
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE INFLATION OF KNN-SHAPLEY VALUE

Anonymous authors
Paper under double-blind review

ABSTRACT

Shapley value-based data valuation methods, originating from cooperative game
theory, quantify the usefulness of each individual sample by considering its con-
tribution to all possible training subsets. Despite their extensive applications, we
observe these methods encounter value inflation—while samples with negative
Shapley values are detrimental, some with positive values can also be harmful. This
challenge prompts two fundamental questions: the suitability of zero as a threshold
for distinguishing detrimental from beneficial samples and the determination of
an appropriate threshold. To address these questions, we focus on KNN-Shapley
and propose Calibrated KNN-Shapley (CKNN-Shapley), a semi-value method that
calibrates zero as the threshold to distinguish detrimental samples from beneficial
ones by mitigating the negative effects of small-sized training subsets. Through
extensive experiments, we demonstrate the effectiveness of CKNN-Shapley in alle-
viating data valuation inflation, detecting detrimental samples, and assessing data
quality. We also extend our approach beyond conventional classification settings,
applying it to diverse and practical scenarios such as learning with mislabeled data,
online learning with stream data, and active learning for label annotation.

1 INTRODUCTION

The significance of data as inputs in machine learning algorithms cannot be overstated for algorithmic
performance (Liang et al., 2022; Zha et al., 2023). Beyond the development of sophisticated
algorithms, there is a growing emphasis on the curation of high-quality training sets. Data-centric
learning has emerged to assess the valuation of data within the context of a learning task. This
encompasses a spectrum of tasks, ranging from outlier detection (Boukerche et al., 2020) to noisy
label correction (Zheng et al., 2021), from best subset selection (Hazimeh and Mazumder, 2020) to
sample reweighting (Li and Liu, 2022), and antidote data generation (Chhabra et al., 2022; Li et al.,
2023) to active labeling (Tharwat and Schenck, 2023; Liu et al., 2021).

Understanding the value of an individual data sample is fundamental in data-centric learning. Leave-
one-out influence (Cook and Weisberg, 1982), a straightforward method, offers an initial assessment
of the relative influence of the specific sample compared to the rest of the training set. Shapley
value-based methods (Shapley et al., 1953; Roth, 1988) quantify the usefulness of each individual
sample towards the utility on a validation set by considering its contribution to all possible training
subsets. Unlike the leave-one-out influence, Shapley value represents the weighted average utility
change resulting from adding the point to different training subsets, showcasing greater robustness
in diverse contexts (Bordt and von Luxburg, 2023; Tsai et al., 2023; Sundararajan et al., 2020).
Despite the absence of assumptions on the learning model, Shapley value-based methods require
expensive and extensive model retraining, which are prohibitive for large-scale data analysis and deep
models (Hammoudeh and Lowd, 2022).

With the advent of KNN-Shapley (Jia et al., 2019b; 2021), a pragmatic tool enabling the computation
of Shapley values without the need for costly model retraining, Shapley-based approaches have
become feasible and widely applied. KNN-Shapley leverages the K-Nearest Neighbors (KNN)
classifier as a surrogate for the original learning model, recursively calculating the Shapley value
for each training sample. Despite their promise, KNN-Shapley and its variants grapple with the
issue of value inflation. We note that While samples with negative Shapley values are recognized
as detrimental, the dilemma arises as certain samples with positive values may also have harmful
effects. This challenge gives rise to two pivotal questions: the appropriateness of zero as a threshold
for distinguishing detrimental from beneficial samples and the identification of a suitable threshold.
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Our Contributions. In this paper, we focus on addressing the value inflation issue observed in
KNN-Shapley. To tackle this, we propose Calibrated KNN-Shapley (CKNN-Shapley), a semi-value
method that calibrates zero as the threshold to distinguish detrimental samples from beneficial ones
by mitigating negative effects of small training subsets. Our contributions are summarized as follows:

• We unveil the value inflation issue of KNN-Shapley, which not only misidentifies a portion of
detrimental samples as beneficial, but also distorts the interpretation of data valuation. Beyond
the misidentified samples, value inflation further impacts the assessment of beneficial samples.

• We propose CKNN-Shapley, a simple but not incremental method to calibrate zero as the
threshold to distinguish detrimental samples from beneficial ones. Our hypothesis attributes
value inflation to improper subset selection in KNN-Shapley, and we address this issue through a
straightforward yet effective strategy by imposing a constraint on the size of training subsets.

• We perform comprehensive experiments on various benchmark datasets, comparing CKNN-
Shapley with KNN-Shapley-based methods. The results showcase the effectiveness of CKNN-
Shapley in mitigating value inflation and improving classification performance. We also extend
our approach beyond conventional classification settings, applying it to learning with mislabeled
data, online learning with stream data, and active learning for label annotation.

Related Work. We introduce Shapley-based methods with a major focus on data valuation and
KNN-Shapley. (i) Shapley-based Data Valuation. The Shapley value (Shapley et al., 1953; Roth,
1988) measures the weighted average utility change when adding a point to all possible training
subsets, making it a primary tool for assessing the valuation of individual samples (Jiang et al.,
2023). Shapley-value based methods have found extensive application in various domains, including
variable selection (Cohen et al., 2005; Zaeri-Amirani et al., 2018), feature importance (Lundberg
and Lee, 2017; Covert and Lee, 2020; Jethani et al., 2021), model valuation (Rozemberczki and
Sarkar, 2021), health care (Pandl et al., 2021; Tang et al., 2021), federated learning (Han et al.,
2021), collaborative learning (Sim et al., 2020), data debugging (Deutch et al., 2021), and distribution
analysis (Schoch et al., 2022; Ghorbani et al., 2020). Building upon this concept, Beta Shapley (Kwon
and Zou, 2022) and Banzhaf value (Wang and Jia, 2023a) have been developed by relaxing the
efficiency axiom of the Shapley value. While Shapley-based data valuation approaches are model-
agnostic, exponential model retraining renders these methods computationally challenging even
for small datasets (Ghorbani and Zou, 2019; Jia et al., 2019b). Efforts to accelerate computation
include efficient sampling (Zhang et al.), utility learning (Wang et al., 2021), and the assumption of
independent utility (Luo et al., 2022). In addition to data valuation. (ii) KNN-Shapley Data Valuation.
KNN-Shapley (Jia et al., 2019a; Wang and Jia, 2023b) emerges as one of the most promising solutions
to mitigate the computational challenges associated with Shapley values. It leverages assumptions
about the learning model by employing a KNN classifier as a surrogate, recursively computing
the Shapley value for each training sample without the need for retraining. This high efficiency
has spurred the development of numerous KNN-Shapley variants, such as weighted KNN (Wang
et al., 2024), soft KNN (Wang and Jia, 2023b), and threshold KNN(Wang et al., 2023), tailored to
enhance generalization, sample reuse, and privacy risks, respectively. In this paper, our focus is on
the KNN-Shapley category, with the objective of addressing issues related to value inflation.

