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Abstract

Rendering produces 2D images from 3D scene representations, yet how continuous
variations in camera pose and scenes influence these images—and, consequently,
downstream visual models—remains underexplored. We introduce abstract ren-
dering, a framework that computes provable bounds on all images rendered under
continuously varying camera poses and scenes. The resulting abstract image, ex-
pressed as a set of constraints over the image matrix, enables rigorous uncertainty
propagation through downstream neural networks and thereby supports certification
of model behavior under realistic 3D semantic perturbations, far beyond traditional
pixel-level noise models. Our approach propagates camera pose uncertainty through
each rendering step using efficient piecewise linear bounds, including custom ab-
stractions for three rendering-specific operations—matrix inversion, sorting-based
aggregation, and cumulative product summation—not supported by standard tools.
Our implementation, ABSTRACTRENDER, targets two state-of-the-art photore-
alistic scene representations—3D Gaussian Splats and Neural Radiance Fields
(NeRF)—and scales to complex scenes with up to 1M Gaussians. Our computed
abstract images achieve up to 3% over-approximation error compared to sampling
results (baseline). Through experiments on classification (ResNet), object detec-
tion (YOLO), and pose estimation (GATENet) tasks, we demonstrate that abstract
rendering enables formal certification of downstream models under realistic 3D
variations—an essential step toward safety-critical vision systems.

1 Introduction

Rendering produces 2D images from 3D scenes and underpins visual computing. Two prominent
neural scene representations are Gaussian Splats [1] and Neural Radiance Fields (NeRFs) [2]].
Gaussian Splats represent a scene as a collection of 3D Gaussians whose colors are blended after
projection onto the image plane, whereas NeRFs encode scenes as neural networks mapping 3D
positions and viewing directions to color and density, rendered via ray casting and volumetric
integration. These methods exemplify rasterization- and ray-casting-based paradigms that achieve
photorealistic reconstruction and novel-view synthesis [3]. However, rigorous analysis of how
variations in camera pose or scene geometry affect the rendered outputs—and consequently the
predictions of downstream models such as classifiers, object detectors, and pose estimators—remains
limited, leaving the robustness of vision systems under realistic 3D perturbations largely unexplored.

Although formal verification has been extensively developed for standalone neural networks [4} 5],
verifying rendering pipelines poses a fundamentally different challenge. A recent work [6] considers a
version of this problem for simpler mesh-based scenes, but a general treatment remains open. Formal
verification of rendering seeks to compute the set of all possible images generated under continuous
variations in camera pose and scene. When coupled with downstream perception models this enables
guarantees like “no misclassification occurs during camera panning within a specified range” or
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“the relative pose error remains bounded within tolerance across viewpoints.” Such guarantees are
crucial for safety-critical applications [7] including aircraft auto-landing [8]] and formation-flight[9].
Verifying rendering is challenging because ray-casting and rasterization involve neural components,
volumetric integration, and nonsmooth operations such as sorting. Consequently, reasoning about
rendering requires composing verification techniques across heterogeneous computational layers, a
capability absent from existing frameworks.

In this paper, we introduce Abstract Rendering, a method for computing the set of all possible
images rendered from a continuously varying range of camera poses looking at a scene with a range
variations. This set of images, referred to as an Abstract Image, is compactly represented using
constraints on the image matrix, such as interval or linear bounds. This computed abstract image can
then be passed through an existing neural network verification tool [4] to verify models for visual
tasks. Our framework is illustrated in Figure[I] with representative results in Figure[d For example,
consider a ResNet classifier downstream of a camera rotating 360° around an airplane in a 3D scene;
our method certifies the subrange of viewing angles over which the airplane is classified correctly.

Our framework: Abstract Rendering + Downstream Certification

Dozer: [0.75,0.8]
Chair: [0.15,0.2]
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Figure 1: Pipeline of applying abstract rendering to certify downstream network. A range of camera pose
uncertainty in a NeRF scene (Left) is propagated step by step through the rendering process (Left Mid) to
produce abstract images (Mid). These abstract images are then passed through the downstream network layer by
layer (Right Mid), yielding per-class output bounds (Right). For classification, if the lower bound of the Dozer
class exceeds the upper bounds of all other classes, the prediction is certified under the given camera uncertainty.

Our abstract rendering algorithm applies linear sets to represent and propagate uncertainties from
camera pose and scene parameters, through the rendering pipeline. By decomposing the rendering
process into composition of basic operations, we develop linear bound propagation rules that maintain
tight output bounds when transforming linear input sets. This compositional approach ultimately
produces an abstract image that preserves uncertainty information. To optimize the trade-off between
bound precision and computational efficiency, we adopt CROWN [10} [11]] for handling standard
operations like division and matrix multiplication.

However, certain operators in the rendering process lack native support. To address this, we develop
novel linear bound propagation techniques for three rendering-specific operations: matrix inversion,
sorting-based aggregation, and cumulative product summation. For matrix inversion required in
computing projected 2D Gaussian probability densities, our Taylor series-based approximation
produces tighter linear bounds than standard adjugate methods. Sorting-based aggregation, critical for
occlusion determination between Gaussians, is reformulated as an equivalent indicator-based process
to mitigate over-approximation caused by independently bounding sorted outputs while ignoring
index mutual exclusivity. Cumulative product summation, used in opacity/occlusion-weighted value
aggregation, employs an ordered strategy that significantly improves bound tightness (particularly
beyond 1,000 terms) at moderate computational expense.

In summary, our key contributions are as follows. (1) We introduce the first abstract rendering
algorithm to compute abstract images for scenes represented by Gaussian Splats and NeRFs under
semantic variations in the 3D world. (2) We develop a unified mathematical and software frame-
work for abstracting rendering pipelines, with novel techniques for matrix inversion, sorting-based
aggregation, and cumulative product summation, extending beyond what is supported by existing
tools like CROWN. (3) We integrate abstract rendering with neural network verification tool —
CROWN, to certify visual tasks such as image classification, pose estimation, and object detection,
enabling statements like: “Across camera viewpoints or scene variations, the target model consistently
classifies, estimates, or detects object within specified error bounds.”



