
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEPPROOF: STEP-BY-STEP VERIFICATION OF
NATURAL LANGUAGE MATHEMATICAL PROOFS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interactive theorem provers (ITPs) are powerful tools for the formal verification
of mathematical proofs down to the axiom level. However, their lack of a natural
language interface remains a significant limitation. Recent advancements in large
language models (LLMs) have enhanced the understanding of natural language
inputs, paving the way for autoformalization—the process of translating natural
language proofs into formal proofs that can be verified. Despite these advance-
ments, existing autoformalization approaches are limited to verifying complete
proofs and lack the capability for finer, sentence-level verification. To address
this gap, we propose StepProof, a novel autoformalization method designed for
granular, step-by-step verification. StepProof breaks down complete proofs into
multiple verifiable subproofs, enabling sentence-level verification. Experimental
results demonstrate that StepProof significantly improves proof success rates and
efficiency compared to traditional methods. Additionally, we found that minor
manual adjustments to the natural language proofs, tailoring them for step-level
verification, further enhanced StepProof’s performance in autoformalization.

1 INTRODUCTION

Mathematics is the basic tool for the development of science, and the reliability of its conclusions
affects the stable growth of various disciplines. With the development of the mathematical edifice,
mathematical proofs have become more complex and lengthy. The verification of mathematical
proof often requires years of careful verification to ensure the accuracy of the work. However,
reading a mathematical work requires a large amount of knowledge, and in the face of the many
branches of mathematics today, traditional manual verification has become increasingly disastrous.
Thus, an idea arose to validate mathematical work written in natural language automatically.

At present, there are two kinds of automatic verification of mathematical proof. One is to write
the mathematical certificate into a machine code that can be verified by a specific expert system,
which is called the interactive theorem prover (Harrison et al., 2014). After more than 40 years
of development, the interactive theorem prover has begun to take shape and has been used in the
verification of many mathematical works (Maric, 2015). However, because such machine-verifiable
proofs need to be written in a specific programming language, whose learning cost is relatively high,
interactive theorem provers are only used by a small number of mathematicians at present (Nawaz
et al., 2019).

On the other hand, after the advent of the large language model (Zhao et al., 2023), through prompt
engineering (Liu et al., 2023) and few shot learning (Wang et al., 2020b), large language model
can be applied to many natural language processing tasks, and achieved considerable performance
(Achiam et al., 2023). However, due to the hallucination problem of large language model (Ji et al.,
2023), its performance in mathematics and strong logic-related work is not good enough (Huang
et al., 2023), so the lack of reliability of large language model to verify mathematical work is easy
to cause a lot of errors. In this context, a method that combines large language models and theorem
provers gradually comes into people’s view, which is called autoformalization verification (Li et al.,
2024).

At present, the existing automatic formal verification work generally adopts a FULL-PROOF strat-
egy. Although such a strategy has achieved some impressive performance in some studies, there
are still many problems in the stability of its proof and the fine-grained verification. Aiming at the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

problems existing in FULL-PROOF, we innovatively propose a new automatic formal proof strat-
egy, STEP-PROOF. And the performance of StepProof is better than traditional methods in several
aspects.

In summary, our contributions mainly include the following points: 1. We pioneered a novel natural
language mathematical verification method StepProof, which realizes informal mathematical proof
verification at the sentence level. 2. We were the first to realize the test of automatic formalization
capabilities on small open-source LLMs. 3. Compared with existing methods, the StepProof method
has been significantly improved in all aspects of performance.

In this paper, we will first make a brief summary of the existing relevant works and the technical
background in Chapter 2. In Chapter 3, we will give a detailed introduction to the two types of
strategies, FULL-PROOF and STEP-PROOF, and point out many problems faced by traditional
methods. In Chapter 4, we set up a series of experiments to verify the performance of STEP-PROOF
in verification tasks and its superiority over FULL-PROOF. At the same time, we also carried out
a detailed analysis of some phenomena observed in the experiment to further explain the reason
for the advantages. In the end, we analyze and look forward to the current limitations and future
development direction.

