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ABSTRACT

Interactive theorem provers (ITPs) are powerful tools for the formal verification
of mathematical proofs down to the axiom level. However, their lack of a natural
language interface remains a significant limitation. Recent advancements in large
language models (LLMs) have enhanced the understanding of natural language
inputs, paving the way for autoformalization—the process of translating natural
language proofs into formal proofs that can be verified. Despite these advance-
ments, existing autoformalization approaches are limited to verifying complete
proofs and lack the capability for finer, sentence-level verification. To address
this gap, we propose StepProof, a novel autoformalization method designed for
granular, step-by-step verification. StepProof breaks down complete proofs into
multiple verifiable subproofs, enabling sentence-level verification. Experimental
results demonstrate that StepProof significantly improves proof success rates and
efficiency compared to traditional methods. Additionally, we found that minor
manual adjustments to the natural language proofs, tailoring them for step-level
verification, further enhanced StepProof’s performance in autoformalization.

1 INTRODUCTION

Mathematics is the basic tool for the development of science, and the reliability of its conclusions
affects the stable growth of various disciplines. With the development of the mathematical edifice,
mathematical proofs have become more complex and lengthy. The verification of mathematical
proof often requires years of careful verification to ensure the accuracy of the work. However,
reading a mathematical work requires a large amount of knowledge, and in the face of the many
branches of mathematics today, traditional manual verification has become increasingly disastrous.
Thus, an idea arose to validate mathematical work written in natural language automatically.

At present, there are two kinds of automatic verification of mathematical proof. One is to write
the mathematical certificate into a machine code that can be verified by a specific expert system,
which is called the interactive theorem prover (Harrison et al., 2014). After more than 40 years
of development, the interactive theorem prover has begun to take shape and has been used in the
verification of many mathematical works (Maric, 2015). However, because such machine-verifiable
proofs need to be written in a specific programming language, whose learning cost is relatively high,
interactive theorem provers are only used by a small number of mathematicians at present (Nawaz
et al., 2019).

On the other hand, after the advent of the large language model (Zhao et al., 2023), through prompt
engineering (Liu et al., 2023) and few shot learning (Wang et al., 2020b), large language model
can be applied to many natural language processing tasks, and achieved considerable performance
(Achiam et al., 2023). However, due to the hallucination problem of large language model (Ji et al.,
2023), its performance in mathematics and strong logic-related work is not good enough (Huang
et al., 2023), so the lack of reliability of large language model to verify mathematical work is easy
to cause a lot of errors. In this context, a method that combines large language models and theorem
provers gradually comes into people’s view, which is called autoformalization verification (Li et al.,
2024).

At present, the existing automatic formal verification work generally adopts a FULL-PROOF strat-
egy. Although such a strategy has achieved some impressive performance in some studies, there
are still many problems in the stability of its proof and the fine-grained verification. Aiming at the
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problems existing in FULL-PROOF, we innovatively propose a new automatic formal proof strat-
egy, STEP-PROOF. And the performance of StepProof is better than traditional methods in several
aspects.

In summary, our contributions mainly include the following points: 1. We pioneered a novel natural
language mathematical verification method StepProof, which realizes informal mathematical proof
verification at the sentence level. 2. We were the first to realize the test of automatic formalization
capabilities on small open-source LLMs. 3. Compared with existing methods, the StepProof method
has been significantly improved in all aspects of performance.

In this paper, we will first make a brief summary of the existing relevant works and the technical
background in Chapter 2. In Chapter 3, we will give a detailed introduction to the two types of
strategies, FULL-PROOF and STEP-PROOF, and point out many problems faced by traditional
methods. In Chapter 4, we set up a series of experiments to verify the performance of STEP-PROOF
in verification tasks and its superiority over FULL-PROOF. At the same time, we also carried out
a detailed analysis of some phenomena observed in the experiment to further explain the reason
for the advantages. In the end, we analyze and look forward to the current limitations and future
development direction.