2 Related Work

The only closely related work computes abstract images for triangular mesh scenes [6]. To handle
camera-pose uncertainty, that method collects each pixel’s RGB values into intervals over all possible
viewpoints. In practice, this amounts to computing partial interval depth-images for each triangle and
merging them using a depth-based union, resulting in an interval image that over-approximates all
concrete images for that region of poses. This work considers only camera translations, not rotations.
Our method works with Gaussian splatting or NeRF which involve more complex operations and are
learnable.

Numerous methods exist in neural network verification [5} [12} [13] [14} [15} [16], including SMT-
based approaches [17] and MIP-based techniques [18]]. Among these, linear bound propagation has
emerged as a prominent strategy, leveraging linear relaxations of nonlinear activations and propagating
these bounds layer-wise to efficiently compute output guarantees [[19} [11} 20]. Researchers have
further advanced the field by introducing complex geometric abstractions such as polyhedra [21],
zonotopes [22]], and starsets [16l [14]]. However, our work diverges conceptually from traditional
neural network verification: rather than verifying neural networks themselves, we focus on verifying
a broader algorithmic framework that embeds neural networks as components. Crucially, many
operations encountered in this context, such as matrix inverse, sorting or cumulative product, are not
handled by existing neural network verification tools, necessitating novel theoretical and technical
innovations.

Adversarial robustness has been studied most deeply for pixel-space perturbations, where attacks [23|
2411251261127 and certificates [11, 20,14, 16, 28] are constrained to small /,, balls around the original
image. Follow-up work broadened the threat model to 2D semantic transforms [29, |30} 31} 132, 33|
341,135,136, 137, 1381,139, 140]], including global hue or brightness shifts, in-plane rotations, translations,
elastic warps, but still treats the scene as a rigid 2D grid. Our method, instead, handles semantic, 3D
perturbations that stem from changing the camera pose itself (e.g., orbiting or translating the camera
around a fixed object), which jointly affect all pixels in a viewpoint-consistent manner.

Only a handful of papers explore this regime. Athalye [41] synthesizes 3D-printable adversarial
objects that fool classifiers over many viewpoints, yet offer no formal guarantee of success across the
entire pose distribution. Camera-Motion Smoothing (CMS) by Hu [42] provides the first certificates
for small six-DoF camera perturbations via randomized smoothing, but it relies on dense point-cloud
supervision and is restricted to narrow pose radii. In Hu’s later work [43]], he partitions pose space
and smooths in the image domain to improve efficiency, yet still yields conservative bounds over
only modest displacements. View-Invariant Adversarial Perturbations (VIAP) [44] craft attacks that
remain effective across multiple viewpoints, but—as with Athalye et al.—provide no certification.
Our approach is the first to deliver tight, end-to-end formal guarantees for standard vision networks
across a full 360° camera sweep with realistic rendering.

3 Preliminaries: Linear Approximations and Rendering Algorithms

Abstract Rendering bounds uncertainty in rendered images by propagating linear bound through each
operation within the rendering pipeline. In this section, we delineate the fundamental operations
integral to rendering algorithms and demonstrate their amenability to tight linear over-approximations.
Subsequently, we provide an overview of two prominent neural rendering techniques: 3D Gaussian
Splatting and Neural Radiance Fields (NeRF).

3.1 Linear Over-approximability

Notations. For vectors or matrices z, y of the same shape, © < y denotes element-wise comparison.
The Frobenius norm of a vector or matrix z is denoted by ||z||. Boldface (e.g., pc) indicates set-
valued variables, while non-bold (e.g., pc) denotes fixed values. A linear set (or polytope) is defined
as {x € R" | Az < b}, where Ax < b specifies linear constraints. A piecewise linear relation
R C R™ x R™ has the form {(x,y) | Az +b<y < Ax+b, Az < b} , where A, 4,b,b define

linear bounds on ¥ given x. A constant relation is a special case where A = A = 0.

We consider a class of functions that can be tightly over-approximated by piecewise linear lower and
upper bounds over any compact input domain.



Definition 1. A function f : S — R™ is called linearly over-approximable if, for any compact
X C Sande > 0, there exist piecewise linear maps Ux,ux : X — R™ such that for all x € X,
lx(z) < f(z) ux(z) and lux(z) — Ix(2)] < e.

Proposition 1. Any continuous function is linearly over-approximable.

Although Proposition [T|implies piecewise linear bounds on continuous functions can be adjusted
sufficiently tight by shrinking the neighborhood, finding accurate bounds over larger neighborhoods
remains a significant challenge. Our implementation of abstract rendering employs CROWN [10]
for computing such bounds. Except for Ind and Sort, all the basic operations listed in Table|I|are
continuous and therefore linearly over-approximable. Moreover, since Ind is a piecewise constant
function, it can be tightly bounded on each subdomain by partitioning at x = 0, allowing it to be
treated as a linearly over-approximable function. This is formalized in Corollary [I]

Corollary 1. All operations in Table[l} except for Sort, are linearly over-approximable.

Table 1: Basic Operation Table. Conditional A?B : C returns B if A is true and otherwise C. Permuting x
based on y means reordering the elements of x according to the indices that sort y in ascending order. E.g.,
permuting (9, 3, 7) based on (5, 13, 8) results in (9, 7, 3).

Operation Inputs Output Math Representation
Element-wise add (Add) x,y € R*™ z € Rvxm Zij = Tij + Yij
Element-wise multiply (Mul) x,y € RP*m z € RvXm Zij = Tij - Yij
Division (Div) z e RLF™ z e RLG™ zij = 1/ay;

Matrix multiplication (Mmul) r € RV gy c RM*k 5 ¢ RXk z=x XYy

Matrix inverse (Inv) x € R"™ det(z) #0 ze R™™ 2=zt

Matrix power (Pow) zeR™ keN z € Rxn z=zxk

Summation (Sum) reR” z€eR z= Zle T;
Product (Prod) x € R"” z€R z= Hle z;

Matrix transpose (T) x € RMxm™ z € RmMxn Zij = Zji
Element-wise exponential (Exp) z € R*"*™ z € RP*™ Zij = ¥

Frobenius norm (Norm) x € Rm>xm z € Rxg z = ||z|
Element-wise indicator (Ind) x € RMxm z € Rvxm zij = (z;; >0)?1:0
Sorting (Sort) zeR” z € R",y € R® permute x based on y

3.2 Rendering Algorithms: Gaussian Splat and NeRF

Scenes and Camera Model A 3D Gaussian scene ScG is defined as a finite collection of 3D
Gaussians in world coordinate frame w indexed by |. Each 3D Gaussian is specified by its mean
L, covariance X, opacity o and RGB color c. For simplicity, we use RGB instead of spherical
harmonics to represent 3D Gaussians’ colors. A neural radiance field ScN consists of an opacity
network F, mapping 3D points to opacity, a color network F. mapping 3D points and view directions
to color, maximum sampling distance L, and sampling count N. A camera C' is characterized by
translation T € R3, rotation R € R3*3, focal lengths (fy,f,) € R?, and principal point offsets
(cx, cy) € R2.

