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Abstract

Energy-based models (EBMs) are a powerful class of probabilistic generative models due to
their flexibility and interpretability. However, relationships between potential flows and
explicit EBMs remain underexplored, while contrastive divergence training via implicit
Markov chain Monte Carlo (MCMC) sampling is often unstable and expensive in high-
dimensional settings. In this paper, we propose Variational Potential Flow Bayes (VPFB),
a new energy-based generative framework that eliminates the need for implicit MCMC sam-
pling and does not rely on auxiliary networks or cooperative training. VPFB learns an
energy-parameterized potential flow by constructing a flow-driven density homotopy that is
matched to the data distribution through a variational loss minimizing the Kullback-Leibler
divergence between the flow-driven and marginal homotopies. This principled formulation
enables robust and efficient generative modeling while preserving the interpretability of
EBMs. Experimental results on image generation, interpolation, out-of-distribution detec-
tion, and compositional generation confirm the effectiveness of VPFB, showing that our
method performs competitively with existing approaches in terms of sample quality and
versatility across diverse generative modeling tasks.

1 Introduction

Energy-based models (EBMs) have emerged as a flexible and expressive class of probabilistic generative
models (Nijkamp et al., 2019; Du & Mordatch, 2019; Grathwohl et al., 2020b; Gao et al., 2020; Du et al.,
2021; Gao et al., 2021; Grathwohl et al., 2020a; Yang et al., 2023; Zhu et al., 2024). By assigning a potential
energy that correlates with the unnormalized data likelihood (Song & Kingma, 2021), EBMs offer a structured
energy landscape for probability density estimation, providing several notable advantages. First, EBMs are
interpretable, as the underlying energy function can be visualized in terms of energy surfaces. Second,
they are highly expressive and do not impose strong architectural constraints (Bond-Taylor et al., 2022),
enabling them to capture complex data distributions. Third, EBMs exhibit inherent robustness to Out-of-
Distribution (OOD) inputs, given that regions with low likelihood are naturally penalized (Du & Mordatch,
2019; Grathwohl et al., 2020a). Building on their origins in Boltzmann machines (Hinton, 2002), EBMs also
share conceptual ties with statistical physics, allowing practitioners to adapt physical insights and tools for
model design and analysis (Feinauer & Lucibello, 2021). They have demonstrated promising performance in
various applications beyond image modeling, including text generation (Deng et al., 2020), robot learning
(Du et al., 2020), point cloud synthesis (Xie et al., 2021a), trajectory prediction (Pang et al., 2021; Wang
et al., 2023), molecular design (Liu et al., 2021), and anomaly detection (Yoon et al., 2023).

Despite these advantages, training deep EBMs often relies on implicit Markov Chain Monte Carlo (MCMC)
sampling for contrastive divergence. In high-dimensional settings, MCMC suffers from poor mode mixing
and slow mixing (Du & Mordatch, 2019; Nijkamp et al., 2019; Gao et al., 2020; Grathwohl et al., 2020a;
Nijkamp et al., 2022; Bond-Taylor et al., 2022), yielding biased estimates that may optimize unintended
objectives (Grathwohl et al., 2020b). Truncated chains, in particular, can lead models to learn an implicit
sampler rather than a true density, which prevents valid steady-state convergence and inflates computational
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overhead. As a result, the generated samples can deviate significantly from the target distribution (Grathwohl
et al., 2020b). To mitigate these issues, some works propose auxiliary or cooperative strategies that learn
complementary models to either avoid MCMC via variational inference (Xiao et al., 2021a) or combine short-
run MCMC refinements with learned generator distributions (Xie et al., 2020; Grathwohl et al., 2021; Hill
et al., 2022). However, these approaches can complicate model architectures and training procedures. In
parallel, flow-based models have advanced generative modeling by leveraging continuous normalizing flows
and optimal transport techniques to surpass diffusion models in sample quality and efficiency Kim et al.
(2021); Song et al. (2021). Notable examples include Flow Matching Lipman et al. (2023), which models
diffeomorphic mappings between noise and data; Rectified Flow Liu et al. (2023b), which optimizes sampling
paths; Stochastic Interpolants Albergo & Vanden-Eijnden (2023); Rezende & Mohamed (2015); Chen et al.
(2018), which incorporate stochastic processes into flows for complex data geometries; Schrödinger Bridge
Matching Shi et al. (2023), which integrates entropy-regularized optimal transport with diffusion; and Poisson
Flow Generative Model (PFGM) Xu et al. (2022), which introduces an augmented space governed by the
Poisson equation. However, these methods do not directly parameterize probability density and lack the
theoretical advantages of EBMs, such as generating conservative vector fields aligned with log-likelihood
gradients Salimans & Ho (2021). Recent approaches, like Action Matching Neklyudov et al. (2023), explicitly
model the energy (action) to generate data-recovery vector fields, providing a structured approach to learning
conservative dynamics. Meanwhile, Diffusion Recovery Likelihood (DRL) Gao et al. (2021) and Denoising
Diffusion Adversarial EBMs (DDAEBM) Geng et al. (2024) refine conditional EBMs by improving sampling
efficiency and training stability through diffusion-based probability paths. However, a direct connection
between energy-parameterized flow models and explicit (marginal) EBMs remains unexplored, limiting the
application of flow-based techniques for learning EBMs. Furthermore, existing generative models have yet
to adopt variational formulations, such as the Deep Ritz approach, to align the evolution of density paths.