2 RELATED WORK

Theorem Prover: Theorem provers can be roughly divided into two types, interactive theorem
provers (ITPs) in which the user can enter and verify the existing proof (Asperti, 2009), and auto-
mated theorem provers (ATPs) that try to prove the statements fully automatically (Harrison, 2013).
The two types of theorem provers are not mutually exclusive (Nawaz et al., 2019). Most ITPs such
as Isabelle (Paulson, 1994), Coq (Huet et al., 1997) and Lean (De Moura et al., 2015) are supported
by ATPs that try to automatically prove ”obviously” intermediate steps in the proof entered by the
user. The entered proofs are rigorously verified back to the axioms of mathematics. Different ITPs
use different axiomatic foundations, e.g. set theory, first-order logic, higher-order logic, etc. Each
ITP use its own language and syntax, which makes the learning cost of theorem prover high, and
precludes ITPs from being widely used (Yushkovskiy, 2018).

Large Language Model: In recent years, large language models (LLMs) have achieved outstand-
ing performance in many downstream tasks of natural language processing. LLMs such as Llama
(Dubey et al., 2024), GPT series (Ye et al., 2023) and GLM 4 (GLM et al., 2024) are trained on
large databases to understand user input in natural language and produce the related output. While
large language models perform well in general tasks such as translation, their performance in deal-
ing with logic problems has been limited. A lot of work has also shown that large language models
are prone to a variety of problems when dealing with logic problems (Yan et al., 2024; Wan et al.,
2024). Although in the subsequent iteration of the model, the developers provided a large amount
of high-quality logic-related data to improve the logic capability of the model, the effect that could
be achieved was still very limited (Lappin, 2024). Therefore, it has become a trend to add an expert
system to the model to improve its accuracy, such as RAG (Fan et al., 2024), which is currently
commonly used in question-answering systems. On the other hand, step-by-step reasoning has been
proven can improve the reasoning ability of existing LLMs (Wei et al., 2022; Khot et al., 2022),
which gives us a hint to apply in autoformalization.

Autoformalization: The definition of automatic formalization is very broad, but can be roughly
seen as understanding and extracting translation from natural language to obtain the required struc-
tured data or formal language, such as entity relation extraction (Nguyen & Grishman, 2015). Early
automatic formalization work involved extracting logical propositions from natural language in ad-
dition to entity relation extraction (Singh et al., 2020; Lu et al., 2022). However, the main problem in
this kind of work is that the extracted logical propositions lack corresponding symbols for derivation
and application, so the output of the automatic formalization output cannot be directly applied. With
the launch of pre-trained language models such as transformer and BERT, language models have
a stronger understanding ability. Wang et al. (2020a) conducted an early automatic formalization
attempt for the theorem prover Mizar. However, due to the limited size and training expectations of
the models at that time, the effects they could achieve were very limited. With the rapid expansion of
the scale of models and predictions, many new and better performance automatic formalization work
has emerged, such as the Majority Voting method by Lewkowycz et al. (2022), the DSP method by
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Jiang et al. (2022)., and the method proposed by Zhou et al. (2024), in DTV (Don’t Trust: Ver-
ify). They further improved the automatic formalization of the system by combining large models
with some syntax-modifying filters. However, on the one hand, all these works are tested in the
closed-source large model Minerva, which lacks the testing work of open source model and small
model. Meanwhile, all these works adopt the strategy of FULL-PROOF, which has poor controlla-
bility for the formal output of the model, and it is difficult to locate the error point of non-formal
proof. Qinghua et al. proposed a problem location method based on the FULL-PROOF strategy in
SlideRule. However, this method relies heavily on the format and quality of the generated formal
content, so it cannot achieve 100% problem locations detected. To solve these problems, we propose
StepProof, an automatic formalization strategy that can realize sentence-level verification, to realize
the verification of natural language mathematical proofs. Moreover, LEGO-Prover (Wang et al.,
2023) proposed a new methodology to decompose the whole proof into several sub-proofs. Al-
though the idea of step-proof is taking shape, it still requires some extra generation of the sub-proof
formal statement generation, which increases the error probability of formalization.

3 STEPPROOF

In this chapter, we will provide a detailed introduction to the workflow design of StepProof. We
will also compare the STEP-PROOF strategy used by StepProof with the FULL-PROOF strategy
adopted by existing autoformalization systems, highlighting the problems with traditional strategies
and the advantages of STEP-PROOF over FULL-PROOF.

