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ABSTRACT

We present an architecture-agnostic method for tabular data augmentation, which
mixes pairs of samples from the training set. The mixing procedure is based on
a set of per-feature weights that are assigned by a learned network g that is sep-
arate from the primary classification model f . The features are selected between
the two samples at random, and the sum of the weights that g assigns the features
that are selected from each sample determines the mixing of the target label. g
itself is trained based on two loss terms, one that encourages variability in the
assigned weights between the features and one that encourages, for every train-
ing sample, the model f to be agnostic to the features for which g assigns low
weights. Our experiments show that this learned data augmentation method im-
proves multiple neural architectures designed for tabular data. Even more notable
is that the network g that was trained on an MLP produces mixed samples that
improve non-differentiable methods, including classical methods and gradient-
boosting decision tree methods. This is done without any further tuning and with
the default parameters of the classifiers. The outcome achieved this way, using the
cutting-edge CatBoost method now represents the state of the art.

1 INTRODUCTION

Neural models are generally less successful than tree-based models in the domain of tabular data
(Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022; Zhu et al., 2023). Motivated by the hypothesis
that this stems from the discontinuous input domain of this type of unstructured data, we develop a
data mixing (Guo et al., 2019; Huang et al., 2021) technique for performing train-time augmentation.

In contrast to previous mixing techniques, our method employs a learned feature selection model
g on top of the primary prediction model f . Network g assigns for every sample x a different
importance score per each vector element. The main loss through which g is trained requires that
the sample g(x)⊙ x obtained by weighing each feature by the associated weight, provides, when f
is applied to it, the same logits f(g(x) ⊙ x) as the logits f(x) of the original sample. Another loss
term encourages g to assign different values to different features, preventing uniformity.

When our method mixes two samples, seven-eighths of the features are selected randomly from the
first sample, and the rest from the second. The influence of a sample on the classification loss of the
virtual sample is determined by the sum of the weights that g assigns to the features it contributes.
Put differently, a sample’s label contributes more to the loss of f if more relevant features from it
were copied to the virtual sample.

In all of our experiments, g is a vanilla MLP. For both the MLP architecture and the transformer
architecture in our experiments, augmenting the dataset with g improves performance by a sizable
gap. A further improvement in accuracy is obtained when g is applied at test time. In this case, no
mixed samples are generated. Instead, we interpolate between the logits f(x) and the logits of its
weighted version f(g(x)⊙ x).

The training of g requires a gradient signal from f . When f is non-differentiable one can use a
surrogate network to obtain gradients (Athalye et al., 2018) or train g by using gradient-free methods
such as REINFORCE (Williams, 1992). However, as we show, the readily available solution of using
transfer learning is highly effective. In other words, g that was trained for one classifier f can be
used to create virtual samples for another classifier f ′.
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We, therefore, provide results for gradient boosting decision tree methods and classical methods,
that learn after augmenting the training set via network g, which was optimized for an 8-layer MLP
classifier, and evaluated using the test-time interpolation with the sample g(x)⊙x mentioned above.

Here, too, we observe an improvement across all methods, with the exception of a low-capacity
linear classifier. Specifically, by applying the pre-trained g to augment the data used for training
CatBoost, which is the current leading method, a new state-of-the-art is obtained. This is achieved
while adhering to the same train/test protocol and with the default set of parameters of CatBoost.

Our main contributions are summarized as:

• Presenting a learned mixup method that is suitable for unstructured data and operates in the input
domain. The method and the optimization problem it employs are both novel.

• The application during inference of the importance-assigning function learned by the mixup
method to further improve results.

• Using transfer learning for augmenting tabular data in order to apply our method to black-box
classifiers, including gradient boosting decision trees.

• Improving multiple tabular data classifiers, including the improvement of the state of the art for
tabular data classification by a sizable margin.

