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Abstract

Although Convolutional Neural Networks (CNNs) are widely
used for plant disease detection, they require a large num-
ber of training samples while dealing with wide variety of
heterogeneous background. In this paper, a CNN based dual
phase method has been proposed which can work effectively
on small rice grain disease dataset with heterogeneity. At the
first phase, Faster RCNN method is applied for cropping out
the significant portion (rice grain) from an image. This ini-
tial phase results in a secondary dataset of rice grains devoid
of heterogeneous background. Disease classification is per-
formed on such derived and simplified samples using CNN
architectures. Comparison of the dual phase approach with
straight forward application of CNN or Faster RCNN on the
small grain dataset shows the effectiveness of the proposed
method which provides a five fold cross validation accuracy
of 88.11%.

Introduction
As rice grain diseases occur at the very last moment ahead of
harvesting, it does major damage to the cultivation process.
The average loss of rice due to grain discolouration (Baite
et al. 2019) was 18.9% in India. In Bangladesh False Smut
was one of the most destructive rice grain disease (Nessa
2017) from year 2000 to 2017. Collecting field level data on
agronomy is a challenging task in the context of poor and
developing countries. The challenges include lack of equip-
ment and specialists. Farmers of such areas are ignorant of
technology use which makes it quite difficult to collect crop
disease related data efficiently using smart devices via the
farmers. Hence, scarcity of plant disease oriented data is
a common challenge while automating disease detection in
such areas.

Many researches have been undertaken with a view to au-
tomating plant disease detection from the very beginning
of deep learning revolution. Sethy, Negi, and Bhoi (2017)
applied a threshold based clustering algorithm for this task
where they detected defected diseased leaf using K-Means
clustering based segmentation. A genetic algorithm was de-
veloped by Chung et al. (2016) which was used for selecting
essential traits and optimal model parameters for the SVM
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Figure 1: Proposed dual phase approach; Phase one for de-
tection of the significant portion and phase two for classifi-
cation; a multiclass data have been presented as an example
to demonstrate the classification strategy.

classifiers for Bakanae gibberella fujikuroi disease. A tech-
nique to classify the diseases based on percentage of RGB
value of the affected portion was proposed by Islam et al.
(2018) utilizing image processing. A similar technique us-
ing multi-level colour image thresholding was proposed by
Bakar et al. (2018) for RLB disease detection. Deep learn-
ing based object classification and segmentation has become
the state-of-the-art for automatic plant disease detection. Re-
searchers also experimented with AlexNet (Atole and Park
2018) to distinguish among three classes of rice disease us-
ing a small dataset containing 227 images. A similar re-
search for classifying 10 classes of rice disease on a 500
image dataset was undertaken by Lu et al. (2017) using a
handmade deep CNN architecture. Furthermore, the benefit
of using pre-trained model of AlexNet and GoogleNet has
been demonstrated by Brahimi, Boukhalfa, and Moussaoui
(2017) when the training data is not large. Their dataset



consisted of nine tomato diseases. A detailed comparative
analysis of different state-of-the-art CNN baselines and fine
tuned architectures (Rahman et al. 2018) on eight classes
of rice disease and pest also conveys a huge potential. It
demonstrates two-stage training approach for memory effi-
cient small CNN architectures. Faster RCNN has been ap-
plied by Bari et al. (2021) on a real-time approach to diag-
nose rice leaf disease, although this dataset did not contain
natural scene images.

Though the above mentioned researches have a signifi-
cant contribution towards the automation of disease detec-
tion, none of the works addressed the problem of scarcity of
(natural scene) data which limits the performance of CNN
based architectures for creating a productive solution. Most
of the researches focused on image augmentation techniques
to tackle the dataset size issue. But applying different geo-
metric augmentations on small size images (Liu and Gillies
2016; Shorten and Khoshgoftaar 2019) result in nearly the
same type of image production which has drawbacks in
terms of neural network training. Production of similar im-
ages through augmentation (Cogswell et al. 2015) can cause
overfitting as well.