2 PRELIMINARIES AND MOTIVATION

Preliminaries. For a training set D with N samples and a learning algorithm A, let UA,Dv
(D)

represent the model utility with all training data on the validation set Dv. For simplicity, we use
U(D) in the following manuscript. The Shapley value (Shapley et al., 1953) of a training sample
zi∈D, 1≤i≤N is defined as follows:

νs(zi) =
1

N

∑
S⊆D\zi

1(
N−1
|S|

) [U(S ∪ zi)− U(S)], (1)

where S is a training subset. The Shapley value gauges the average contribution of zi on all possible
subsets of D without zi from the cooperative game perspective. Note that obtaining the exact Shapley
value necessitates 2N model training. Despite no assumption of the learning algorithm A, for large
models, this process consumes significant computational resources and time. The impracticality of
calculating the exact Shapley value, even using Monte Carlo approximation, becomes evident in
large-scale data analyses involving substantial models due to its high computational complexity.
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KNN-Shapley (Jia et al., 2019b) occurs as a pragmatic tool for computing Shapley values efficiently.
It employs a KNN classifier as a surrogate for the learning algorithm A. For a single validation
sample Dv={zv}, where zv=(xv, yv) contains xv in the feature space and yv in the label space,
a KNN classifier sorts the whole training data and identifies K nearest neighbors in the feature
space (zα1

, zα2
, · · · , zαK

) to zv , where αk represents the index of the training samples with the k-th
neighbor to the validation sample zv. If the predictive confidence is used as the model utility, i.e.,
U(S) = 1

K

∑min{K,|S|}
k=1 1[yαk

=yv], KNN-Shapley values can be calculated recursively as follows:

νk(zαN ) =
1[yαN = yv]

N
, νk(zαi) = νk(zαi+1) +

1[yαi = yv]− 1[yαi+1 = yv]

max{K, i} . (2)

The above Eq. (2) can be extended to multiple validation samples by summing up the KNN-Shapley
value for each validation sample. This results in a time complexity of O(N logN) for KNN-Shapley,
significantly faster than the vanilla Shapley. It is worth noting that KNN is a lazy classifier without
any training process; therefore, within the retrain-based Shapley framework, KNN-Shapley can
directly conduct the inference process, significantly reducing the time complexity compared to other
training-required classifiers. Moreover, for certain deep models, KNN-Shapley is compatible with
the embedding of training/validation samples for data valuation (Jia et al., 2019b).
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Figure 1: Illustration of KNN-Shapley value in-
flation. The blue bar plot with x-axis and
blue left y-axis displays the histogram of KNN-
Shapley values for training samples in the SST-2
dataset (Socher et al., 2013). For the purpose of vi-
sualization, we merge the samples with extremely
small or large values into the leftmost or rightmost
bars. With another segmentation of 20 equally-
sized bins based on the ascending order of their
values, the red line illustrates KNN performance
(in red right y-axis) with a specific bin (with av-
erage Shapley value in x-axis) removed from the
training set, while the dashed green line represents
KNN performance on the entire training set. By
comparing the red and green lines, the detrimental
bin can be identified, as the performance improves
upon its removal. While samples with negative
KNN-Shapley values are detrimental, a notable ob-
servation is the green shallow highlighted region,
where samples are harmful to the learning task
despite having positive KNN-Shapley values, indi-
cating the issue of KNN-Shapley value inflation.

Inflation of KNN-Shapley Value. Despite the
wide range of applications and efficiency of
KNN-Shapley, we have observed a phenomenon
of value inflation during its practical usage. This
occurs when, contrary to the expectation that
samples with negative Shapley values are detri-
mental, some samples with positive values can
also be harmful. Figure 1 illustrates this phe-
nomenon on the SST-2 dataset (Socher et al.,
2013). The blue bar plot shows the histogram
of KNN-Shapley values for training samples.
According to the ascending order of their val-
ues, we segment the whole training set into 20
equally sized bins (which are different from the
histogram bins). To identify whether samples in
a specific bin are detrimental or beneficial, we
train the KNN classifier with that bin removed
from the training set (denoted by the red line)
and compare its performance with the complete
training set (denoted by the green line). Due to
the equal-size samples in each bin, the markers
on the red line do not have uniform intervals
and do not align with unevenly sized histograms.
While samples with negative KNN-Shapley val-
ues are generally detrimental, the highlighted
green shallow region reveals a noteworthy ob-
servation—samples in this region are harmful to
the learning task despite having positive KNN-
Shapley values, indicating the issue of KNN-
Shapley value inflation. Note that the number of
samples with negative KNN-Shapley values is
1,452, while 4,548 samples are in the misidenti-
fied region. In our later experiments (Table 2), removing all the samples with negative KNN-Shapley
values enhances performance from 0.7270 to 0.8160. Conversely, further improvement is achieved
by removing samples in the misidentified region, boosting performance from 0.8160 to 0.8980 and
underscoring the significance of addressing inflated samples.

Value inflation prompts two fundamental questions: the suitability of zero as a threshold for distin-
guishing detrimental from beneficial samples and the determination of an appropriate threshold. To
address these questions, we propose Calibrated KNN-Shapley in the next section, which calibrates
zero as the threshold to distinguish detrimental samples from beneficial ones.
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3 CALIBRATED KNN-SHAPLEY

To address the challenge of valuation inflation in KNN-Shapley, we first delve into its underlying
mechanism and scrutinize potential factors contributing to negative effects on data valuation. Based
on the analyzed reasons, we propose our Calibrated KNN-Shapley by mitigating the negative efforts
from improper training subsets.
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Figure 2: Comparison of KNN-Shapley and
CKNN-Shapley value on the SST-2 dataset, where
each dashed line represents a training sample asso-
ciated with its KNN-Shapley and CKNN-Shapley
values, respectively, and the green region is the
misidentified detrimental samples from Figure 1.
The red dashed lines denote the samples that are in-
correctly identified by KNN-Shapley but correctly
identified by CKNN-Shapley.