Gaussian Splat rendering Algorithm || takes a Gaussian scene ScG, a camera C and a pixel
coordinate u, and outputs the rendered RGB value pc at pixel u. Rendering proceeds in four steps:
(1) it transforms 3D Gaussians from world to camera coordinate (g, 2.) (Line ; (2) it projects
3D Gaussians onto image plane (11, ) and computes its weighed probability density a at pixel u
(Line [AHI0); (3) it sorts the Gaussians according to the distance of their means to the image plane
(Line [[1HI4); (4) it computes pc by aggregating the colors of all Gaussians weighted according to
their relative positions (Line [T6HT8). The full image is rendered by applying GAUSSIANSPLAT at
every pixel location.

NeRF rendering Algorithm [2]takes as input a neural radiance field ScN, a camera C, and a pixel
coordinate u, and outputs the rendered RGB value pc at that pixel. The rendering proceeds in three
steps: (1) it computes the normalized direction of the camera ray dir,, corresponding to u and samples
N points x along the ray within the maximum range L (Line[TH4); (2) it evaluates the opacity and



Algorithm 1 GAUSSIANSPLAT(ScG, C, u) Algorithm 2 NERF(ScN, C, u)

1: foralli € |do o dire < | g%, B, 1}

2: /’LC[I] +~ Rx (MW[I] - T) . direxRT
3 %] R x Lfi 2: dirw  Sig;
e 0 o 3: for alli € range(N) do
4 Km — |f%8,2] f, ;L%lyﬂ]] 4: [] . T-l— (2i— 1) L-diry,
peli;2] Heli;2] | 5: C[] ( [] dlrw)
fi 0 _ fepefi,0] 6: oli] + ( i)
5: J[l] — peli,2] Hc2[i32] :
: 0 v fywefid] 7. ali] p( ofi- L)
. _HC['a2] #CQ['-Q]
6: ppli] = K x MCH . 8: ocli] + j=1(1 —afj])
7o D[] ¢ Ji] x Xcfi] x J[i] 9: end for
8: C?n'CH v (3 fi) _ 10: pc + SN (ocli] - afi] - cli])
9: qfi] = (u—pp[) 7" 1>< Conicli] x (u — ppli]) 11: return pc
10:  afi] « ofi] - Exp(—3 - qfi])
11: dfi] < ucli, 2] Algorithm 3 MATRIXINV (X, Xef, k)
12: end for _
13: as < Sort(a,d) I AX = —(X = Xref) X Xf
14: cs + Sort(c,d) 2: assert HAkX” <11
15: foralli € ldo 3t Xp = Yoo X,of X Pow(AX, i)
. _ AX k41
i? end fo[r] e 1(1 =<l 4 Xg o [Xor I |1|—HRXII
) N . . . 5. IXinv <~ Xp — Xgr
18: pc > ._,(ocli] - as[i] - cs]i]) 6: uXinv < Xp + Xgr
19: return pc 7: return (IXinv, uXinv)

color of each sampled point using the networks F,, and F. (Line E]—@; (3) it aggregates the colors
along the ray by computing a weighted sum based on the opacity and depth ordering of the samples

(Line [7TH10)).

Having introduced two representative rendering algorithms, we now present a formal definition of
abstract rendering.

Abstract rendering problem. Our goal is to design an algorithm that for all pixel u € WH, it takes
as input a linear set of scenes Sc and cameras C, and outputs a linear set of pixel color pc such that
GAUSSIANSPLAT(Sc, C, u) € pc or NERF(Sc, C,u) € pc) for each Sc € Scand C € C.

4 Methodology: Abstract Rendering

Our abstract rendering algorithm processes scene and camera inputs by incrementally building
piecewise linear relations between intermediate variables and inputs through standard rendering
steps, proceeding until pixel-input relationships are established. These relations enable linear bound
computation for each pixel, yielding linear bound for image. Since most GAUSSIANSPLAT and NERF
operations are linear, their relations compose directly. In this section, we highlight three rendering-
specific nonlinear operations (matrix inverse, sorting-based aggregation and cumulative product
summation) and introduce tailored techniques to tightly bound them with linear over-approximations.

4.1 Abstracting Matrix Inverse by Taylor Series

Bounding matrix inversion (Lineof GAUSSIANSPLAT) via the adjugate methoﬂ often introduces
significant over-approximation due to uncertainty in the denominator. To address this, we propose a
Taylor series-based algorithm, MATRIXINV (Algorithm [3)), which reformulates matrix inversion using
only addition, multiplication, and the inverse of a fixed reference matrix. Although the remainder
term still involves division, its influence diminishes as the Taylor order increases.

’The adjugate method computes the inverse as the adjugate matrix divided by the determinant.



Algorithm 4 VR-IND(a, ¢, d) Algorithm 5 SUMCUMPROD(a, )

1: foralli € | do 1: pc+ [0,0,0]

2: ocli] + J!\lzl (1 —a[j] - Ind(d[i] — d[j])) 2: for alli € reverse(l) do

3: end for 3: pc < ali] - c[i] + (1 — a[i]) - pc
4: pc < ZiN:l(oc[i] -afi] - c[i]) 4: end for

5: return pc 5: return pc

MATRIXINV takes a non-singular matrix X, a non-singular reference matrix X,ef, and a Taylor order k
as input, and returns lower and upper bounds IXinv and uXinv for X . The algorithm first checks the
convergence condition (Line[2), then computes the k-th order Taylor approximation and its remainder
(Lines 3H4), and finally derives bounds via basic addition and subtraction (Lines [5H6).