2 RELATED WORK

Theorem Prover: Theorem provers can be roughly divided into two types, interactive theorem
provers (ITPs) in which the user can enter and verify the existing proof (Asperti, 2009), and auto-
mated theorem provers (ATPs) that try to prove the statements fully automatically (Harrison, 2013).
The two types of theorem provers are not mutually exclusive (Nawaz et al., 2019). Most ITPs such
as Isabelle (Paulson, 1994), Coq (Huet et al., 1997) and Lean (De Moura et al., 2015) are supported
by ATPs that try to automatically prove ”obviously” intermediate steps in the proof entered by the
user. The entered proofs are rigorously verified back to the axioms of mathematics. Different ITPs
use different axiomatic foundations, e.g. set theory, first-order logic, higher-order logic, etc. Each
ITP use its own language and syntax, which makes the learning cost of theorem prover high, and
precludes ITPs from being widely used (Yushkovskiy, 2018).

Large Language Model: In recent years, large language models (LLMs) have achieved outstand-
ing performance in many downstream tasks of natural language processing. LLMs such as Llama
(Dubey et al., 2024), GPT series (Ye et al., 2023) and GLM 4 (GLM et al., 2024) are trained on
large databases to understand user input in natural language and produce the related output. While
large language models perform well in general tasks such as translation, their performance in deal-
ing with logic problems has been limited. A lot of work has also shown that large language models
are prone to a variety of problems when dealing with logic problems (Yan et al., 2024; Wan et al.,
2024). Although in the subsequent iteration of the model, the developers provided a large amount
of high-quality logic-related data to improve the logic capability of the model, the effect that could
be achieved was still very limited (Lappin, 2024). Therefore, it has become a trend to add an expert
system to the model to improve its accuracy, such as RAG (Fan et al., 2024), which is currently
commonly used in question-answering systems. On the other hand, step-by-step reasoning has been
proven can improve the reasoning ability of existing LLMs (Wei et al., 2022; Khot et al., 2022),
which gives us a hint to apply in autoformalization.

Autoformalization: The definition of automatic formalization is very broad, but can be roughly
seen as understanding and extracting translation from natural language to obtain the required struc-
tured data or formal language, such as entity relation extraction (Nguyen & Grishman, 2015). Early
automatic formalization work involved extracting logical propositions from natural language in ad-
dition to entity relation extraction (Singh et al., 2020; Lu et al., 2022). However, the main problem in
this kind of work is that the extracted logical propositions lack corresponding symbols for derivation
and application, so the output of the automatic formalization output cannot be directly applied. With
the launch of pre-trained language models such as transformer and BERT, language models have
a stronger understanding ability. Wang et al. (2020a) conducted an early automatic formalization
attempt for the theorem prover Mizar. However, due to the limited size and training expectations of
the models at that time, the effects they could achieve were very limited. With the rapid expansion of
the scale of models and predictions, many new and better performance automatic formalization work
has emerged, such as the Majority Voting method by Lewkowycz et al. (2022), the DSP method by

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Jiang et al. (2022)., and the method proposed by Zhou et al. (2024), in DTV (Don’t Trust: Ver-
ify). They further improved the automatic formalization of the system by combining large models
with some syntax-modifying filters. However, on the one hand, all these works are tested in the
closed-source large model Minerva, which lacks the testing work of open source model and small
model. Meanwhile, all these works adopt the strategy of FULL-PROOF, which has poor controlla-
bility for the formal output of the model, and it is difficult to locate the error point of non-formal
proof. Qinghua et al. proposed a problem location method based on the FULL-PROOF strategy in
SlideRule. However, this method relies heavily on the format and quality of the generated formal
content, so it cannot achieve 100% problem locations detected. To solve these problems, we propose
StepProof, an automatic formalization strategy that can realize sentence-level verification, to realize
the verification of natural language mathematical proofs. Moreover, LEGO-Prover (Wang et al.,
2023) proposed a new methodology to decompose the whole proof into several sub-proofs. Al-
though the idea of step-proof is taking shape, it still requires some extra generation of the sub-proof
formal statement generation, which increases the error probability of formalization.

3 STEPPROOF

In this chapter, we will provide a detailed introduction to the workflow design of StepProof. We
will also compare the STEP-PROOF strategy used by StepProof with the FULL-PROOF strategy
adopted by existing autoformalization systems, highlighting the problems with traditional strategies
and the advantages of STEP-PROOF over FULL-PROOF.