While the recursive formulation in Eq. (2) brings
about efficient computation, it also introduces
inevitable accumulated errors. Specifically, the
valuation of a training sample distant from the
validation sample can influence other training
samples closer to the validation sample, empha-
sizing the importance of the first term νk(zαN

).
Upon closer examination of zαN

, the farthest
sample from the validation sample, we observe
its minimal impact on the validation sample.
Considering the definition of the Shapley value,
which measures the average contribution of a
training sample across all possible subsets, we
discuss two cases. Case I: when |S|>K, zαN

does not contribute to the utility of the KNN
classifier since it is not among the neighbors of
zv . Case II: when |S|≤K, U(S ∪ zαN

)−U(S)
is non-negative, i.e., U(S∪ zαN

)−U(S)=1/N
if zαN

and zv share the same label; otherwise, U(S ∪ zαN
) − U(S)=0. Notably, it is impractical

and meaningless to have a training subset with only a few training samples. Furthermore, the num-
ber of occurrences in Case I significantly surpasses that in Case II, indicating that Case II is not
representative of learning models and data valuation.

Building on the above analyses, we hypothesize that value inflation stems from improper subset
selection in KNN-Shapley. Certain subsets with only a few samples exhibit significant divergence
from the original set, leading to an exaggeration of the contribution of a specific sample on these
subsets. This, in turn, gives rise to the phenomenon of value inflation. To address the issue of value
inflation, we introduce Calibrated KNN-Shapley (CKNN-Shapley) through the selection of suitable
training subsets. The training subset in CKNN-Shapley should serve as an effective proxy for the
original and complete training set. In this paper, we present a straightforward yet effective strategy by
imposing a constraint on the size of training subsets, specifically |S|≥T , where T represents the size
of the smallest training subsets used to assess the contribution of each training sample. This strategy
is a semi-value, which is computed as follows:1

νc(zαN ) = νc(zαN−1) = · · · = νc(zαN−T+1) = 0,

νc(zαN−T ) =
1[yαN−T = yv]

N − T
, νc(zαi) = νc(zαi+1) +

1[yαi = yv]− 1[yαi+1 = yv]

max{K, i} .
(3)

Compared to KNN-Shapley in Eq. (2), CKNN-Shapley follows a similar recursive fashion but more
efficiently. This efficiency stems from directly assigning zero to T samples that are far away from the
validation sample. Additionally, in CKNN-Shapley, the selected training subsets consist of at least T
samples, preventing the inclusion of improper subsets that could contribute to the valuation.

Figure 2 illustrates the comparison between KNN-Shapley and CKNN-Shapley values on the SST-2
dataset. Each dashed line represents a training sample associated with its KNN-Shapley and CKNN-
Shapley values. Detrimental samples misidentified by KNN-Shapley, highlighted by red dashed
lines, are assigned negative or zero values in CKNN-Shapley, suggesting that zero in CKNN-Shapley
serves as a suitable threshold for distinguishing detrimental from beneficial samples. Additionally,
the majority of lines from KNN-Shapley to CKNN-Shapley move from the top right to the bottom
left. This indicates that KNN-Shapley not only has a negative effect on the misidentified samples but
also tends to inflate the valuation of most samples. This inflation might be attributed to its recursive
formulation, leading to the accumulation of errors within KNN-Shapley.

1Another interpretation of Eq. (3) is provided in Appendix A.
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Table 1: Threshold for distinguishing detrimental from beneficial samples and the misidentification
ratio of detrimental samples in Eq. (4) for KNN-Shapley-based methods. For the first metric, closer
to zero is preferable; Regarding the second one, smaller values suggest better performance. The last
column takes the absolute values for average. The best results are highlighted in bold. TKNN-Shapley
does not return meaningful results on CIFAR10 with the default parameters, denoted by “N/A."

Datasets MNIST FMNIST CIFAR10 Pol Wind CPU AGnews SST-2 News20 Avg.

Threshold for distinguishing detrimental from beneficial samples by × 1e−4

KNN-Shapley 2019a 0.2744 0.2631 0.1632 2.0361 7.3705 6.4458 1.6264 1.3659 1.7215 2.3630
KNN-Shapley-JW 2023b 0.2544 0.2431 0.1432 0.5119 4.6543 3.7429 1.3763 0.8203 1.6780 1.4916
TKNN-Shapley 2023 3.8641 1.0330 N/A -1.4990 1.0875 5.6960 1.1951 0.7143 5.2628 2.5440
KNN-Beta Shapley 2022 0.0149 0.0317 0.0739 10.1847 8.0875 9.5856 0.3239 1.4949 0.0480 3.2504
CKNN-Shapley (Ours) 0.0152 0.0109 0.1163 -0.3059 -0.0245 -2.9412 1.1955 0.1604 0.6715 0.6046
Misidentification ratio of detrimental samples

KNN-Shapley 2019a 0.8065 0.5145 0.4908 0.3333 0.3864 0.5714 0.7580 0.5600 0.6179 0.5599
KNN-Shapley-JW 2023b 0.7665 0.4367 0.3792 0.0000 0.2727 0.3846 0.6563 0.3421 0.5541 0.4214
TKNN-Shapley 2023 0.3103 1.0000 N/A 0.0000 0.1818 0.4118 0.2273 0.1862 0.2000 0.3147
KNN-Beta Shapley 2022 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CKNN-Shapley (Ours) 0.2000 0.1686 0.0908 0.0000 0.0000 0.0000 0.1538 0.1143 0.1821 0.1011

Table 2: Classification performance of KNN-Shapley-based methods. # denotes KNN’s performance
trained on the training set excluding samples with negative valuations, while + represents weighted
KNN’s performance, where the weights are derived from data valuations.

Method\Datasets MNIST FMNIST CIFAR10 Pol Wind CPU AGnews SST-2 News20 Avg.