Lemma 1. Given any non-singular matrix X, the output of Algorithm MATRIXINV (IXinv, uXinv)
satisfies that: 1Xinv < Inv(X) < uXinv.

Lemma [I] guarantees that MATRIXINV yields valid bounds for the Inv operation with fixed input.
When extended to a linear set of input matrices, the linear bounds of |Xinv and uXinv can be obtained
by propagating linear relations line by line. Their union defines the overall linear bounds for the
inversion. Example [T]illustrates the advantage of using MATRIXINV over the adjugate method in
terms of bound tightness.

Example 1. Given the constant lower and upper bounds of input matrices,

{0.60 0.2} — [0.90 0.02]

X=1_002 090 X =1002 1.30

we combine lower bound of |Xinv and upper bound of uXinv as overall bounds for Inv operation,
and take ||uXinv — IXinv|| as measurement for bound tightness. The adjugate method yields a bound
width of 1.22, while MATRIXINV reduces it to 0.70, closely matching the empirical value of 0.66.

4.2 Abstracting Sorting-based Summation by Indicator

The sorting step in Lines[T3HT4]of GAUSSIANSPLAT models occlusion: a front Gaussian occludes
those behind, but not vice versa. Bounding sorted elements independently introduces large over-
approximations in the final pixel color (Line[T8), as it neglects the inherent ordering constraint. To
mitigate this, we introduce VR-IND (Algorithm [d)), which replaces sorting with pairwise indicator-
based occlusion modeling. This approach preserves the output while significantly improving bound
tightness in linear relaxation.

Lemma 2. For any given inputs — effective opacities a, colors c and depth d, VR-IND outputs the
same value as computation from Line[I3|to Line[I8|in GAUSSIANSPLAT.

Lemma [2] confirms that VR-IND produces the same output as Lines [[3HI8]in GAUSSIANSPLAT,
capturing both occlusion (Line[2) and color aggregation (Line[d) without explicit sorting. Example 2]
further demonstrates its advantage in reducing over-approximation.

Example 2. Consider a scene with three Gaussians (red, green, blue) and a camera at the origin
facing upward, with each coordinate perturbed by +0.3. As shown in Figure [2] the upper bound
obtained via linear relaxation through VR-IND is significantly tighter than that derived from direct
bound propagation through GAUSSIANSPLAT. An analytical example is given in Appendix[A]

4.3 Abstract Summation of Cumulative Product

The summation of cumulative products arises in Lines [SHI0]of NERF, where occlusion effects are
computed and colors are aggregated to produce the final pixel color. Naively bounding each element
of oc independently and then aggregating can lead to significant over-approximation, since the
intermediate terms a are shared across multiple entries. To mitigate this, we propose a factorization-
based formulation, SUMCUMPROD (Algorithm E]), which computes each element of a only once
in the final expression for pc. This approach preserves exactness for fixed inputs while enabling
substantially tighter bounds during linear relaxation.

Lemma 3. For any given inputs — effective opacities a, colors c, SUMCUMPROD outputs the same
value as computation from Line[8|to Line[I0]in NERF.
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Figure 2: Examplel (left) shows the three-Gaussian scene. The corresponding upper bounds are visualized
as follows: via GAUSSIANSPLAT (mid-left), via VR-IND (mid-right), and via sampling (right). Notably, the
bounds produced by VR-IND are tighter (darker) and closely align with the sampled results.

Lemma[3|confirms that, for fixed input, SUMCUMPROD exactly reproduces the original NERF output
without explicitly computing occlusion for each sampled point. Example [3|shows that it produces
much tighter bounds than the standard method. However, SUMCUMPROD has two limitations: (1)
its recursive structure necessitates iterative bound propagation, thereby increasing computational
cost; (2) it assumes a fixed order of a, restricting its applicability to Gaussian-represented scenes
where the Gaussian depth order remains unchanged, such as in scenarios involving camera translation
uncertainty.

Example 3. Consider a single-channel color c = [0.8,1.0,0.9,0.8,0.5] and effective opacity a =
[0.2,0.5,0.6,0.8,0.1] with £0.1 perturbations on each ali]. SUMCUMPROD yields a tight bound on
output pixel color, [0.826,0.926], versus a looser [0.780, 1.029] from Lines[8{I0]of NERF. Sampling
10,000 random perturbations gives [0.831,0.922], closely matching the result from SUMCUMPROD.

4.4 Linear Approximability of ABSTRACTRENDER

The operations in MATRIXINV, VR-IND, and SUMCUMPROD fall within those listed in Table E}
Since sorting can be eliminated using VR-IND, and all remaining operations are linear over-
approximable, we arrive at Theorem [I] It states that both GAUSSIANSPLAT and NERF can be
rewritten using only linearly approximable operations, enabling computation of tight bounds via
input domain partitioning.

Theorem 1. By replacing components of GAUSSIANSPLAT and NERF with MATRIXINV, VR-IND,
and SUMCUMPROD, both rendering algorithms are fully linear over-approximable.

5 Experiments with Abstract Rendering

We implemented the abstract rendering algorithm ABSTRACTRENDER described in Section ] with
both GAUSSIANSPLAT and NERF. As mentioned earlier, the linear approximation of the continuous
operations in Table([T]is implemented using CROWN' [10]].

Scene Description. We evaluate ABSTRACTRENDER on scenes of varying scales and complexities,
represented using GAUSSIANSPLAT and NERF. The scenes include: Lego, Chair, and Drums [2]],
which are single-object scenes on empty backgrounds; PineTree [6], a synthetic boulevard scene
with trees; Airport [8], a large-scale photorealistic airport environment; Garden [1]], a real-world
scene; and Airplane, Truck, and Car, containing objects corresponding to CIFAR-10 classes.
GAUSSIANSPLAT reconstructions are generated using Splatfacto [45], while those of NERF are
trained with the vanilla NERF algorithm [2], both implemented with standard Nerfstudio settings.
Further details of these scenes are provided in the appendix.