3.1 FULL-PROOF

Current research on natural language proofs formal verification predominantly employs the FULL-
PROOF strategy, as seen in methods like DSP and DTV. The workflow of FULL-PROOF method can
be roughly illustrated as the left of Figure 1. Users submit a provable problem along with its proof
process. The problem is first formalized, then the informal problem, the formalized problem, and
the entire informal proof are packaged as inputs to a large language model for formalization. After
obtaining the formal proof, it is combined with the formalized problem and input into a theorem
prover for rule-based formal verification. The verification results are then returned to the user.
Despite the clarity and simplicity of the FULL-PROOF workflow, it has significant drawbacks.

Figure 1: Full-Proof Strategy generate from the whole proof and only provide proof result instead
of detailed feedback to help user improve the proof. While Step-Proof separate the whole proof into
sub-proof to proof from the bottom to the top and enable the user to get more detailed feedback and
fine-grained operation.

First, in the FULL-PROOF automated formalization process, the highly structured and formalized
nature of the input and output, coupled with the numerous similarities in solving mathematical

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

equations, often leads to excessive noise in the output. To obtain the desired formalized content,
numerous filters must be set up, which results in considerable waste and contamination of generated
content. This can also cause generation loops, where the same content is repeatedly generated, a
common issue in FULL-PROOF strategies.

Additionally, the length of proofs varies, and LLMs in FULL-PROOF struggle to adjust the out-
put’s max new tokens effectively based on input length. This leads to shorter proofs not being
truncated in time, thus generating repetitive or noisy content, and longer proofs lacking sufficient
max new tokens.

Lastly, the stability of FULL-PROOF generation is poor. For instance, a full proof might be almost
entirely correct except for a minor error in a small step, leading to the failure of the entire formal
proof. Users attempting regeneration may find previously correct parts presenting erroneous. Thus,
FULL-PROOF requires highly accurate one-time generation of the entire content.

Moreover, the correlation between formal and informal content generated by FULL-PROOF is weak,
making it difficult for users to map formal feedback to corresponding informal content. Although
LLMs can generate formal proofs with annotations to map back to informal proofs as Qinghua et
al proposed the failure step detection method in SlideRule, this approach is unstable in practice and
increases the required token count.

3.2 STEP-PROOF

To address the numerous issues faced by the FULL-PROOF strategy, we innovatively propose STEP-
PROOF. STEP-PROOF employs a step-by-step generation and verification strategy, offering better
performance and stability compared to FULL-PROOF. The workflow of STEP-PROOF is illustrated
in the right of Figure 1.

Unlike the one-time generation and verification of FULL-PROOF, STEP-PROOF assumes each sen-
tence in the proof is a verifiable sub-proposition. Each step is formalized and pushed onto a formal
proof stack, where it is verified along with other sub-propositions in the stack. Upon successful
verification, the formalized proof and informal proof are packaged as inputs for the next step. For
failed steps, the Step Proof allows users to backtrack, retaining previously verified steps and only
clearing the erroneous step from the stack. The StepProof can then either re-formalize or optimize
the existing informal step as needed.

STEP-PROOF offers several advantages over FULL-PROOF. First, it only needs to formalize sin-
gle sentences in context, resulting in shorter, less noisy, and more stable output. The step-by-step
generation strategy also means that each step’s length is relatively fixed, eliminating the need for
adjusting max new tokens and allowing the use of smaller max new tokens for formalizing longer
theorems.

Moreover, STEP-PROOF’s incremental generation and verification tolerate step errors well. Only
the specific erroneous step needs to be retracted, rather than regenerating the entire content, en-
hancing robustness and efficiency. Finally, Step Proof ensures high correspondence between each
informal and formal proof step, providing users with finer operational granularity. For instance,
users can suspend a correct but incomplete step and assume it is correct to proceed, a functionality
almost impossible under the FULL-PROOF strategy.