Vanilla KNN 0.9630 0.8444 0.5956 0.9400 0.8700 0.9200 0.9060 0.7270 0.6920 0.8287

KNN-Shap 2019a# 0.9682 0.8586 0.6456 0.9700 0.8750 0.9650 0.9250 0.8160 0.7580 0.8646
KNN-Shap-JW 2023b# 0.9698 0.8574 0.6514 0.9700 0.8650 0.9600 0.9250 0.8498 0.7610 0.8677
TKNN-Shap 2023# 0.6644 0.8356 N/A 0.8150 0.8300 0.9100 0.8990 0.7982 0.6730 0.8032
KNN-Beta Shap 2022# 0.9630 0.8444 0.5956 0.9400 0.8700 0.9200 0.9060 0.7270 0.6920 0.8287
CKNN-Shap (Ours)# 0.9828 0.8884 0.7164 0.9700 0.9000 0.9700 0.9420 0.8980 0.7960 0.8960

KNN-Shap 2019a+ 0.9742 0.8680 0.6598 0.9650 0.8700 0.9300 0.9333 0.8480 0.7790 0.8697
KNN-Shap-JW 2023b+ 0.9754 0.8658 0.6610 0.9650 0.8700 0.9300 0.9320 0.8555 0.7790 0.8704
TKNN-Shap 2023+ 0.8626 0.7900 N/A 0.8600 0.8200 0.8950 0.9110 0.8326 0.7160 0.8359
KNN-Beta Shap 2022+ 0.9654 0.8490 0.6056 0.9750 0.8850 0.9450 0.9120 0.7305 0.7140 0.8424
CKNN-Shap (Ours)+ 0.9890 0.9106 0.7404 0.9700 0.9050 0.9650 0.9450 0.8920 0.8130 0.9033

As a variant of KNN-Shapley, our CKNN-Shapley inherently integrates several key axioms from
KNN-Shapley, focusing on three fundamental principles: group rationality, fairness, and additivity, as
emphasized in (Jia et al., 2019b). CKNN-Shapley prioritizes fairness, ensuring symmetry (where two
identical samples receive identical Shapley values) and zero elements (no contribution, no payment).
Additionally, it upholds additivity, where values across multiple utilities sum up to the value under
a utility that is the aggregate of all these utilities. Enhancing group rationality, CKNN-Shapley
refines this axiom by disregarding subsets with fewer than T samples, thereby distributing the utility
difference between the entire dataset and the subset. Since the utility of a subset, according to
the KNN classifier, expects only the nearest samples to contribute, the utility of such a subset is
anticipated to be zero, a factor overlooked in KNN-Shapley. By addressing this, CKNN-Shapley
mitigates the adverse impact of overemphasizing the cooperative game with samples distant from the
target sample, rendering the axiom of group rationality more compatible with the KNN classifier.

4 EXPERIMENTAL RESULTS

Experimental Setup. We evaluate our method on nine datasets: MNIST, FMNIST (Xiao et al.,
2017), CIFAR10, Pol, Wind, CPU (Wang et al., 2023), AGnews, SST-2 (Socher et al., 2013), and
News20 (Lang, 1995). For CIFAR10 and the text datasets, we use ResNet50 (He et al., 2016)
and Sentence Bert (Reimers and Gurevych, 2019) embeddings. Baseline methods include KNN-
Shapley (Jia et al., 2019a), KNN-Shapley-JW (Wang and Jia, 2023b), TKNN-Shapley (Wang et al.,
2023), KNN-Beta Shapley (Kwon and Zou, 2022), and our CKNN-Shapley.2 See Appendix B for
details on datasets, baseline methods and the experimental environment.

In addition to the conventional predictive accuracy for classification, we introduce two metrics to
assess valuation inflation: the threshold for distinguishing detrimental samples from beneficial ones
and the misidentification ratio of detrimental samples. This approach is inspired by the illustration in

2Our code is available at: https://anonymous.4open.science/r/Inflation_KNN-SV-D9C1.
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Table 3: Classification performance of KNN-Shapley-based methods with fixed numbers of removed
samples. #, +, and ∗ denote KNN’s performance trained on the training set excluding samples with
the smallest 10%, 20%, and 30% data valuations, respectively.

Method\Datasets MNIST FMNIST CIFAR10 Pol Wind CPU AGnews SST-2 News20 Avg.

Vanilla KNN 0.9630 0.8444 0.5956 0.9400 0.8700 0.9200 0.9060 0.7270 0.6920 0.8287

KNN-Shap 2019a# 0.9702 0.8590 0.6270 0.9750 0.8850 0.9550 0.9250 0.8016 0.7290 0.8585
KNN-Shap-JW 2023b# 0.9702 0.8590 0.6270 0.9700 0.8850 0.9550 0.9250 0.8016 0.7280 0.8579
TKNN-Shap 2023# 0.9516 0.8368 0.5670 0.9450 0.8450 0.9200 0.9190 0.7878 0.7160 0.8320
KNN-Beta Shap 2022# 0.9650 0.8486 0.6072 0.9600 0.8950 0.9350 0.9130 0.7408 0.7210 0.8428
CKNN-Shap (Ours)# 0.9812 0.8822 0.6566 0.9650 0.8950 0.9700 0.9370 0.8108 0.7450 0.8714

KNN-Shap 2019a+ 0.9714 0.8548 0.6396 0.9650 0.8650 0.9550 0.9250 0.8314 0.7460 0.8615
KNN-Shap-JW 2023b+ 0.9714 0.8548 0.6396 0.9650 0.8650 0.9550 0.9250 0.8303 0.7470 0.8615
TKNN-Shap 2023+ 0.8744 0.7724 0.5292 0.8850 0.8350 0.9300 0.9170 0.8005 0.7190 0.8069
KNN-Beta Shap 2022+ 0.9644 0.8468 0.6014 0.9450 0.9000 0.9350 0.9180 0.7319 0.7200 0.8382
CKNN-Shap (Ours)+ 0.9814 0.8874 0.6990 0.9700 0.9100 0.9800 0.9450 0.8830 0.7800 0.8929
KNN-Shap 2019a∗ 0.9726 0.8536 0.6482 0.9650 0.8600 0.9450 0.9250 0.8452 0.7620 0.8641
KNN-Shap-JW 2023b∗ 0.9726 0.8536 0.6482 0.9700 0.8600 0.9550 0.9250 0.8463 0.7600 0.8656
TKNN-Shap 2023∗ 0.8378 0.7130 0.4716 0.8400 0.8300 0.9100 0.9180 0.7982 0.7100 0.7810
KNN-Beta Shap 2022∗ 0.9622 0.8486 0.6010 0.9550 0.9000 0.9500 0.9130 0.7466 0.7150 0.8435
CKNN-Shap (Ours)∗ 0.9814 0.8882 0.7174 0.9700 0.9100 0.9750 0.9450 0.8968 0.7990 0.8981
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Figure 3: Execution time and parameter analysis. A shows the execution time by second in the
logarithm of three KNN-Shapley-based data valuation approaches ( KNN-Beta Shapley and KNN-
Shapley have identical execution times); B and C display the classification performance trend of our
CKNN-Shapley with different values of K and T .

