 2022). We use stage-2 of
the ZeRO optimizer (Rajbhandari et al., 2020) with gradient clipping set to auto. The 1.3B parameter
DeltaNet models are trained on 32 Nvidia A100s using a per-device batch size of 6 and 5 gradient
accumulation steps for 50,000 steps. The 340M parameter DeltaNet models and the 370M parameter
Mamba models are trained using a training batch size of 16 and 200,000 steps on 16 Nvidia A100s.
All models are trained using a context length of 2048, learning rate of 3e-4. For optimization, we
use AdamW (Loshchilov & Hutter, 2019), the learning rate was adjusted using cosine annealing
(Loshchilov & Hutter, 2017) following a linear warm-up period of 250/500 steps for the 340/370M
and 1.3B parameter models respectively. We applied a weight decay of 0.01 throughout the training
process.
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Figure 7: Learning curves of DeltaNet 340M (top left), Mamba 370M (top right) and DeltaNet 1.3B
(bottom), training on 100B tokens of Fine-Web 100B. 1.3B runs required only 50k optimizer steps
versus the 200k of the 340M runs due to the 4x larger batch size. All models trained stably with the
same hyperparameters. Training curves were smoothed with a rolling window of 500 steps.

E.3.2 Details on the evaluated tasks

To produce the results in Table 4, we use the lm-harness benchmark (Gao et al., 2024), focusing on
the same tasks as Yang et al. (2024b): LAMBADA (LMB) (Paperno et al., 2016), PIQA (Bisk et al.,
2020), HellaSwag (Hella.) (Zellers et al., 2019), Winogrande (Wino.) (Sakaguchi et al., 2021), and
ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018). Additionally, we evaluate the
performance on recall-intensive tasks (like Yang et al. (2024b)), including FDA (Arora et al., 2023),
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SWDE (Lockard et al., 2019), and SQUAD (Rajpurkar et al., 2018), to provide a comprehensive
evaluation of our models’ capabilities.

0 2048
Sequence Length

30

32

34

Pe
rp

le
xi

ty
CodeParrot

Eigenvalue
Range

[0, 1]
[ 1, 1]

0 2048
Sequence Length

30

40

50

Pe
rp

le
xi

ty

Math-Hard

Eigenvalue
Range

[0, 1]
[ 1, 1]

0 2048
Sequence Length

14

15

16

17

18

Pe
rp

le
xi

ty

Trivia QA

Eigenvalue
Range

[0, 1]
[ 1, 1]

0 2048
Sequence Length

16

17

18

19

Pe
rp

le
xi

ty

SlimPajama (6B)

Eigenvalue
Range

[0, 1]
[ 1, 1]

Figure 8: Length extrapolation performance of Mamba variants on different datasets. Mamba with
eigenvalue range [−1, 1] shows worse perplexity on coding and math tasks compared to the [0, 1]
baseline. The dashed, vertical line indicates the training context length of 2048 tokens.

E.4 Implementation

We build on the original code for Mamba5 and DeltaNet6. For DeltaNet, implementing the extended
eigenvalue range is straightforward, since there is no need to modify the Triton kernel. However,
Mamba requires modifications to the CUDA code of the associative scan for both forward and back-
ward passes which however had no impact on computational cost. We ensured the accuracy of
the modifications by comparing the results with a naive implementation using a for-loop. For ini-
tial testing of the extended eigenvalue range, we used the pure PyTorch implementation of Mamba
by Torres (2024). We provide listings of the necessary code changes in Mamba and DeltaNet in Ap-
pendix E.4.1. For DeltaNet, this changes also B(xt) in Table 1, multiplying it by 2.