We also designed a simple and user-friendly interactive interface for the user, as shown in Figure
2. Users can complete the natural language proof of the problem through interface interaction, and
each step of the proof will be formally verified after submission, and the verified proof step will be
marked in green in the background to indicate that the current step has passed the verification and is
reliable. If the current step does not pass the automatic validation but the user thinks it is true and
wants to continue, you can select HOLD, and the current step will be highlighted in yellow in the
background to indicate that the current step is in a suspended state. After completing all the proof
steps, the user can input QED to indicate that the system has completed the proof, and the system
will combine all the steps to perform the final verification of the proof target. Through the interactive
interface, the user can also realize the PDF export of the proof process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: User Interface of StepProof

4 EXPERIMENT

4.1 EXPERIMENT SETUP

To validate the performance advantages of the STEP-PROOF strategy over FULL-PROOF, and to
compare StepProof’s overall performance against existing automated formal proof methods, we con-
ducted both strategy performance tests and baseline tests using the same dataset and model settings.

For the test dataset, we used GSM8K, which includes a large number of informal mathematical
problems and their correct informal proofs. These informal proofs can be easily segmented into
a series of sub-steps. We chose Llama3 8B-Instruct as the large language model for automated
formalization. Existing autoformalization tests use closed-source models, and we aim to fill this gap
by using an open-source small LLMs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We set the temperature to 0.3 to balance stability and flexibility. Given the small parameter count
of 8B, we used a single example for the few-shot in strategy performance tests. With proof steps
in GSM8K (Cobbe et al., 2021) averaging 4-5 steps, we set the max new tokens for FULL-PROOF
to 1024, and 256 for each step in Step Proof. The test environment consisted of a single NVIDIA
A4000 16GB, 8 cores of AMD5800X, and 32GB DDR4 3200 RAM. Isabelle2024 was used as
the formal theorem prover with only Main prove library as the theorem base1, with Isabelle-client
(Shminke, 2022) as the testing service proxy.

In the strategy performance tests, we evaluated the performance of FULL-PROOF and STEP-
PROOF on the GSM8K test set using the following metrics: 1. One-attempt generation proof pass
rate rp. 2. Average formalization time for passed proofs µf . 3. Variance in formalization time σ2

f .
4. Average proof time for passed proofs µp. 5. Variance in proof time σ2

p.

In the baseline tests, we compared the multi-attempt test results of GSM8K by Lewkowycz et al.
(2022) in Majority Voting and Zhou et al. (2024) in DTV with our results. We evaluated the perfor-
mance based on the number of attempts and multi-round proof pass rate, allowing up to 10 retries
for each failed step in each formalization attempt.

At the same time, considering that StepProof has better granularity than traditional proof tasks,
we not only evaluated the overall proof passing rate but also counted the proportion of step-proof
passing. For example, if a 6-step proofs can be verified to be true in 3 steps, then we will mark that
the step pass rate of the proof is 0.5. In this way, we quantify the formal proof capability of the
method more comprehensively rather than the Proof Passing Rate.

In addition, to verify the influence of the writing method of non-formal proof on the passing rate of
StepProof formal proof, we extracted 100 questions from the Number theory of MATH (Hendrycks
et al., 2021) and made simple manual modifications to make the proof step more consistent with the
proof requirement of StepProof.

4.2 EXPERIMENT RESULTS

Proof Passing Rate Formalization Time Proof Time
rp µf ± σ2

f µp ± σ2
p

FULL-PROOF 5.30% 9.54 ± 12.64s 214.93 ± 20864.97s
STEP-PROOF 6.10% 5.83 ± 4.24s 130.12 ± 5271.65s

Table 1: Performance Test of Full-Proof and Step-Proof

In strategy performance tests, the STEP-PROOF strategy outperformed the FULL-PROOF strat-
egy across the board on the GSM8K test set. As shown in Table 4.2, the STEP-PROOF strategy
improved the one-attempt proof pass rate by 15.1% compared to FULL-PROOF. In terms of aver-
age formalization time, STEP-PROOF required 38.9% less time than FULL-PROOF. For average
proof time, STEP-PROOF achieved a 39.5% performance improvement over FULL-PROOF. Ad-
ditionally, STEP-PROOF showed more stability in both formalization and proof time compared to
FULL-PROOF. These results confirm that our strategy offers better performance, efficiency and
stability.

