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ABSTRACT

Constrained optimization problems arise in various engineering system operations
such as inventory management and electric power grids. However, the requirement
to repeatedly solve such optimization problems with uncertain parameters poses
a significant computational challenge. This work introduces a learning scheme
using Bayesian Neural Networks (BNNs) to solve constrained optimization prob-
lems under limited labeled data and restricted model training times. We propose
a semi-supervised BNN for this practical but complex regime, wherein training
commences in a sandwiched fashion, alternating between a supervised learning
step (using labeled data) for minimizing cost, and an unsupervised learning step
(using unlabeled data) for enforcing constraint feasibility. Both supervised and
unsupervised steps use a Bayesian approach, where Stochastic Variational Infer-
ence is employed for approximate Bayesian inference. We show that the proposed
semi-supervised learning method outperforms conventional BNN and deep neural
network (DNN) architectures on important non-convex constrained optimization
problems from energy network operations, achieving up to a tenfold reduction in
expected maximum equality gap and halving the optimality and inequality (fea-
sibility) gaps, without requiring any correction or projection step. By leveraging
the BNN’s ability to provide posterior samples at minimal computational cost, we
demonstrate that a Selection via Posterior (SvP) scheme can further reduce equal-
ity gaps by more than 10%. We also provide tight and practically meaningful
probabilistic confidence bounds that can be constructed using a low number of
labeled testing data and readily adapted to other applications.

1 INTRODUCTION

Constrained optimization problems are fundamental in the optimal operation of various engineer-
ing systems, such as supply chains, transportation networks, and power grids. Learning a forward
mapping between the inputs and outputs of these problems can significantly reduce computational
burdens, especially when rapid solutions are required, such as in electricity market clearing or real-
time transportation planning.

Recent advancements in machine learning (ML) have led to considerable efforts to solve optimiza-
tion problems using deep neural networks (DNNs) Khadivi et al. (2023); Kotary et al. (2021); Fa-
jemisin et al. (2024). The idea of learning input-to-output mappings has been explored via su-
pervised and unsupervised methods, particularly in power system applications Zamzam & Baker
(2020); Donti et al. (2021); Park & Van Hentenryck (2023); Fioretto et al. (2020); Kotary et al.
(2021); Rolnick et al. (2022). Additionally, constraint penalization approaches have been proposed
to enforce feasibility in predicted outputs within DNN loss functions AI4OPT (2023).

Supervised DNN models rely on labeled datasets obtained by solving numerous instances of op-
timization problems. This data generation step poses a significant limitation due to the prohibitive
computational time required for moderate to large problem instances. For example, Park & Van Hen-
tenryck (2023) report that generating labeled data to train supervised DNN models for a medium-
sized power grid problem takes over three hours1. Unsupervised methods aim to address the labeled

1See Table 4 in Park & Van Hentenryck (2023) for the computation time comparison.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data generation issue Donti et al. (2021); Park & Van Hentenryck (2023); however, they often have
high training time requirements. Methods requiring projection steps to recover feasible solutions
involve time-consuming constraint correction within the framework Donti et al. (2021); Gupta et al.
(2022); Zamzam & Baker (2020), resulting in slower training and prediction. Moreover, unsuper-
vised methods still require testing data and consequently the associated data generation time in order
to perform validation and provide confidence bounds on error with respect to true solution. Thus, it
is important to note that that total time requirement to deploy these ML based optimization proxies
is: Training Data Generation+Testing Data Generation+Training.

In practice, the input space of the problem in many applications is dynamic and changes constantly,
necessitating frequent retraining and evaluation for ML models to remain effective amid distribu-
tional shifts in the input data. In the context of longer horizon planning problems involving bi-
level optimization problems, these ML proxies serve as subroutines to simulate stochastic decision-
making processes for given first-level decisions Ibrahim et al. (2020). Consequently, these models
must be adaptable in both training and testing to changing problem inputs and parameters. Mini-
mizing or limiting the time required for learning input/output mappings in optimization problems is
thus crucial.

Estimating the generalization error over the testing dataset is another critical aspect, and is partic-
ularly relevant to planning and operations of engineered systems where the system must obey the
physical and safety limits. As a result, when limited labeled data is available, one must rely on
concentration bounds such as Hoeffding’s inequality Sridharan (2002); Hoeffding (1994) to develop
expected error bounds using finite out-of-sample testing data. However, these bounds are often loose
and impractical, creating the need for tighter expected error bounds with limited labeled testing data.

Contributions: Motivated by the preceding discussion, this paper considers the problem of de-
signing optimization proxies with guaranteed confidence bounds in the setting of limited total time
requirement and limited labeled sample availability. For practical applicability, the total time must
account for training and testing data generation, model training time and prediction time. Our major
contribution is the development of a semi-supervised Bayesian Neural Network (BNN) approach
for this setting, that can be used to give tight confidence bounds on predictions. First, we pro-
pose using BNNs instead of DNNs for learning input-to-output mappings, as they provide intrin-
sic uncertainty quantification and allow the integration of prior beliefs Papamarkou et al. (2024).
Second, we introduce a Sandwich learning method for BNN, which integrates unlabeled data into
training through feasibility-based data augmentation. This approach enforces feasibility without re-
quiring solved labeled instances. Third, we utilize the predictive variance information provided by
BNNs to develop tight and practically useful expected error bounds using Bernstein concentration
bounds Audibert et al. (2007). We intentionally restrict ourselves to 10 minutes of training time
on a single CPU core to demonstrate the effectiveness of the proposed learning scheme under low-
data, low-compute settings. For various power grid optimization problem instances, we show that
(i) supervised BNNs outperform standard supervised DNN approaches under limited training time;
(ii) the proposed Sandwich BNN enforces feasibility better than supervised BNNs without requiring
additional computation time for training or data generation; and (iii) the Bernstein bound-based ex-
pected error bounds are tight and practically useful for constraint satisfaction studies without extra
computational effort.

