
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZATION PROXIES USING LIMITED LABELED
DATA AND TRAINING TIME – A SEMI-SUPERVISED
BAYESIAN NEURAL NETWORK APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Constrained optimization problems arise in various engineering system operations
such as inventory management and electric power grids. However, the requirement
to repeatedly solve such optimization problems with uncertain parameters poses
a significant computational challenge. This work introduces a learning scheme
using Bayesian Neural Networks (BNNs) to solve constrained optimization prob-
lems under limited labeled data and restricted model training times. We propose
a semi-supervised BNN for this practical but complex regime, wherein training
commences in a sandwiched fashion, alternating between a supervised learning
step (using labeled data) for minimizing cost, and an unsupervised learning step
(using unlabeled data) for enforcing constraint feasibility. Both supervised and
unsupervised steps use a Bayesian approach, where Stochastic Variational Infer-
ence is employed for approximate Bayesian inference. We show that the proposed
semi-supervised learning method outperforms conventional BNN and deep neural
network (DNN) architectures on important non-convex constrained optimization
problems from energy network operations, achieving up to a tenfold reduction in
expected maximum equality gap and halving the optimality and inequality (fea-
sibility) gaps, without requiring any correction or projection step. By leveraging
the BNN’s ability to provide posterior samples at minimal computational cost, we
demonstrate that a Selection via Posterior (SvP) scheme can further reduce equal-
ity gaps by more than 10%. We also provide tight and practically meaningful
probabilistic confidence bounds that can be constructed using a low number of
labeled testing data and readily adapted to other applications.

1 INTRODUCTION

Constrained optimization problems are fundamental in the optimal operation of various engineer-
ing systems, such as supply chains, transportation networks, and power grids. Learning a forward
mapping between the inputs and outputs of these problems can significantly reduce computational
burdens, especially when rapid solutions are required, such as in electricity market clearing or real-
time transportation planning.

Recent advancements in machine learning (ML) have led to considerable efforts to solve optimiza-
tion problems using deep neural networks (DNNs) Khadivi et al. (2023); Kotary et al. (2021); Fa-
jemisin et al. (2024). The idea of learning input-to-output mappings has been explored via su-
pervised and unsupervised methods, particularly in power system applications Zamzam & Baker
(2020); Donti et al. (2021); Park & Van Hentenryck (2023); Fioretto et al. (2020); Kotary et al.
(2021); Rolnick et al. (2022). Additionally, constraint penalization approaches have been proposed
to enforce feasibility in predicted outputs within DNN loss functions AI4OPT (2023).

Supervised DNN models rely on labeled datasets obtained by solving numerous instances of op-
timization problems. This data generation step poses a significant limitation due to the prohibitive
computational time required for moderate to large problem instances. For example, Park & Van Hen-
tenryck (2023) report that generating labeled data to train supervised DNN models for a medium-
sized power grid problem takes over three hours1. Unsupervised methods aim to address the labeled

1See Table 4 in Park & Van Hentenryck (2023) for the computation time comparison.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data generation issue Donti et al. (2021); Park & Van Hentenryck (2023); however, they often have
high training time requirements. Methods requiring projection steps to recover feasible solutions
involve time-consuming constraint correction within the framework Donti et al. (2021); Gupta et al.
(2022); Zamzam & Baker (2020), resulting in slower training and prediction. Moreover, unsuper-
vised methods still require testing data and consequently the associated data generation time in order
to perform validation and provide confidence bounds on error with respect to true solution. Thus, it
is important to note that that total time requirement to deploy these ML based optimization proxies
is: Training Data Generation+Testing Data Generation+Training.

In practice, the input space of the problem in many applications is dynamic and changes constantly,
necessitating frequent retraining and evaluation for ML models to remain effective amid distribu-
tional shifts in the input data. In the context of longer horizon planning problems involving bi-
level optimization problems, these ML proxies serve as subroutines to simulate stochastic decision-
making processes for given first-level decisions Ibrahim et al. (2020). Consequently, these models
must be adaptable in both training and testing to changing problem inputs and parameters. Mini-
mizing or limiting the time required for learning input/output mappings in optimization problems is
thus crucial.

Estimating the generalization error over the testing dataset is another critical aspect, and is partic-
ularly relevant to planning and operations of engineered systems where the system must obey the
physical and safety limits. As a result, when limited labeled data is available, one must rely on
concentration bounds such as Hoeffding’s inequality Sridharan (2002); Hoeffding (1994) to develop
expected error bounds using finite out-of-sample testing data. However, these bounds are often loose
and impractical, creating the need for tighter expected error bounds with limited labeled testing data.

Contributions: Motivated by the preceding discussion, this paper considers the problem of de-
signing optimization proxies with guaranteed confidence bounds in the setting of limited total time
requirement and limited labeled sample availability. For practical applicability, the total time must
account for training and testing data generation, model training time and prediction time. Our major
contribution is the development of a semi-supervised Bayesian Neural Network (BNN) approach
for this setting, that can be used to give tight confidence bounds on predictions. First, we pro-
pose using BNNs instead of DNNs for learning input-to-output mappings, as they provide intrin-
sic uncertainty quantification and allow the integration of prior beliefs Papamarkou et al. (2024).
Second, we introduce a Sandwich learning method for BNN, which integrates unlabeled data into
training through feasibility-based data augmentation. This approach enforces feasibility without re-
quiring solved labeled instances. Third, we utilize the predictive variance information provided by
BNNs to develop tight and practically useful expected error bounds using Bernstein concentration
bounds Audibert et al. (2007). We intentionally restrict ourselves to 10 minutes of training time
on a single CPU core to demonstrate the effectiveness of the proposed learning scheme under low-
data, low-compute settings. For various power grid optimization problem instances, we show that
(i) supervised BNNs outperform standard supervised DNN approaches under limited training time;
(ii) the proposed Sandwich BNN enforces feasibility better than supervised BNNs without requiring
additional computation time for training or data generation; and (iii) the Bernstein bound-based ex-
pected error bounds are tight and practically useful for constraint satisfaction studies without extra
computational effort.

1.1 RELATED WORK

In recent years, Deep Neural Networks (DNNs) have been applied to solve various optimization
problems with physics-based constraints, particularly in energy networks Zamzam & Baker (2020);
Gupta et al. (2022); Donti et al. (2021); Singh et al. (2021); Park & Van Hentenryck (2023); Kotary
et al. (2021). The primary motivation is to replace time-consuming optimization algorithms with
machine learning proxies, enabling instantaneous solutions to a large number of problem instances
Park & Van Hentenryck (2023); Donti et al. (2021); Gupta et al. (2022); Zamzam & Baker (2020).