2 RELATED WORK

Data mixing-based augmentation methods sample random pairs of examples from the training set
and create virtual samples by combining these. The label of the generated sample is a fuzzy label
that combines those of the mixed samples. The seminal MixUp method of Guo et al. (2019) linearly
interpolates between two different samples and, using the same weights (one per sample), the fuzzy
labels are computed.

Mixup does not work well on tabular data, and Contrastive Mixup (Darabi et al., 2021) aims to
improve it by projecting the data onto a manifold where the mixture would be performed. This is
similar to Manifold Mixup (Verma et al., 2019) except that a contrastive objective is used. In our
experience, these methods do not boost classification enough to be competitive with the state of the
art. We also note that, unlike these contributions, our work is applied in the original input space,
which is crucial for transferring the augmentation to other methods.

Chen et al. (2023) employ dual mixup – in the feature space and the hidden representation manifold
– to improve the training of their transformer architecture. This mixup is not learned, and while the
authors claim to outperform CatBoost, this is achieved on a set of datasets that do not constitute a
known benchmark and, unlike our method, is shown to improve a specific architecture.

Cutmix (Yun et al., 2019) relies on the structure images. It extracts a rectangular box from one
image and pastes it onto the second. The resulting label is proportional to the area of the rectangle.
Since the area is a crude estimate of the importance of an image region, SnapMix (Huang et al.,
2021) replaces it with the sum of the CAM activations (Zhou et al., 2016) within the extracted and
the masked patches. As we demonstrate in our ablation study, replacing network g with a relevancy
score derived from backpropagation is not as effective for tabular data as our method.

Learned data augmentation techniques have been widely applied in computer vision, e.g., Cubuk
et al. (2019); Zoph et al. (2020). However, we are not aware of any learned augmentation techniques
for tabular data. Similarly, we are not aware of any learned mixup technique.

Learning the data augmentation network on the same training dataset can be compared to pertaining
techniques Yoon et al. (2020); Ucar et al. (2021); Somepalli et al. (2021); Bahri et al. (2021); Ma-
jmundar et al. (2022); Rubachev et al. (2022); Wang & Sun (2022); Zhu et al. (2023), which also
perform a preliminary training step, although with the completely different goal of initiating the
network weights in a favorable way. However, our method is much more efficient than pretraining
techniques and can be applied outside the realm of deep neural networks. Being from an orthogonal
domain of performance-enhancing techniques, it can be applied together with pretraining methods.

Gradient Boosting Decision Tree (GBDT) methods (Friedman, 2001) are currently considered the
tool of choice in tabular data classification (Gorishniy et al., 2021; Shwartz-Ziv & Armon, 2022;
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Grinsztajn et al., 2022; McElfresh et al., 2023). These include XGBoost (Chen & Guestrin, 2016),
LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018), as notable samples.

The leading position of GBDT is despite a considerable effort to develop suitable deep learning
methods, including architecture search (Kadra et al., 2021; Egele et al., 2021; Yang et al., 2022),
specifically designed transformers (Huang et al., 2020; Wang & Sun, 2022; Gorishniy et al., 2021),
and methods that are inspired by decision trees (Popov et al., 2019; Hazimeh et al., 2020; Arik &
Pfister, 2021; Katzir et al., 2020), to name a few approaches and a few representative samples of
each approach.

In contrast to these contributions, we are architecture-agnostic and offer a method for training data
augmentation. In order to emphasize that our contribution is not architectural, in our experiments
we use a simple feed-forward network for g.

3 METHOD

We are given a training dataset T = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n training samples, with
feature vectors xi ∈ Rd and labels yi ∈ Y . Our goal is to train a model f : Rd → Y that generalizes
well. In our method, we also train an auxiliary network g : Rd → {0, 1}d, which, given a sample
x, assigns a weight to each coordinate k in [d] = {1, 2, . . . , d}. These weights are positive and sum
to one, e.g., obtained by employing a softmax as the last layer of a neural network implementing
g. Using superscripts as the index vector elements, and defining m = g(x), this is written as
∀k, 0 ≤ mk ≤ 1 and

∑d
k=1 m

k = 1.