Our proposed method consists of two phases. The first
phase of our proposed method deals with a learning oriented
localization architecture. This architecture helps in detecting
the significant grain portion of a given image that has a het-
erogeneous background, which is an easier task compared
to disease localization. The detected grain portions cropped
from the original image are used as separate simplified im-
ages. In the second phase, these simplistic grain images are
used in order to detect grain disease using fine tuned CNN
architecture. Because of the simplicity of the tasks assigned
in the two phases, our proposed method performs well in
spite of having only 200 images of three classes.

Our Dataset
Our dataset (balanced) of 200 images consists of three
classes - False Smut, Neck Blast and healthy grain class.
Some of these images contain both diseases together. A sam-
ple image (with heterogeneous background) from each class
has been shown in Fig. 2. Data have been obtained and an-
notated from two different sources: (i) image data from a
repository (Rahman et al. 2018) that has undergone previ-
ous testing and (ii) field data collected under the supervision
of staff from the Bangladesh Rice Research Institute (BRRI)
(disease and data collection details in Appendix A).

Class Image Count Image
IncrementPrimary Secondary

False Smut 75 85 10
Neck Blast 63 70 7
Healthy 62 64 2
Total 200 219 19

Table 1: Complete dataset and the count difference of pri-
mary and secondary dataset.

Table 1 shows detail information about our used data.
We consider multi-class images in our dataset (see Fig. 4

of Appendix A). In our dual phase approach, a localization
algorithm localizes the significant grain portions in phase
one. Our secondary dataset comes from this phase - original
image broken down into multiple sub-images consisting of
significant grain portions. This happens especially in multi-
class images (see Fig. 1). No augmentation technique was
applied on the training images as these techniques can be
prone to overfitting. Supplementary public data related to the
paper can be found at https://zenodo.org/record/7582108.

Proposed Dual Phase Approach
Fig. 1 shows an overview of our proposed dual phase ap-
proach which can learn efficiently from a small dataset of
images with significant background heterogeneity. The first
stage involves taking the original image, cropping it to a spe-
cific size, and then running it through a localization-focused
Faster RCNN architecture. From the first stage, two most
significant regions have been chosen by the algorithm (see
Fig. 1). These regions are cropped and resized to a fixed
size. The background of these significant region sub-images
are less heterogeneous compared to the original full im-
age. These straightforward significant region sub-images are
passed on to CNN model for classification into healthy or a
particular disease class.

Stage 1: Localizing Grain Portion
Each input image is resized to 640 × 480 and is passed
through CNN backbone for feature extraction which in turn
is passed on to region proposal network (RPN) for gener-
ating region proposals. These proposed regions are passed
through ROI pooling layer for getting them to fixed size. Fi-
nally, RCNN layer decides which of these proposed regions
are significant (details in Appendix B). The model of this
phase only has to predict the significant portions of each im-
age (labeled accordingly). It does not have to worry about
predicting class.

Stage 2: Disease Detection from Localized Grain
The Faster RCNN architecture is shown drawing bounding
boxes on two significant grain portions in Fig. 1. Each of
these frames is cropped and resized to 300 × 250 before
being passed through a CNN architecture. As a result, the
single image from the primary dataset has been divided into
no more than two images. Each image in the primary dataset
goes through the same procedure. This allows for the cre-
ation of a secondary dataset with significant grain portions
(details in Appendix A). To train the CNN architecture, each
of these images must be assigned to one of the three classes.
As a multi-class data example, the cropped regions in Fig.
1 were predicted by a trained CNN model to represent False
Smut and Neck Blast class.

Experimental Setup
We start this section by presenting our algorithm hyperpa-
rameters (see Table 5 in Appendix D for a better view).

CNN Backbone: ImageNet Pretrained VGG16 model has
been used as CNN backbone for feature extraction.
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Figure 2: Background heterogeneity within the dataset demonstrates that when data were collected, different parameters such as
unique backgrounds, lights, contrast, and distance were taken into account. The percentage next to the class names represents the
overall percentage count. (a) False Smut (37.5%), (b) Neck Blast (31.5%), (c) healthy (31%), (d) multi-class images consisting
of Neck Blast and False Smut (13.5% of whole dataset).