3.1 FULL-PROOF

Current research on natural language proofs formal verification predominantly employs the FULL-
PROOF strategy, as seen in methods like DSP and DTV. The workflow of FULL-PROOF method can
be roughly illustrated as the left of Figure 1. Users submit a provable problem along with its proof
process. The problem is first formalized, then the informal problem, the formalized problem, and
the entire informal proof are packaged as inputs to a large language model for formalization. After
obtaining the formal proof, it is combined with the formalized problem and input into a theorem
prover for rule-based formal verification. The verification results are then returned to the user.
Despite the clarity and simplicity of the FULL-PROOF workflow, it has significant drawbacks.

Figure 1: Full-Proof Strategy generate from the whole proof and only provide proof result instead
of detailed feedback to help user improve the proof. While Step-Proof separate the whole proof into
sub-proof to proof from the bottom to the top and enable the user to get more detailed feedback and
fine-grained operation.

First, in the FULL-PROOF automated formalization process, the highly structured and formalized
nature of the input and output, coupled with the numerous similarities in solving mathematical
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equations, often leads to excessive noise in the output. To obtain the desired formalized content,
numerous filters must be set up, which results in considerable waste and contamination of generated
content. This can also cause generation loops, where the same content is repeatedly generated, a
common issue in FULL-PROOF strategies.

Additionally, the length of proofs varies, and LLMs in FULL-PROOF struggle to adjust the out-
put’s max new tokens effectively based on input length. This leads to shorter proofs not being
truncated in time, thus generating repetitive or noisy content, and longer proofs lacking sufficient
max new tokens.

Lastly, the stability of FULL-PROOF generation is poor. For instance, a full proof might be almost
entirely correct except for a minor error in a small step, leading to the failure of the entire formal
proof. Users attempting regeneration may find previously correct parts presenting erroneous. Thus,
FULL-PROOF requires highly accurate one-time generation of the entire content.

Moreover, the correlation between formal and informal content generated by FULL-PROOF is weak,
making it difficult for users to map formal feedback to corresponding informal content. Although
LLMs can generate formal proofs with annotations to map back to informal proofs as Qinghua et
al proposed the failure step detection method in SlideRule, this approach is unstable in practice and
increases the required token count.

3.2 STEP-PROOF

To address the numerous issues faced by the FULL-PROOF strategy, we innovatively propose STEP-
PROOF. STEP-PROOF employs a step-by-step generation and verification strategy, offering better
performance and stability compared to FULL-PROOF. The workflow of STEP-PROOF is illustrated
in the right of Figure 1.

Unlike the one-time generation and verification of FULL-PROOF, STEP-PROOF assumes each sen-
tence in the proof is a verifiable sub-proposition. Each step is formalized and pushed onto a formal
proof stack, where it is verified along with other sub-propositions in the stack. Upon successful
verification, the formalized proof and informal proof are packaged as inputs for the next step. For
failed steps, the Step Proof allows users to backtrack, retaining previously verified steps and only
clearing the erroneous step from the stack. The StepProof can then either re-formalize or optimize
the existing informal step as needed.

STEP-PROOF offers several advantages over FULL-PROOF. First, it only needs to formalize sin-
gle sentences in context, resulting in shorter, less noisy, and more stable output. The step-by-step
generation strategy also means that each step’s length is relatively fixed, eliminating the need for
adjusting max new tokens and allowing the use of smaller max new tokens for formalizing longer
theorems.

Moreover, STEP-PROOF’s incremental generation and verification tolerate step errors well. Only
the specific erroneous step needs to be retracted, rather than regenerating the entire content, en-
hancing robustness and efficiency. Finally, Step Proof ensures high correspondence between each
informal and formal proof step, providing users with finer operational granularity. For instance,
users can suspend a correct but incomplete step and assume it is correct to proceed, a functionality
almost impossible under the FULL-PROOF strategy.

We also designed a simple and user-friendly interactive interface for the user, as shown in Figure
2. Users can complete the natural language proof of the problem through interface interaction, and
each step of the proof will be formally verified after submission, and the verified proof step will be
marked in green in the background to indicate that the current step has passed the verification and is
reliable. If the current step does not pass the automatic validation but the user thinks it is true and
wants to continue, you can select HOLD, and the current step will be highlighted in yellow in the
background to indicate that the current step is in a suspended state. After completing all the proof
steps, the user can input QED to indicate that the system has completed the proof, and the system
will combine all the steps to perform the final verification of the proof target. Through the interactive
interface, the user can also realize the PDF export of the proof process.
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Figure 2: User Interface of StepProof

4 EXPERIMENT

4.1 EXPERIMENT SETUP

To validate the performance advantages of the STEP-PROOF strategy over FULL-PROOF, and to
compare StepProof’s overall performance against existing automated formal proof methods, we con-
ducted both strategy performance tests and baseline tests using the same dataset and model settings.