Experimental Setup. For each scene, we evaluate ABSTRACTRENDER under varying camera
poses and input perturbations. As a baseline, we construct empirical bound images by (1) sampling
50 images per input partition (the full perturbation range is divided into hundreds or thousands of
partitions) and (2) computing pixel-wise lower and upper bounds across the samples. Since exhaustive
enumeration is infeasible, these empirical bound images are under-approximations of the exact set
of renderable images, whereas our framework provides sound over-approximations. The proximity
of ABSTRACTRENDER results to the empirical bound images indicates the tightness of our computed
bounds.



Metrics and Evaluation. To measure the tightness between the pixel-wise lower and upper bound
images, we report Mean Pixel Gap (MPG) and Max Pixel Gap (XPG), defined as:

1 - -
MPG = WJEEW:H 156 — paill,  XPG = max |65 — p|

where pc; and pc; denote the pixel-wise upper and lower bounds, and WH represents the set of all pixel
coordinates on the image plane. Smaller values of MPG or XPG indicate a smaller difference between
the lower and upper bound images. Table [2]summarizes the results across different scene represen-
tations and perturbations, while Figure 3] visualizes the comparison between ABSTRACTRENDER
results and empirical bounds for two scenes: Airplane and Lego.

Table 2: ABSTRACTRENDER results for scenes represented by GAUSSIANSPLAT (GS) and NERF,
along with empirical bounds. CPR: Camera Perturbation Range; Dim: Perturbation Dimension; Res:
Rendered Image Resolution; Rt: Runtime (min); MPG: mean pixel gap; XPG: maximum pixel gap.

GS NeRF Empirical
Rt MPG XPG Rt MPG XPG MPG XPG

Lego 0.1 (rad) yaw 80x80 22 051 1.73 25 040 1.73 0.22 1.57
Chair 0.1 (rad) yaw 50x50 17 0.46 1.73 20 040 1.73 040 1.72
Drums 0.1 (m) x 50x50 53 0.19 1.62 58 0.16 1.55 0.13 1.54
PineTree 2 (m) x 72x72 4.1 027 1.73 49 023 1.73 0.06 1.37
PineTree 10 (m) x 72x72 24 047 173 28 036 1.73 0.18 1.37
Airport  0.027 (rad) roll 160x160 27 0.56 1.69 35 042 1.63 0.21 1.38
Airport  0.03 (rad) roll 160x160 30 0.59 1.70 43 0.51 1.68 0.22 1.4l
Garden 0.5 (m) x 100x100 20 0.53 1.59 11 037 1.53 0.34 1.21
Airplane 2 (m) x 80x80 16 041 1.68 19 0.33 1.61 0.15 1.39

Scene CPR Dim Res

AbstractRender Results Empirical Results

Airplane

Lego

Figure 3: Comparison of lower and upper images produced by ABSTRACTRENDER (Left) and
empirical approach (Right). The Airplane scene (Top) is represented by GAUSSIANSPLAT, while
the Lego scene (Bottom) is represented by NERF. The experimental settings for both cases follow
those reported in Table

From Table[2] we see that ABSTRACTRENDER is applicable to diverse scenes, including single-object
(Lego), synthetic (PineTree), and large-scale realistic (Airport, Garden) scenes, with reasonable
runtime at 200 x 200 resolution. The framework supports camera perturbations in both position (x, y,
z) and orientation (roll, pitch, yaw). The metrics (MPG and XPG) computed by ABSTRACTRENDER
(under GS and NeRF columns in Table [2) are larger than the corresponding empirical bounds,
as expected, since our framework produces over-approximations, which inherently encompass a
larger image space than the under-approximated empirical bounds. We further observe that bounds
computed for NERF exhibit tighter margins than those for GAUSSIANSPLAT, as indicated by smaller
MPG/XPG gaps relative to empirical samples. This is because NERF can leverage our linear bound



relaxation for cumulative product summation (Section[4.3), whereas GAUSSIANSPLAT cannot, due
to variations in the depth of 3D Gaussians on the image plane under camera rotation uncertainty.

Overall, these experimental results confirm that our method produces sound over-approximations that
are meaningfully tight for rendered images from both GAUSSIANSPLAT and NERF under camera
pose uncertainty.

ABSTRACTRENDER for Certified Classification This experiment evaluates ABSTRACTRENDER
for certifying neural classifier robustness against camera pose perturbations. We test whether a
pretrained CIFAR-10 ResNet [46] maintains correct predictions as the camera orbits the target
object azimuthally over 360° at fixed distance and elevation. The 360° range is partitioned into
angular intervals, and ABSTRACTRENDER computes abstract images for each, which are propagated
through the classifier via CROWN [10] for set-based certification. An interval is robust if the lower
bound of the target label exceeds the upper bounds of all other classes. Verification coverage is
the percentage of certifiably robust intervals. Table [3]shows results for Airplane, Car, and Truck
in GAUSSIANSPLAT and NERF scenes. Figure [d] visualizes camera regions where the classifier is
certifiably correct (green) and regions without such guarantees (red). Regions capturing more of the
object or its distinctive features are more likely to be verified as robust, e.g., the lateral views of the
airplane and car, and the front-left view of the truck.

Table 3: Classifier certification results. Obj: Target Object; SR: Scene Representation, either
GAUSSIANSPLAT or NERF; d: Distance to Object Centroid (m); h: Camera Height to Object’s
Horizon Plane (m); Npart: Number of Partitions; PCP-S: Percentage of Correct Partitions via
Sampling; PCP-V: Percentage of Certified Partitions via Formal Verification; Rt: Runtime (min).

Obj SR d h  Npart PCP-S PCP-V Rt
Airplane GS 40 10 62832 96.0% 74.5% 1140.5
Car GS 8 25 62832 963% 76.7%  879.6
Truck GS 4 12 62832 718% 319%  963.4
Airplane NERF 40 36 3142 256% 22.8% 94.3
Car NERF 4 05 3142 759% 42.1% 118.6
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Figure 4: Classifier certification results for Airplane, Car, and Truck in GAUSSIANSPLAT scenes
across 0-360° camera rotations. Green: certified regions—images captured within these camera
positions are always predicted correctly. Red: uncertified regions—images captured within these
camera positions may be predicted incorrectly.