The training procedure mixes two random training samples xi and xj to create a virtual sample
x̄. The mixing is entirely random and involves a random selection of k indices in [d]. These k
indices are copied to the virtual sample from the second sample, while the rest are obtained from
the first. Throughout our experiments, k is one-eighth of the number of features, or, more precisely,
k = max(1, ⌊d/8⌉) (rounded and never zero). Therefore, the first sample selected dominates the
mixture.

In order to weigh the importance of xi and xj in x̄, we sum the weights assigned by network g that
are associated with the relevant coordinates of each sample. Let mi = gc(xi), and mj = gc(xj),
where gc is a copy of g such that gradients from the loss Lf below do not backpropagate to network
g. We define

γi =

b∑
u=a

mu
i

γj =
∑

u∈[d]\{a..b}

mu
j .

(1)

We focus on classification problems and the classifierf outputs a vector of logits. Denote the logits
obtained for the virtual sample as ȳ = f(x̄). The primary model f is trained using the cross-entropy
loss (CE) of both labels yi and yj , weighted by γi and γj :

Lf = γiCE(ȳ, yi) + γjCE(ȳ, yj) . (2)
This loss is applied over batches of random virtual samples x̄, created on-the-fly from the training
set.

Meanwhile, the main loss of the auxiliary network g encourages the classification obtained on a
weighted sample dg(x)⊙ x, where ⊙ denotes the Hadamard product, to be similar to that obtained
on the unweighted sample (the factor d ensures that the L1 norm of the sample g(x) ⊙ x does not
decrease in comparison to x since g returns a pseudo-probability). This loss is expressed as:

Lg = CE(f c(x), f c(dg(x)⊙ x) , (3)
where f c is a frozen copy of f , such that the gradients from this loss do not propagate to network f .
The loss Lg is applied over batches of random samples from the original training set.

Recall that the values in m = g(x) are all positive and sum to one. In order to encourage g to select
important features and not assign all weights uniformly, we add the following loss term:

Lm = −max(m) . (4)
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This loss is computed on the same samples that are used for the loss Lg .

The overall training loss for g is given by

Lgm = Lg + λLm , (5)

where the parameter λ scales the non-uniformity loss term, since it is on a different scale. In all of
our experiments λ = 0.1. Note that none of the terms in Lgm propagates to f , and this classifier is
co-trained with g simply by observing the virtual (mixed) samples x̄.

During inference, we would like to benefit from the feature weighting. Therefore, we mix f(x) and
f(g(x)⊙ x) and the predicted label for an input sample x is given by the combined logit vector:

ŷ = f(x) + αf(dg(x)⊙ x) , (6)

where in all of our experiments α = 0.1.

4 EXPERIMENTS

In our experimental evaluation, we assess the efficacy of our novel approach across a range of su-
pervised tabular learning tasks, encompassing both binary and multiclass classification challenges.
To ensure the reliability of our findings, we meticulously follow a consistent experimental proto-
col across all scenarios. We leverage the best-performing model checkpoint, determined based on
validation scores during training, to evaluate the model’s performance on test datasets.

4.1 DATASETS

To conduct our experiments, we employ the publicly available OpenML-AutoML Benchmark
(AMLB), a recently introduced benchmark tailored for automated machine learning. This bench-
mark comprises 84 tabular classification tasks and 33 regression tasks. We focus on classification
tasks and leave regression tasks for future work.

AMLB’s standard practice involves reserving 10% of the tabular data for testing. The remaining
data, is allocated 87.5% (7/8) to the training set and 12.5% (1/8) for validation purposes. Five
independent trials are performed, each involving distinct test folds, across all tabular datasets. To
maintain consistency, each trial adheres to the same data split strategy.