Anchor Box Hyperparameters: We use four different size
anchor boxes (32, 64, 128, 256 pixels) with four different
ratios ((1, 1), ( 1√

2
, 2√

2
), ( 2√

2
, 1√

2
), (2, 2) ) for each box.

So, the algorithm can propose at most 16 (4× 4) anchor
boxes per pixel.

Region Proposal Network (RPN) Hyperparameters:
Any proposed region with IoU (Intersection Over Union)
less than 0.4 with a ground truth object is regarded as
an incorrect guess due to the RPN threshold of 0.4 - 0.8,
whereas any proposed region with IoU greater than
0.8 with a ground truth object is considered correct.
This notion is used for training the RPN layer. Top 200
region proposals from the RPN layer is passed on to
the following layers. During non-max suppression,
overlapping object proposals are excluded if IoU > 0.8.

Learning Rate and Optimizer: Adam optimizer with a
learning rate of 0.0001 is used during model training.

We use mAP score (mean average precision) for looking
at the phase one localization algorithm performance, while
we use accuracy for the stage two classification model. De-
tails of mAP and hardware used for training can be found in
Appendix C.

Results and Discussion
The proposed dual-phase approach has been referred to as
the prime experiment. Straightforward end-to-end classifi-
cation of disease using CNN has been described as counter
experiment 01, while using Faster RCNN/ YOLO to di-
rectly localize and classify significant portions of each im-
age in a single stage has been referred to as counter exper-
iment 02.

Prime Experiment: Dual Phase Approach
Prime experiment has been performed by creating a pipeline
of two phases as shown in Fig. 1. Five fold cross-validation
has been performed for hyperparameter tuning.

Phase One: Localization of Grains Extracting the sig-
nificant portion (grain) from a specific image is the goal
of phase one. Three different CNN architectures (VGG16,
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grain: 91% grain: 94%

grain: 94%grain: 91%
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Figure 3: Prime Experiment: Phase One; Sample Outcome:
Phase One detected two bounding boxes from (a) and (b) as
both boxes meet IoU and accuracy threshold. (c) has only
one box as the second box has not met the IoU or accuracy
threshold.

VGG19, and ResNet50) have been tested as the backbone of
Faster RCNN. Details of the hyperparameter setting deriva-
tion experiments of Faster RCNN have been provided in
Faster RCNN Based Localization Experiments subsection of
Appendix D. The goal of these experiments is to choose hy-
perparameters such that mAP score for significant grain por-
tion localization is maximized. Table 2 shows the five fold
cross-validation mAP scores for the different CNN back-
bones, while utilizing the chosen hyperparameters. Faster
RCNN with VGG16 as backbone achieved the best mAP
score of 76.32 ± 2.29. Some sample outcomes from phase
one are shown in Fig. 3.

Phase Two: Classification Phase two is where the clas-
sification result is produced using the image data from
phase one. In this phase, three different CNN architec-
tures VGG16, VGG19, and ResNet50 have once more been
used for comparison. The best hyperparameter settings from
counter experiment 01 (experiment details in Appendix D)
has been reapplied in this phase. With a validation accuracy
of 88.11±3.86, VGG16 stood out as having the best perfor-
mance as mentioned in Table 3.
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VGG16 >0.8 76.32 ± 2.29
VGG19 >0.8 70.08± 4.54
ResNet50 >0.8 52.36± 5.91

Table 2: Prime Experiment: Phase One

CNN
Architecture

Train
Loss

Train
Accuracy (%)

Validation
Loss

Validation
Accuracy (%)

VGG16 0.196 94.47 0.195 88.11 ± 3.86
VGG19 0.095 89.98 0.093 86.43± 2.98
ResNet50 0.367 89.63 0.281 78.00± 2.32

Table 3: Prime Experiment: Phase Two

Models Validation
Loss

Validation
Accuracy (%)

Faster RCNN 0.312 47.32 ± 5.90
YOLO v5 0.279 68.36 ± 6.43
Proposed 0.195 88.11 ± 3.86