Outside the realm of optimization proxies, several semi-supervised learning methods have been pro-
posed to leverage unlabeled data for improving ML model performance Yang et al. (2022). These
approaches include augmenting unlabeled data with inexpensive pseudo-labels and developing un-
supervised loss functions to be minimized alongside supervised loss functions Sharma et al. (2023);
Yang et al. (2022). Data augmentation has been used in image classification with Bayesian Neu-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ral Networks (BNNs) using the notion of semantic similarity Sharma et al. (2023). However, this
concept is not readily extensible to ML proxies for constrained optimization problems, where se-
mantic similarity is hard to quantify for input variations leading to changes in the output. To address
this challenge, we propose a feasibility-based data augmentation scheme that relates directly to the
constraints of the optimization problem. To the best of our knowledge, these ideas have not been
explored in the context of BNN algorithms for solving large-scale optimization problems. A related
but distinct line of work involves loss function-based prior design for output constraint satisfaction
Sam et al. (2024); Yang et al. (2020).

2 BACKGROUND/PRELIMINARIES

2.1 PROBLEM SETUP AND ASSUMPTIONS

We consider nonlinear and non-convex, constrained optimization problems involving both equality
constraints g(x,y) = 0 and inequality constraints h(x,y) ⩽ 0, where y represents the decision
variables and x represents the input variables, both as vectors. The objective is to minimize the cost
function c(y). Mathematically, the optimization problem is as follows:

min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)
h(x,y) ⩽ 0 (1c)
x is given (input vector) (1d)

We assume that for all ∀x ∈ X , i.e., for any input vector in the set X (X could be as sim-
ple as a hyper-rectangle), there exists at least one feasible solution to problem equation 1. Let
D = {(xi,y

⋆
i)}Ni=1 denote the labeled dataset, where y⋆

i is the optimal solution obtained by solv-
ing optimization problem equation 1 for each xi. Assuming that sampling the input vector x is
inexpensive, we construct an unlabeled dataset Du = {xj}Mj=1.

Our goal is to develop a BNN surrogate that provides an approximate optimal value of the decision
variables ŷt for a given test input vector xt ∈ X . This work falls under the category of developing
optimization proxies or surrogates, where the machine learning model serves as a direct forward
mapping between the input and output variables of an optimization problem (see Park & Van Hen-
tenryck (2023)).

The paper proposes a semi-supervised framework to solve this problem, wherein training alternates
between a supervised step—using labeled data D to minimize prediction error—and an unsuper-
vised step—using unlabeled data Du to enforce the feasibility of constraints in equation 1b and
equation 1c. Both steps are implemented using a Bayesian Neural Network (BNN).

2.2 BAYESIAN NEURAL NETWORK

We consider a Bayesian Neural Network (BNN) denoted as fw(x), where w represents all the
weights and biases of the network. These weights are assigned an isotropic normal prior p(w) with
covariance σ2I , meaning that each weight is independently normally distributed with zero mean and
variance σ2.

In the supervised training of the BNN, the goal is to compute the posterior distribution over the
weights given the labeled data D ≡ (x,y). This posterior is expressed as p(w | x,y) ∝ p(y |
x, w) p(w). Here, p(y | x, w) is the likelihood of the labeled data given the weights, and p(w) is
the prior over the weights. The posterior distribution p(w | x,y) encapsulates the uncertainty about
the weights after observing the data. Due to computational challenges in calculating the normaliza-
tion constant of the posterior, approximate methods such as stochastic variational inference (SVI)
with the mean-field assumption are employed the posterior distribution estimation (see Jospin et al.
(2022)).

For making predictions, the posterior predictive distribution is approximated as p(yt | xt,D) =
Ep(w|D)

[
p
(
fw(x

t)
)]

, where xt is a test input vector, and the expectation is taken over the approxi-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

mate posterior distribution of the weights. Moreover, we assume a Gaussian likelihood for output:

p(y | x, w) =
∏
i

N
(
yi | fw(xi), σ

2
s

)
,

with σ2
s being a parameter in the SVI that controls the spread (noise variance) around the target

values, and (xi,yi) ∈ D. Adapting this approach to update the BNN using the unsupervised data
Du requires the definition of a suitable likelihood function, detailed in the next section, along with
the semi-supervised framework to obtain the BNN surrogate.

3 SEMI-SUPERVISED LEARNING: SANDWICH BNN

We start by defining a suitable likelihood function for the unsupervised learning process. To that
end, we augment the unlabeled data Du using the necessary feasibility conditions that the vector y
must satisfy to be a solution of equation 1. We propose a function F(y,x) to measure the feasibility
of a candidate solution y for a given input x. This function consists of two terms: one measuring
the equality gap and the other measuring the one-sided inequality gap or violations. The relative
emphasis on each term is determined by the parameters λe and λi, respectively, i.e.,

F(y,x) = λe

∥∥g(x,y)∥∥2︸ ︷︷ ︸
Equality Gap

+λi

∥∥ReLU[h(x,y)]
∥∥2︸ ︷︷ ︸

Inequality Gap

. (2)

For any given feasible solution yc for the optimization problem in equation 12, we have F(yc,x) =
0 for the given input x ∈ X . Furthermore, because of our assumption in Sec. 2.1 that the problem
in equation 1 has at least one feasible solution, the minimum value F(·,x) = 0 for any x ∈ X .
Therefore, we can augment the unlabeled dataset Du to create a labeled feasibility dataset, i.e.,
Df = {(xj ,F(·,x) = 0)}Mj=1. Since input sampling is inexpensive, constructing this feasibility
dataset Df incurs no additional computational cost. Similar to the supervised step in Sec. 2.2, we
now define a Gaussian likelihood for the unsupervised training step, with σ2

u as the noise variance
for unsupervised learning and xj ∈ Df , as

p(F | x, w) =
∏
j

N
(
0 | F

(
fw(xj),xj

)
, σ2

u

)
,

To obtain an optimization proxy, we parameterize the candidate solution fw(x) using a Deep Neural
Network (DNN)-style architecture and employ a sandwich-style semi-supervised training for the
BNN, as illustrated in Figure 1. The fundamental idea of this training method is to update the
network weights and biases through multiple rounds of training in which each round alternatives
between using the labeled dataset D for prediction or cost optimality, and the augmented feasibility
data set Df for constraint feasibility. We let Sup and UnSup denote the inference steps in the BNN
training using D and Df , respectively. Both Sup and UnSup are performed for a fixed maximum
time, with the total training time constrained to Tmax. Finally, the prediction of the mean estimate Eyt

and the predictive variance estimate Vyt is accomplished using an unbiased Monte Carlo estimator
by sampling 500 weights from the final weight posterior pmW .