1.1 RELATED WORK

In recent years, Deep Neural Networks (DNNs) have been applied to solve various optimization
problems with physics-based constraints, particularly in energy networks Zamzam & Baker (2020);
Gupta et al. (2022); Donti et al. (2021); Singh et al. (2021); Park & Van Hentenryck (2023); Kotary
et al. (2021). The primary motivation is to replace time-consuming optimization algorithms with
machine learning proxies, enabling instantaneous solutions to a large number of problem instances
Park & Van Hentenryck (2023); Donti et al. (2021); Gupta et al. (2022); Zamzam & Baker (2020).

Outside the realm of optimization proxies, several semi-supervised learning methods have been pro-
posed to leverage unlabeled data for improving ML model performance Yang et al. (2022). These
approaches include augmenting unlabeled data with inexpensive pseudo-labels and developing un-
supervised loss functions to be minimized alongside supervised loss functions Sharma et al. (2023);
Yang et al. (2022). Data augmentation has been used in image classification with Bayesian Neu-
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ral Networks (BNNs) using the notion of semantic similarity Sharma et al. (2023). However, this
concept is not readily extensible to ML proxies for constrained optimization problems, where se-
mantic similarity is hard to quantify for input variations leading to changes in the output. To address
this challenge, we propose a feasibility-based data augmentation scheme that relates directly to the
constraints of the optimization problem. To the best of our knowledge, these ideas have not been
explored in the context of BNN algorithms for solving large-scale optimization problems. A related
but distinct line of work involves loss function-based prior design for output constraint satisfaction
Sam et al. (2024); Yang et al. (2020).

2 BACKGROUND/PRELIMINARIES

2.1 PROBLEM SETUP AND ASSUMPTIONS

We consider nonlinear and non-convex, constrained optimization problems involving both equality
constraints g(x,y) = 0 and inequality constraints h(x,y) ⩽ 0, where y represents the decision
variables and x represents the input variables, both as vectors. The objective is to minimize the cost
function c(y). Mathematically, the optimization problem is as follows:

min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)
h(x,y) ⩽ 0 (1c)
x is given (input vector) (1d)

We assume that for all ∀x ∈ X , i.e., for any input vector in the set X (X could be as sim-
ple as a hyper-rectangle), there exists at least one feasible solution to problem equation 1. Let
D = {(xi,y

⋆
i )}Ni=1 denote the labeled dataset, where y⋆

i is the optimal solution obtained by solv-
ing optimization problem equation 1 for each xi. Assuming that sampling the input vector x is
inexpensive, we construct an unlabeled dataset Du = {xj}Mj=1.

Our goal is to develop a BNN surrogate that provides an approximate optimal value of the decision
variables ŷt for a given test input vector xt ∈ X . This work falls under the category of developing
optimization proxies or surrogates, where the machine learning model serves as a direct forward
mapping between the input and output variables of an optimization problem (see Park & Van Hen-
tenryck (2023)).

The paper proposes a semi-supervised framework to solve this problem, wherein training alternates
between a supervised step—using labeled data D to minimize prediction error—and an unsuper-
vised step—using unlabeled data Du to enforce the feasibility of constraints in equation 1b and
equation 1c. Both steps are implemented using a Bayesian Neural Network (BNN).

2.2 BAYESIAN NEURAL NETWORK

We consider a Bayesian Neural Network (BNN) denoted as fw(x), where w represents all the
weights and biases of the network. These weights are assigned an isotropic normal prior p(w) with
covariance σ2I , meaning that each weight is independently normally distributed with zero mean and
variance σ2.

In the supervised training of the BNN, the goal is to compute the posterior distribution over the
weights given the labeled data D ≡ (x,y). This posterior is expressed as p(w | x,y) ∝ p(y |
x, w) p(w). Here, p(y | x, w) is the likelihood of the labeled data given the weights, and p(w) is
the prior over the weights. The posterior distribution p(w | x,y) encapsulates the uncertainty about
the weights after observing the data. Due to computational challenges in calculating the normaliza-
tion constant of the posterior, approximate methods such as stochastic variational inference (SVI)
with the mean-field assumption are employed the posterior distribution estimation (see Jospin et al.
(2022)).

For making predictions, the posterior predictive distribution is approximated as p(yt | xt,D) =
Ep(w|D)

[
p
(
fw(x

t)
)]

, where xt is a test input vector, and the expectation is taken over the approxi-
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mate posterior distribution of the weights. Moreover, we assume a Gaussian likelihood for output:

p(y | x, w) =
∏
i

N
(
yi | fw(xi), σ

2
s

)
,

with σ2
s being a parameter in the SVI that controls the spread (noise variance) around the target

values, and (xi,yi) ∈ D. Adapting this approach to update the BNN using the unsupervised data
Du requires the definition of a suitable likelihood function, detailed in the next section, along with
the semi-supervised framework to obtain the BNN surrogate.