Table 4: Cross validation accuracy of different object detection methods alongside proposed architecture

Counter Experiment 01
The common approach for rice disease classification from
a given image would be to simply pass the image through
trained CNN model and perform end-to-end classification.
This is what we do in counter experiment 01 (details pro-
vided in Appendix D). We experiment with five different
CNN architectures using transfer learning, fine tuning and
adding regularization schemes such as dropout. The best five
fold cross-validation accuracy that we could achieve was an
accuracy of around 69% using regularized and fine-tuned
VGG16 model (see Table 6 of Appendix D) which is signif-
icantly lower than our proposed dual phase approach perfor-
mance (around 88% accuracy). It is to note that CNN models
with softmax layer at the output are not capable of detecting
multiple diseases simultaneously in a single image. In order
to simplify things, we consider CNN prediction to be correct
for a multi-class image if any one of the present diseases is
identified by the model.

Counter Experiment 02
One can argue that instead of using the dual phase approach,
we can use a localization algorithm to directly extract and
classify the significant grain portions of a given image. In
that way, we only need a single phase. If a particular disease
exists in the image and if one of the extracted sub-images
is labeled as that particular disease by the localization algo-
rithm (other extracted portions can be labeled as healthy, but
none of them can be labeled as some other disease), then
we can consider a correct classification. In case of the exis-
tence of multiple diseases in the image, both diseases need
to be labeled in at least one of the extracted sub-images (one
sub-image per disease). Comparative performance between
Faster RCNN, YOLO v5, and the proposed dual phase ap-

proach has been shown in Table 4. We can see that the per-
formance of YOLO v5 is even worse than our best end-to-
end CNN model (68% vs 69% accuracy, see previous sec-
tion), while our proposed approach achieves over 88% vali-
dation accuracy. A large amount of training data is necessary
for localization algorithms like Faster RCNN and YOLO to
converge during training, especially when they have to per-
form classification besides localization. Faster RCNN and
YOLO both failed to outperform the proposed approach be-
cause of the current setup’s insufficient data count.

Conclusion and Future Work
The main motivation behind this project is to identify a so-
lution for limited labeled agriculture data (supervised task).
We offer a solution that can perform well in spite of having a
small dataset in a multi-class classification context with het-
erogeneous image background. Phase one provides a smart
localization method that can handle the heterogeneous back-
ground present in the real world data of plant disease images.
The goal of this first phase is to make the classification task
of phase two easier. On a small dataset of rice grain images,
an experimental comparison with the use of current CNN
architectures has been offered to demonstrate the efficacy
of the suggested method. Our proposed approach is model
agnostic - one can use any localization algorithm in phase
one and any CNN classification model in phase two. Exper-
iments looking at the combination of different architectures
in these two phases can improve performance further. Our
proposed process is pipeline-based, and phase one may pro-
duce false positive or false negative results that are passed
on to phase two. Phase two will not be able to properly clas-
sify them in such cases. This is one drawback of this system
and should be looked into in future.
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Appendix A. Additional Information on
Dataset

We have two diseases in the dataset - False Smut and Neck
Blast. Neck Blast is generally caused by a fungus known as
Magnaporthe oryzae. It causes plants to develop very few
or no grains at all. Infected nodes result (Wilson and Tal-
bot 2009) in panicle break down. False Smut is caused by a
fungus called Ustilaginoidea virens. It results in lower grain
weight and reduction (Koiso et al. 1994) of seed germina-
tion. The Boro rice plant has been chosen for experimental
data collection, because Boro species falls under the great-
est risk (Miah et al. 1985) of being negatively impacted by
Neck Blast and False Smut. When taking pictures, factors
like light, distance, and uniqueness were taken into account.
Heterogeneity of the background was the primary factor that
was considered. Some factors that can spoil the experiment
are - illumination, symptom severity, maturity of the plant
and diseases. A large versatile dataset can attend on such
occasions which can be achieved in the future. The dataset
has been kept to three classes for the early stages of the in-
vestigation. Also, it is quite challenging and burdensome to
collect different rice disease image dataset throughout the
year as different diseases occur at different time. So, at this
early stage of the investigation three classes is competent to
deliver a sufficient result.