3.1 SELECTION VIA POSTERIOR (SVP)

In Bayesian Neural Network (BNN) literature, the standard approach is to use the mean posterior
prediction Ep(w|D)[fw(x

t)] for a test input xt. This is similar to using the mean prediction of
ensemble Deep Neural Networks (DNNs). However, unlike DNNs, BNNs can provide multiple
predictions without additional training cost, as we can sample multiple weight instances from the
posterior distribution pmW and construct the posterior prediction matrix (PPM) Y (see Figure 1 for
details and Appendix B.3 for structure of the PPM.). We propose to use the PPM to improve the
feasibility of the predicted output of the optimization proxy. Each column of the PPM represents
one predicted output vector corresponding to a weight sample. We select the weight sample W ⋆ that
minimizes the maximum equality gap, defined as:

W ⋆ = argmin
j

[
max

i

∣∣gi(xt,Y·j)
∣∣] , (3)

2Not necessarily optimal for equation 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Sup

p1W ≡ p(w | y,x) ∝ p(y | x, w) p0w

UnSup Sup . . . UnSup

pm−1
W ≡ p(w | x) ∝ p(F | x, w) pm−2

w

Sup Predict
p0W

N (0, σ2I)

pmW

Eyt ,Vyt

Yp1W p2W pm−1
W

Ts Tu

Tmax

Tr

Figure 1: Flowchart of the proposed sandwich-style BNN learning. The Sup block represents the
supervised learning stage with labeled dataset D, and the UnSup block represents the unsupervised
learning with the augmented feasibility dataset Df . Learning time upper limits are represented as Ts,
Tu, and Tmax for Sup, UnSup, and the complete semi-supervised BNN learning, respectively. At the
prediction stage, Y denotes the posterior prediction matrix (PPM) for one test input sample, where
each column represents the predicted output obtained via one weight sample from the posterior.

where Y·j is the j-th column of the PPM, and gi(·, ·) represents the i-th equality constraint func-
tion.3 The output prediction corresponding to the weight sample W ⋆ will have the minimum equality
gap, and we term this process Selection via Posterior (SvP). Note that the numerical operation in
equation 3 can be performed in parallel and has minimal computational cost compared to analyt-
ical projection methods in Zamzam & Baker (2020) that focus on projecting the prediction onto
equation 1c to satisfy the inequality constraints in the problem equation 1. Note that it is an appli-
cation motivated design choice to emphasize enforcement of the equality gap by using the SvP in
equation 3. This can easily be adapted to account for inequality constraints without any significant
computational overhead.

4 PROBABILISTIC CONFIDENCE BOUNDS

This section focuses on providing bounds on the expected absolute error of our method, i.e., test-
ing error. We explore probabilistic confidence bounds (PCBs) for optimization proxies. The core
concept of PCBs is to first evaluate models on a labeled testing dataset with M samples, compute
the empirical mean error, and then probabilistically bound the error for any new input. Specifi-
cally, PCBs assert that the expected error will be within ε of the empirical errors computed from M
out-of-sample inputs, with a high probability (usually 0.95). Mathematically, we aim to provide a
guarantee on the error e = y − yt, where yt is the BNN prediction and y is the true value, as

P
{∣∣∣∣E[|e|]− 1

M

M∑
i=1

|ei|
∣∣∣∣ ⩽ ε

}
⩾ 1− δ (4)

where E[|e|] represents the expected absolute error, 1− δ is the confidence level, and ε is the allow-
able prediction error.

Ideally, we would like to evaluate our model on a large number of samples since, as M → ∞, the
error bound ε → 0. However, increasing M leads to a higher requirement for labeled data, which
defeats the purpose of training using low labeled data 4. To address this issue, confidence inequalities
are commonly used to provide PCBs, with Hoeffding’s inequality (Hoeffding (1994)) being one of
the most widely used bounds. As stated in Appendix D, Hoeffding’s inequality assumes that the
error is bounded (i.e., |ei| ⩽ R for all i) and provides PCBs whose tightness is governed by M ,

with the relationship ε = R
√

log(2/δ)
2M . However, the Hoeffding bound can often be too loose to be

practically relevant.

To improve upon this, we propose using Bernstein’s inequality (see Audibert et al. (2007)) as the
concentration bound, which utilizes the total variance in error (TVE) information along with M ,
under the same bounded error assumption. The main challenge in using the Bernstein bound is
obtaining the TVE without extensive out-of-sample testing. One possible solution is to use the
empirical Bernstein bound as in Audibert et al. (2007); Mnih et al. (2008), which employs the

3In a general setting of constrained optimization problems, there may be multiple equality and inequality
constraints.

4Note that the total labeled data requirement is the sum of training and testing samples, i.e., N +M

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

empirical variance of the error V̂e, obtained from the same M testing samples, and accounts for the
error in variance estimation by modifying the theoretical Bernstein inequality. Mathematically, the
PCB using the Empirical Bernstein inequality is

ε =

√
2V̂e log (3/δ)

M
+

3R log (3/δ)

M
,

as given in Audibert et al. (2007); Mnih et al. (2008). Since the term under the square root depends
on the empirical TVE V̂e rather than R, the empirical Bernstein bound becomes tighter more quickly
with increasing M if V̂e ≪ R.

To further tighen the bound, we propose using the Theoretical Bernstein bound Sridharan (2002)
(Theorem 3 in Appendix D) with the Mean Predictive Variance (MPV) as a proxy for the
TVE Ve. The MPV is the mean of the predictive variance of testing samples, i.e., MPV =
1
M

∑M
k=1 VW

[
Yk

i·
]
, where variance VW

[
Yk

i·
]

for the kth test sample using entries of the poste-
rior prediction matrix across columns, generated using posterior weights, for ith output variable. In
principle, the MPV captures the expected variance in the predictions due to the posterior distribution
of BNN weights. We hypothesize that with a constant multiplier α > 1,

αMPV ⩾ Ve = EM [VW [e]] + EW [VM [e]] ⩾ V|e|, (5)

where EM and EW denote expectations with respect to M testing samples and posterior weight
samples, respectively, and VM [e] and VW [e] denote the variance of the error with respect to M
testing samples and posterior weight samples, respectively. The equality in equation 5 follows from
the law of total variance Blitzstein & Hwang (2019). V|e| represents the variance of the absolute
value of the error, which is lower than the variance of the error.