For the test dataset, we used GSM8K, which includes a large number of informal mathematical
problems and their correct informal proofs. These informal proofs can be easily segmented into
a series of sub-steps. We chose Llama3 8B-Instruct as the large language model for automated
formalization. Existing autoformalization tests use closed-source models, and we aim to fill this gap
by using an open-source small LLMs.
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We set the temperature to 0.3 to balance stability and flexibility. Given the small parameter count
of 8B, we used a single example for the few-shot in strategy performance tests. With proof steps
in GSM8K (Cobbe et al., 2021) averaging 4-5 steps, we set the max new tokens for FULL-PROOF
to 1024, and 256 for each step in Step Proof. The test environment consisted of a single NVIDIA
A4000 16GB, 8 cores of AMD5800X, and 32GB DDR4 3200 RAM. Isabelle2024 was used as
the formal theorem prover with only Main prove library as the theorem base1, with Isabelle-client
(Shminke, 2022) as the testing service proxy.

In the strategy performance tests, we evaluated the performance of FULL-PROOF and STEP-
PROOF on the GSM8K test set using the following metrics: 1. One-attempt generation proof pass
rate rp. 2. Average formalization time for passed proofs µf . 3. Variance in formalization time σ2

f .
4. Average proof time for passed proofs µp. 5. Variance in proof time σ2

p.

In the baseline tests, we compared the multi-attempt test results of GSM8K by Lewkowycz et al.
(2022) in Majority Voting and Zhou et al. (2024) in DTV with our results. We evaluated the perfor-
mance based on the number of attempts and multi-round proof pass rate, allowing up to 10 retries
for each failed step in each formalization attempt.

At the same time, considering that StepProof has better granularity than traditional proof tasks,
we not only evaluated the overall proof passing rate but also counted the proportion of step-proof
passing. For example, if a 6-step proofs can be verified to be true in 3 steps, then we will mark that
the step pass rate of the proof is 0.5. In this way, we quantify the formal proof capability of the
method more comprehensively rather than the Proof Passing Rate.

In addition, to verify the influence of the writing method of non-formal proof on the passing rate of
StepProof formal proof, we extracted 100 questions from the Number theory of MATH (Hendrycks
et al., 2021) and made simple manual modifications to make the proof step more consistent with the
proof requirement of StepProof.

4.2 EXPERIMENT RESULTS

Proof Passing Rate Formalization Time Proof Time
rp µf ± σ2

f µp ± σ2
p

FULL-PROOF 5.30% 9.54 ± 12.64s 214.93 ± 20864.97s
STEP-PROOF 6.10% 5.83 ± 4.24s 130.12 ± 5271.65s

Table 1: Performance Test of Full-Proof and Step-Proof

In strategy performance tests, the STEP-PROOF strategy outperformed the FULL-PROOF strat-
egy across the board on the GSM8K test set. As shown in Table 4.2, the STEP-PROOF strategy
improved the one-attempt proof pass rate by 15.1% compared to FULL-PROOF. In terms of aver-
age formalization time, STEP-PROOF required 38.9% less time than FULL-PROOF. For average
proof time, STEP-PROOF achieved a 39.5% performance improvement over FULL-PROOF. Ad-
ditionally, STEP-PROOF showed more stability in both formalization and proof time compared to
FULL-PROOF. These results confirm that our strategy offers better performance, efficiency and
stability.

In the baseline test as shown in Table 4.2, Step Proof surpassed DTV in multi-round verification tests
on GSM8K, achieving a 10.3% performance improvement. Moreover, StepProof required fewer
attempts compared to DTV2, demonstrating its superior proof capability and further validating the
advantages of the StepProof methods.

1Here, we only use Main as the proof library, considering that the use of different libraries will greatly
affect the formal verification ability of the theorem prover, in order to provide a relatively standard index.
In StepProof, we do not introduce other libraries to further improve the proof ability of the theorem prover.
Introducing more libraries in practice will greatly improve the proof ability of the theorem prover, and also
improve the proof ability of the whole system to some extent.