Products in Log-space We note that some diagonal models such as Mamba2 (Dao & Gu, 2024),
GLA (Yang et al., 2024a), mLSTM (Beck et al., 2024) take advantage of the fact that all values
of the state-transition matrices are positive to compute their repeated products in log-space. Our
change would not allow us to do this directly, and early tests on the chunkwise parallel form of
GLA showed degraded performance. Therefore, for this work, we decided to focus on Mamba and
DeltaNet since they do not compute the products in log space. We mention however, that at the
cost of increased computation time, it would be possible to do products in log space by converting
each value in the diagonal state-transition matrix to the product of its absolute value and sign. This
way, absolute values can be multiplied in log space, while products of signs are coincidentally
equivalent to addition modulo 2, i.e. parity, and hence can be done stably. We leave the investigation
of this approach to future work. Furthermore, we also believe that our change may be less suited
for methods that use a normalized RNN state, such as mLSTM, since it might happen that the
normalization term can be very close to zero due to the negative values.

E.4.1 Implementation of Extended Eigenvalue Range

220 if constexpr (!kIsComplex) {
221 - thread data[i] = make float2(exp2f(delta vals[r][i] * A val[r]),
222 + thread data[i] = make float2(2.0f * exp2f(delta vals[r][i] * A val[r]) - 1.0f,
223 !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
224 if constexpr (!Ktraits::kIsEvenLen) {
225 if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
226 thread_data[i] = make_float2(1.f, 0.f);
227 }
228 }
229 }

Figure 9: Modifications to the forward pass of the Mamba associative scan. These changes extend
the eigenvalue range from [0, 1] to [−1, 1], enhancing the model’s expressive capacity. Adapted
from selective scan fwd kernel.cuh. The original implementation (in red) is replaced with an ad-
justed version (in green).

5https://github.com/state-spaces/mamba
6https://github.com/sustcsonglin/flash-linear-attention
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253 - const float delta a exp = exp2f(delta vals[i] * A scaled)
254 + const float delta a exp = 2.0f * exp2f(delta vals[i] * A scaled) - 1.0f

272 - typename Ktraits::BlockScanT(smem scan).InclusiveScan(
273 + typename Ktraits::BlockScanT(smem scan).ExclusiveScan(
274 thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
275 );

288 - const float a = thread data[i].y - (!kIsVariableB ? delta vals[i] * float(u vals[i]) :
289 - delta vals[i] * float(u vals[i]) * B vals[i]);
290 + float delta a exp = 2.0f * exp2f(delta vals[i] * A scaled) - 1.0f;
291 + const float ddelta a exp = delta a exp + 1;
292 + const float a = ddelta a exp * thread data[i].y;
293 + const float hi = delta a exp * thread data[i].y + (!kIsVariableB ? delta vals[i] *
294 + float(u vals[i]) : delta vals[i] * float(u vals[i]) * B vals[i]);

291 if constexpr (!kIsVariableB || !kIsVariableC) {
292 if constexpr (!kIsVariableB) { // dBC\_val is dB\_val
293 - dBC val += dout vals[i] * (!kIsVariableC ? thread data[i].y : thread data[i].y * C vals[i]);
294 + dBC val += dout vals[i] * (!kIsVariableC ? hi : hi * C vals[i]);
295 } else { // dBC\_val is dC\_val
296 - dBC val += dout vals[i] * thread data[i].y;
297 + dBC val += dout vals[i] * thread data[i].y;
298 }
299 }
300 if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
301 if constexpr (kIsVariableC) {
302 - dC vals[i] = dout vals[i] * (!kIsVariableB ? thread data[i].y * B val : thread data[i].y);
303 + dC vals[i] = dout vals[i] * (!kIsVariableB ? hi * B val : hi);
304 }

Figure 10: Necessary changes to selective scan bwd kernel.cuh. The original implementation (in
red) is replaced with an adjusted version (in green).

196 if self.use_beta:
197 - beta = rearrange(self.b proj(hidden states), ’b l h -> b h l’).sigmoid()
198 + beta = 2 * rearrange(self.b proj(hidden states), ’b l h -> b h l’).sigmoid()
199 else:
200 beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])

Figure 11: Simple modification to the beta calculation in DeltaNet (Source) allowing the extension
of the eigenvalues to the range [−1, 1] . The original implementation (in red) is replaced with an
adjusted version (in green).
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