Notice that the first term of the TVE, EM [VW [e]], is independent of the labeled testing dataset
because the true output y is constant with respect to posterior weight samples; thus, VW [e] =
VW [y−yt] = VW [yt]. Furthermore, from the definition of MPV, we have MPV = EM [VW [e]]. As
an example, if EW [VM [e]] ⩽ MPV, our hypothesis in equation 5 holds with α = 2. Consequently,
we can use 2× MPV as an upper bound for Ve in the Theoretical Bernstein bound (see Theorem 3
in Appendix D), which gives the error bound

ε =

√
4× MPV log (1/δ)

M
+

2R log (1/δ)

3M
,

which is better than the Empirical Bernstein bounds. The hypothesis in equation 5 and the corre-
sponding constant α can be computed by using application specific information or performing a
meta-study like in Section 5.

The strength of this approach is that we do not require labeled testing samples to calculate MPV, thus
incurring no additional computational burden from generating labels. Also, note that this constitutes
an advantage of BNNs since MPV information is readily available with BNNs but cannot be obtained
from DNN-based optimization proxies.

In the next section, we perform a meta-study using different BNN models on different test cases to
show the performance of our proposed learning architecture as well as demonstrate that hypothesis
equation 5 indeed holds for the proposed optimization proxy learning problems.

5 NUMERICAL RESULTS AND DISCUSSION

We test the proposed method on the Alternating Current Optimal Power Flow (ACOPF) problem, es-
sential for the economic operation of electrical power grids Molzahn et al. (2019). Efficient ACOPF
proxies can mitigate climate change by enabling higher renewable energy integration, improving
system efficiency by minimizing losses and emissions, and enhancing grid resiliency against ex-
treme weather conditions Rolnick et al. (2022). ACOPF is a constrained optimization problem with
nonlinear equality constraints and double-sided inequality bounds. It aims to find the most cost-
effective generator set points while satisfying demand and adhering to physical and engineering
constraints. The inputs are active and reactive power demands; outputs include generator settings,
voltage magnitudes, and phase angles at each bus. We adopt the standard ACOPF formulation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparative performance results for the ACOPF Problem for ‘case57’ with 512 labeled
training samples, 2048 unlabeled samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 0.928 0.027 0.006 0.000 0.000
Sandwich BNN (Ours) 0.964 0.045 0.005 0.000 0.000
Supervised BNN SvP (Ours) 3.195 0.083 0.011 0.000 0.000
Supervised BNN (Ours) 3.255 0.130 0.011 0.000 0.000

Naı̈ve MAE 4.029 0.518 0.057 0.000 0.000
Naı̈ve MSE 3.297 0.541 0.075 0.000 0.000
MAE + Penalty 3.918 0.370 0.037 0.000 0.000
MSE + Penalty 3.748 0.298 0.039 0.000 0.000
LD + MAE 3.709 0.221 0.033 0.000 0.000

Babaeinejadsarookolaee et al. (2019); Park & Van Hentenryck (2023); Coffrin et al. (2018) and
benchmark our method using the open-source OPFDataset from Torch Geometric, which pro-
vides numerous solved ACOPF instances (see Lovett et al. (2024)).

In our results, ‘Gap%’ denotes the average relative optimality gap compared to the objective val-
ues in the labeled testing instances. ‘Max Eq.’ and ‘Mean Eq.’ represent the maximum and mean
equality gaps over all equality constraints, while ‘Max Ineq.’ and ‘Mean Ineq.’ indicate the same for
inequality gaps in per unit, all averaged over testing instances. We compare our proposed method
with the following state-of-the-art baseline supervised learning models available in the literature
using the same labeled dataset and training time constraints, utilizing AI4OPT’s ML4OPF pack-
age AI4OPT (2023) (network and hyper-parameter details are in Appendix B):

• Naı̈ve MAE and Naı̈ve MSE (Supervised): Use l1-norm and l2-norm loss functions,
respectively, to measure differences between predicted and actual optimal solutions Park &
Van Hentenryck (2023), incorporating a bound repair layer with a sigmoid function. The
bound repair layer ensures that inequality constraints are always satisfied.

• MAE + Penalty, MSE + Penalty, and LD (Supervised): Add penalty terms for constraint
violations to the naı̈ve MAE or MSE loss functions Park & Van Hentenryck (2023). The
Lagrangian Duality (LD) method applies the l1-norm as outlined in Fioretto et al. (2020);
Park & Van Hentenryck (2023), and also uses a bound repair layer with a sigmoid func-
tion.

We exclude self-supervised constrained optimization methods like Primal-Dual Learning
(PDL) Park & Van Hentenryck (2023) and DC3 Donti et al. (2021) due to their significantly higher
training times and computational demands, which violate the premise of this paper. For example,
PDL requires over 125 minutes of training time for the ACOPF problem on a 118-node power net-
work using a Tesla RTX6000 GPU. Methods that require solving alternating current power flow to
recover solutions (e.g., Zamzam & Baker (2020)) are also excluded, as they result in high prediction
times compared to DNN or BNN forward passes5.

To demonstrate the effectiveness of the proposed BNN learning methods, we conduct simulation
studies on both our models and the ML4OPF models using an M1 Max CPU with 32 GB RAM,
without any GPU. This setup highlights performance improvements due to the learning mechanism
rather than computational power. We propose two classes of different models as:

• Supervised BNN and Supervised BNN SvP: Standard BNN learning with labeled data,
utilizing mean prediction and Selection via Posterior (SvP), respectively. The network uses
ReLU activation and no bound repair layer.

• Sandwich BNN and Sandwich BNN SvP: The proposed Sandwich BNN trained with
labeled and unlabeled data as discussed in Section 3. Unsupervised training utilizes four
times the number of labeled data samples. The network uses ReLU activation and no
bound repair layer.