2Don’t Trust: Verify (DTV) originally used two close source models–GPT3.5 as the problem generation
model and Minerva 8B as the proof generation model, while due to the Minerva being inaccessible and GPT3.5
being costing, we use the same method in DTV, but replace the LLM into Llama3.
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Attempts Proof Passing Rate Comments Rate Model
Majority Voting 64 16.2% - Minerva 8B
Don’t Trust:Verify* 64 25.3% 31.3% Llama3 8B
StepProof 10 22.0% 100% GLM4 9B(4bit)
StepProof 10 27.9% 100% Llama3 8B

Table 2: Baseline Test in GSM8K

Step Pass Rate
LLAMA3 8B GLM4 9B(4bit)

1 attempt 10 attempts 1 attempt 10 attempts
0 = rs 79.6% 50.5% 83.9% 55.4%
0 < rs 20.4% 49.5% 16.1% 44.6%
0.5 ≤ rs 14.6% 38.1% 13.4% 41.9%
1 = rs 6.1% 27.9% 4.8% 22.0%

Table 3: Step Passing Rate Distribution in GSM8K

In the step pass rate test as shown in Table 3, we found that StepProof was able to perform some
degree of validation for nearly half of the proofs after 10 rounds of trying. In LLAMA3 8B, 38.1%
of the proofs completed more than half of the verification, and 27.9% of the proofs completed all
of the verification. Compared with a single attempt, this is a significant improvement. At the same
time, we propose a new indicator-step passing rate (rs) for a more comprehensive evaluation of the
proof of automatic formal verification methods.

Step Passing Rate Original Modified
0 = rs 35% 32%
0 < rs 65% 68%
0.5 ≤ rs 42% 45%
1 = rs 6% 12%

Table 4: Step Passing Rate Distribution in Number Theory

In our test to verify the influence of informal proof writing on the proof pass rate (as shown in
the Table 4), we found that the proof pass rate was significantly improved after simple fitting of
the informal proof. This shows that compared with FULL-PROOF, STEP-PROOF adopts proof
mathematics that is more suitable for step verification, which will be more conducive to improving
the pass rate of automatic formal verification.

4.3 EXPERIMENT ANALYSIS

From Figure 3, we find that compared with the FULL-PROOF Strategy, STEP-PROOF takes less
time to formalize and prove and is more stable. On the one hand, the generation strategy of Step-
Proof makes the content generated in a single attempt less and more stable. Stable step content
reduces the number of false proofs and the time to repeatedly prove successful content. Therefore,
in terms of both generation efficiency and proof efficiency, STEP-PROOF is superior to FULL-
PROOF.

To investigate the relation between step proof pass rate and number of attempts, we plotted Figure
4. It shows that most steps can be proven with relatively few attempts, with only a small fraction
requiring multiple tries. We believe the main limitation to step pass rate lies not in the model’s
formalization ability, but in whether the informal proof steps are suitable for conversion into provable
formal steps. We found that many steps in the test set cannot be formalized into provable steps.
These unformalizable informal steps significantly limit the further performance improvement of
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Figure 3: Time Cost of Two Strategies in Formalization and Proof

Figure 4: Passed Proofs and Steps in Different Attempts

Step Proof. Therefore, to better achieve verification in practical applications of StepProof, each
proof sub-step should be ensured to be a formally verifiable sub-proposition as much as possible.

In addition, we also found that the processing capacity of LLMs is poor when faced with the pro-
cessing of continuous equations, and it is easy to fall into the generation loop during the generation
process, resulting in the poor quality of the generated formal proof. Therefore, in practical appli-
cations, it is necessary to split the steps as much as possible, rather than pursue once completion.
At the same time, since the automatic proof ability of automated theorem proving is also limited,
resolving the proof process is not only conducive to the formalization process, but also very helpful
to the verification process.

5 LIMITATIONS & FUTURE RESEARCH

At present, the performance of StepProof in small models has been verified in various aspects.
However, due to the lack of equipment and funds, the performance of StepProof in larger models has
not been verified, although the previous relevant work verified the conclusion that FULL-PROOF
strategy has better performance in larger models. However, the STEP-PROOF strategy has not yet
been tested on a larger model.

In addition, StepProof is strict for users to enter proof steps, while FULL-PROOF is more flexible
and can incorporate some non-proof explanatory language or prompt words into the proof. However,
StepProof will make mistakes in the step proof because the prompt word is not provable.