3 SEMI-SUPERVISED LEARNING: SANDWICH BNN

We start by defining a suitable likelihood function for the unsupervised learning process. To that
end, we augment the unlabeled data Du using the necessary feasibility conditions that the vector y
must satisfy to be a solution of equation 1. We propose a function F(y,x) to measure the feasibility
of a candidate solution y for a given input x. This function consists of two terms: one measuring
the equality gap and the other measuring the one-sided inequality gap or violations. The relative
emphasis on each term is determined by the parameters λe and λi, respectively, i.e.,

F(y,x) = λe

∥∥g(x,y)∥∥2︸ ︷︷ ︸
Equality Gap

+λi

∥∥ReLU[h(x,y)]
∥∥2︸ ︷︷ ︸

Inequality Gap

. (2)

For any given feasible solution yc for the optimization problem in equation 12, we have F(yc,x) =
0 for the given input x ∈ X . Furthermore, because of our assumption in Sec. 2.1 that the problem
in equation 1 has at least one feasible solution, the minimum value F(·,x) = 0 for any x ∈ X .
Therefore, we can augment the unlabeled dataset Du to create a labeled feasibility dataset, i.e.,
Df = {(xj ,F(·,x) = 0)}Mj=1. Since input sampling is inexpensive, constructing this feasibility
dataset Df incurs no additional computational cost. Similar to the supervised step in Sec. 2.2, we
now define a Gaussian likelihood for the unsupervised training step, with σ2

u as the noise variance
for unsupervised learning and xj ∈ Df , as

p(F | x, w) =
∏
j

N
(
0 | F

(
fw(xj),xj

)
, σ2

u

)
,

To obtain an optimization proxy, we parameterize the candidate solution fw(x) using a Deep Neural
Network (DNN)-style architecture and employ a sandwich-style semi-supervised training for the
BNN, as illustrated in Figure 1. The fundamental idea of this training method is to update the
network weights and biases through multiple rounds of training in which each round alternatives
between using the labeled dataset D for prediction or cost optimality, and the augmented feasibility
data set Df for constraint feasibility. We let Sup and UnSup denote the inference steps in the BNN
training using D and Df , respectively. Both Sup and UnSup are performed for a fixed maximum
time, with the total training time constrained to Tmax. Finally, the prediction of the mean estimate Eyt

and the predictive variance estimate Vyt is accomplished using an unbiased Monte Carlo estimator
by sampling 500 weights from the final weight posterior pmW .

3.1 SELECTION VIA POSTERIOR (SVP)

In Bayesian Neural Network (BNN) literature, the standard approach is to use the mean posterior
prediction Ep(w|D)[fw(x

t)] for a test input xt. This is similar to using the mean prediction of
ensemble Deep Neural Networks (DNNs). However, unlike DNNs, BNNs can provide multiple
predictions without additional training cost, as we can sample multiple weight instances from the
posterior distribution pmW and construct the posterior prediction matrix (PPM) Y (see Figure 1 for
details and Appendix B.3 for structure of the PPM.). We propose to use the PPM to improve the
feasibility of the predicted output of the optimization proxy. Each column of the PPM represents
one predicted output vector corresponding to a weight sample. We select the weight sample W ⋆ that
minimizes the maximum equality gap, defined as:

W ⋆ = argmin
j

[
max

i

∣∣gi(xt,Y·j)
∣∣] , (3)

2Not necessarily optimal for equation 1.
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Sup

p1W ≡ p(w | y,x) ∝ p(y | x, w) p0w

UnSup Sup . . . UnSup

pm−1
W ≡ p(w | x) ∝ p(F | x, w) pm−2

w

Sup Predict
p0W

N (0, σ2I)

pmW

Eyt ,Vyt

Yp1W p2W pm−1
W

Ts Tu

Tmax

Tr

Figure 1: Flowchart of the proposed sandwich-style BNN learning. The Sup block represents the
supervised learning stage with labeled dataset D, and the UnSup block represents the unsupervised
learning with the augmented feasibility dataset Df . Learning time upper limits are represented as Ts,
Tu, and Tmax for Sup, UnSup, and the complete semi-supervised BNN learning, respectively. At the
prediction stage, Y denotes the posterior prediction matrix (PPM) for one test input sample, where
each column represents the predicted output obtained via one weight sample from the posterior.

where Y·j is the j-th column of the PPM, and gi(·, ·) represents the i-th equality constraint func-
tion.3 The output prediction corresponding to the weight sample W ⋆ will have the minimum equality
gap, and we term this process Selection via Posterior (SvP). Note that the numerical operation in
equation 3 can be performed in parallel and has minimal computational cost compared to analyt-
ical projection methods in Zamzam & Baker (2020) that focus on projecting the prediction onto
equation 1c to satisfy the inequality constraints in the problem equation 1. Note that it is an appli-
cation motivated design choice to emphasize enforcement of the equality gap by using the SvP in
equation 3. This can easily be adapted to account for inequality constraints without any significant
computational overhead.

4 PROBABILISTIC CONFIDENCE BOUNDS

This section focuses on providing bounds on the expected absolute error of our method, i.e., test-
ing error. We explore probabilistic confidence bounds (PCBs) for optimization proxies. The core
concept of PCBs is to first evaluate models on a labeled testing dataset with M samples, compute
the empirical mean error, and then probabilistically bound the error for any new input. Specifi-
cally, PCBs assert that the expected error will be within ε of the empirical errors computed from M
out-of-sample inputs, with a high probability (usually 0.95). Mathematically, we aim to provide a
guarantee on the error e = y − yt, where yt is the BNN prediction and y is the true value, as

P
{∣∣∣∣E[|e|]− 1

M

M∑
i=1

|ei|
∣∣∣∣ ⩽ ε

}
⩾ 1− δ (4)

where E[|e|] represents the expected absolute error, 1− δ is the confidence level, and ε is the allow-
able prediction error.