ABSTRACTRENDER for certified pose estimation This experiment evaluates ABSTRACTRENDER
for certifying the robustness of neural pose estimators against camera pose perturbations. We assess
a target pose estimator built upon GateNet [47] (fine-tuned on our airplane and truck datasets) by
partitioning the camera’s translational perturbation range into intervals. ABSTRACTRENDER gener-
ates abstract images capturing all photometric variations within each interval, which are propagated
through the estimator via CROWN to verify whether positional errors between pose estimation and
ground truth holds below a given error tolerance (20% divation from ground truth). Verification cov-
erage is measured as the proportion of robust intervals across the workspace. Table @] reports results



for Airplane and Truck in GAUSSIANSPLAT and NERF scenes, while Figure 5] visualizes camera
regions where the estimator meets the error tolerance (green) versus regions without guarantees (red).
Regions where the target object occupies a substantial portion of the rendered image are easier to
certify—for example, distant regions in GAUSSIANSPLAT scenes and closer regions in NERF scenes,
reflecting the different default camera-object distances in the two settings.

Table 4: Pose estimator and object detecter certification results. Obj: Target Object; SR: Scene
Representation, either GAUSSIANSPLAT or NERF; d: Distance to Object Centroid; CPR: Camera
Perturbation Range (m); PCP-S: Percentage of Correct Partitions via Sampling; PCP-V: Percentage
of Certified Partitions via Formal Verification; Thr: Threshold; Rt: Runtime(min).

Certified Pose Estimation Certified Object Detection
d CPR PCP-S PCP-V Rt Thr CPR PCP-S PCP-V Rt

Airplane GS 174.4 6 52.4% 233% 362.2 0.45 6 81.5% 51.4% 4222
Truck GS 7.8 1 37.6% 22.2% 311.3 0.46 1 472% 42.4% 367.3
Airplane NERF 40 20 46.7% 372% 824 0.12 35 922% 80.4% 121.3
Truck NERF 8 2 751% 70.0% 534 0.12 1.5 100.0% 71.0% 66.5

6 [ 1 [¢] o 2

Obj SR

Figure 5: Pose estimator certification results for Airplane and Truck in GAUSSIANSPLAT scenes
(Left, Middle) and Truck in a NERF scene (Right) across a linear camera translation. Green: certified
regions—camera positions where estimated poses always remain within given error tolerance. Red:
uncertified regions—camera positions where estimated poses may exceed given error tolerance.

ABSTRACTRENDER for certified object detection This experiment evaluates ABSTRACTREN-
DER for certifying neural object detectors under camera pose perturbations. We test a pretrained
detector based on the YOLO?2 architecture [48]], with a backbone from the VNN-COMP 2023 bench-
mar The goal is to assess whether the detector can consistently produce bounding boxes that
exceeds a predefined confidence threshold under camera translations. The camera’s translational
range is partitioned into small intervals. For each interval, ABSTRACTRENDER computes abstract
images. These images are propagated through the YOLO2 detector. An interval is considered
robust if the detector maintains a high-confidence bounding box across all images rendered from that
interval. Table @] reports results for Airplane and Truck in GAUSSIANSPLAT and NERF scenes,
demonstrating ABSTRACTRENDER’s capacity to certify object detection models.

6 Conclusions

Limitations. ABSTRACTRENDER currently has several limitations: First, like other verification
approaches, it takes more time than sampling-based approaches. Second, the correctness of the
analysis assumes the reconstructed scene accurately represents reality. Third, our framework computes
bounds for each pixel’s color independently, ignoring correlations between neighboring pixels.

Despite these limitations, ABSTRACTRENDER is the first framework for computing abstract images
of scenes represented by Gaussian Splats and NeRF under camera pose or scene uncertainty. It is built
using novel linear relational approximations of three rendering-specific operations. By integrating
ABSTRACTRENDER with CROWN, we have enabled certification of visual tasks with respect to
semantic variations in 3D environments. A promising direction for future work is to accommodate
scenes inaccuracies and to certify visual control functions.

*https://github.com/VNN-COMP/vnncomp2023_benchmarks
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A An analytical example illustrating the advantage of Algorithm VR-IND

Consider two purely white Gaussians (with color values set to 1) whose probability densities and
depth to the target pixel are given by a = {0.8,0.5} and d = {z,x + 1}, respectively, where
x € [—1,1]. We aim to compute the worst-case bound of volumetric blending as follows:

pe = ocl0] x as[0] + oc[1] x as[1]

we first determine the output range of pc via Naive interval approach. By plugging in range of z into
the expression of d, we have d[0] = z € [—1, 1], and d[1] = xz+1 € [0, 2]. Since the relative ordering
between d[0] and d[1] cannot be inferred from their interval bound, we must consider both possible
cases: one where (as[0], as[1]) = (a[0], a[1]), and the other where the assignment is reversed. Thus,
we have

as[0], as[1] € [0.5,0.8];

oc[1] € [0.2,0.5]

Hence, the resulting interval bound for pc is:

pce[1-0540.2-0.5,1-0.8+0.5-0.8]=[0.6,1.2]

Next, we determine the output range of pc via proposed algorithm VR-IND, in which the same
computation is encoded symbolically to account for value-dependent assignments. The volumetric
blending procedure is reformulated using indicator functions (Ind), making the dependencies on d
explicit:

[0] = (1 — a0] x Ind(d[0] — d[0])) x (1 — a[l] x Ind(d[0] — d[1]))

[1] = (1 — a[0] x Ind(d[1] — d[0])) x (1 — a[l] x Ind(d[1] — d[1]))

pe = oc[0] x a[0] + oc[1] x a[1]

oc
oc

Given d[0] and d[1], we can compute the values of indicator functions Ind in the above formulation.