Figure 4: Sample multiclass data; Labeled green for Neck
Blast and red for False Smut class

Appendix B. Consecutive Stages of Phase One
Convolutional Neural Network (CNN): In order to avoid

sliding a window in each spatial position of the original
image, CNN architecture is used in order to learn and
extract feature map from the image which represents the
image effectively. The spatial dimension of such feature
map decreases whereas the channel number increases.
For the dataset used in this research, VGG16 architec-
ture has proven to be the most effective. Hence, VGG16
has been used as the backbone CNN architecture which
transforms the original image into 20× 15× 512 dimen-
sion.

Region Proposal Network (RPN): The extracted feature
map is passed through RPN layer. For each pixel of the
feature map of spatial size 20×15, there are 16 possible
bounding boxes (4 different aspect ratios and 4 differ-
ent sizes mentioned in bold letter in Table 5). So, that
makes total 16×20×15 = 4800 possible bounding boxes,
RPN is a two branch Convolution layer which provides

two scores (branch one) and four coordinate adjustments
(branch two) for each of the 4800 boxes. The two scores
correspond to the probability of being an object and a
non-object. Only those boxes which have a high ob-
ject probability are taken into account. To remove over-
lapping bounding boxes and retain the high probability
unique boxes, non-max suppression (NMS) is used. The
overlap must meet a threshold of 0.8 IoU. Top 200 pro-
posals ranked by object probability from the object pro-
posals are forwarded to the next layers.

ROI Pooling: Each of the 200 selected object proposals
correspond to some region in the CNN feature map. For
passing each of these regions on to the dense layers of the
architecture, each of the regions need to be of fixed size.
ROI pooling layer takes each region and turns them into
7×7×512 using bilinear interpolation and max pooling.

RCNN Layer: RCNN layer consists of fully connected
dense layers. Each of the 7×7×512 size feature maps are
flattened and passed through these fully connected layers.
The final layer has two branches. Branch one predicts if
the input feature map is background class or significant
grain portion. Branch two provides four regression values
denoting the adjustment of the bounding box to better fit
the grain portion. For each feature map, if the probability
of being a grain is over 0.6, only then is the feature map
considered as a probable grain portion and the adjusted
coordinates are mapped to the original image in order to
get the localized grain portion. The overlapping boxes
are eliminated using NMS. The remaining bounding box
regions are the significant grain portions.

Loss Function: The trainable layers of Faster RCNN archi-
tecture are: CNN backbone, RPN layer and RCNN layer.
A loss function is needed in order to train these layers in
an end to manner which is as follows.

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )+

λ
1

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

(1)

The first term of this loss function defines the classi-
fication loss over two classes which describe whether
predicted bounding box i is an object or not. The sec-
ond term defines the regression loss of the bounding box
when there is a ground truth object having significant
overlap with the box. Here, pi and ti denote predicted
object probability of bounding box i and predicted four
coordinates of that box respectively while p∗i and t∗i de-
note the same for the ground truth bounding box which
has enough overlap with predicted bounding box i. Ncls

is the batch size (256 in this case) and Nreg is the total
number of bounding boxes having enough overlap with
ground truth object. Both these terms work as normal-
ization factor. Lcls and Lreg are log loss (for classifica-
tion) and regularized loss (for regression) function, re-
spectively.



Appendix C. Hardware, Utilized CNN Models
and Evaluation Metrics

For the training environment, assistance has been taken from
two different sources.
• Royal Melbourne Institute of Technology (RMIT) pro-

vides GPU for international research enthusiasts and they
provided a Red Hat Enterprise Linux Server along with
the processor Intel Xeon E5-2690 CPU, clock speed of
2.60 GHz. It has 56 CPUs with two threads per core, 503
GB of RAM. Each user can use up to 1 petabyte of stor-
age. There are also two 16 GB NVIDIA Tesla P100-PCIE
GPUs available. First phase was completed through this
server.