Ideally, we would like to evaluate our model on a large number of samples since, as M → ∞, the
error bound ε → 0. However, increasing M leads to a higher requirement for labeled data, which
defeats the purpose of training using low labeled data 4. To address this issue, confidence inequalities
are commonly used to provide PCBs, with Hoeffding’s inequality (Hoeffding (1994)) being one of
the most widely used bounds. As stated in Appendix D, Hoeffding’s inequality assumes that the
error is bounded (i.e., |ei| ⩽ R for all i) and provides PCBs whose tightness is governed by M ,

with the relationship ε = R
√

log(2/δ)
2M . However, the Hoeffding bound can often be too loose to be

practically relevant.

To improve upon this, we propose using Bernstein’s inequality (see Audibert et al. (2007)) as the
concentration bound, which utilizes the total variance in error (TVE) information along with M ,
under the same bounded error assumption. The main challenge in using the Bernstein bound is
obtaining the TVE without extensive out-of-sample testing. One possible solution is to use the
empirical Bernstein bound as in Audibert et al. (2007); Mnih et al. (2008), which employs the

3In a general setting of constrained optimization problems, there may be multiple equality and inequality
constraints.

4Note that the total labeled data requirement is the sum of training and testing samples, i.e., N +M

5
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empirical variance of the error V̂e, obtained from the same M testing samples, and accounts for the
error in variance estimation by modifying the theoretical Bernstein inequality. Mathematically, the
PCB using the Empirical Bernstein inequality is

ε =

√
2V̂e log (3/δ)

M
+

3R log (3/δ)

M
,

as given in Audibert et al. (2007); Mnih et al. (2008). Since the term under the square root depends
on the empirical TVE V̂e rather than R, the empirical Bernstein bound becomes tighter more quickly
with increasing M if V̂e ≪ R.

To further tighen the bound, we propose using the Theoretical Bernstein bound Sridharan (2002)
(Theorem 3 in Appendix D) with the Mean Predictive Variance (MPV) as a proxy for the
TVE Ve. The MPV is the mean of the predictive variance of testing samples, i.e., MPV =
1
M

∑M
k=1 VW

[
Yk

i·
]
, where variance VW

[
Yk

i·
]

for the kth test sample using entries of the poste-
rior prediction matrix across columns, generated using posterior weights, for ith output variable. In
principle, the MPV captures the expected variance in the predictions due to the posterior distribution
of BNN weights. We hypothesize that with a constant multiplier α > 1,

αMPV ⩾ Ve = EM [VW [e]] + EW [VM [e]] ⩾ V|e|, (5)

where EM and EW denote expectations with respect to M testing samples and posterior weight
samples, respectively, and VM [e] and VW [e] denote the variance of the error with respect to M
testing samples and posterior weight samples, respectively. The equality in equation 5 follows from
the law of total variance Blitzstein & Hwang (2019). V|e| represents the variance of the absolute
value of the error, which is lower than the variance of the error.

Notice that the first term of the TVE, EM [VW [e]], is independent of the labeled testing dataset
because the true output y is constant with respect to posterior weight samples; thus, VW [e] =
VW [y−yt] = VW [yt]. Furthermore, from the definition of MPV, we have MPV = EM [VW [e]]. As
an example, if EW [VM [e]] ⩽ MPV, our hypothesis in equation 5 holds with α = 2. Consequently,
we can use 2× MPV as an upper bound for Ve in the Theoretical Bernstein bound (see Theorem 3
in Appendix D), which gives the error bound

ε =

√
4× MPV log (1/δ)

M
+

2R log (1/δ)

3M
,

which is better than the Empirical Bernstein bounds. The hypothesis in equation 5 and the corre-
sponding constant α can be computed by using application specific information or performing a
meta-study like in Section 5.

The strength of this approach is that we do not require labeled testing samples to calculate MPV, thus
incurring no additional computational burden from generating labels. Also, note that this constitutes
an advantage of BNNs since MPV information is readily available with BNNs but cannot be obtained
from DNN-based optimization proxies.

In the next section, we perform a meta-study using different BNN models on different test cases to
show the performance of our proposed learning architecture as well as demonstrate that hypothesis
equation 5 indeed holds for the proposed optimization proxy learning problems.

5 NUMERICAL RESULTS AND DISCUSSION

We test the proposed method on the Alternating Current Optimal Power Flow (ACOPF) problem, es-
sential for the economic operation of electrical power grids Molzahn et al. (2019). Efficient ACOPF
proxies can mitigate climate change by enabling higher renewable energy integration, improving
system efficiency by minimizing losses and emissions, and enhancing grid resiliency against ex-
treme weather conditions Rolnick et al. (2022). ACOPF is a constrained optimization problem with
nonlinear equality constraints and double-sided inequality bounds. It aims to find the most cost-
effective generator set points while satisfying demand and adhering to physical and engineering
constraints. The inputs are active and reactive power demands; outputs include generator settings,
voltage magnitudes, and phase angles at each bus. We adopt the standard ACOPF formulation

6
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Table 1: Comparative performance results for the ACOPF Problem for ‘case57’ with 512 labeled
training samples, 2048 unlabeled samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 0.928 0.027 0.006 0.000 0.000
Sandwich BNN (Ours) 0.964 0.045 0.005 0.000 0.000
Supervised BNN SvP (Ours) 3.195 0.083 0.011 0.000 0.000
Supervised BNN (Ours) 3.255 0.130 0.011 0.000 0.000