Ind(d[0] = d[1]) = Ind(x — (x + 1)) = Ind(—1) =0
Ind(d[1] —d[0]) = Ind((x + 1) —z) = Ind(1) =1
Ind(d[1] — d[1]) = Ind(d[0] — d[0]) = Ind(0) =0

Substituting these indicator values yields:
ocl0)=(1-08x0)x (1-05x0)=1
oc[l] =(1-08x1)x (1—-0.5x0)=0.2
pc=1x084+02x0.5=09
Hence, using VR-IND, we obtain a precise bound pc € [0.9, 0.9], which is significantly tighter than
the interval-based bound of [0.6, 1.2]. Remark: in the real verification pipeline, VR-INDproduces a

linear relaxation set instead of a fixed value. Here we use a simplified case for highlighting VR-IND’s
advantage in terms of bound tightness.

The naive interval method leads to loose bounds due to the loss of dependency information caused by
Sort operation. In contrast, the proposed VR-Ind method preserves input-dependent relationships and
yields significantly tighter bounds.
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B Proofs
Proposition[I} Any continuous function is linearly over-approximable.

Proof. We present a simple proof for scalar f and this can be extended to higher dimensions. We fix
xo € R and a finite slope k € R. Since f(z) — k(z — zo) is continuous, for any € > 0, there must
exist an open neighborhood U (xg) around ¢, such that Vz € R,

[F(&) = (o) = ke = x0)| < 5. M
Equivalently,
F(wo) + k(= 20) = 2 < f(@) < f(w0) + k(= @0) + . @)
We construct candidate linear upper and lower bounds over U as:
ly(z) = k(z — z0) + f(z0) — g up () = k(z — x0) + f(x0) + % 3)

We can check that these linear functions Ii7(2) and uy (z) are valid lower and upper bounds for f(z)
over U, because Va € U(xg):

F@) = lu(@) = f(@) = (k(w = 20) + f(w0) = 5) > =5 + 5 =0, 4
F(@) = (@) = f(@) = (k(x = 20) + Flao) +5) < 5 == =0, s)
Additionally, difference between Iy (x) and uy () is tightly bounded, as Va € U(xo):
Jup () — o (@)] = (k( — 20) + Flao) + 5) = (k(z — 0) + fa0) — ) = = <.

Now, for any compact set B, the collection i{ = {U(x) | « € B} forms an open cover of B. By
the definition of compactness, there exists a finite subcover of B, denoted by {U; = U(x;) | i =
1,...,s}. We can now define piecewise linear functions on B as follows:

up(e) = minuy, (2),

6
l(x) = maxly, (x), if a € {U;]j €T} ©
J

where I is the index set of U; that cover . Consequently, we have

up(z) = minuy, (z) > f(x) > maxly,(z) = (), @)
Jjel Jel
and

lup (@) — 15 (@)] < u, (@) ~ Iy, (@) <e, Vi€l ®)
Thus, f is linearly over-approximable. O

Lemma Given any non-singular matrix X, the output of Algorithm MATRIXINV (IXinv, uXinv)
satisfies that:
[Xinv < Inv(X) < uXinv

Proof. For any non-singular n x n matrices X and X.f, denote their difference as AX = — (X — Xef).
The k" order Taylor Polynomial Xp and remainder Xg of matrix inverse of X, estimated at X,ef, can
be written as follows:

k
Xp =X i > (AX-X ) ©)
i=0
X=X > (AX-X ) (10)
i=k+1
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Assuming that || AX - X }|| < 1, the remainder Xg can be bounded by:

IAX - X [+
||XRH < eref H ||Ax Xref ||I = ”xref H —re (11)
|§1 ||AX Xref ||
Using the bound in inequality we obtain bounds on X1
Xp—Xg < X7t < Xp + Xg (12)

Given the definition of IXinv = Xp — Xg and uXinv = Xp + Xg, we obtain the lower and upper
bound for X! as

Xinv < X~ < uXinv. (13)
O

Lemma[2 For any given inputs — effective opacities a, colors c and depth d, VR-IND outputs the
same value as computation from Line[I3]to Line[I8in GAUSSIANSPLAT.

Proof. We first derive the math expression of pixel color pc from GAUSSIANSPLAT. By denoting
arg sort(d) as a mapping o : | — |, where | refers to the index set of Gaussians, as at Line cs at
Line[[4 and oc at Line [[6] can be written as follows.

as; = aq(j) (14)
CSi = Co (i) (15)
i—1
oC; = H 1-—- ag(j) (16)
According to the definition of Ind operation, we have:
1 ifdj > dj
Ind(d; — d;) = {0 ifd; < d. a7

Then by replacing i, j with o (i), o(j), and multiplying a, ), becomes:

_ _ 2o ifdei > dog)
y - Ind(dyy — dogj)) = { 0 ifdo) < dog) (18)
For any fixed index i, by multiplying all the case in the second branch of (I8)), it follows:

N

[1 = a5 - Ind(do) — dog)) = 1. (19)

j=i
By applying Equation[T6] Equation[T8]and Equation|[I9]into Line[I6] oc; can be written as follows:

i—1

oci = [J(1 - asp)

=1

— a5(i) Ind(da(i) - da(j))) (20
= a,() - Ind(ds () — do(p))

1;[1
o

Then by applying Equation 20]into Line[I8] the pixel color pc computed via Algorithm BLENDSORT
can be expressed as:

N
pc=> | T =20t - nd(doy = do)))ac() ot (21)
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Since the summation and product operations are invariant to the reordering of input elements, and
both indices i and j iterate over the entire index set |, the reordering mapping o in Equation [21]can be
eliminated, resulting in:

N [N
pc :Z H(l — aj - Ind(d;i — dj))aic; (22)
i=1 \j=1

The last equation comes from [I7]
Next, we derive the math expression for pc in Algorithm VR-IND. og; at Line[2]can be written as:

N

oc; = H(l —a; - Ind(d; — dj)) =9

j=1

Then, by applying Equation [23]into Line 4 of Algorithm VR-IND, the expression for pc becomes:

N N
pc :Z H(l — aj - Ind(d;i — dj))aic; (24)
i=1 \j=1

Note that the expressions for pc are identical in both Equation [22]and Equation[24] This demonstrates
that Algorithms BLENDSORT and VR-IND yield the same input-output relationship while applying
different operations, thus completing this proof. O
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C Supplementary Experiment Results

C.1 Detailed Scenario Information

Table [5] summarizes scene configurations and rendering quality metrics for the scenarios discussed in
Section[5] Figure [f]depicts representative GAUSSIANSPLAT-rendered images for each scene.