To address the computational challenges of existing energy-based methods, we propose Variational Potential
Flow Bayes (VPFB), a novel generative framework grounded in variational principles that eliminates the
need for auxiliary models and implicit MCMC sampling. VPFB employs the Deep Ritz method to learn
an energy-parameterized potential flow, ensuring alignment between the flow-driven density homotopy and
the data-recovery likelihood homotopy. To address the intractability of homotopy matching, we formulate
a variational loss function that minimizes the Kullback-Leibler (KL) divergence between these density ho-
motopies. Additionally, we validate the learned potential energy as an effective parameterization of the
stationary Boltzmann energy. Through empirical validations, we benchmark VPFB against state-of-the-art
generative models, showcasing its competitive performance in Fréchet Inception Distance (FID) for image
generation and excellent OOD detection with high Area Under the Receiver Operating Characteristic Curve
(AUROC) scores across multiple datasets.

2 Background and Related Works

In this section, we provide an overview of EBMs, particle flow, and the Deep Ritz approach, collectively
forming the cornerstone of the proposed VPFB framework.

2.1 Energy-based Models (EBMs)

Denote x̄ ∈ Ω ⊆ Rn as the training data, EBMs approximate the data likelihood pdata(x̄) via defining a
Boltzmann distribution

pB(x) = eΦB(x)

Z
(1)

where ΦB is the Boltzmann energy parameterized via neural networks and Z =
∫

Ω eΦB(x) dx is the nor-
malizing constant. Given that this partition function is analytically intractable for high-dimensional data,
EBMs perform the Maximum Likelihood Estimation (MLE) by minimizing the negative log-likelihood loss
LMLE(θ) = −Epdata(x̄)[log pB(x̄)] = Epdata(x̄)

[
ΦB(x̄)

]
− Epdata(x̄)

[
log Z

]
. The gradient of this MLE loss

with respect to model parameters θ is approximated via the contrastive divergence (Hinton, 2002) loss
∇θLMLE = Epdata(x̄)

[
∇θΦB(x̄)

]
−EpB(x)

[
∇θΦB(x)

]
. Nonetheless, EBMs are computationally intensive due
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to the implicit MCMC generating procedure required for generating negative samples x ∼ pB(x) implicitly
during training.

2.2 Particle Flow

Particle flow, introduced by Daum & Huang (2007), is a class of nonlinear Bayesian filtering (sequential
inference) methods designed to approximate the posterior distribution p(xt|x̄≤t) of the sampling process given
observations. While closely related to normalizing flows (Rezende & Mohamed, 2015) and neural ordinary
differential equations (ODEs) (Chen et al., 2018), these frameworks do not explicitly accommodate a Bayes
update. Instead, particle flow achieves Bayes update p(xt|x̄≤t) ∝ p(xt|x̄<t) p(x̄t|xt, x̄<t) by transporting the
prior samples xt ∼ p(xt|x̄<t) through an ODE dx

dt = v(x, t) parameterized by a velocity field v(x, t), over
pseudo-time t ∈ [0, 1]. The velocity field is designed such that the sample density follows a log-homotopy
that induces the Bayes update. Despite its effectiveness in time-series inference (Pal et al., 2021b; Chen
et al., 2019b; Yang et al., 2014) and its robustness against the curse of dimensionality (Surace et al., 2019),
particle flow, particularly potential flow where the velocity field v(x, t) = Φ(x, t) is the gradient of potential
energy, remains largely unexplored in energy-based generative modeling.

2.3 Deep Ritz Approach

The Deep Ritz approach is a deep learning-based variational numerical approach, originally proposed by E
& Yu (2018), for solving scalar elliptic partial differential equations (PDEs) in high dimensions. Consider
the following Poisson’s equation, fundamental to many physical models:

∆tu(x) = Γ(x), x ∈ Ω, (2)

where ∆ is the Laplace operator, and ∂Ω denotes the boundary of Ω. For a Sobolev function u ∈ H1
0(Ω)

(definition in Proposition 2) and square-integrable Γ ∈ L2(Ω), the variational principle ensures that a weak
solution of the Euler-Lagrange boundary value equation (2) is equivalent to the variational problem of
minimizing the Dirichlet energy (Müller & Zeinhofer, 2019), as follows:

u = arg min
v

∫
Ω

(
1
2 ∥∇xv(x)∥2 − Γ(x) v(x)

)
dx (3)

where ∇x denotes the Del operator (gradient). In particular, the Deep Ritz approach parameterizes the
trial function v using neural networks and performs the optimization (3) via stochastic gradient descent.
Additionally, to enforce the Dirichlet boundary condition:

u(x) = 0, x ∈ ∂Ω (4)

the Deep Ritz approach incorporates an additional loss∫
∂Ω

ρ̄(x) ∇xΦ · n̂ dx = 0 or
∫

∂Ω
ρ̄(x) Ψ dx = 0 (5)

Since these losses are evaluated on the boundary ∂Ω, it is necessary to obtain additional samples x ∈ ∂Ω at
the boundary for neural network training. This requirement introduces additional computational overhead.
The Deep Ritz approach is predominantly applied for finite element analysis (Liu et al., 2023a) due to its
versatility and effectiveness in handling high-dimensional PDE systems. In (Olmez et al., 2020), the Deep
Ritz approach is employed to solve the density-weighted Poisson equation arising from the feedback particle
filter (Yang et al., 2013). However, its application in generative modeling remains unexplored.