4.2 BASELINES

We employ multiple neural models, two leading GBDT models, and a few classical methods. The
neural models include an MLP and a tabular transformer. Each baseline is subjected to the same
experimental conditions.

CatBoost (Prokhorenkova et al., 2018) is a gradient-boosting algorithm tailored for tabular data
classification. It excels in handling categorical features without extensive preprocessing, making it
a strong contender for tabular data tasks.

XGBoost Chen & Guestrin (2016) is a widely adopted gradient-boosting framework that offers
speed and accuracy in handling structured data.

Multi-Layer Perceptron (MLP) is a neural network architecture with multiple layers of nodes. Our
adaptation of the model featured eight layers with a hidden dimension of 512 and a GLU activation.

Tab-Transformer Huang et al. (2020) is a recent deep learning architecture designed explicitly for
tabular data. Leveraging transformer-based mechanisms, it captures complex relationships within
structured data.

K-Nearest Neighbors (KNN) is a straightforward classification algorithm that assigns labels based
on the majority class among the nearest neighbors. We employ it with k = 5.

Logistic Regression is a linear classification algorithm that models the probability of binary out-
comes.

Due to a lengthy run-time, we were not able to add FT-Transformer (Gorishniy et al., 2021) by the
time of submission.
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(a)

(b)

(c)

Figure 1: The weights associated by g trained for an MLP classifiers to random samples of the (a)
artificial-character dataset, (b) the chess dataset, and (c) the LED-display-domain-7digit dataset.

4.3 IMPLEMENTATION DETAILS

Network g employs an MLP architecture, and is trained entirely from scratch. The network’s input
dimension corresponds to the number of features in the tabular data. It comprises of an 8-layer MLP
with a hidden dimension set to be 512.

The AdamW optimizer is used with a learning rate of 0.0003. The networks undergo training for a
duration of 100 epochs, employing a batch size of 128 throughout the training process, utilizing the
NVIDIA GeForce RTX 2080Ti GPU for accelerated model running.

For the purpose of obtaining g for transfer learning, we retrained f and g for 4000 steps on a
given training set. The architecture we used for f was identical to that of g. This training effort is
independent of the dataset size (only on the number of features) and takes less than 90 seconds per
dataset on a mid-range GPU. This is often negligible in comparison to the runtime of CatBoost.
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Table 1: Performance of various tabular data classification methods on the AMLB benchmark. *In-
dicates that the g model used is the one of the MLP and was not trained for these methods.

Rank Accuracy

Algorithm Class min max mean median mean± sd median

CatBoost (Prokhorenkova et al.) GBDT 1 12 4.2±2.4 4 0.84±0.17 0.91
CatBoost + Ours* GBDT 1 9 3.0±2.2 3 0.86±0.16 0.93
XGBoost (Chen & Guestrin) GBDT 1 12 5.9±2.9 6 0.84±0.17 0.92
XGBoost + Ours* GBDT 1 13 4.9±3.0 4 0.85±0.17 0.92

MLP Neural 1 13 7.4±3.0 8 0.77±0.23 0.85
MLP+SnapMix (ablation) Neural 1 13 5.8±3.1 6 0.80±0.22 0.90
MLP+Ours Neural 1 13 5.4±3.4 5 0.81±0.20 0.88
TabTransformer (Huang et al.) Neural 2 13 10.7±2.8 12 0.68±0.26 0.71
TabTransformer+Ours Neural 1 13 9.3±3.7 11 0.71±0.27 0.75

k Nearest Neighbours Classical 3 13 8.8±2.6 9 0.77±0.21 0.76
k Nearest Neighbours + Ours* Classical 1 13 7.8±3.4 8 0.79±0.21 0.86
Logistic Regression Classical 1 13 8.7±3.1 9 0.74±0.22 0.81
Logistic Regression + Ours* Classical 1 13 9.1±3.4 9 0.75±0.23 0.81
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Figure 2: A Dolan-More performance profile (Dolan & Moré, 2002) comparing accuracy scores of
the various methods on the AMLB benchmark. For each method and each value of θ (x-axis), the
graph presents the ratio of datasets for which the method performs better or equal to θ multiplied by
the best accuracy score for the corresponding dataset. An algorithm that achieves the best score on
all datasets would reach the top left corner of the plot for θ = 1. The combination of CatBoost with
our method yields better results than all baselines, and CatBoost is the 2nd best method.
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(a) (b)