Naı̈ve MAE 4.029 0.518 0.057 0.000 0.000
Naı̈ve MSE 3.297 0.541 0.075 0.000 0.000
MAE + Penalty 3.918 0.370 0.037 0.000 0.000
MSE + Penalty 3.748 0.298 0.039 0.000 0.000
LD + MAE 3.709 0.221 0.033 0.000 0.000

Babaeinejadsarookolaee et al. (2019); Park & Van Hentenryck (2023); Coffrin et al. (2018) and
benchmark our method using the open-source OPFDataset from Torch Geometric, which pro-
vides numerous solved ACOPF instances (see Lovett et al. (2024)).

In our results, ‘Gap%’ denotes the average relative optimality gap compared to the objective val-
ues in the labeled testing instances. ‘Max Eq.’ and ‘Mean Eq.’ represent the maximum and mean
equality gaps over all equality constraints, while ‘Max Ineq.’ and ‘Mean Ineq.’ indicate the same for
inequality gaps in per unit, all averaged over testing instances. We compare our proposed method
with the following state-of-the-art baseline supervised learning models available in the literature
using the same labeled dataset and training time constraints, utilizing AI4OPT’s ML4OPF pack-
age AI4OPT (2023) (network and hyper-parameter details are in Appendix B):

• Naı̈ve MAE and Naı̈ve MSE (Supervised): Use l1-norm and l2-norm loss functions,
respectively, to measure differences between predicted and actual optimal solutions Park &
Van Hentenryck (2023), incorporating a bound repair layer with a sigmoid function. The
bound repair layer ensures that inequality constraints are always satisfied.

• MAE + Penalty, MSE + Penalty, and LD (Supervised): Add penalty terms for constraint
violations to the naı̈ve MAE or MSE loss functions Park & Van Hentenryck (2023). The
Lagrangian Duality (LD) method applies the l1-norm as outlined in Fioretto et al. (2020);
Park & Van Hentenryck (2023), and also uses a bound repair layer with a sigmoid func-
tion.

We exclude self-supervised constrained optimization methods like Primal-Dual Learning
(PDL) Park & Van Hentenryck (2023) and DC3 Donti et al. (2021) due to their significantly higher
training times and computational demands, which violate the premise of this paper. For example,
PDL requires over 125 minutes of training time for the ACOPF problem on a 118-node power net-
work using a Tesla RTX6000 GPU. Methods that require solving alternating current power flow to
recover solutions (e.g., Zamzam & Baker (2020)) are also excluded, as they result in high prediction
times compared to DNN or BNN forward passes5.

To demonstrate the effectiveness of the proposed BNN learning methods, we conduct simulation
studies on both our models and the ML4OPF models using an M1 Max CPU with 32 GB RAM,
without any GPU. This setup highlights performance improvements due to the learning mechanism
rather than computational power. We propose two classes of different models as:

• Supervised BNN and Supervised BNN SvP: Standard BNN learning with labeled data,
utilizing mean prediction and Selection via Posterior (SvP), respectively. The network uses
ReLU activation and no bound repair layer.

• Sandwich BNN and Sandwich BNN SvP: The proposed Sandwich BNN trained with
labeled and unlabeled data as discussed in Section 3. Unsupervised training utilizes four
times the number of labeled data samples. The network uses ReLU activation and no
bound repair layer.

5see prediction time studies in Donti et al. (2021) which suggest 10 times higher prediction time with power
flow based projections (0̃.080 sec. compared to 0.001 sec. for DNN and 0.003 sec. per testing instance for
proposed BNNs).
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Table 2: Comparative performance results for the ACOPF Problem for ‘case118’ with 512 labeled
training samples, 2048 unlabeled samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 1.484 0.089 0.018 0.008 0.000
Sandwich BNN (Ours) 1.485 0.100 0.016 0.008 0.000
Supervised BNN SvP (Ours) 1.568 0.147 0.022 0.013 0.000
Supervised BNN (Ours) 1.567 0.205 0.020 0.013 0.000

Naı̈ve MAE 1.638 2.166 0.187 0.000 0.000
Naı̈ve MSE 1.622 3.780 0.242 0.000 0.000
MAE + Penalty 1.577 1.463 0.102 0.000 0.000
MSE + Penalty 1.563 2.637 0.125 0.000 0.000
LD + MAE 1.565 1.284 0.083 0.000 0.000
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Figure 2: Growth trajectories of performance metrics for ACOPF across system sizes for different
methods. Detailed results for ‘case500’ and ‘case2000’ are given with Table 6 and Table 7 respec-
tively, in Appendix C.

Importantly, we intentionally keep the BNN architecture unoptimized, constructing it using four
different sub-networks (one for each of the four ACOPF outputs: real power generation, reactive
power generation, voltage magnitude, and voltage angle). Each sub-network has two hidden layers
with the number of hidden neurons equal to 2 × input size. In the Sup stage of the Sandwich BNN,
both weights and biases are updated, whereas in the UnSup stage, only the weights are modified via
SVI. Best model out of five random trials is selected.