3 Variational Potential Flow Bayes (VPFB)

In this section, we introduce VPFB, a novel generative modeling framework inspired by particle flow and the
Deep Ritz approach. VPFB encompasses four key elements: constructing a Bayesian marginal homotopy
between the Gaussian prior and data likelihood (Section 3.1), designing a potential flow that aligns the flow-
driven homotopy with the marginal homotopy (Section 3.2), formulating a variational loss function using
the Deep Ritz approach (Section 3.4), and establishing connections between homotopy matching, diffusion,
and EBMs (Section 3.3).
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3.1 Interpolating Between Prior and Data Likelihood: Log-Homotopy Bayesian Transport

Let x̄ ∈ Ω denote the training data, with likelihood pdata(x̄), and let x ∈ Ω represent the generative
samples. First, we define a Gaussian prior q(x) = N (0, ω2I) and a Gaussian conditional data likelihood
p(x̄ | x) = N (x̄; x, ν2I), both with isotropic covariances. This data likelihood satisfies the state space model
x = x̄ + ν ϵ, where ϵ is the standard Gaussian noise. The standard deviation ν is usually set to be small so
that x closely resembles x̄. The aim of flow-based generative modeling is to learn a density homotopy (path)
interpolating between the prior and the data likelihood for generative modeling. On that account, consider
the following conditional (data-conditioned) probability density log-homotopy ρ : Ω2 × [0, 1] → R:

ρ(x | x̄, t) = eh(x|x̄,t)∫
Ω eh(x|x̄,t) dx

(6)

where h : Ω2 × [0, 1] → R is a log-linear function:

h(x | x̄, t) = α(t) log q(x) + β(t) log p(x̄ | x) (7)

where α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1] are both monotonically increasing functions parameterized
by time t. The following proposition shows that this log-homotopy transformation results in a Gaussian
perturbation kernel.
Proposition 1. Consider a Gaussian prior q(x) = N (x; 0, ω2I) and a conditional data likelihood p(x̄ | x) =
N (x̄; x, ν2I). The log-homotopy transport (6) corresponds to a Gaussian perturbation kernel ρ(x | x̄, t) =
N
(
x; µ(t) x̄, σ(t)2I

)
, characterized by the time-varying mean and standard deviation:

µ(t) = sigmoid
(

log
(

β(t)
α(t)

ω2

ν2

))
, σ(t) =

√
ν2

β(t) µ(t) (8)

where sigmoid(z) = 1
1+e−z denotes the logistic (sigmoid) function.

Proof. Refer to Appendix C.1.

Hence, the density homotopy equation 6 represents a tempered Bayesian transport mapping from the Gaus-
sian prior q(x) to the posterior kernel

ρ(x | x̄, 1) = eh(x|x̄,1)∫
Ω eh(x|x̄,1) dx

= p(x̄ | x) q(x)∫
Ω p(x̄ | x) q(x) dx

= p(x | x̄) (9)

which is the maximum a posteriori estimation centered on discrete data samples. To approximate the
intractable data likelihood, we can then consider the following marginal probability density homotopy:

ρ̄(x, t) =
∫

Ω
pdata(x̄) ρ(x | x̄, t) dx̄, (10)

where it remains that p(x, 0) = q(x), and we have ρ̄(x, 1) =
∫

Ω pdata(x̄) p(x | x̄) dx̄ = p(x). Therefore,
this marginal homotopy defines a data-recovery path interpolation between the Gaussian prior q(x) and
the approximate data likelihood p(x). In particular, p(x) represents a Bayesian approximation of the true
data likelihood, by convolving the discrete data likelihood pdata(x̄) with the posterior distribution p(x | x̄).
Nevertheless, the marginalization in (10) is intractable, thereby precluding a closed-form solution for the
marginal homotopy. To overcome this challenge, we propose a potential flow-driven density homotopy,
whose time evolution is aligned with this data-recovery marginal homotopy.

3.2 Modeling Potential Flow in a Data-Recovery Homotopy Landscape

Our goal is to model a potential flow whose density evolution aligns with the marginal homotopy, thereby
directing samples toward the data likelihood. We begin by deriving the time evolution of the marginal
homotopy in the following proposition.
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Proposition 2. Consider the conditional homotopy ρ(x | x̄, t) in (6) with Gaussian conditional data likeli-
hood p(x̄ | x) = N (x̄; x, ν2I). Then, the time evolution (derivative) of the marginal homotopy ρ̄(x, t) is given
by the following partial differential equation (PDE):

∂ρ̄(x, t)
∂t

= −1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(11)

where γ denotes the innovation term

γ(x, x̄, t) = α̇(t)
ω2 ∥x∥2 + β̇(t)

ν2 ∥x − x̄∥2 (12)

Here, α̇(t) and β̇(t) denote the time-derivatives, and γ̄(x, x̄, t) = Eρ(x|x̄,t)[γ(x, x̄, t)] denotes the expectation.

Proof. Refer to Appendix C.2.

A potential flow involves subjecting the prior samples to an energy-generated velocity field, where their
trajectories (x(t)) satisfy the following ODE:

dx(t)
dt

= ∇xΦ(x, t) (13)

where Φ : Ω× [0, 1] → R is a scalar potential energy, and ∇x denotes the Del operator (gradient) with respect
to the data samples x(t). The vector field ∇xΦ ∈ Ω represents the divergence (irrotational) component in the
Helmholtz decomposition. By incorporating this potential flow, the flow-driven density homotopy ρΦ(x, t)
evolves via the continuity equation (Gardiner, 2009):

∂ρΦ(x, t)
∂t

= − ∇x ·
(

ρΦ(x, t) ∇xΦ(x, t)
)

(14)

which corresponds to the transport equation for modeling fluid advection. Our aim is to model the potential
energy such that the evolution of the prior density under the potential flow emulates the evolution of the
marginal homotopy. In other words, we seek to achieve homotopy matching, ρΦ ≡ ρ̄, by aligning their
respective time evolutions as described in (11) and (14). This leads to the following PDE, which takes the
form of a density-weighted Poisson equation:

∇x ·
(

ρΦ(x, t) ∇xΦ(x, t)
)

= 1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(15)

However, this Poisson equation remains intractable due to the lack of a closed-form expression for ρΦ. To
overcome this limitation, we substitute the intractable ρΦ with the target marginal homotopy ρ̄, enabling
direct sampling and a variational principle approach. In the following proposition, we demonstrate that the
revised Poisson’s equation minimizes the KL divergence between the flow-driven and conditional homotopies,
yielding statistically optimal homotopy matching.
Proposition 3. Consider a potential flow of the form (13) and given that Φ ∈ H1

0(Ω, p), where Hn
0 denotes

the (Sobolev) space of n-times differentiable functions that are compactly supported, and square-integrable
with respect to marginal homotopy ρ̄(x, t). Solving for the potential energy Φ(x) that satisfies the following
density-weighted Poisson’s equation:

∇x ·
(

ρ̄(x, t) ∇xΦ(x, t)
)

= 1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
(16)

is then equivalent to minimizing the KL divergence DKL
[
ρΦ(x, t)∥ρ̄(x, t)

]
between the flow-driven homotopy

and the conditional homotopy.

Proof. Refer to Appendix C.3.

Therefore, solving this density-weighted Poisson’s equation corresponds to performing a homotopy matching
ρΦ ≡ ρ̄. In the following section, we demonstrate that this homotopy matching gives rise to a Boltzmann
energy expressed in terms of the potential energy Φ when the marginal homotopy ρ̄ reaches its stationary
equilibrium, thereby establishing a connection between our proposed potential flow framework and EBMs.
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3.3 Connections to Diffusion Process and Energy-Based Modeling

In this section, we clarify the relationship between diffusion models and flow matching within the homo-
topy matching framework. Based on this insight, we establish a link between our proposed potential flow
framework and energy-based modeling.

First, we present results from diffusion models. It has been outlined in (Song et al., 2021) that the condi-
tional density homotopy, represented by the Gaussian perturbation kernel ρ(x | x̄, t) = N

(
x; µ(t) x̄, σ(t)2I

)
,

characterizes a diffusion process governed by the following stochastic differential equation (SDE):

dx(t) = −f(t) x(t) dt + g(t) dW (t) (17)

where W (t) ∈ Rn denote the standard Wiener process. Note that the time parameterization with respect
to t here is the reverse of the conventional parameterization used in diffusion models, where the diffusion
process transitions from x(1) ∼ pdata(x̄) to x(0) ∼ q(x) = N (0, ω2I) as defined in Section 3.1. In addition,
the time-varying drift f : [0, 1] → R and diffusion g : [0, 1] → R coefficients are shown (Karras et al., 2022)
to be given by

f(t) = − µ̇(t)
µ(t) , g(t) = −

√
2 σ(t)

(
σ̇(t) + f(t) σ(t)

)
(18)

where µ̇(t) and σ̇(t) denote the time-derivatives. It has also been shown in (Song et al., 2021) that the
following deterministic probability flow ODE:

dx(t)
dt

= −f(t) x(t) + 1
2 g(t)2 ∇x log ρ̄(x, t) (19)

results in the same marginal probability homotopy ρ̄(x, t) as the forward-time diffusion SDE (18). Subse-
quently, we highlight the link between the diffusion process and the vector field modeled in flow matching.
Proposition 4. The conditional vector field in flow matching (Lipman et al., 2023), given by

dx(t)
dt

= v(x | x̄, t) = µ̇(t) x̄ + σ̇(t) ϵ (20)

with standard Gaussian noise ϵ ∼ N (0, I), satisfies the conditional probability flow ODE governing the
diffusion process conditioned on boundary condition x(1) ∼ pdata(x̄). It follows that the marginal vector
field, given by the law of iterated expectation (tower property) E[U |X = x] = E[E

[
U |X = x, Y ] |X = x]:

dx(t)
dt

= v(x, t) = Epdata(x̄|x)
[
v(x | x̄, t) | x

]
=
∫

Ω
v(x | x̄, t) ρ(x | x̄, t) pdata(x̄)

ρ̄(x, t) dx̄ (21)

also satisfies the marginal probability flow ODE (19).

Proof. Refer to Appendix C.4.

Building on this result, we establish a connection between the proposed potential flow framework and
EBMs. The following proposition demonstrates that homotopy matching, e.g., ρΦ ≡ ρ̄ leads to an energy-
parameterized Boltzmann equilibrium.
Proposition 5. Given that the flow-driven homotopy ρΦ matches the data-recovery marginal homotopy ρ̄,
their dynamics satisfy a Fokker-Planck equation. As the time-varying marginal density ρ̄(x,t) converges to its
stationary equilibrium ρ̄∞(x) at t = t∞, this Fokker-Planck dynamics attain the Boltzmann distribution (1),
where the Boltzmann energy ΦB(x) is defined in terms of the steady-state potential energy Φ(x) as follows:

ΦB(x) = 4 Φ∞(x) + f∞ ∥x∥2

g2
∞

(22)

where Φ∞(x), f∞, and g∞ are the corresponding steady states of the potential energy and the coefficients
at stationary equilibrium.
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Proof. Refer to Appendix C.5.

On that note, we uncover the connection between the proposed VPFB framework and EBMs, demonstrating
the validity of the potential energy as a parameterization of a Boltzmann energy. This holds provided that ρ̄
converges to its stationary equilibrium and ρΦ learns to match these convergent dynamics. In the following
section, we introduce a variational principle approach to solving the density-weighted Poisson equation (16),
thereby addressing the intractable homotopy matching problem.