5see prediction time studies in Donti et al. (2021) which suggest 10 times higher prediction time with power
flow based projections (0̃.080 sec. compared to 0.001 sec. for DNN and 0.003 sec. per testing instance for
proposed BNNs).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparative performance results for the ACOPF Problem for ‘case118’ with 512 labeled
training samples, 2048 unlabeled samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 1.484 0.089 0.018 0.008 0.000
Sandwich BNN (Ours) 1.485 0.100 0.016 0.008 0.000
Supervised BNN SvP (Ours) 1.568 0.147 0.022 0.013 0.000
Supervised BNN (Ours) 1.567 0.205 0.020 0.013 0.000

Naı̈ve MAE 1.638 2.166 0.187 0.000 0.000
Naı̈ve MSE 1.622 3.780 0.242 0.000 0.000
MAE + Penalty 1.577 1.463 0.102 0.000 0.000
MSE + Penalty 1.563 2.637 0.125 0.000 0.000
LD + MAE 1.565 1.284 0.083 0.000 0.000

102 103

System Size

0

20

40

60

Ga
p%

102 103

System Size

0
6

12
18

M
ax

 E
q.

102 103

System Size

0.0
0.3
0.6
0.9

M
ax

 In
eq

.

Sandwich BNN SvP Supervised BNN SvP MAE + Penalty MSE + Penalty LD + MAE

Figure 2: Growth trajectories of performance metrics for ACOPF across system sizes for different
methods. Detailed results for ‘case500’ and ‘case2000’ are given with Table 6 and Table 7 respec-
tively, in Appendix C.

Importantly, we intentionally keep the BNN architecture unoptimized, constructing it using four
different sub-networks (one for each of the four ACOPF outputs: real power generation, reactive
power generation, voltage magnitude, and voltage angle). Each sub-network has two hidden layers
with the number of hidden neurons equal to 2 × input size. In the Sup stage of the Sandwich BNN,
both weights and biases are updated, whereas in the UnSup stage, only the weights are modified via
SVI. Best model out of five random trials is selected.

Tables 1 and 2 present the comparative performance of different methods for solving the ACOPF
problem on the ‘case57’ and ‘case118’ test cases, containing 57 and 118 nodes, respectively. For
’case57’, the Sandwich BNN SvP method achieves the best Max Eq. performance (0.027), out-
performing all other methods, including the standard Sandwich BNN, without compromising other
metrics. All the methods proposed in this paper outperform the best DNN results, typically achieved
with the LD+MAE model (last row in the tables). Similar trends are observed for the ‘case118’ as
well.6

It is important to contextualize the significance of these numerical improvements. In ACOPF prob-
lems, cost values are in USD, with the mean cost for ‘case118’ being $97,000 or 9.7 in the per-unit
system. Therefore, a 1% Gap corresponds to an expected difference of $970 across the testing in-
stances. A ‘Max Eq.’ value of 0.08 implies a maximum expected power imbalance of 8.0 Megawatts
among all 118 nodes of ‘case118’. Thus, reducing the Max Eq. from 1.284 with the LD+MAE
model to 0.089 with our Sandwich BNN SvP model represents a significant improvement.

Figure 2 illustrates the growth of various metrics with increasing system size while keeping training
resources constant. The proposed BNN methods exhibit significantly lower scaling in the expected
maximum equality gap. Although Sandwich BNN SvP shows slightly higher scaling inequality gaps,
the relative improvement in Max Eq. far outweighs these minor drawbacks. Notably, for ‘case500’
(see Table 6 in the Appendix C), the expected maximum power imbalance is below 0.5% of the mean
real power demand (1.7 × 104 MW) and power grids already are equipped with spinning reserves
(see Ela et al. (2011)) that have reserve capacity to handle these imbalances. This is a significant
improvement over the DNN models which have much higher ‘Mean Eq.’ values. Moreover, the
‘Max Ineq.’ growth could be easily suppressed by incorporating bound repair layers, as used in
DNN models in ML4OPF AI4OPT (2023).

6See Appendix C for similar tabular results and discussion of trends on larger test instances.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3
Total Variance in Error (log) 1e 3

0

1

2

3

M
PV

 x
 2

 (l
og

)

1e 3 Case500

0.0 1.5 3.0 4.5
Total Variance in Error (log) 1e 4

0.0

1.5

3.0

4.5

M
PV

 x
 2

 (l
og

)

1e 4 Case118

0.0 0.8 1.6
Total Variance in Error (log) 1e 3

0.0

0.8

1.6

M
PV

 x
 2

 (l
og

)

1e 3 Case57
Sandwich BNN Supervised BNN

Figure 3: Empirical study comparing total variance in error V̂e with 2×MPV across different cases
of ACOPF and the proposed learning mechanisms.

0 10 20 30 40 50
Bus Index

10 5

10 4

10 3

10 2

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 10 20 30 40 50
Bus Index

10 4

10 2

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

Empirical Expected Error Theoretical Bernsteins (2 x MPV) Empirical Bernsteins Hoeffdings

0 20 40 60 80 100 120
Bus Index

10 5

10 3

10 1

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 20 40 60 80 100 120
Bus Index

10 5

10 3

10 1

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

Figure 4: Comparison of voltage magnitude and voltage angle error bounds (in logarithmic scale)
across bus indices for ‘case57’ (top row) and ‘case118’ (bottom row). The plot illustrates that PCBs
using theoretical Bernstein bounds with 2 × MPV from hypothesis equation 5 are tightest among
all PCBs. We consider δ = 0.95 and 1000 out-of-sample testing data points i.e. M = 1000.

Next, we present results for Proabilistic Confidence bounds, described in Section 4. Figure 3 shows
that 2 · MPV consistently serves as an empirical upper bound for total variance in error, validating
its robustness across models and system configurations7. In Figure 4, the theoretical Bernstein
bounds using Ve = 2 ·MPV provide tight, practical bounds, whereas Hoeffding’s bounds are overly
conservative and not useful for grid operations. For example, in ‘case118’, the Bernstein bound
ensures a probabilistic guarantee on voltage constraint satisfaction, such that a predicted voltage
between 0.91–1.09 pu guarantees no violations within the ACOPF limits of 0.90–1.10 pu, i.e., the
maximum value of the Bernstein bound on the error is 0.010 pu across all nodes. Compared to
Hoeffding’s bound (0.064 pu) or the empirical Bernstein bound (0.018 pu), the Bernstein bound
(0.010 pu) is far tighter and more practical, highlighting the benefits of BNNs for optimization
proxies. The error bounds for the ‘case500’ is provided in Fig. 6 of the Appendix C. Finally, we
note that both Hoeffding’s and empirical Bernstein bounds can also be obtained by testing DNN
models across M samples8.