Tables 1 and 2 present the comparative performance of different methods for solving the ACOPF
problem on the ‘case57’ and ‘case118’ test cases, containing 57 and 118 nodes, respectively. For
’case57’, the Sandwich BNN SvP method achieves the best Max Eq. performance (0.027), out-
performing all other methods, including the standard Sandwich BNN, without compromising other
metrics. All the methods proposed in this paper outperform the best DNN results, typically achieved
with the LD+MAE model (last row in the tables). Similar trends are observed for the ‘case118’ as
well.6

It is important to contextualize the significance of these numerical improvements. In ACOPF prob-
lems, cost values are in USD, with the mean cost for ‘case118’ being $97,000 or 9.7 in the per-unit
system. Therefore, a 1% Gap corresponds to an expected difference of $970 across the testing in-
stances. A ‘Max Eq.’ value of 0.08 implies a maximum expected power imbalance of 8.0 Megawatts
among all 118 nodes of ‘case118’. Thus, reducing the Max Eq. from 1.284 with the LD+MAE
model to 0.089 with our Sandwich BNN SvP model represents a significant improvement.

Figure 2 illustrates the growth of various metrics with increasing system size while keeping training
resources constant. The proposed BNN methods exhibit significantly lower scaling in the expected
maximum equality gap. Although Sandwich BNN SvP shows slightly higher scaling inequality gaps,
the relative improvement in Max Eq. far outweighs these minor drawbacks. Notably, for ‘case500’
(see Table 6 in the Appendix C), the expected maximum power imbalance is below 0.5% of the mean
real power demand (1.7 × 104 MW) and power grids already are equipped with spinning reserves
(see Ela et al. (2011)) that have reserve capacity to handle these imbalances. This is a significant
improvement over the DNN models which have much higher ‘Mean Eq.’ values. Moreover, the
‘Max Ineq.’ growth could be easily suppressed by incorporating bound repair layers, as used in
DNN models in ML4OPF AI4OPT (2023).

6See Appendix C for similar tabular results and discussion of trends on larger test instances.
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Figure 3: Empirical study comparing total variance in error V̂e with 2×MPV across different cases
of ACOPF and the proposed learning mechanisms.
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Figure 4: Comparison of voltage magnitude and voltage angle error bounds (in logarithmic scale)
across bus indices for ‘case57’ (top row) and ‘case118’ (bottom row). The plot illustrates that PCBs
using theoretical Bernstein bounds with 2 × MPV from hypothesis equation 5 are tightest among
all PCBs. We consider δ = 0.95 and 1000 out-of-sample testing data points i.e. M = 1000.

Next, we present results for Proabilistic Confidence bounds, described in Section 4. Figure 3 shows
that 2 · MPV consistently serves as an empirical upper bound for total variance in error, validating
its robustness across models and system configurations7. In Figure 4, the theoretical Bernstein
bounds using Ve = 2 ·MPV provide tight, practical bounds, whereas Hoeffding’s bounds are overly
conservative and not useful for grid operations. For example, in ‘case118’, the Bernstein bound
ensures a probabilistic guarantee on voltage constraint satisfaction, such that a predicted voltage
between 0.91–1.09 pu guarantees no violations within the ACOPF limits of 0.90–1.10 pu, i.e., the
maximum value of the Bernstein bound on the error is 0.010 pu across all nodes. Compared to
Hoeffding’s bound (0.064 pu) or the empirical Bernstein bound (0.018 pu), the Bernstein bound
(0.010 pu) is far tighter and more practical, highlighting the benefits of BNNs for optimization
proxies. The error bounds for the ‘case500’ is provided in Fig. 6 of the Appendix C. Finally, we
note that both Hoeffding’s and empirical Bernstein bounds can also be obtained by testing DNN
models across M samples8.

6 CONCLUSIONS

In conclusion, this paper introduces a semi-supervised Bayesian Neural Network (BNN) approach
to address the challenges of high labeled data requirements and limited training time in learning
input-to-output maps for constrained optimization problems. The proposed Sandwich BNN method
incorporates unlabeled data through input data augmentation, ensuring constraint feasibility without
relying on a large number of labeled instances. We provide tight confidence bounds by utilizing
Bernstein’s inequality, enhancing the method’s practical applicability. Results show that BNNs out-
perform DNNs in low-data, low-compute settings, and the Sandwich BNN more effectively enforces
feasibility without additional computational costs compared to supervised BNNs.

7Total variance in error is assumed to stabilizing with 1000 testing samples (see Figure 5 in Appendix C).
8A form of MPV can be obtained via Ensemble DNNs Ganaie et al. (2022), however, it will lead to very

high computational requirement compared to the BNN.
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REPRODUCIBILITY

We use the open-source ACOPF datasets, provided with Torch geometric Lovett et al. (2024), to
train and test our models as well as standard DNN models. Furthermore, the beginning of Section
5 provides details of the DNN models used to compare the performance of the proposed meth-
ods. These models are available in AI4OPT’s open-source ML4OPF package AI4OPT (2023).
Hyper-parameter details for these models and the proposed methods are provided in Appendix B.
The implementation code is provided in a self-contained file with supplementary material, which
will be open-sourced after the conference. The .zip file of the code contains a README.pdf for
instruction to run the codes.
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Supplementary Information
Optimization Proxies using Limited Labeled Data and Training Time – A

Semi-Supervised Bayesian Neural Network Approach

A ACOPF PROBLEM: MODELING AND DATASET

The alternating current optimal power flow (ACOPF) problem is essential for power grid operations
and planning across various time scales. It determines generator set-points for real and reactive
power that minimize generation costs while meeting power demand and satisfying physical and
operational constraints on output variables. We follow the ACOPF model given in PowerModels
Coffrin et al. (2018), and take the dataset from Torch geometric (Lovett et al. (2024)).