3.4 Variational Potential Energy Loss Formulation: Deep Ritz Approach

Solving the density-weighted Poisson’s equation (16) is particularly challenging in high-dimensional settings.
Numerical approximation struggles to scale with higher dimensionality, as selecting suitable basis functions,
such as in the Galerkin approximation, becomes increasingly complex (Yang et al., 2016). Similarly, a diffu-
sion map-based algorithm demands an exponentially growing number of particles to ensure error convergence
(Taghvaei et al., 2020). To address these challenges, we propose a variational loss function using the Deep
Ritz approach. This approach casts Poisson’s equation as a variational problem compatible with stochas-
tic gradient descent. Consequently, the proposed approach solves equation (16), effectively aligning the
flow-driven homotopy with the marginal homotopy. Directly solving Poisson’s equation (16) is challenging.
Therefore, we first consider the following weak formulation:∫

Ω

1
2 Epdata(x̄)

[
ρ(x | x̄, t)

(
γ(x, x̄, t) − γ̄(x, x̄, t)

)]
Ψ dx =

∫
Ω

∇x ·
(

ρ̄(x, t) ∇xΦ(x, t)
))

Ψ dx (23)

This PDE must hold for all differentiable trial functions Ψ. In the following proposition, we introduce a
variational loss function that is equivalent to solving this weak formulation of the density-weighted Poisson’s
equation.
Proposition 6. The variational problem of minimizing the following loss functional:

L(Φ, t) = Covρ(x|x̄,t) pdata(x̄)

[
Φ(x, t), γ(x, x̄, t)

]
+ Eρ̄(x,t)

[∥∥∇xΦ(x, t)
∥∥2
]

(24)

with respect to the potential energy Φ, is equivalent to solving the weak formulation (23) of the density-
weighted Poisson’s equation (16). Here, ∥ · ∥ denotes the Euclidean norm, and Cov denotes the covariance.
Furthermore, the variational problem (24) admits a unique solution Φ ∈ H1

0(Ω; ρ) if the marginal homotopy
p satisfy the Poincaré inequality:

Eρ̄(x,t)

[∥∥∇xΦ(x, t)
∥∥2
]

≥ η Eρ̄(x,t)

[∥∥Φ(x, t)
∥∥2
]

(25)

for some positive scalar constant η > 0 (spectral gap).

Proof. Refer to Appendix C.6.

Remark. The integration by parts in (68) and (89) requires that the marginal density ρ̄(x) vanishes on the
boundary ∂Ω of some open, bounded domain Ω ⊂ Rn, under which the boundary integral

∫
∂Ω ρ̄(x) (∇xΦ ·

n̂) dx = 0 holds. In standard implementations, although the training data x̄ are typically normalized to
lie within [−1, 1]n, we may define the perturbed samples as x ∈ Ω ⊂ Rn, where Ω is chosen to contain
the support of the data distribution. Accordingly, the open bounded domain Ω can be defined sufficiently
large so that the conditional homotopy ρ(x | x̄, t) approaches zero at the boundary ∂Ω. Since ρ(x | x̄, t) is a
Gaussian perturbation kernel, it decays exponentially and is effectively negligible near the boundary, thereby
satisfying the required condition. As a result, the marginal distribution ρ̄(x, t) also vanishes at ∂Ω, ensuring
the validity of the integration by parts required to formulate both Proposition 3 Proposition 6.

Overall, Propositions 3 and 6 recast the intractable problem of minimizing the KL divergence between the
flow-driven homotopy and the marginal homotopy as an equivalent variational problem of solving the loss
function (24). By optimizing the potential energy with respect to this loss and transporting the prior samples
through the ODE (13), the prior particles evolve along a trajectory that aligns with the marginal homotopy.
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In particular, the covariance loss here plays an important role by ensuring that the normalized innovation
(residual sum of squares) is inversely proportional to the potential energy. As a result, the energy-generated
velocity field ∇xΦ consistently points in the direction of greatest potential ascent, thereby driving the flow of
prior particles towards high likelihood regions. Given that homotopy matching is performed over the entire
time horizon, we apply stochastic integration to the loss function over time, where t ∼ U(0, tend) is drawn
from the uniform distribution.

3.5 Training Implementation

During training, we implement the Optimal Transport Flow Matching (OT-FM) (Lipman et al., 2023), which
corresponds to the SDE parameterization given by (Kingma & Gao, 2023): f(t) = − 1

t , g(t) =
√

2 (1−t)
t

or equivalently, α(t) = ω2

1−t , β(t) = ν2 t
(1−t)2 for the log-homotopy transformation in (7). To establish a

Boltzmann distribution, we further require that the time-varying marginal density ρ̄(x, t) converges to a
stationary Boltzmann equilibrium, e.g., ∂ρ̄(x,t)

∂t = 0. However, the Gaussian perturbation kernel ρ(x | x̄, t) =
N
(
µ(t) x̄, σ(t)2I

)
used in diffusion and flow-based models is defined only over a finite interval t ∈ [0, tmax].

Additionally, the resulting marginal homotopy ρ̄(x, t) is not guaranteed to reach equilibrium within the
prescribed time interval. To resolve these limitations of the flow-based probability paths, we explicitly enforce
stationarity in our training implementation, by imposing a steady-state equilibrium p∞(x) = ρ̄(x, t ≥ tmax)
beyond some cutoff time tmax < tend close to the terminal time. This steady-state equilibrium p∞(x) ≡ pB(x)
thus corresponds to a stationary Boltzmann distribution, parameterized by the energy function derived
in (22) with f∞ = f(tmax) and g∞ = g(tmax). Given that a steady-state equilibrium is enforced via
p∞(x) = ρ̄(x, t ≥ tmax) ≈ pdata(x̄), the stationary Boltzmann distribution approximates the true data
likelihood by design.