6 CONCLUSIONS

In conclusion, this paper introduces a semi-supervised Bayesian Neural Network (BNN) approach
to address the challenges of high labeled data requirements and limited training time in learning
input-to-output maps for constrained optimization problems. The proposed Sandwich BNN method
incorporates unlabeled data through input data augmentation, ensuring constraint feasibility without
relying on a large number of labeled instances. We provide tight confidence bounds by utilizing
Bernstein’s inequality, enhancing the method’s practical applicability. Results show that BNNs out-
perform DNNs in low-data, low-compute settings, and the Sandwich BNN more effectively enforces
feasibility without additional computational costs compared to supervised BNNs.

7Total variance in error is assumed to stabilizing with 1000 testing samples (see Figure 5 in Appendix C).
8A form of MPV can be obtained via Ensemble DNNs Ganaie et al. (2022), however, it will lead to very

high computational requirement compared to the BNN.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

We use the open-source ACOPF datasets, provided with Torch geometric Lovett et al. (2024), to
train and test our models as well as standard DNN models. Furthermore, the beginning of Section
5 provides details of the DNN models used to compare the performance of the proposed meth-
ods. These models are available in AI4OPT’s open-source ML4OPF package AI4OPT (2023).
Hyper-parameter details for these models and the proposed methods are provided in Appendix B.
The implementation code is provided in a self-contained file with supplementary material, which
will be open-sourced after the conference. The .zip file of the code contains a README.pdf for
instruction to run the codes.

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.

REFERENCES

AI4OPT. Ml4opf: A machine learning library for optimal power flow problems. https://github.
com/AI4OPT/ML4OPF, 2023.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Tuning bandit algorithms in stochastic
environments. In International conference on algorithmic learning theory, pp. 150–165. Springer,
2007.

Sogol Babaeinejadsarookolaee et al. The power grid library for benchmarking ac optimal power
flow algorithms. arXiv preprint arXiv:1908.02788, 2019.

Joseph K Blitzstein and Jessica Hwang. Introduction to probability. Chapman and Hall/CRC, 2019.

Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin. Powermodels.jl: An
open-source framework for exploring power flow formulations. In 2018 Power Systems Compu-
tation Conference (PSCC), pp. 1–8, June 2018.

Priya Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
constraints. In International Conference on Learning Representations, 2021.

Erik Ela, Michael Milligan, and Brendan Kirby. Operating reserves and variable generation. Tech-
nical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2011.

Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with constraint
learning: A framework and survey. European Journal of Operational Research, 314(1):1–14,
2024.

Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. Predicting ac optimal power
flows: Combining deep learning and lagrangian dual methods. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pp. 630–637, 2020.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
Suganthan. Ensemble deep learning: A review. Engineering Applications of Artificial Intelli-
gence, 115:105151, 2022.

Sarthak Gupta, Sidhant Misra, Deepjyoti Deka, and Vassilis Kekatos. Dnn-based policies for
stochastic ac opf. Electric Power Systems Research, 213:108563, 2022.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Muhammad Sohail Ibrahim, Wei Dong, and Qiang Yang. Machine learning driven smart electric
power systems: Current trends and new perspectives. Applied Energy, 272:115237, 2020.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun.
Hands-on bayesian neural networks—a tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29–48, 2022. doi: 10.1109/MCI.2022.3155327.

10

https://github.com/AI4OPT/ML4OPF
https://github.com/AI4OPT/ML4OPF

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Maziyar Khadivi, Todd Charter, Marjan Yaghoubi, Masoud Jalayer, Maryam Ahang, Ardeshir
Shojaeinasab, and Homayoun Najjaran. Deep reinforcement learning for machine scheduling:
Methodology, the state-of-the-art, and future directions. arXiv preprint arXiv:2310.03195, 2023.

James Kotary, Ferdinando Fioretto, Pascal van Hentenryck, and Bryan Wilder. End-to-end con-
strained optimization learning: A survey. In 30th International Joint Conference on Artificial In-
telligence, IJCAI 2021, pp. 4475–4482. International Joint Conferences on Artificial Intelligence,
2021.

Sean Lovett, Miha Zgubic, Sofia Liguori, Sephora Madjiheurem, Hamish Tomlinson, Sophie Elster,
Chris Apps, Sims Witherspoon, and Luis Piloto. Opfdata: Large-scale datasets for ac optimal
power flow with topological perturbations. arXiv preprint arXiv:2406.07234, 2024.

Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical bernstein stopping. In
Proceedings of the 25th international conference on Machine learning, pp. 672–679, 2008.

Daniel K Molzahn, Ian A Hiskens, et al. A survey of relaxations and approximations of the power
flow equations. Foundations and Trends® in Electric Energy Systems, 4(1-2):1–221, 2019.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, et al. Position: Bayesian deep learning is needed in the age
of large-scale AI. In Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 39556–39586. PMLR, 21–27 Jul
2024.

Seonho Park and Pascal Van Hentenryck. Self-supervised primal-dual learning for constrained op-
timization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
4052–4060, 2023.

David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, et al. Tackling climate change
with machine learning. ACM Comput. Surv., 55(2), February 2022. ISSN 0360-0300. doi:
10.1145/3485128.

Dylan Sam, Rattana Pukdee, Daniel P Jeong, Yewon Byun, and J Zico Kolter. Bayesian neural
networks with domain knowledge priors. arXiv preprint arXiv:2402.13410, 2024.

Mrinank Sharma, Tom Rainforth, Yee Whye Teh, and Vincent Fortuin. Incorporating unlabelled
data into bayesian neural networks. arXiv preprint arXiv:2304.01762, 2023.

Manish K Singh, Vassilis Kekatos, and Georgios B Giannakis. Learning to solve the ac-opf using
sensitivity-informed deep neural networks. IEEE Transactions on Power Systems, 37(4):2833–
2846, 2021.

Karthik Sridharan. A gentle introduction to concentration inequalities. Dept. Comput. Sci., Cornell
Univ., Tech. Rep, pp. 8, 2002.

Wanqian Yang, Lars Lorch, Moritz Graule, Himabindu Lakkaraju, and Finale Doshi-Velez. In-
corporating interpretable output constraints in bayesian neural networks. Advances in Neural
Information Processing Systems, 33:12721–12731, 2020.

Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning.
IEEE Transactions on Knowledge and Data Engineering, 35(9):8934–8954, 2022.