Figure 2. Each dataset is divided into 100 bins, and the goal is to find the intersection of the red and
green lines to determine the threshold for distinguishing detrimental samples. The misidentification
ratio is then calculated as the proportion of samples in the green region to all detrimental samples.
The entire training dataset is segmented into 100 equal-size bins based on the ascending order of data
valuation, denoted as νi for the data valuation of the i-th bin. Let pi represent the KNN classifier’s
performance on the training set without samples in the i-th bin, and p0 represent the performance
on the entire training set. We define the threshold t for distinguishing detrimental samples from
beneficial ones and the misidentification ratio r of detrimental samples as follows:

t = νj∗ and r = (j∗ − i∗)/j∗, (4)

where j∗ = minj{pj<p0 & pj+1<p0} and i∗ is the index of i∗-bin with νi∗ = 0.

Algorithmic Performance. We present the algorithmic comparison of different KNN-Shapley-
based methods, focusing on value inflation and classification performance. Table 1 displays the
thresholds for distinguishing detrimental from beneficial samples and the misidentification ratio of
detrimental samples. KNN-Shapley, KNN-Shapley-JW, TKNN-Shapley, and KNN-Beta Shapley
exhibit thresholds far from zero, spanning a wide range across different datasets from 0.1632 to
6.4458, from 0.8203 to 4.6543, from 0.7143 to 5.6960, and from 0.0149 to 9.5856, respectively. This
variability complicates the interpretation of their data valuation. In contrast, our CKNN-Shapley
consistently achieves thresholds close to zero, enhancing the meaningfulness of data valuation. The
misidentification ratios of detrimental samples provide additional insights into these thresholds in
terms of sample proportions. KNN-Shapley exhibits substantial misidentification ratios, surpassing
50% on 6 out of 9 datasets. KNN-Shapley-JW also surpasses 50% on 3 out of 9 datasets. TKNN-
Shapley shows slightly better performance in terms of the threshold but still exceeds 41% inflation
on CPU. KNN-Beta Shapley, which employs the opposite strategy to our CKNN-Shapley, surpasses
100% performance across all datasets, while CKNN-Shapley with calibrated thresholds, averages
only around 10% inflation of detrimental sets and achieves no inflation on Pol, Wind, and CPU.
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Figure 4: The classification performance of KNN on datasets MNIST, FMNIST, and CIFAR10 varies
with different training sets and flip ratios. The standard KNN utilizes the full training set, including
mislabeled data, whereas KNN-Shapley-based methods start by excluding samples having negative
Shapley values from the training set, and then apply the KNN classifier.
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Figure 5: In-depth exploration of CKNN-Shapley on CIFAR10 with 0.3 flip ratio. A depicts the sizes
of detrimental and mislabelled samples, where I denotes the set of samples with non-positive Shapley
values but not mislabeled, II presents the set of joint detrimental and mislabeled samples, and III
is the set of mislabeled samples with positive Shapley values. B shows the value distribution of these
three sets. C displays the visual examples of detrimental or mislabeled samples and normal samples.

In addition to evaluating value inflation, we analyze the impact of inflation on classification perfor-
mance by removing samples with negative valuation and using weighted KNN in Table 2. KNN-
Shapley and KNN-Shapley-JW consistently improve performance on all datasets by removing samples
with negative KNN-Shapley values, outperforming vanilla KNN with all training samples. However,
TKNN-Shapley, designed for membership protection, does not yield desirable performance. KNN-
Beta Shapley does not assign any negative Shapley values across all datasets; thus, its performance is
identical to that of vanilla KNN. In contrast, CKNN-Shapley mitigates the negative effects of inflation
on detrimental sets, providing additional performance boosts on almost every dataset. Notably, on
CIFAR10 and SST-2, CKNN-Shapley exhibits over 7% and 8% performance improvements over KNN-
Shapley, addressing the 49% and 56% inflation in misidentification ratios observed in KNN-Shapley
on these datasets. In addition to detrimental set inflation, Figure 2 reveals inflation in the beneficial
set. We further conduct experiments with a weighted KNN classifier, using weights derived from data
valuations, and observe similar phenomena. CKNN-Shapley achieves significant improvements with
calibrated data valuations, underscoring the need to address value inflation issues. To address the
potential impact of the number of removed samples, we further investigate the setting of removing a
fixed amount of samples, as shown in Table 3. Our CKNN-Shapley consistently demonstrates superior
performance over various KNN-Shapley-based methods. We provide additional experiments that
explore misidentified samples and demonstrate the generalization of our CKNN-Shapley approach to
other classifiers in Appendix C.

Figure 3A shows the execution time of four methods. TKNN-Shapley has the fastest speed due
to its linear time complexity; For KNN-Shalpley, KNN-Shapley-JW, KNN-Beta Shapley and our
CKNN-Shapley, all of them have the O(N logN); CKNN-Shapley is faster since T/N percentage
valuations are directly assigned to zero without the recursive calculation. Figure 3B and C display the
classification performance trend of our CKNN-Shapley with different values of K and T , where a
small K and large T but not close to N are preferred. A small K excludes the samples from different
categories. Besides, a large T enforces the similar to the original one, while maintaining the diversity
of selected training subset. We posit that the choice of T is contingent upon the dataset characteristics.
Appendix C explores various settings of T and ascertains that N−2K serves as a suitable setting.
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Figure 6: Performance of online learning. A-C depict the online learning performance of KNN-
Shapley-based data valuation approaches by removing samples with negative Shapley values on
the three text datasets across different batches, where the dashed lines present the performance of
vanilla KNN without removing any samples. D displays the remaining training samples in each
batch, combining samples from the last batch and new arrivals in the current batch by removing
detrimental samples. E provides details of involved training samples for CKNN-Shapley on News20
across different batches, followed by the Shapley value changes of some representative samples in F.