Finally, our VPFB loss function is implemented as follows:

LVPFB(Φ) =
∫ tend

0
L(Φ, t) dt = EU(0,tend)

[
L(Φ, t)

]
(26)

where

L(Φ, t) = Covρ(x|x̄,t) pdata(x̄)

[
Φ(x, t), w(t) γ(x, x̄, t)

]
− ∇xΦ(x, t) · v(x | x̄, t)∥∥∇xΦ(x, t)

∥∥ ∥∥v(x | x̄, t)
∥∥

+ Eρ(x|x̄,t) pdata(x̄)

[∥∥∇(x,t)Φ(x, t)
∥∥2 + η

∥∥Φ(x, t)
∥∥2
] (27)

Here, we incorporate an additional cosine distance between the potential gradient ∇xΦ and the conditional
vector field in (20) to the loss function. While this cosine distance does not influence the learning of the
potential energy’s magnitude (magnitude learning is entirely supervised by the covariance loss), it enforces
directional alignment between the gradient and the vector field. To enforce Boltzmann convergence toward
the steady-state potential Φ∞(x), we additionally encourage quasi-static dynamics by minimizing the Eu-
clidean norm of the time derivative

∣∣∂Φ
∂t

∣∣2 alongside the gradient norm during training. Also, a weighting
w(t) = (1 − t)κ with decay exponent κ > 1 is applied to the innovation term to balance the covariance loss
across time to stabilize training.

Considering that the marginal homotopy may not satisfy the Poincaré inequality (25), we include the right-
hand side of this inequality in the loss function to enforce the uniqueness of the minimizer. To empirically
validate the existence of a positive Poincaré constant η, Figure 10 plots the ratio between the gradient norm
E
[
|∇xΦ(x, t)|2

]
and the energy norm E

[
|Φ(x, t)|2

]
over training iterations on CIFAR-10, without applying the

additional Poincaré regularization loss. It shows that the ratio is bounded below by η = 6.81×10−5, thereby
confirming the existence of a positive Poincaré constant during training. Nonetheless, our experiments
indicate that the existence and magnitude of such an unenforced Poincaré constant vary across different
neural architectures. For completeness, we incorporate the Poincaré regularization with a small η for both
the WideResNet and U-Net models, which we fine-tune during training for optimal results. The cutoff time
tmax, terminal time tend, decay exponent κ, and spectral gap constant η are hyperparameters to be determined
during training. Algorithm 1 summarizes the training procedure of our proposed VPFB framework.
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Figure 1: 2D potential flow. Top: Sample trajectories from the Gaussian prior noise distribution (black) to
the target 2-Moons distribution (blue), driven by the potential energy Φ(x, t) and sampled using an ODE
solver. Bottom: Time evolution of the learned potential energy landscape Φ(x, t).

Figure 2: 2D Boltzmann density estimation. Top: Sample trajectories from the Gaussian prior noise dis-
tribution (black) to the target 2-Moons distribution (blue), driven by the Boltzmann energy ΦB(x) =
4 Φ∞(x)+f∞ ∥x∥2

g2
∞

and sampled using Langevin Dynamics. Middle: Visualization of the log-density estimation
(up to an additive constant) log pB(x) = ΦB(x) parameterized by Boltzmann energy.

4 Experiments

In this section, we validate the energy-based generative modeling capabilities of VPFB across several key
tasks. Section 4.1 explores 2D density estimation. Section 4.2 presents the unconditional generation and
spherical interpolation results on CIFAR-10 and CelebA. Section 4.4 evaluates mode coverage and model
generalization through energy histograms of train and test data and the nearest neighbors of generated
samples. Section 4.5 examines unsupervised OOD detection performance on various datasets. Section 4.6
verifies the convergence of long-run ODE samples to a Boltzmann equilibrium.

Additional results on ablation study and computational efficiency are provided in Appendix A. Additional
discussions of the results are also provided in Appendix B. Finally, implementation details, including archi-
tecture, training, numerical solvers, datasets, and FID evaluation, are provided in Appendix D.

4.1 Density Estimation on 2D Data

To verify the convergence properties of the potential energy and to assess the validity of the Boltzmann
energy (22), we conduct density estimation on two-dimensional (2D) synthetic datasets. Specifically, we learn
a potential flow that transforms an unimodal Gaussian prior distribution into a 2-Moons target distribution.
Figure 3.5 shows the sample trajectories driven by the potential flow dx(t) = ∇xΦ(x, t) dt, sampled via
a deterministic Euler solver. Figure 3.5 presents the sample trajectories and density estimation of the
Boltzmann distribution pB ∝ eΦB(x), obtained via stochastic Langevin Dynamics sampling. Notably, with
a unimodal Gaussian prior, both the potential energy Φ(x) and Boltzmann energy ΦB(x) exhibit faster
convergence to their steady-state equilibrium. Furthermore, Figure 3.5 demonstrates improved steady-state
convergence of the Boltzmann energy, resulting in a density estimation that more closely aligns with the 2-
Moons distribution. These results highlight the effectiveness of our variational principle approach in learning
the Boltzmann stationary distribution through homotopy matching against the stationary-enforced marginal.
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Figure 3: Uncurated and unconditional samples generated for CIFAR-10 (left) and CelebA (right).