In the baseline test as shown in Table 4.2, Step Proof surpassed DTV in multi-round verification tests
on GSM8K, achieving a 10.3% performance improvement. Moreover, StepProof required fewer
attempts compared to DTV2, demonstrating its superior proof capability and further validating the
advantages of the StepProof methods.

1Here, we only use Main as the proof library, considering that the use of different libraries will greatly
affect the formal verification ability of the theorem prover, in order to provide a relatively standard index.
In StepProof, we do not introduce other libraries to further improve the proof ability of the theorem prover.
Introducing more libraries in practice will greatly improve the proof ability of the theorem prover, and also
improve the proof ability of the whole system to some extent.

2Don’t Trust: Verify (DTV) originally used two close source models–GPT3.5 as the problem generation
model and Minerva 8B as the proof generation model, while due to the Minerva being inaccessible and GPT3.5
being costing, we use the same method in DTV, but replace the LLM into Llama3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Attempts Proof Passing Rate Comments Rate Model
Majority Voting 64 16.2% - Minerva 8B
Don’t Trust:Verify* 64 25.3% 31.3% Llama3 8B
StepProof 10 22.0% 100% GLM4 9B(4bit)
StepProof 10 27.9% 100% Llama3 8B

Table 2: Baseline Test in GSM8K

Step Pass Rate
LLAMA3 8B GLM4 9B(4bit)

1 attempt 10 attempts 1 attempt 10 attempts
0 = rs 79.6% 50.5% 83.9% 55.4%
0 < rs 20.4% 49.5% 16.1% 44.6%
0.5 ≤ rs 14.6% 38.1% 13.4% 41.9%
1 = rs 6.1% 27.9% 4.8% 22.0%

Table 3: Step Passing Rate Distribution in GSM8K

In the step pass rate test as shown in Table 3, we found that StepProof was able to perform some
degree of validation for nearly half of the proofs after 10 rounds of trying. In LLAMA3 8B, 38.1%
of the proofs completed more than half of the verification, and 27.9% of the proofs completed all
of the verification. Compared with a single attempt, this is a significant improvement. At the same
time, we propose a new indicator-step passing rate (rs) for a more comprehensive evaluation of the
proof of automatic formal verification methods.

Step Passing Rate Original Modified
0 = rs 35% 32%
0 < rs 65% 68%
0.5 ≤ rs 42% 45%
1 = rs 6% 12%

Table 4: Step Passing Rate Distribution in Number Theory

In our test to verify the influence of informal proof writing on the proof pass rate (as shown in
the Table 4), we found that the proof pass rate was significantly improved after simple fitting of
the informal proof. This shows that compared with FULL-PROOF, STEP-PROOF adopts proof
mathematics that is more suitable for step verification, which will be more conducive to improving
the pass rate of automatic formal verification.

4.3 EXPERIMENT ANALYSIS

From Figure 3, we find that compared with the FULL-PROOF Strategy, STEP-PROOF takes less
time to formalize and prove and is more stable. On the one hand, the generation strategy of Step-
Proof makes the content generated in a single attempt less and more stable. Stable step content
reduces the number of false proofs and the time to repeatedly prove successful content. Therefore,
in terms of both generation efficiency and proof efficiency, STEP-PROOF is superior to FULL-
PROOF.

To investigate the relation between step proof pass rate and number of attempts, we plotted Figure
4. It shows that most steps can be proven with relatively few attempts, with only a small fraction
requiring multiple tries. We believe the main limitation to step pass rate lies not in the model’s
formalization ability, but in whether the informal proof steps are suitable for conversion into provable
formal steps. We found that many steps in the test set cannot be formalized into provable steps.
These unformalizable informal steps significantly limit the further performance improvement of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Time Cost of Two Strategies in Formalization and Proof

Figure 4: Passed Proofs and Steps in Different Attempts

Step Proof. Therefore, to better achieve verification in practical applications of StepProof, each
proof sub-step should be ensured to be a formally verifiable sub-proposition as much as possible.

In addition, we also found that the processing capacity of LLMs is poor when faced with the pro-
cessing of continuous equations, and it is easy to fall into the generation loop during the generation
process, resulting in the poor quality of the generated formal proof. Therefore, in practical appli-
cations, it is necessary to split the steps as much as possible, rather than pursue once completion.
At the same time, since the automatic proof ability of automated theorem proving is also limited,
resolving the proof process is not only conducive to the formalization process, but also very helpful
to the verification process.