5 APPLICATIONS BEYOND CONVENTIONAL CLASSIFICATION

We extend the conventional classification in the previous section by conducting extensive experiments
for various practical scenarios, and demonstrate the effectiveness of our proposed CKNN-Shapley in
resisting mislabeled data, mitigating distribution shift, and identifying beneficial samples.3

Learning with Mislabeled Data. We manually simulate mislabeled data by randomly flipping its
original label into another category and conduct experiments on MNIST, FMNIST, and CIFAR10
with different flip ratios. In Figure 4, we observe the KNN performance with different training sets,
where vanilla KNN runs on the complete training set with mislabeled data, and KNN-Shapley-based
methods first remove samples with negative Shapley values from the training set before training the
KNN classifier. In general, KNN-Shapley and CKNN-Shapley effectively resist the negative impact
of mislabeled data, outperforming vanilla KNN. Unfortunately, TKNN-Shapley performs poorly,
significantly worse than vanilla KNN, and provides no meaningful results on CIFAR10. Due to
CKNN-Shapley addressing the value inflation of KNN-Shapley, its performance is further improved
and consistently achieves the best results across all three datasets. Notably, CKNN-Shapley maintains
similar performance across different flip ratios, demonstrating its resilience to mislabeled data.

Furthermore, we delve into the details of CKNN-Shapley on CIFAR10 with a 0.3 flip ratio, as shown
in Figure 5. In Figure 5A, we examine the Shapley values of mislabeled samples, separating the
detrimental and mislabeled sets into three categories: I denotes the set of samples with non-positive
Shapley values but not mislabeled, II represents the set of joint detrimental and mislabeled samples,
and III is the set of mislabeled samples with positive Shapley values. We observe that the majority
of mislabeled samples are associated with negative Shapley values, indicating their detrimental nature.
Figure 5B presents the value distribution of the three sets, revealing a small portion of mislabeled
data with very small positive values. From Table 1, we find that the threshold for distinguishing
detrimental and beneficial samples on CIFAR10 is around 0.11×e−4. Several visual examples in
Figure 5C illustrate the significant distinction between samples I, II, and III and normal samples.
Samples in I, II, and III have a dark background, making them difficult to recognize.

3We omit KNN-Shapley-JW in this section due to its similar performance with KNN-Shapley. Additionally,
we exclude KNN-Beta Shapley since it rarely produces negative valuations.
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Figure 7: Active learning of different annotation strategies on Pol, Wind, and CPU, where the initial
stage has 400 samples and each subsequent step annotates 200 samples into the training set.

Online Learning. In addition to static datasets, we further evaluate our approach in the context
of online stream data. Specifically, we use three text datasets—AGnews, SST-2, and News20—in
this experiment. We segment these datasets into 10 equal-sized batches and gradually feed them
into the KNN classifier to simulate stream data. KNN-Shapley-based data valuation approaches are
employed to remove detrimental samples with negative Shapley values. Figures 6A-C depict the
online learning performance of three KNN-Shapley-based data valuation approaches on the three
text datasets across different batches. CKNN-Shapley consistently outperforms other methods with
large margins, resolving the value inflation issue and showing more effectiveness in identifying
detrimental samples in the stream context. Figure 6D displays the remaining training samples in
each batch, combining samples from the last batch and new arrivals in the current batch by removing
detrimental samples. KNN-Shapley involves more training samples compared to others, indicating
severe inflation issues. In contrast, CKNN-Shapley removes a significant portion of detrimental
samples, enhancing learning performance with fewer training samples. Figure 6E provides details
of involved training samples for CKNN-Shapley on News20 across different batches. Additionally,
Figure 6F shows the Shapley value change for representative samples. The pink line represents a
sample included in all batches, while other lines represent samples initially associated with positive
Shapley values in the initial batches, which later become negative and are subsequently removed.

Active Learning. We further evaluate our approach in the context of active learning. Specifically,
to select the unlabeled data for labeling, we use a 2-layer fully connected neural network to fit the
relationship between features and Shapley values of labeled training data. Then we use that neural
network to predict Shapley values of unlabeled training data and choose the data with the highest
predicted Shapley values to label. In this experiment, we choose three chemical datasets —Pol, Wind,
and CPU. We segment these datasets into two parts, 20 percent of them are used as labeled data,
other 80 percent are used as unlabeled data. The unlabeled data will be taken out 8 times through
the prediction of neural network. Figure 7 shows the performance of three KNN-Shapley-based
data valuation approaches and three baselines of active learning (i.e., random sampling, entropy
sampling (Holub et al., 2008), margin sampling (Balcan et al., 2007), uncertainty sampling (Nguyen
et al., 2022)) on three chemical datasets. Random sampling involves the completely random selection
of unlabeled samples for labeling; entropy sampling chooses samples with high prediction uncertainty,
measured by entropy; margin sampling focuses on the gap between the two highest probabilities in
the model’s predictions; Uncertainty sampling prioritizes annotation of samples with high nearest
neighbor inconsistency. From Figure 7, CKNN-Shapley outperforms other methods and is more
effective in identifying useful samples in the unlabeled data, extending the application context of
Shapley value and providing a new way to select data for active learning.

6 CONCLUSION

In this paper, we revealed the value inflation of KNN-Shapley, which not only misidentifies a large
portion of detrimental samples as beneficial, but also overestimates the value for the majority of
samples. To address these issues, we proposed Calibrated KNN-Shapley to calibrate zero as the
threshold for distinguishing detrimental samples from beneficial ones, via mitigating the negative
effects of small training subsets when calculating data valuation. Through extensive experiments, we
demonstrated the effectiveness of CKNN-Shapley in alleviating data valuation inflation and detecting
detrimental samples. Furthermore, we extended our approach beyond conventional classification
settings to the context of learning with mislabeled samples, online learning, and active learning.
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APPENDIX

A ADDITINAL ANALYSIS OF CKNN

Here we provide another understanding of Eq. (3). Take the definition of the KNN utility U in U(S) =
1
K

∑min{K,|S|}
k=1 1[yαk

=yv], define another utility function Ū by letting Ū(S) = U(S ∩ (D \ E))

where E = {zαN
, zαN−1

, · · · , zαN−T
}. Then, the Shapley value of Ū is exactly Eq. (3).