Ahmed S Zamzam and Kyri Baker. Learning optimal solutions for extremely fast ac optimal power
flow. In 2020 IEEE international conference on communications, control, and computing tech-
nologies for smart grids (SmartGridComm), pp. 1–6. IEEE, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Supplementary Information
Optimization Proxies using Limited Labeled Data and Training Time – A

Semi-Supervised Bayesian Neural Network Approach

A ACOPF PROBLEM: MODELING AND DATASET

The alternating current optimal power flow (ACOPF) problem is essential for power grid operations
and planning across various time scales. It determines generator set-points for real and reactive
power that minimize generation costs while meeting power demand and satisfying physical and
operational constraints on output variables. We follow the ACOPF model given in PowerModels
Coffrin et al. (2018), and take the dataset from Torch geometric (Lovett et al. (2024)).

Table 3: Sets for ACOPF

N : buses G: generators, generators at bus i (Gi)
E: branches (forward and reverse orientation, ER) S: shunts, shunts at bus i (Si)
L: loads, loads at bus i (Li) R: reference buses

Table 4: Data for ACOPF Problem
Data

Symbol Description
Sl
g , Su

g ∀k ∈ G Generator complex power bounds.
ck2 , ck1 , ck0 ∀k ∈ G Generator cost components.
vil , v

i
u ∀i ∈ N Voltage bounds.

Sk
d ∀k ∈ L Load complex power consumption.

Y k
s ∀k ∈ S Bus shunt admittance.

Yij , Y ij
c , Y ji

c ∀(i, j) ∈ E Branch π-section parameters.
Tij ∀(i, j) ∈ E Branch complex transformation ratio.
siju ∀(i, j) ∈ E Branch apparent power limit.
iiju ∀(i, j) ∈ E Branch current limit.
θijl , θiju ∀(i, j) ∈ E Branch voltage angle difference bounds.

Variables
Symbol Description
Sk
g ∀k ∈ G Generator complex power dispatch.

Vi ∀i ∈ N (|Vi|∠θ) Bus complex voltage (Magnitude∠Angle).
Sij ∀(i, j) ∈ E ∪ ER Branch complex power flow.

Table 5: Objective Function and Constraints

Description Equation
Objective min

(∑
k∈G

(
ck2(S

k
g)

2 + ck1S
k
g + ck0

))
Reference bus voltage angle ∠Vr = 0 ∀r ∈ R

Generator power bounds Sl
g ≤ Sk

g ≤ Su
g ∀k ∈ G

Bus voltage bounds vil ≤ |Vi| ≤ viu ∀i ∈ N

Power balance ∀i ∈ N
∑

k∈Gi
Sk
g −

∑
k∈Li

Sk
d −

∑
k∈Si

Y k
s |Vi|2 =

∑
(i,j)∈E∪ER

Sij

Branch power flow ∀(i, j) ∈ E Sij = Y ∗
ij |Vi|2 + Y ∗

ijViV
∗
j /Tij ; Sji = Y ∗

ji|Vj |2 + Y ∗
jiV

∗
i Vj/T

∗
ij

Branch apparent power limits |Sij | ≤ siju ∀(i, j) ∈ E ∪ ER

Branch current limits |Sij | ≤ |Vi|iiju ∀(i, j) ∈ E ∪ ER

Branch angle difference bounds θijl ≤ ∠(ViV
∗
j) ≤ θiju ∀(i, j) ∈ E

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL SETTING DETAILS

B.1 ARCHITECTURES

Supervised BNN and Sandwich BNN: For ACOPF problem we use real and reactive power de-
mands as input while predicting all decision and state variables using separate networks

– Input real and reactive power demands: Two times the number of nodes having non-zero
load

– Output real and reactive power generation setpoints, voltage magnitude and voltage angle
at each node: Two times the number of generators + Two times the number of nodes

B.2 HYPER-PARAMETERS

B.2.1 ML4OPF:

config: The optimization is performed using the Adam optimizer with a learning rate of 1 × 10−4

(taken from Park & Van Hentenryck (2023)). All networks have two hidden layers, each with a size
of 2×Number of outputs. For hidden layers, ReLU activation function is selected while, the bound
repair mechanism is handled using a Sigmoid function Park & Van Hentenryck (2023).

penalty config: Multiplier of 1× 10−2, with no excluded keys.

ldf config: Step size 1× 10−2, and a kick-in value of 0. The LDF update frequency is set to 1, and
no keys are excluded from the updates.

All other hyperparameters are set at default ML4OPF values AI4OPT (2023).

B.2.2 PROPOSED BNNS

For all simulations, maximum training time 10 min., Tmax = 600 seconds, per round time Tr is
200 seconds with 40-60 split between Sup and UnSup models (Ts = 80 amd Tu = 120 seconds).
For VI, we use MeanFieldELBO loss function from Numpyro and Adam optimizer with a initial
learning rate rate of 1×10−3, and decay rate of 1×10−4, both of which are selected via grid search.

We use decay schedule as initial learning rate/(1+decay rate× step) within a Sup or UnSup model,
while simple step decay among different rounds of Sandwich BNN. Learning is done with single
batch for all models and each of the BNN weight and bias is parameterized using mean and variance
parameters of a Gaussian distribution, with mean field assumption i.e. independent from each other.
The prior for each weight and bias has zero mean and 10−2 variance while likelihood noise variance
is initialized with 10−5 mean and 10−6 variance for Sup and fixed at 10−10 for UnSup.

B.3 STRUCTURE OF POSTERIOR PREDICTION MATRIX (PPM)

Y ≡

y11 · · · · · · · · · y1H
...

· · · yVariable,Sample · · ·
...

yO1 · · · · · · · · · yOH

[

O : Number of variables
H : Number of posterior samples

]

C ADDITIONAL RESULTS

Here, we present the complete results analogous to Tables 1 and 2 for the larger test cases: ‘case500’
and ‘case2000’ with 500 and 2000 nodes, respectively, in Tables 6 and 7. In general, it is clear
from the tables that the approaches presented in this paper outperform the state-of-the-art DNN-
based approaches when limited training time and compute resources are provided. Between the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Comparative performance results for the ACOPF Problem for case500 with 512 labeled
training samples, 2048 unlabeled samples and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 2.009 0.770 0.066 0.190 0.000
Sandwich BNN (Ours) 2.002 0.781 0.056 0.191 0.000
Supervised BNN SvP (Ours) 1.191 2.204 0.088 0.141 0.000
Supervised BNN (Ours) 1.191 2.401 0.072 0.140 0.000

Naı̈ve MAE 1.208 20.818 0.905 0.000 0.000
Naı̈ve MSE 1.201 24.089 1.031 0.000 0.000
MAE + Penalty 1.205 11.833 0.580 0.000 0.000
MSE + Penalty 1.215 10.314 0.475 0.000 0.000
LD + MAE 1.279 11.166 0.532 0.000 0.000

Table 7: Comparative performance results for the ACOPF Problem for case2000 with 512 labeled
training samples, 2048 unlabeled samples and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.