Table 3: Sets for ACOPF

N : buses G: generators, generators at bus i (Gi)
E: branches (forward and reverse orientation, ER) S: shunts, shunts at bus i (Si)
L: loads, loads at bus i (Li) R: reference buses

Table 4: Data for ACOPF Problem
Data

Symbol Description
Sl
g , Su

g ∀k ∈ G Generator complex power bounds.
ck2 , ck1 , ck0 ∀k ∈ G Generator cost components.
vil , v

i
u ∀i ∈ N Voltage bounds.

Sk
d ∀k ∈ L Load complex power consumption.

Y k
s ∀k ∈ S Bus shunt admittance.

Yij , Y ij
c , Y ji

c ∀(i, j) ∈ E Branch π-section parameters.
Tij ∀(i, j) ∈ E Branch complex transformation ratio.
siju ∀(i, j) ∈ E Branch apparent power limit.
iiju ∀(i, j) ∈ E Branch current limit.
θijl , θiju ∀(i, j) ∈ E Branch voltage angle difference bounds.

Variables
Symbol Description
Sk
g ∀k ∈ G Generator complex power dispatch.

Vi ∀i ∈ N (|Vi|∠θ) Bus complex voltage (Magnitude∠Angle).
Sij ∀(i, j) ∈ E ∪ ER Branch complex power flow.

Table 5: Objective Function and Constraints

Description Equation
Objective min

(∑
k∈G

(
ck2(S

k
g )

2 + ck1S
k
g + ck0

))
Reference bus voltage angle ∠Vr = 0 ∀r ∈ R

Generator power bounds Sl
g ≤ Sk

g ≤ Su
g ∀k ∈ G

Bus voltage bounds vil ≤ |Vi| ≤ viu ∀i ∈ N

Power balance ∀i ∈ N
∑

k∈Gi
Sk
g −

∑
k∈Li

Sk
d −

∑
k∈Si

Y k
s |Vi|2 =

∑
(i,j)∈E∪ER

Sij

Branch power flow ∀(i, j) ∈ E Sij = Y ∗
ij |Vi|2 + Y ∗

ijViV
∗
j /Tij ; Sji = Y ∗

ji|Vj |2 + Y ∗
jiV

∗
i Vj/T

∗
ij

Branch apparent power limits |Sij | ≤ siju ∀(i, j) ∈ E ∪ ER

Branch current limits |Sij | ≤ |Vi|iiju ∀(i, j) ∈ E ∪ ER

Branch angle difference bounds θijl ≤ ∠(ViV
∗
j ) ≤ θiju ∀(i, j) ∈ E
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B EXPERIMENTAL SETTING DETAILS

B.1 ARCHITECTURES

Supervised BNN and Sandwich BNN: For ACOPF problem we use real and reactive power de-
mands as input while predicting all decision and state variables using separate networks

– Input real and reactive power demands: Two times the number of nodes having non-zero
load

– Output real and reactive power generation setpoints, voltage magnitude and voltage angle
at each node: Two times the number of generators + Two times the number of nodes

B.2 HYPER-PARAMETERS

B.2.1 ML4OPF:

config: The optimization is performed using the Adam optimizer with a learning rate of 1 × 10−4

(taken from Park & Van Hentenryck (2023)). All networks have two hidden layers, each with a size
of 2×Number of outputs. For hidden layers, ReLU activation function is selected while, the bound
repair mechanism is handled using a Sigmoid function Park & Van Hentenryck (2023).

penalty config: Multiplier of 1× 10−2, with no excluded keys.

ldf config: Step size 1× 10−2, and a kick-in value of 0. The LDF update frequency is set to 1, and
no keys are excluded from the updates.

All other hyperparameters are set at default ML4OPF values AI4OPT (2023).

B.2.2 PROPOSED BNNS

For all simulations, maximum training time 10 min., Tmax = 600 seconds, per round time Tr is
200 seconds with 40-60 split between Sup and UnSup models (Ts = 80 amd Tu = 120 seconds).
For VI, we use MeanFieldELBO loss function from Numpyro and Adam optimizer with a initial
learning rate rate of 1×10−3, and decay rate of 1×10−4, both of which are selected via grid search.

We use decay schedule as initial learning rate/(1+decay rate× step) within a Sup or UnSup model,
while simple step decay among different rounds of Sandwich BNN. Learning is done with single
batch for all models and each of the BNN weight and bias is parameterized using mean and variance
parameters of a Gaussian distribution, with mean field assumption i.e. independent from each other.
The prior for each weight and bias has zero mean and 10−2 variance while likelihood noise variance
is initialized with 10−5 mean and 10−6 variance for Sup and fixed at 10−10 for UnSup.

B.3 STRUCTURE OF POSTERIOR PREDICTION MATRIX (PPM)

Y ≡



y11 · · · · · · · · · y1H
... . . . . . . . . . ...