B EXPERIMENTAL SETUP

B.1 DATASET

Here we use 9 datasets for empirical evaluation. MNIST, FMNIST (Xiao et al., 2017), and CIFAR10
are image datasets with 50,000 samples; Pol, Wind, and CPU (Wang et al., 2023) are from the
telecommunication, meteorology, and computer hardware domains, respectively, with 2,000 sam-
ples each; AGnews, SST-2 (Socher et al., 2013), and News20 (Lang, 1995) are text datasets with
10,000 samples. For the CIFAR10 and text datasets, we employ the ResNet50 (He et al., 2016) and
Sentence Bert (Reimers and Gurevych, 2019) as embedding for the KNN classifier, respectively.
Features/embeddings of these nine datasets are from 14 to 2,048. A comprehensive list of datasets
and sources is summarized in Table 4. Following Wang et al. (2023), the validation data size we use
is also 10% of the training data size. For Pol, Wind, and CPU datasets, we subsample the dataset
to balance positive and negative labels. For the image dataset CIFAR10, we apply a ResNet50 (He
et al., 2016) that is pre-trained on the ImageNet dataset as the feature extractor. This feature extractor
produces a 1024-dimensional vector for each image. We also employ Sentence BERT (Reimers and
Gurevych, 2019) as embedding models to extract features for the text classification dataset AGNews,
SST-2, and News20. This feature extractor also produces a 1,024-dimensional vector for each text
instance. This method of using a foundation model as a feature extractor can make CKNN-SV well
applied to data valuation of deep learning. For other datasets, we do not use any extractor.

Table 4: A summary of datasets used in experiments
Dataset # Sample #Dimension #Class Embeddings
MNIST 50000 784 10 None
FMNIST 50000 784 10 None
CIFAR10 50000 2048 10 ResNet50
Pol 2000 48 2 None
Wind 2000 14 2 None
CPU 2000 21 2 None
AGnews 10000 384 4 Sentence BERT
SST-2 10000 384 2 Sentence BERT
News20 10000 384 2 Sentence BERT

B.2 BASELINE METHODS

For the baseline methods, we choose the KNN-Shapley (Jia et al., 2019a), KNN-Shapley-JW (Wang
and Jia, 2023b), and TKNN-Shapley (Wang et al., 2023) with default setting K=10 and τ=−0.5. We
also implement Beta Shapley (Kwon and Zou, 2022) in KNN form, called KNN-Beta Shapley with
Beta(16,1), which follows the opposite strategy to our CKNN-Shapley, giving significantly higher
weight to smaller subsets. Besides, we set T=N−2K in our CKNN-Shapley.

C ADDITIONAL EXPERIMENTS

We provide additional experiments of our CKNN-Shapley in terms of exploration of misidentified
samples, generalization on other classifiers, and various values of T .

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C.1 CORRELATIONS BETWEEN KNN-SHAPLEY AND CKNN-SHAPLEY

Table 5 presents the Spearman and Kendall Tau correlation metrics across nine datasets. For datasets
such as MNIST, FMNIST, CIFAR10, AGnews, SST-2, and News20, both correlations are very high,
indicating nearly identical rankings between KNN-Shapley and CKNN-Shapley. For Pol, Wind, and
CPU, while the correlations remain positive, indicating a consistent positive relationship between the
rankings of KNN-Shapley and CKNN-Shapley, the correlation strength is comparatively weaker. This
difference is further highlighted in Table 3, which shows a clear distinction between CKNN-Shapley
and KNN-Shapley when a fixed number of samples are removed based on their rankings.

Table 5: Spearman and Kendall Tau correlation metrics of KNN-Shapley and CKNN-Shapley across
different datasets. The Spearman and Kendall Tau metrics measure the strength and direction of the
association between the rankings produced by KNN-Shapley and CKNN-Shapley. Positive values
indicate a positive correlation, where higher values denote stronger agreement between the rankings
of the two methods. Negative values, if present, would indicate an inverse relationship. Larger
positive values reflect stronger similarity in the rankings.

Method\Datasets MNIST FMNIST CIFAR10 Pol Wind CPU AGnews SST-2 News20

Spearman correlation 0.9999 0.9999 0.9999 0.6375 0.6207 0.4955 0.9998 0.9992 0.9999
Kendall Tau correlation 0.9985 0.9988 0.9977 0.4964 0.4825 0.3835 0.9884 0.9791 0.9969

C.2 MISIDENTIFIED SAMPLES

Our CKNN-Shapley method exhibits significantly lower false positives compared to other prevalent
methods in Table 6. Since the over-identification of samples as detrimental (FP) is a primary source
of value inflation in data valuation, the number of FP samples is much larger than the number of FN
samples in all three methods.

Table 6: False positive and false positive of misidentified samples
Method\Datasets MNIST FMNIST CIFAR10 Pol Wind CPU AGnews SST-2 News20 Sum.

False positive

KNN-Shapley 47 21 30 68 71 72 52 55 45 409
TKNN-Shapley 17 37 0 47 62 64 15 7 14 263
CKNN-Shapley 14 9 7 21 28 22 22 8 17 148

False negative

KNN-Shapley 0 1 0 1 1 0 2 0 1 6
TKNN-Shapley 41 5 55 11 6 8 11 19 18 174
CKNN-Shapley 0 5 1 1 2 2 0 2 2 15

C.3 GENERALIZATION

Traditional Shapley values have no constraint on the base classifier, but have to require retraining the
base classifier 2N times. Therefore, even for a small dataset, 2N times model training is inflexible
for the traditional Shapley values. KNN-Shapley and its variants including our CKNN-Shapley
work a series of pragmatic tools computing Shapley values efficiently in a recursive manner with
O(N logN) or O(N) time complexity. For practice, if the base classifier is not KNN, a routine
solution employs the KNN classifier as a surrogate.