5 LIMITATIONS & FUTURE RESEARCH

At present, the performance of StepProof in small models has been verified in various aspects.
However, due to the lack of equipment and funds, the performance of StepProof in larger models has
not been verified, although the previous relevant work verified the conclusion that FULL-PROOF
strategy has better performance in larger models. However, the STEP-PROOF strategy has not yet
been tested on a larger model.

In addition, StepProof is strict for users to enter proof steps, while FULL-PROOF is more flexible
and can incorporate some non-proof explanatory language or prompt words into the proof. However,
StepProof will make mistakes in the step proof because the prompt word is not provable.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Finally, StepProof pays more attention to the sequential proof with steps, but when faced with some
structured proof methods, its performance is still limited, while FULL-PROOF can better capture
the overall proof structure.

In the future, our work will mainly start from the following two points: 1. At present, we are writing
a corpus for StepProof for automatic formal verification tasks oriented to step verification, and we
hope that a more targeted corpus will help improve the step formalization ability of the model. 2.
We will implement specific structured proof based on the structured design of the system to further
improve the integrity and flexibility of StepProof proof.

6 CONCLUSION

In this paper, we innovatively propose a new automatic formal proof method called StepProof. Step-
Proof implements sentence-level formal verification of natural language mathematical proofs, al-
lowing users to conduct more flexible formal verification. At the same time, compared with the
traditional FullProof strategy, StepProof has been significantly improved in formalization, proof
efficiency and proof accuracy.

In addition, StepProof can preserve the contents of the proof that has already been verified, providing
more information than the traditional Full-Proof strategy that can only indicate the passage and
failure of the proof. We used a small model on the GSM8K data set to test the proof pass rate, and
its performance reached the level of state-of-the-art.

We also conducted a test on the Number Theory dataset of MATH to test the effect of formal content
writing on the proof pass rate. The experimental results show that by optimizing the non-formal
proof for step verification, the passing rate of the non-formal proof can be significantly improved.
We will further optimize the architecture of StepProof in future work to make it more flexible to
handle formal verification of various non-formal mathematical proofs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Andrea Asperti. A survey on interactive theorem proving. URL: http://www. cs. unibo. it/˜ as-
perti/SLIDES/itp. pdf, 2009.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378–388. Springer, 2015.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 6491–6501, 2024.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

John Harrison. A survey of automated theorem proving. Sat, 17:20–18, 2013.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem prov-
ing. In Jörg H. Siekmann (ed.), Computational Logic, volume 9 of Handbook of
the History of Logic, pp. 135–214. North-Holland, 2014. doi: https://doi.org/10.1016/
B978-0-444-51624-4.50004-6. URL https://www.sciencedirect.com/science/
article/pii/B9780444516244500046.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a tutorial. Rapport
Technique, 178, 1997.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Shalom Lappin. Assessing the strengths and weaknesses of large language models. Journal of Logic,
Language and Information, 33(1):9–20, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models, 2022. URL https://arxiv.org/abs/2206.14858.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving. arXiv preprint arXiv:2404.09939, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong, Chenhao Xie, Junyang Huang, Yanghua
Xiao, and Wenguang Wang. Parsing natural language into propositional and first-order logic with
dual reinforcement learning. In Proceedings of the 29th International Conference on Computa-
tional Linguistics, pp. 5419–5431, 2022.

Filip Maric. A survey of interactive theorem proving. Zbornik radova, 18(26):173–223, 2015.

M Saqib Nawaz, Moin Malik, Yi Li, Meng Sun, and M Lali. A survey on theorem provers in formal
methods. arXiv preprint arXiv:1912.03028, 2019.

10

https://www.sciencedirect.com/science/article/pii/B9780444516244500046
https://www.sciencedirect.com/science/article/pii/B9780444516244500046
https://arxiv.org/abs/2206.14858

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from convolutional neural
networks. In Proceedings of the 1st workshop on vector space modeling for natural language
processing, pp. 39–48, 2015.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

Boris Shminke. Python client for isabelle server. arXiv preprint arXiv:2212.11173, 2022.