Nonetheless, a standard formulation of the forward-time SDE (17), or equivalently, the marginal probability
flow ODE (19), is valid only in the case of a unimodal Gaussian prior, e.g., q(x) = ρ(x | x̄, t = 0) = N (0, ω2I),
as discussed in Kingma & Gao (2023). This assumption underpins the consistency of the Fokker–Planck
dynamics with the continuous-time diffusion framework, ensuring the validity of the stationary Boltzmann
energy in the limit. We acknowledge this limitation of our current framework. As a direction for future
work, we propose extending the forward-time SDE or ODE formulation of continuous-time diffusion to
be admissible for more general prior distributions, such as mixtures of Gaussians or learned priors, to
accommodate multi-modal data while maintaining consistency with our proposed energy-based framework.

4.2 Unconditional Image Generation

For image generation, we consider three VPFB model variants: an autonomous (independent of time) energy
model Φ(x) parameterized by Zagoruyko & Komodakis (2016), and a time-varying energy model Φ(x, t)
parameterized by U-Net (Ronneberger et al., 2015). Figure 3 shows the uncurated and unconditional image
samples generated using the time-varying energy model on CIFAR-10 32 × 32 and CelebA 64 × 64. The
generated samples are of decent quality and resemble the original datasets, despite not having the highest
fidelity as achieved by state-of-the-art models. Table 1 summarizes the quantitative evaluations of our
framework in terms of FID (Heusel et al., 2017) scores on the CIFAR-10. In particular, the VPFB models
achieved FID scores competitive to existing generative models. Figures 6 and 7 show additional uncurated
samples of unconditional image generation on CIFAR-10 and CelebA, respectively.

4.3 Image Interpolation and Compositional Generation

To perform smooth and semantically coherent image interpolation, we construct the spherical interpolation
between two Gaussian noises and then subject these interpolated noises to the ODE sampling. Figures 8
and 9 show additional samples of image interpolation on CIFAR-10 and CelebA, respectively. Additionally,
to generate compositional samples, we first train a class-conditioned energy model Φ(x, c), and then sample
using an average of the conditional energies across the selected classes. Figure 4 presents the results of com-
positional generation conditioned on composite CelebA attributes, specifically (Male, Young), (Male, Smile),
and (Young, Smile). However, certain samples show limited variation across attribute pairs, suggesting that
composition weight could be incorporated to enhance conditioning on specific class attributes.
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Figure 4: Compositional and conditional CelebA samples generated based on three attribute pairs.

Figure 5: Generated CIFAR-10 samples and their five nearest neighbors in train set based on pixel distance.

4.4 Model Generalization and Mode Evaluation

To evaluate the model’s generalization capability of VPFB, Figure 5 presents the nearest neighbors of the
generated samples in the train set of CIFAR-10. The results show that nearest neighbors are significantly
different from the generated samples, thus suggesting that our models do not overfit the training data and
generalize well across the underlying data distribution. To validate the mode coverage and over-fitting
ability, Figure 11 also plots the histogram of the energy outputs on the CIFAR-10 train and test datasets.
The energy histogram shows that the learned energy model assigns similar energy values to both the train
and test set images. This indicates that the VPFB model generalizes well to unseen test data and extensively
covers all the modes in the training data.

4.5 Out-of-Distribution Detection

Given that the potential flow corresponds to a stationary Boltzmann distribution, the Boltzmann energy
ΦB from (22) can be used to differentiate between in-distribution and OOD samples based on their assigned
energy values. Specifically, the potential energy model trained on the CIFAR-10 training set assigns energy
values to both in-distribution samples (CIFAR-10 test set) and OOD samples from various other image
datasets. The OOD performance is evaluated using the AUROC metric, where a higher score reflects
the model’s efficacy in accurately assigning lower energy values to OOD samples. Table 2 compares the
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Table 1: FID scores on unconditional CIFAR-10 image generation.

Energy-based Models FID ↓ Other Likelihood-based Models FID ↓
EBM-IG (Du & Mordatch, 2019) 38.2 ResidualFlow (Chen et al., 2019a) 47.4
EBM-FCE (Gao et al., 2020) 37.3 Glow (Kingma & Dhariwal, 2018) 46.0
CoopVAEBM (Xie et al., 2021b) 36.2 DC-VAE (Parmar et al., 2021) 17.9
CoopNets (Xie et al., 2020) 33.6 GAN-based Models
Divergence Triangle (Han et al., 2019) 30.1 SN-GAN (Miyato et al., 2018) 21.7
VERA (Grathwohl et al., 2021) 27.5 SNGAN-DDLS Che et al. (2020) 15.4
EBM-CD (Du et al., 2021) 25.1 BigGAN (Brock et al., 2019) 14.8
GEBM (Arbel et al., 2021) 19.3 Score-based and Diffusion Models
HAT-EBM (Hill et al., 2022) 19.3 NCSN-v2 (Song & Ermon, 2020) 10.9
CF-EBM (Zhao et al., 2020) 16.7 DDPM Distil (Luhman et al., 2021) 9.36
CoopFlow (Xie et al., 2022) 15.8 DDPM (Ho et al., 2020) 3.17
VAEBM (Xiao et al., 2021a) 12.2 NCSN++ (Song et al., 2021) 2.20
DRL (Gao et al., 2021) 9.58 Flow-based Models
CLEL (Lee et al., 2022) 8.61 Action Matching (Neklyudov et al., 2023) 10.0
DDAEBM (Geng et al., 2024) 4.82 Flow Matching (Lipman et al., 2023) 6.35
CDRL (Zhu et al., 2024) 3.68 Rectified Flow (Liu et al., 2023b) 4.85
VPFB (Autonomous) 14.5 DSBM (Shi et al., 2023) 4.51
VPFB (Time-varying) 6.72 PFGM (Xu et al., 2022) 2.35

Table 2: AUROC scores ↑ for OOD detection on several datasets.