(c) (d)

Figure 3: A comparison of the accuracy per tabular dataset in the AMLB benchmark with (y-axis)
and without (x-axis) our method. The augmentation network g for the boosting methods is based
on transfer learning, while the classifier f for neural methods is co-trained with g. (a) CatBoost, (b)
XGBoost, (c) MLP, (d) TabTransformer.

4.4 RESULTS

As desired, post-training, network g assigns a different weight vector to each sample, and much of
the weight is concentrated in a relatively small subset of the features of the sample. See Fig. 1 for
examples from datasets with relatively few features.

Our results are reported in Tab. 1. Following previous work, we report for each method the statistics
of its rank, with mean rank being the most important metric considered. For completeness, we also
report statistics on the obtained accuracy.

Consistent with previous work, the GBDT methods are outperforming all other methods. It is evident
that our method (using g that is trained for 90 seconds to optimize a simple MLP classifier f ) is able
to improve both the ranking and accuracy of both CatBoost and XGBoost. Since the CatBoost
method is the leading method in multiple benchmarks, including AMLB, this constitutes a new
state-of-the-art result.

The same improvement, in both mean ranking and in mean accuracy, is observed for the neural
methods, whether MLP-based on attention-based. In this case, g is trained together with f for the
entire training duration.

Finally, even for the classical k Nearest Neighbours (kNN), applying the same transfer-learning g
we employ for the GBDT methods improves the mean rank and accuracy. In this case, we do not
apply the test time augmentation, since there is no direct equivalent of Eq. 6.
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(a) (b)

Figure 4: The parameter sensitivity study for the training parameters. (a) varying d/k the ratio of
features selected from the second sample, (b) varying λ that balances the loss terms used to train g.

A single exception to the positive contribution of our method is the logistic regression method, for
which applying our method hurts performance. This is likely to be due to the limited capacity of
this method (recall that kNN is simple but has infinite capacity).

To further visualize these multiple-methods multiple-dataset results, we employ a Dolan-More pro-
file (Dolan & Moré, 2002). In such profiles, there is a single graph per method, depicting the ratio of
benchmarks (y-axis) for which the method obtains up to a fraction θ of the maximal score obtained
by any of the methods. Unlike conventional Dolan-More profiles, that aim at reducing cost and in
which the x-axis is increasing, when a higher score is preferable, θ is presented along the x-axis in
a decreasing order, starting with a value of one. A dominating method would obtain a ratio of 1.0
closer to θ = 1, i.e., it would be within a narrow range of the best results obtained.

Fig. 2 presents this type of profile based on the accuracy scores on the AMLB benchmark. Evi-
dently, our method boosts the performance of each of the classification methods, except for Logistic
Regression. The dominance of the CatBoost method, when it is augmented by our method, is clear.

To observe the distribution of accuracy scores per dataset before and after applying our method,
we provide a per-method visualization in Fig. 3. Each panel presents, for one specific method, the
accuracy without our method (x-axis) and with it (y-axis). As can be seen, most data points (each
representing a single tabular dataset from AMLB) are above the diagonal. The few cases where the
accuracy without our method is preferable occur for low-accuracy datasets. It is possible that for
such datasets g, which is co-trained with the classifier f , is less reliable.

4.5 ABLATION ANALYSIS

Figure 5: Sensitivity analysis for α.