Hrituraj Singh, Milan Aggrawal, and Balaji Krishnamurthy. Exploring neural models for parsing
natural language into first-order logic. arXiv preprint arXiv:2002.06544, 2020.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang
Jiao, and Michael R Lyu. A & b== b & a: Triggering logical reasoning failures in large language
models. arXiv preprint arXiv:2401.00757, 2024.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in mizar. In Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, pp. 85–98, 2020a.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Junbing Yan, Chengyu Wang, Jun Huang, and Wei Zhang. Do large language models understand
logic or just mimick context? arXiv preprint arXiv:2402.12091, 2024.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, et al. A comprehensive capability analysis of gpt-3 and gpt-3.5 series
models. arXiv preprint arXiv:2303.10420, 2023.

Artem Yushkovskiy. Comparison of two theorem provers: Isabelle/hol and coq. arXiv preprint
arXiv:1808.09701, 2018.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
Don’t trust: Verify–grounding llm quantitative reasoning with autoformalization. arXiv preprint
arXiv:2403.18120, 2024.

A APPENDIX

A.1 ADDITIONAL CASE OF MANUAL MODIFICATION FOR STEP PROOF FITTING

For the following informal problem and proof:

Problem: What is the average of the two smallest positive integer solutions to the congruence
14u ≡ 46 (mod 100). Show it is 64.

Solution: Note that 14, 46, and 100 all have a common factor of 2, so we can divide it out: the
solutions to

14u ≡ 46 (mod 100)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

are identical to the solutions to
7u ≡ 23 (mod 50).

Make sure you see why this is the case.

Now we can multiply both sides of the congruence by 7 to obtain

49u ≡ 161 (mod 50),

which also has the same solutions as the previous congruence, since we could reverse the step above
by multiplying both sides by 7−1. (We know that 7−1 exists modulo 50 because 7 and 50 are
relatively prime.)

Replacing each side of 49u ≡ 161 by a (mod 50) equivalent, we have

−u ≡ 11 (mod 50),

and thus
u ≡ −11 (mod 50).

This is the set of solutions to our original congruence. The two smallest positive solutions are
−11 + 50 = 39 and −11 + 2 · 50 = 89. Their average is 64 .

In normal cases, we can cut the content according to the period to get the following sequence of
non-formal proofs.

1 Note that 14, 46, and 100 all have a common factor of 2,
so we can divide it out: the solutions to $$14u \equiv 46
\pmod{100}$$ are identical to the solutions to $$7u \equiv 23
\pmod{50}.$$

↪→

↪→

↪→

2

3 Make sure you see why this is the case.
4

5 Now we can multiply both sides of the congruence by 7 to obtain
$$49u \equiv 161 \pmod{50},$$ which also has the same
solutions as the previous congruence, since we could reverse
the step above by multiplying both sides by $7ˆ{-1}$.

↪→

↪→

↪→

6

7 We know that $7ˆ{-1}$ exists modulo 50 because 7 and 50 are
relatively prime.↪→

8

9 Replacing each side of $49u\equiv 161$ by a $\pmod{50}$
equivalent, we have $$-u \equiv 11\pmod{50},$$ and thus $$u
\equiv -11\pmod{50}.$$

↪→

↪→

10

11 This is the set of solutions to our original congruence.
12

13 The two smallest positive solutions are $-11+50 = 39$ and
$-11+2\cdot 50 = 89$.↪→

14

15 Their average is $\boxed{64}$.

However, there are many problems with such a simple decomposition. Such as the following sen-
tences are unable to be formalized.

1 Make sure you see why this is the case.
2

3 This is the set of solutions to our original congruence.

In addition, from the point of view of the order of proof, I can see that ”We know that 7−1 exists
modulo 50 because 7 and 50 are relatively prime.” is a prerequisite for ”Now we can multiply both
sides of the congruence by 7 to obtain 49u ≡ 161 (mod 50), which also has the same solutions as
the previous congruence, since we could reverse the step above by multiplying both sides by 7−1.”,
so the order of the two should be reversed.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Therefore, in order to meet the requirements of StepProof, I deleted the statements that could not be
formalized and corrected the sequence to obtain the following proof sequence.