Models CIFAR-10 Interpolation CIFAR-100 CelebA SVHN
PixelCNN (Salimans et al., 2017) 0.71 0.63 - 0.32
GLOW (Kingma & Dhariwal, 2018) 0.51 0.55 0.57 0.24
NVAE (Vahdat & Kautz, 2020) 0.64 0.56 0.68 0.42
EBM-IG (Du & Mordatch, 2019) 0.70 0.50 0.70 0.63
VAEBM (Xiao et al., 2021a) 0.70 0.62 0.77 0.83
CLEL (Lee et al., 2022) 0.72 0.72 0.77 0.98
DRL (Gao et al., 2021) - 0.44 0.64 0.88
CDRL (Zhu et al., 2024) 0.75 0.78 0.84 0.82
VPFB (Ours) 0.78 0.67 0.84 0.61

AUROC scores of VPFB against various likelihood-based and energy-based models. The results show that
our model performs exceptionally well on interpolated CIFAR-10 and CelebA 32×32 while achieving average
performance on CIFAR-100 and SVHN.

4.6 Long-Run Steady-State Equilibrium

Figure 12 illustrates long-run ODE sampling over an extended time horizon t ∈ [0, 20] using the autonomous
energy model parameterized by WideResNet. Additionally, Figure 13 illustrates long-run ODE sampling
using the time-varying energy model parameterized by U-Net. The results indicate a similar deterioration
in image quality over extended time periods, albeit to a greater extent compared to the autonomous model.
Figure 14 plots the gradient norm E

[
∥∇xΦ∥2] and the energy norm E

[
∥Φ∥2], neither of which exhibit

convergence. These results are consistent with those observed in EBMs trained using non-convergent short-
run MCMC (Agoritsas et al., 2023; Nijkamp et al., 2020). This issue arises from the inherent difficulty neural
network models face in learning complex energy landscapes in high-dimensional spaces. Regions that remain
unseen during training can correspond to poorly modeled areas of the energy landscape, often resulting in
the emergence of sharp local minima. Consequently, ODE-based sampling may become trapped in these
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local minima, leading to mode collapse and poor mixing, which manifest as visual artifacts such as excessive
saturation and loss of background details.

To resolve these issues, we replace the deterministic ODE sampler with conventional Stochastic Gradient
Langevin Dynamics (SGLD) for image generation, enabling sampling from the Boltzmann energy via xt+1 =
xt + ∆t ∇xΦB(xt) +

√
2 ∆t ϵ where ϵ ∼ N (0, λ2I) denotes isotropic Gaussian noise with temperature scale

λ (standard deviation), and ∆t is the step size. The injected stochasticity from the diffusive noise in SGLD
facilitates escape from local minima and enhances mixing efficiency during sampling. As shown in Figures
15 and 17, SGLD mitigates mode collapse and the long-run image samples converge well to the stationary
equilibrium. Furthermore, Figures 16 and 18 demonstrate that the gradient norm converges to zero, while
the energy norm asymptotically stabilizes, indicating steady-state thermalization.

These SDE-based sampling results confirm that equilibrium convergence is achievable with a stochastic
sampler. Nevertheless, the temperature scale λ must be carefully tuned to balance convergence speed and
sample quality. Interestingly, ODE-based sampling consistently yields better FID scores, potentially due
to the deterministic nature of the proposed potential flow and the straightness of the linearly interpolated
OT-FM trajectories, which contribute to sharper and more consistent sample generation.

5 Conclusion

We propose VPFB, a novel energy-based potential flow framework that reduces the computational cost
and instability in EBM training. Empirical results show that VPFB outperforms many existing EBMs in
unconditional image generation and achieves competitive performance in OOD detection, demonstrating
its versatility across generative modeling tasks. Despite these successes, future work will focus on refining
the training strategy to enhance scalability for higher-resolution images and other data modalities, and
addressing the aforementioned limitations of our proposed framework. In addition, generative models that
inherently incorporate Neumann boundary conditions into the design of their blurring perturbation kernels
(Rissanen et al., 2023; Hoogeboom & Salimans, 2023; Daras et al., 2023) could be investigated to improve
energy landscape modeling and enhance sample diversity without relying on expensive long-run MCMC.

Broader Impact Statement

Generative models represent a rapidly growing field of study with overarching implications in science and
society. Our work proposes a new generative model designed for efficient data generation and OOD detection,
with potential applications in fields such as medical imaging, entertainment, and content creation. However,
like any powerful technology, generative models come with substantial risks, including the potential misuse in
creating deepfakes or misleading content that could undermine social security and trust. Given this dual-use
nature, it is essential to implement safeguards, such as classifier-based guidance, to prevent the generation of
biased or harmful content. Moreover, generative models are vulnerable to backdoor adversarial attacks and
can inadvertently amplify biases present in the training data, reinforcing social inequalities. Although our
work uses standard datasets, it is important to address how such biases are handled. We are actively exploring
methods to identify and mitigate biases during both the training and generation phases. This includes
employing fairness-aware training algorithms and evaluating the model’s output for biased patterns. One
potential solution is incorporating privacy-preserving encryption techniques to safeguard sensitive data and
ensure that generative models do not expose private information. Furthermore, while this work demonstrates
the potential benefits of generative models, the ethical concerns surrounding their deployment must be
considered. Addressing these issues will require ongoing collaboration to develop frameworks for responsible
use, including transparency, model interpretability, and robust safeguards against malicious applications. By
proactively engaging with these ethical concerns, the broader community can contribute to the responsible
advancement of generative modeling technologies.
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