· · · yVariable,Sample · · ·
... . . . . . . . . . ...

yO1 · · · · · · · · · yOH


[

O : Number of variables
H : Number of posterior samples

]

C ADDITIONAL RESULTS

Here, we present the complete results analogous to Tables 1 and 2 for the larger test cases: ‘case500’
and ‘case2000’ with 500 and 2000 nodes, respectively, in Tables 6 and 7. In general, it is clear
from the tables that the approaches presented in this paper outperform the state-of-the-art DNN-
based approaches when limited training time and compute resources are provided. Between the
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Table 6: Comparative performance results for the ACOPF Problem for case500 with 512 labeled
training samples, 2048 unlabeled samples and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 2.009 0.770 0.066 0.190 0.000
Sandwich BNN (Ours) 2.002 0.781 0.056 0.191 0.000
Supervised BNN SvP (Ours) 1.191 2.204 0.088 0.141 0.000
Supervised BNN (Ours) 1.191 2.401 0.072 0.140 0.000

Naı̈ve MAE 1.208 20.818 0.905 0.000 0.000
Naı̈ve MSE 1.201 24.089 1.031 0.000 0.000
MAE + Penalty 1.205 11.833 0.580 0.000 0.000
MSE + Penalty 1.215 10.314 0.475 0.000 0.000
LD + MAE 1.279 11.166 0.532 0.000 0.000

Table 7: Comparative performance results for the ACOPF Problem for case2000 with 512 labeled
training samples, 2048 unlabeled samples and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 0.514 5.114 0.324 0.196 0.000
Sandwich BNN (Ours) 0.503 5.409 0.262 0.187 0.000
Supervised BNN SvP (Ours) 0.461 4.107 0.238 0.917 0.000
Supervised BNN (Ours) 0.451 4.225 0.193 0.922 0.000

Naı̈ve MAE 56.365 43.529 4.392 0.000 0.000
Naı̈ve MSE 56.366 43.085 4.261 0.000 0.000
MAE + Penalty 56.349 19.591 1.055 0.000 0.000
MSE + Penalty 56.377 12.592 0.682 0.000 0.000
LD + MAE 57.257 18.870 0.647 0.000 0.000

supervised and the sandwich BNN models, it appears that there is no clear winner. Table 6 indicates
that the supervised BNN outperforms the sandwich BNN model on the Max. Ineq. gap metric for
the ‘case500’ whereas the trend is reversed for the case2000’ in Table 7. This minor variation is
attributed to the fact that the maximum training time of Tmax = 600 sec. is insufficient for both
cases, and with more training time, these trends should look similar to the ones in Tables 1 and 2.

Another critical observation for both cases is that the ‘Max. Eq.’ value is substantially high even for
the proposed best model (in Tables 6 and 7, respectively). However, it is clear that the proposed BNN
proxies are better than standard DNN models with an order-of-magnitude difference. On the surface,
readers may dismiss the efficacy of the proposed BNN models due to these large values. Still, these
values have to be examined in conjunction with the error bounds on the voltage magnitude and
voltage angles in Fig. 6. Examined together, the BNN model predictions have very low errors
for the voltage magnitude and angles, and it is very much possible to develop a computationally
inexpensive projection algorithm that projects this prediction onto the feasibility set of the ACOPF
problem on lines of Zamzam & Baker (2020). This procedure would further reduce the Max. Eq.
values and makes the projected solution usable. This is a minor detail regularly tackled in a power
grid context and is not dealt with extensively in this paper.

Finally, Figure 5 shows the stabilization of the mean errors and the MPV with varying testing sam-
ples and posterior samples, respectively. These plots validate the number of testing and posterior
samples chosen for generating the results presented in Section 5.

D CONCENTRATION BOUNDS

This section presents three bounds used in Section 4. Here, X represents a generic random variable
and is not related to the optimization proxy variables. Since these are well-known inequalities, we
omit the proofs, which can be found in the respective references.

Theorem 1 (Hoeffding’s). Hoeffding (1994) Let X1, . . . , XM i.i.d. random variables and suppose
that |Xi| ⩽ R with expectation E(Xi), and let X̄M = 1

M

∑M
i=1 Xi. Then, with probability at least
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Figure 5: Convergence of mean error, MPV, total variance in error with respect to number of testing
samples, and number of posterior samples.
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Figure 6: Comparison of voltage magnitude and voltage angle error bounds (in logarithmic scale)
across bus indices for case500. The plot illustrates that PCBs using theoretical Bernstein bounds
with 2 × MPV from hypothesis equation 5 are tightest among all PCBs. We consider δ = 0.95 and
1000 out-of-sample testing data points i.e. M = 1000.

1− δ, ∣∣X̄M − E(Xi)
∣∣ ⩽ R

√
log(2/δ)

2M
.

.

Theorem 2 (Empirical Bernstein). Audibert et al. (2007); Mnih et al. (2008) Let X1, . . . , XM be
i.i.d. and suppose that |Xi| ⩽ R, expectation E(Xi) and let X̄M = 1

M

∑M
i=1 Xi. With probability

at least 1− δ, ∣∣X̄M − E(Xi)
∣∣ ⩽

√
2V̂ log(3/δ)

M
+

2R log(3/δ)

M

where, V̂ = (1/M)
∑M

i=1(Xi − X̄M )2 is empirical variance.

Theorem 3 (Bernstein). Sridharan (2002) Let X1, . . . , XM be i.i.d. and suppose that |Xi| ⩽ R,
mean E(Xi) and V = Var(Xi). With probability at least 1− δ,

∣∣X̄M − E(Xi)
∣∣ ⩽ √

2V log(1/δ)

M
+

2R log(1/δ)

3M

Table 8: Error bound ε in PCBs, provided by different concentration inequalities.

Hoeffding’s Empirical Bernstein Bernstein

R
√

log(2/δ)
2M

√
2V̂e log(3/δ)

M + 3R log(3/δ)
M

√
2(2×MPV) log(1/δ)

M + 2R log(1/δ)
3M
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