1 Note that 14, 46, and 100 all have a common factor of 2,
so we can divide it out: the solutions to $$14u \equiv 46
\pmod{100}$$ are identical to the solutions to $$7u \equiv 23
\pmod{50}.$$

↪→

↪→

↪→

2

3 We know that $7ˆ{-1}$ exists modulo 50 because 7 and 50 are
relatively prime.↪→

4

5 Now we can multiply both sides of the congruence by 7 to obtain
$$49u \equiv 161 \pmod{50},$$ which also has the same
solutions as the previous congruence, since we could reverse
the step above by multiplying both sides by $7ˆ{-1}$.

↪→

↪→

↪→

6

7 Replacing each side of $49u\equiv 161$ by a $\pmod{50}$
equivalent, we have $$-u \equiv 11\pmod{50},$$ and thus $$u
\equiv -11\pmod{50}.$$ This is the set of solutions to our
original congruence.

↪→

↪→

↪→

8

9 The two smallest positive solutions are $-11+50 = 39$ and
$-11+2\cdot 50 = 89$.↪→

10

11 Their average is $\boxed{64}$.

A.2 FORMAL CONTENT COMPARISON BETWEEN FULL-PROOF AND STEP-PROOF

Problem: Given that 1 < x < 2, show that
√

(x− 1)2 + |x− 2| can be reduced to 1.

Solution: Since x > 1, we know that
√
(x− 1)2 = x − 1. And since x < 2, we know that

|x− 2| = 2−x. Therefore, it can be rewritten as x− 1+ 2−x, and we know that it can be reduced
to 1.

After formalize the problem we get following Isabelle statement.

1 theorem sqrt_abs_simplify:
2 assumes h0: "1 < x"
3 and h1: "x < 2"
4 shows "sqrt((x - 1)ˆ2) + abs(x - 2) = 1"

Using Full-Proof, we can directly obtain the following formal proof.

1 proof -
2 have h2: "sqrt((x - 1)ˆ2) = x - 1"
3 using h0 by (simp add: abs_of_nonneg)
4 have h3: "abs(x - 2) = 2 - x"
5 using h1 by (simp add: abs_of_nonpos)
6 have "sqrt((x - 1)ˆ2) + abs(x - 2) = (x - 1) + (2 - x)"
7 using h2 h3 by simp
8 also have "... = 1"
9 by simp

10 finally show ?thesis .
11 qed

In the StepProof approach, we would firstly input the first step

1 Since $x > 1$, we know that $\sqrt{(x-1)ˆ2} = x - 1$.

Then after formalization, we can get corresponding formal proof.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1 have h2: "sqrt((x - 1)ˆ2) = x - 1" using h0 by simp

After this formal step has been verified, we will input the next steps in the same way.

1 And since $x < 2$, we know that $|x-2| = 2-x$.

1 have h3: "abs(x - 2) = 2 - x" using h1 by simp

1 Therefore, it can be rewritten as $x - 1 + 2 - x$, and we know
that it can be reduced to 1.↪→

1 show ?thesis using h2 h3 by simp

After the global goal has been proven, the system will automatically align the formal proof with the
informal proof. Then we will get the over all formal proof of StepProof as following

1 proof-
2 (*Since $x > 1$, we know that $\sqrt{(x-1)ˆ2} = x - 1$.*)
3 have h2: "sqrt((x - 1)ˆ2) = x - 1" using h0 by simp
4 (*And since $x < 2$, we know that $|x-2| = 2-x$.*)
5 have h3: "abs(x - 2) = 2 - x" using h1 by simp
6 (*Therefore, it can be rewritten as $x - 1 + 2 - x$, and

we know that it can be reduced to 1.*)↪→

7 show ?thesis using h2 h3 by simp
8

9 qed

14

	Introduction
	Related Work
	StepProof
	FULL-PROOF
	STEP-PROOF

	Experiment
	Experiment Setup
	Experiment Results
	Experiment Analysis

	Limitations & Future Research
	Conclusion
	Appendix
	Additional Case of Manual Modification for Step Proof Fitting
	Formal Content Comparison between Full-Proof and Step-Proof