• Google Colab (Tesla K80 GPU, 12GB RAM) and Kag-
gle kernel (Tesla P100 GPU) have been used for counter
experimentation.

Fig. 5 shows architectures and key blocks of the applied
CNN architectures. Experiments have been performed using
five state-of-the-art CNN architectures which are described
as follows.
VGG16 is a sequential architecture (Simonyan and Zisser-

man 2014) consisting of 16 convolutional layers. Kernel
size in all convolution layers is three.

VGG19 has three extra convolutional layers (Simonyan and
Zisserman 2014) and the rest is the same as VGG16.

ResNet50 belongs to the family of residual neural net-
works. It is a deep CNN architecture (He et al. 2016) with
skip connections and batch normalization. The skip con-
nections help in eliminating the gradient vanishing prob-
lem.

InceptionV3 is a CNN architecture (Szegedy et al. 2016)
with parallel convolution branching. Some of the
branches have filter size as large as 7× 7.

Xception takes the principles of Inception to an extreme.
Instead of partitioning the input data into several chunks,
it maps the spatial correlations (Chollet 2017) for each
output channel separately and performs 1× 1 depthwise
convolution.

All results have been provided in terms of 5 fold cross val-
idation. Accuracy metric has been utilized in order to com-
pare dual phase approach against implementation of CNN
on original images without any segmentation. Accuracy is a
suitable metric for balanced dataset.

Accuracy =
TP

TP + FP + TN + FN
1 (2)

Segmenting the grain portion is the goal of the first phase
of the dual phase approach. For evaluating the performance
of this phase, mAP (mean average precision) score has been
used. Precision, recall and IoU (Intersection over Union) are
required to calculate mAP score.

Precision =
TP

TP + FP
(3)

1TP: True Positive, FP: False Positive, TN: True Negative, FN:
False Negative

Recall =
TP

TP + FN
(4)

IoU =
AOI

AOU
2 (5)

If a predicted box IoU is greater than a certain predefined
threshold, it is considered as TP (true positive). Otherwise,
it is considered as FP (false positive). (TP + FN) (FN be-
ing false negative) is actually the total number of ground
truth bounding boxes. Average precision (AP) is calculated
from the area under the precision-recall curve. If there are N
classes, then mAP is the average AP of all these classes. In
this research, there is only one class of object in phase one,
that is the significant grain portion class. So, here AP and
mAP are the same.

Appendix D. Experiment Details
Counter Experiment 01
In this experiment, five different CNN architectures were
used (see Table 6). Using imagenet pretrained models, three
transfer learning methodologies, frozen layer, fine tuning,
and fine tuning + dropout have been applied. The freezing
layer approach, also known as the default transfer learn-
ing method, was used initially. With a validation accuracy
of 63.33 ± 2.04, VGG16 performed better than other CNN
architectures. After that, fine tuning has been used, which
resulted in an increase in validation accuracy for VGG16 of
67.79 ± 3.24. The CNN architectures have been modified
to incorporate dropout, which yields a significant improve-
ment of 69.43 ± 3.41 for VGG16. By experimenting with
dropout on different positions inside individual CNNs, fine-
tuning and fine-tuning + dropout have both been performed
repeatedly.

Faster RCNN Based Localization Experiments
Three different CNN architectures have been tested as the
backbone of Faster RCNN. Purpose of this experiment is
to evaluate Faster RCNN’s capability for effective signifi-
cant portion detection (grain). Additionally, ResNet50 was
chosen over Xception and InceptionV3 (which are men-
tioned in Table 6) due to the lower validation loss along with
VGG16 and VGG19 from previous experiment. Pretrained
models have been used from COCO and Imagenet. For
Faster RCNN, various hyperparameter optimizations have
been used to achieve best results are shown in Table 7.