To test the generalization of our CKNN-Shapley on different models, we conduct extra experiments
with non-KNN classifiers, including Multilayer Perceptron (MLP), Logistic Regression (LR), and
Support Vector Machine (SVM). Specifically, we train the non-KNN classifiers with the whole
training set, apply KNN-Shapley variants to identify detrimental samples, and finally retrain the
non-KNN classifiers with the identified detrimental samples removed. Table 7 reports the accuracy on
three datasets. We can see that our CKNN-Shapley can effectively boost the performance of non-KNN
classifiers in most cases, indicating a good generalization of CKNN-Shapley across different models.

C.4 RATIONALITY OF T

We consider two aspects when setting T . On one aspect, we believe the value inflation comes from
the subset with too small sizes, which leads the sizes of subsets to be close to the whole training
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Table 7: Generalizability on other classifier
Method\Datasets Pol Wind CPU

Vanilla MLP 0.9909 0.8735 0.9475
MLP with negative KNN-Shapley value samples removed 0.9949 0.8939 0.9455
MLP with negative TKNN-Shapley value samples removed 0.8515 0.8269 0.9085
MLP with negative CKNN-Shapley value samples removed 0.9915 0.8979 0.9669
Vanilla LR 0.8700 0.8500 0.9300
LR with negative KNN-Shapley value samples removed 0.8800 0.8800 0.9400
LR with negative TKNN-Shapley value samples removed 0.8250 0.8250 0.9200
LR with negative CKNN-Shapley value samples removed 0.8850 0.9350 0.9600
Vanilla SVM 0.9650 0.8750 0.9400
SVM with negative KNN-Shapley value samples removed 0.8650 0.8850 0.9350
SVM with negative TKNN-Shapley value samples removed 0.8450 0.8250 0.8900
SVM with negative CKNN-Shapley value samples removed 0.9600 0.8850 0.9450

set (Large T ). On another aspect, we expect the subsets to be diverse and the number of subsets to
be large enough (Small T ). By considering both, we give a default setting of T = N − 2K, which
makes the subset size large enough and consider 2N−2K × (22K − 1) different subsets.

Moreover, we provide extra experiments of our CKNN-Shalpey with different values of T below.
In Table 8, we set T to be 0.95N, 0.75N, 0.5N and report the accuracy performance of removing
samples with negative values (Larger value means better performance), threshold for distinguishing
detrimental from beneficial samples (Closer to zero value means better performance), and misidentifi-
cation ratio of detrimental samples (Smaller value means better performance). In general, the setting
with N − 2K achieves the best average performance on all three metrics. For accuracy, the setting
with N − 2K achieves the best performance on all datasets compared with other settings. For other
metrics, the setting with N − 2K delivers competitive results. Therefore, we chose T = N − 2K as
the default setting.

Table 8: Performance of CKNN-Shapley with different values of T
Method\Datasets MNIST FMNIST CIFAR10 Pol Wind CPU AGnews SST-2 News20 Avg./Abs.

T 0.9630 0.8444 0.5956 0.9400 0.8700 0.9200 0.9060 0.7270 0.6920 0.8287

Acc after remove samples with negative Shapley values

N-2K 0.9828 0.8884 0.7164 0.9700 0.9000 0.9700 0.9420 0.8980 0.7960 0.8960
0.95N 0.9698 0.8444 0.6556 0.9700 0.8850 0.9650 0.9270 0.8612 0.7700 0.8719
0.75N 0.9696 0.8444 0.6520 0.9650 0.8600 0.9450 0.9250 0.8463 0.7610 0.8632
0.5N 0.9630 0.8444 0.6498 0.9650 0.8650 0.9500 0.9250 0.8474 0.7590 0.8631

Threshold for distinguishing detrimental from beneficial samples by × 1e−4

N-2K 0.0152 0.0109 0.1163 -0.3059 -0.0245 -2.9412 1.1955 0.1604 0.6715 0.6046
0.95N 0.3888 0.2097 0.1389 0.3889 3.6552 1.1062 1.1398 1.7674 1.2325 1.1141
0.75N 0.1970 0.2222 0.1294 -0.1216 0.4348 3.8879 1.7923 0.6662 1.8334 1.0316
0.5N 0.2352 0.2177 0.0718 0.4385 4.3249 2.4663 1.7139 0.8520 1.7043 1.3361

Misidentification ratio of detrimental samples

N-2K 0.2000 0.1686 0.0908 0.0000 0.0000 0.0000 0.1538 0.1143 0.1821 0.1011
0.95N 0.1250 0.3333 0.3736 0.1250 0.0833 0.2727 0.5172 0.2895 0.4737 0.2811
0.75N 0.6325 0.4566 0.3600 0.0000 0.1000 0.4615 0.5493 0.2500 0.5800 0.3767
0.5N 0.7107 0.4385 0.3404 0.1111 0.1429 0.3333 0.6739 0.2432 0.5680 0.3985

D LIMITATIONS AND BROADER IMPACT

Our research focuses on overcoming challenges associated with value inflation in the application of
KNN-Shapley for data valuation influence estimation. By introducing a method that enables accurate
assessment of training samples’ impact on model performance, we provide a tool for practitioners
to determine the positive or negative effects of these samples. Through comprehensive testing
across various problem scenarios, our Shapley value removal strategy has been proven superior to
existing methods, enhancing model efficiency by eliminating harmful data points. Consequently, our
contributions have the potential to drive substantial societal benefits, particularly as the use of more
complex and expansive neural networks, like Large Language Models, becomes more prevalent. For
the limitations, we do not provide a theoretical analysis on the selection of T , where we posit that the
choice of T is contingent upon the dataset characteristic. To tackle this limitation, we recommend
T = N −2K as the default setting for its satisfactory performance on the datasets in our experiments.
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E CODE AND REPRODUCIBILITY

We provide our code, instructions, and implementation in an open-source repository:
https://anonymous.4open.science/r/Inflation_KNN-SV-D9C1.

All experiments were conducted on a workstation with an AMD Ryzen Threadripper PRO 5965WX
CPU and x86_64 architecture with 128 GB memory, using NVIDIA GeForce RTX 4090 GPUs with
24GB VRAM running CUDA version 12.3 and driver version 545.23.08.
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