Sandwich BNN SvP (Ours) 0.514 5.114 0.324 0.196 0.000
Sandwich BNN (Ours) 0.503 5.409 0.262 0.187 0.000
Supervised BNN SvP (Ours) 0.461 4.107 0.238 0.917 0.000
Supervised BNN (Ours) 0.451 4.225 0.193 0.922 0.000

Naı̈ve MAE 56.365 43.529 4.392 0.000 0.000
Naı̈ve MSE 56.366 43.085 4.261 0.000 0.000
MAE + Penalty 56.349 19.591 1.055 0.000 0.000
MSE + Penalty 56.377 12.592 0.682 0.000 0.000
LD + MAE 57.257 18.870 0.647 0.000 0.000

supervised and the sandwich BNN models, it appears that there is no clear winner. Table 6 indicates
that the supervised BNN outperforms the sandwich BNN model on the Max. Ineq. gap metric for
the ‘case500’ whereas the trend is reversed for the case2000’ in Table 7. This minor variation is
attributed to the fact that the maximum training time of Tmax = 600 sec. is insufficient for both
cases, and with more training time, these trends should look similar to the ones in Tables 1 and 2.

Another critical observation for both cases is that the ‘Max. Eq.’ value is substantially high even for
the proposed best model (in Tables 6 and 7, respectively). However, it is clear that the proposed BNN
proxies are better than standard DNN models with an order-of-magnitude difference. On the surface,
readers may dismiss the efficacy of the proposed BNN models due to these large values. Still, these
values have to be examined in conjunction with the error bounds on the voltage magnitude and
voltage angles in Fig. 6. Examined together, the BNN model predictions have very low errors
for the voltage magnitude and angles, and it is very much possible to develop a computationally
inexpensive projection algorithm that projects this prediction onto the feasibility set of the ACOPF
problem on lines of Zamzam & Baker (2020). This procedure would further reduce the Max. Eq.
values and makes the projected solution usable. This is a minor detail regularly tackled in a power
grid context and is not dealt with extensively in this paper.

Finally, Figure 5 shows the stabilization of the mean errors and the MPV with varying testing sam-
ples and posterior samples, respectively. These plots validate the number of testing and posterior
samples chosen for generating the results presented in Section 5.

D CONCENTRATION BOUNDS

This section presents three bounds used in Section 4. Here, X represents a generic random variable
and is not related to the optimization proxy variables. Since these are well-known inequalities, we
omit the proofs, which can be found in the respective references.

Theorem 1 (Hoeffding’s). Hoeffding (1994) Let X1, . . . , XM i.i.d. random variables and suppose
that |Xi| ⩽ R with expectation E(Xi), and let X̄M = 1

M

∑M
i=1 Xi. Then, with probability at least

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 250 500 750
#Testing Samples

1.5

3.0

4.5
M

ea
n

Er
ro

r
1e 2

0 250 500 750
#Testing Samples

1.5

3.0

4.5

To
ta

l V
ar

. E
rro

r

1e 6

0 250 500 750
#Testing Samples

0.50

0.75

1.00

M
ea

n
Er

ro
r

0 250 500 750
#Testing Samples

2.1
2.4
2.7
3.0

To
ta

l V
ar

. E
rro

r

1e 4

Voltage Magnitude
Voltage Angle

Real Power Generation
Reactive Power Generation

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

M
PV

1e 6

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

To
ta

l V
ar

. E
rro

r

1e 6

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

M
PV

1e 4

0 200 400
#Posterior Samples

0.0
0.8
1.6
2.4

To
ta

l V
ar

. E
rro

r

1e 4

Voltage Magnitude
Voltage Angle

Real Power Generation
Reactive Power Generation

Figure 5: Convergence of mean error, MPV, total variance in error with respect to number of testing
samples, and number of posterior samples.

0 100 200 300 400 500
Bus Index

10 5

10 3

10 1

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 100 200 300 400 500
Bus Index

10 5

10 3

10 1

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

Empirical Expected Error Theoretical Bernsteins (2 x MPV) Empirical Bernsteins Hoeffdings

Figure 6: Comparison of voltage magnitude and voltage angle error bounds (in logarithmic scale)
across bus indices for case500. The plot illustrates that PCBs using theoretical Bernstein bounds
with 2 × MPV from hypothesis equation 5 are tightest among all PCBs. We consider δ = 0.95 and
1000 out-of-sample testing data points i.e. M = 1000.

1− δ, ∣∣X̄M − E(Xi)
∣∣ ⩽ R

√
log(2/δ)

2M
.

.

Theorem 2 (Empirical Bernstein). Audibert et al. (2007); Mnih et al. (2008) Let X1, . . . , XM be
i.i.d. and suppose that |Xi| ⩽ R, expectation E(Xi) and let X̄M = 1

M

∑M
i=1 Xi. With probability

at least 1− δ, ∣∣X̄M − E(Xi)
∣∣ ⩽

√
2V̂ log(3/δ)

M
+

2R log(3/δ)

M

where, V̂ = (1/M)
∑M

i=1(Xi − X̄M)2 is empirical variance.

Theorem 3 (Bernstein). Sridharan (2002) Let X1, . . . , XM be i.i.d. and suppose that |Xi| ⩽ R,
mean E(Xi) and V = Var(Xi). With probability at least 1− δ,

∣∣X̄M − E(Xi)
∣∣ ⩽ √

2V log(1/δ)

M
+

2R log(1/δ)

3M

Table 8: Error bound ε in PCBs, provided by different concentration inequalities.

Hoeffding’s Empirical Bernstein Bernstein

R
√

log(2/δ)
2M

√
2V̂e log(3/δ)

M + 3R log(3/δ)
M

√
2(2×MPV) log(1/δ)

M + 2R log(1/δ)
3M

15

	Introduction
	Related Work

	Background/Preliminaries
	Problem Setup and Assumptions
	Bayesian Neural Network

	Semi-supervised Learning: Sandwich BNN
	Selection via Posterior (SvP)

	Probabilistic Confidence Bounds
	Numerical Results and Discussion
	Conclusions
	ACOPF Problem: Modeling and Dataset
	Experimental Setting Details
	Architectures
	Hyper-parameters
	ML4OPF:
	Proposed BNNs

	Structure of posterior prediction matrix (PPM)

	Additional Results
	Concentration Bounds