Default settings from Faster RCNN paper (Ren et al.
2015) for anchor box ratio were (1:1), (2:1), (1:2) and an-
chor box pixels were 128, 256, 512 which produces 3×3=9
anchor boxes per pixel. The default RPN threshold of (0.3 -
0.7), overlap threshold 0.8 and default anchor box ratios and
pixels, VGG16 (imagenet pretrained model) provided the
best mAP score of 71.0±4.0. After tuning RPN threshold to
(0.4 - 0.8), anchor box ratios to (1:1), ( 1√

2
: 2√

2
), ( 2√

2
: 1√

2
),

(2:2) and pixel sizes to 32, 64, 128, 256, 4×4=16 anchor

2AOI: Area of intersection, AOU: Area of union (with respect
to ground truth bounding box)
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Figure 5: (a): all 16 blocks of VGG16, (b): all 19 blocks of VGG19, (c): Resdiual module of ResNet, (d): Inception module is to
act as a multi-level feature extractor in InceptionV3, (e): Extreme module of the Inception module which is utlized in Xception.

Hyperparameter Optimized Value
Anchor Box Count 9, 16
Anchor Box Size (pixels) [32, 64, 128, 256], [128, 256, 512]
Anchor Box Ratios [(1,1), (2,1), (1,2)], [(1,1), ( 1√

2
, 2√

2
), ( 2√

2
, 1√

2
), (2,2)]

RPN Threshold 0.3 - 0.7, 0.4 - 0.8
Proposal Selection 200, 2000
Overlap Threshold >0.8, >0.9
Learning Rate 0.001, 0.0001, 0.00001
Optimizers Adam, SGD

Table 5: Experimented hyperparameters. Bold values were selected for the prime experiment.

Transfer
learning
Approach

CNN
Architecture

Validation
Loss

Validation
Accuracy
(%)

Freezed
Layer

VGG16 2.08 63.33 ± 2.04
VGG19 1.08 43.75± 3.43
Xception 2.34 31.25± 4.04
InceptionV3 9.23 37.50± 3.89
ResNet50 4.47 31.25± 3.27

Fine
Tuned

VGG16 2.71 67.79 ± 3.24
VGG19 1.77 55.04± 3.00
Xception 6.29 43.76± 1.88
InceptionV3 7.42 41.73± 3.66
ResNet50 2.47 38.20± 1.34

Fine Tuned
+

Dropout

VGG16 3.47 69.43 ± 3.41
VGG19 3.11 57.18± 2.64
Xception 5.72 47.17± 2.11
InceptionV3 4.12 48.22± 3.14
ResNet50 2.81 42.31± 1.32

Table 6: Counter Experiment 01: CNN

boxes have been produced which provides better outcome
than before. This setting improved the mAP for VGG16 (im-
agent pretrained model) to 76.32 ± 2.29 which is the peak
outcome after several optimization.



Pretrained
Model

Anchor
Box Ratio

Anchor
Box Pixels

RPN
Threshold

CNN
Architecture

Overlap
Threshold mAP (%)

Imagenet

(1:1), (2:1),
(1:2)

128,256,
512 0.3 - 0.7

VGG16
>0.8

71.0± 4.0
VGG19 47.06± 2.01
ResNet50 67.14± 6.68

(1:1),
( 1√

2
: 2√

2
),

( 2√
2
: 1√

2
),

(2:2)

32, 64,
128, 256 0.4 - 0.8

VGG16 >0.8 76.32 ± 2.29
>0.9 63.42± 2.36

VGG19 >0.8 70.08± 4.54
>0.9 70.30± 2.36

ResNet50 >0.8 52.36± 5.91
>0.9 40.02± 3.03

COCO

(1:1), (2:1),
(1:2)

128,256,
512 0.3 - 0.7

VGG16
>0.8

48.32± 4.79
VGG19 32.30± 4.83
ResNet50 46.36± 2.04

(1:1),
( 1√

2
: 2√

2
),

( 2√
2
: 1√

2
),

(2:2)

32, 64,
128, 256 0.4 - 0.8

VGG16 >0.8 54.24 ± 2.23
>0.9 48.0± 2.10

VGG19 >0.8 42.36± 1.02
>0.9 41.07± 5.21

ResNet50 >0.8 30.23± 3.0
>0.9 28.42± 4.84

Table 7: Faster RCNN localization experiments