Table 5: Reconstruction quality for scenes are evaluated by the following metrics: NGauss: Number
of Gaussians used for scene representation, applicable only to Gaussian Splatting; PSNR: Peak
Signal-to-Noise Ratio; SSIM: Structural Similarity Index Measure; LPIPS: Learned Perceptual Image
Patch Similarity.

Scene Gaussian Splatting NeRF

NGauss PSNR SSIM LPIPS PSNR SSIM LPIPS
Lego 43543 25.60 0.95 0.07 21.38 0.81 0.19
Chair 46108 22.98 0.94 0.08 22.56 0.89 0.11
Drums 50877 21.19 0.89 0.10 19.46 0.81 0.23

Pinetree 113368 31.06  0.97 0.06 2241 0.79 0.20
Airport 617371  18.83 0.84 033 20.83 0.72 0.22
Garden 524407  18.74  0.37 032 22.15 0.80 0.20

Plane 51316 28.05 0.95 0.11 2289 0.70 0.26
Truck 47895 2470 094 0.09 23.53 0.75 0.19
Car 34699 26.98 0.93 0.10 20.75  0.69 0.27

Figure 6: Example rendered image for scenario (left to right, top to bottom): Lego, Pinetree,
Airport, Garden, Plane, Truck, Car by GAUSSIANSPLAT.

C.2 Supplementary Results for Certified Classification

Figure[7]compares certified classification regions with those verified by sampling.

C.3 Supplementary Results for Certified Pose Estimation

Figure [ compares certified estimated pose regions with those verified by sampling.

C.4 Supplementary Results for Certified Object Detection

Figure [0 compares certified detection with those verified by sampling.
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Figure 7: Classifier certification result for AIRPLANE, CAR, and TRUCK by GAUSSIANSPLAT across
0-360° camera rotation. Top row: Certified classification result. Bottom row: Classification result
obtained via sampling. Green: Certified/Correct Camera Pose Region. Red: Uncertified/Incorrect

Camera Pose Region.
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Figure 8: Pose estimation certification results for Airplane, Truck by GAUSSIANSPLAT scenes and
Truck by a NERF scene. Top row: Certified pose estimation result. Bottom row: Pose estimation
result obtained via sampling. Green: Certified/Correct Camera Regions. Red: Uncertified/Incorrect
Camera Regions.

C.5 ABSTRACTRENDER Results for Scene Variations

In addition to handling camera pose variations as discussed in Section[5] ABSTRACTRENDER can also
accommodate scene variations. For GAUSSIANSPLAT scenes, we consider variations in meaningful
sets of 3D Gaussian parameters—such as color, mean position, and opacity of objects like trees in
a street scene. For NERF scenes, we consider variations in hue or saturation across all 3D point
colors in the scene. Table [f] presents ABSTRACTRENDER results under these scene variations for
both GAUSSIANSPLAT and NERF representations. Figure [I0] visualizes the abstract image of the
PineTree (a GAUSSIANSPLAT scene) scene under uncertainty in color, mean position, and opacity
of two tree objects. Figure[IT|shows the abstract image of the Lego scene (a NERF scene) under
uncertainty in hue and saturation across all 3D points.
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6 0 1 0

Figure 9: Object detection certification results for Airplane and Truck in GAUSSIANSPLAT scenes.
Top row: Certified object detection result. Bottom row: Object detection result obtained via sampling.
Green: Certified/Correct Camera Regions. Red: Uncertified/Incorrect Camera Regions.

Ours Empirical
MPG XPG MPG XPG

Lego 0.15 hue NeRF 80x80 0.17 1.51 0.14 145

Lego 0.30 satur NeRF 80x80 0.10 1.34 0.09 1.33

Chair 0.20 hue NeRF 80x80 0.65 1.71 037 1.71

Chair 0.50 satur NeRF 80x80 0.76 1.73 0.52 1.73

Drums 0.20 hue NeRF 80x80 0.63 120 0.62 1.20

Drums  0.50 satur NeRF 80x80 0.96 1.36 0.88 1.36

PineTree 0.10 mean GS 96x96 0.27 1.62 0.11 1.27

PineTree 0.20 mean GS 96x96 041 1.73 025 143

PineTree 0.10 op GS 96x96 029 1.53 0.14 1.25

PineTree 0.20 op GS 96x96 0.59 1.73 027 1.23
Table 6: ABSTRACTRENDER results under scene variations, along with empirical bounds. PR:
Perturbation Range; Dim: Perturbation Dimension, satur for saturation, mean for the mean’s position
of a set of Gaussians, op for opacity of a set of Gaussians; SR: Scene Representation; Res: Rendered
Image Resolution; Rt: Runtime (min); MPG: mean pixel gap; XPG: maximum pixel gap.

Scene PR Dim SR Res
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Color Mean Position Opacity

Lower Bound

Upper Bound

Figure 10: Lower (Top) and upper (Bottom) bound under Gaussian color (Left), mean (Mid) and
opacity (Right) perturbation.

AbstractRender Results Empirical Results

Hue

Saturation

Figure 11: Comparison between ABSTRACTRENDER results and empirical results on Legot scene
under perturbations in the hue of 3D points (top row) and saturation of 3D points (bottom row).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly summarize our work’s contribution and main application in the
abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitation of our work in Discussion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are clearly stated and proof can be referred in supplementary
material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We upload our code to github and is reproductive.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23



Answer: [Yes]
Justification: Yes, we uploaded our code to github and is reproductive.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test does not apply for our work, but we provide detail of
experiment setting for ours and baseline.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our work computes rigorous bounds of output images/label. Statistical
Significance does not apply to our work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We run our experiment on 32G A100 GPU. Running times are also provide.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No human participants gets involved in our experiment.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work aims to verify the safety of downstream neural network, able to
mitigating potential negative societal impacts of existing work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work doesn’t have such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have done this.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide a readme for our upload code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not relevant to human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not relevant to human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not involve LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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