Snapmix (Huang et al., 2021) employs
CAM (Zhou et al., 2016) of the trained clas-
sifier f in order to determine the mixing weights.
In order to check the performance of this method
for tabular data, we apply it to the MLP classifier
f . After trying a few options, we employ Grad-
CAM (Selvaraju et al., 2017), which seems to
outperform CAM. As can be seen in Tab. 1 this
combination provides a significant improvement
over the MLP baseline, which is still lower than
what our method is able to achieve. These con-
clusions are further supported by the Dolan-More
profile in Fig. 2. Note that this application is done
for both training time and inference time (as in
Eq. 6), otherwise, the improvement is lower.
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Two additional ablation experiments are performed to check whether the regularizer Lm is helpful
and the inference time augmentation. These are done as part of a parameter sensitivity study when
setting the associated coefficients to zero.

The parameter sensitivity study that explores the behavior of our method when modifying its param-
eters is depicted in Fig. 4 and Fig. 5. Three parameters are considered: the ratio of features obtained
from the second sample of the pair of mixed samples, which has a default value of 1/8, and the
coefficients of the loss term Lm in Eq. 5 and the inference-time mixing coefficient α (Eq. 6), both of
which have a default value of 0.1. The results are shown for MLP, TabTransformer, and CatBoost,
where for the latter, the matrix g of the MLP is used.

As can be seen, the default values are close to optimal for the three methods tested. However, one
can obtain a slightly better value of α for TabTransformer. Reassuringly, the value of λ = 0 (α = 0)
is not optimal, showing the benefit of regularizing g (inference-time augmentation).

5 LIMITATIONS

Motivated by (i) simplicity, (ii) fairness when comparing between methods, (iii) the need to avoid
multiple hypotheses, and (iv) limited resources, we do not optimize the parameters of the classifiers
to the datasets, and instead employ the default parameters used in the tabular classification literature.
When allowing the selection of per dataset parameters, one can obtain better accuracy, especially
given the heterogeneous nature of the benchmark. However, we note that for the SOTA method of
CatBoost, which we improve, per-dataset selection seems deleterious Zhu et al. (2023). Therefore,
our experiments do show SOTA results even with the single set of default hyperparameters.

The auxiliary network g provides a soft feature selection that differs between samples, see Fig. 1. We
focus on the prediction outcome and do not attempt to validate the selected features, or present cases
in which having a between-sample variability of features importance score would be beneficial. This
may be possible, for example, on genetic datasets, where the importance of each gene in a certain
context can be justified.

Likewise, the work does not yet explore the more intricate question of how the primary network
f is affected by being co-trained with g. Clearly, based on the improvement in performance, the
primary model becomes more powerful. However, in what ways? does it become more linear in
some embedding space (due to the mixing of samples), less reliant on specific features (due to the
random augmentation), better able to grasp multiple modes of data in each class, or, conversely,
becomes more regularized and effectively loses capacity?

Lastly, the method can be improved in various ways that require further exploration. Network g may
not need to be a separate network, and could be a 2nd prediction head of the classifier network f .
Warmup rounds, where f is trained without g may also help.

6 CONCLUSIONS

Mixing-based data augmentation techniques are an effective tool in computer vision. However, they
have been only sporadically shown to be successful in tabular data. Indeed, as we demonstrate in
our ablation study, the existing mixing methods are only partly effective for tabular data.

In this work, we add an auxiliary network that is used to measure how much of the relevant infor-
mation in a given sample is passed to the mixed sample. This information is then used to define the
loss of the virtual sample that is created by mixing.

The method is generic, does not make any assumptions about the data or the primary model, and is
efficient to compute. On an accepted and comprehensive benchmark of tabular data, our method is
shown to improve the performance of a varied set of neural methods.

In Tabular data analysis, neural methods still lag in performance in comparison to boosting methods.
Network g cannot be learned directly in these cases, since its training requires a gradient signal that
is not provided by these non-differentiable methods. However, using the network g learned for an
MLP to augment the training data of the leading boosting methods leads to a sizable improvement
in their performance and to new state of the art results.
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