8
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Finally, StepProof pays more attention to the sequential proof with steps, but when faced with some
structured proof methods, its performance is still limited, while FULL-PROOF can better capture
the overall proof structure.

In the future, our work will mainly start from the following two points: 1. At present, we are writing
a corpus for StepProof for automatic formal verification tasks oriented to step verification, and we
hope that a more targeted corpus will help improve the step formalization ability of the model. 2.
We will implement specific structured proof based on the structured design of the system to further
improve the integrity and flexibility of StepProof proof.

6 CONCLUSION

In this paper, we innovatively propose a new automatic formal proof method called StepProof. Step-
Proof implements sentence-level formal verification of natural language mathematical proofs, al-
lowing users to conduct more flexible formal verification. At the same time, compared with the
traditional FullProof strategy, StepProof has been significantly improved in formalization, proof
efficiency and proof accuracy.

In addition, StepProof can preserve the contents of the proof that has already been verified, providing
more information than the traditional Full-Proof strategy that can only indicate the passage and
failure of the proof. We used a small model on the GSM8K data set to test the proof pass rate, and
its performance reached the level of state-of-the-art.

We also conducted a test on the Number Theory dataset of MATH to test the effect of formal content
writing on the proof pass rate. The experimental results show that by optimizing the non-formal
proof for step verification, the passing rate of the non-formal proof can be significantly improved.
We will further optimize the architecture of StepProof in future work to make it more flexible to
handle formal verification of various non-formal mathematical proofs.
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A APPENDIX

A.1 ADDITIONAL CASE OF MANUAL MODIFICATION FOR STEP PROOF FITTING

For the following informal problem and proof:

Problem: What is the average of the two smallest positive integer solutions to the congruence
14u ≡ 46 (mod 100). Show it is 64.

Solution: Note that 14, 46, and 100 all have a common factor of 2, so we can divide it out: the
solutions to

14u ≡ 46 (mod 100)
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are identical to the solutions to
7u ≡ 23 (mod 50).

Make sure you see why this is the case.

Now we can multiply both sides of the congruence by 7 to obtain

49u ≡ 161 (mod 50),

which also has the same solutions as the previous congruence, since we could reverse the step above
by multiplying both sides by 7−1. (We know that 7−1 exists modulo 50 because 7 and 50 are
relatively prime.)

Replacing each side of 49u ≡ 161 by a (mod 50) equivalent, we have

−u ≡ 11 (mod 50),

and thus
u ≡ −11 (mod 50).

This is the set of solutions to our original congruence. The two smallest positive solutions are
−11 + 50 = 39 and −11 + 2 · 50 = 89. Their average is 64 .

In normal cases, we can cut the content according to the period to get the following sequence of
non-formal proofs.

1 Note that $14$, $46$, and $100$ all have a common factor of $2$,
so we can divide it out: the solutions to $$14u \equiv 46
\pmod{100}$$ are identical to the solutions to $$7u \equiv 23
\pmod{50}.$$

↪→

↪→

↪→

2

3 Make sure you see why this is the case.
4

5 Now we can multiply both sides of the congruence by $7$ to obtain
$$49u \equiv 161 \pmod{50},$$ which also has the same
solutions as the previous congruence, since we could reverse
the step above by multiplying both sides by $7ˆ{-1}$.

↪→

↪→

↪→

6

7 We know that $7ˆ{-1}$ exists modulo $50$ because $7$ and $50$ are
relatively prime.↪→

8

9 Replacing each side of $49u\equiv 161$ by a $\pmod{50}$
equivalent, we have $$-u \equiv 11\pmod{50},$$ and thus $$u
\equiv -11\pmod{50}.$$

↪→

↪→

10

11 This is the set of solutions to our original congruence.
12

13 The two smallest positive solutions are $-11+50 = 39$ and
$-11+2\cdot 50 = 89$.↪→

14

15 Their average is $\boxed{64}$.

However, there are many problems with such a simple decomposition. Such as the following sen-
tences are unable to be formalized.

1 Make sure you see why this is the case.
2

3 This is the set of solutions to our original congruence.

In addition, from the point of view of the order of proof, I can see that ”We know that 7−1 exists
modulo 50 because 7 and 50 are relatively prime.” is a prerequisite for ”Now we can multiply both
sides of the congruence by 7 to obtain 49u ≡ 161 (mod 50), which also has the same solutions as
the previous congruence, since we could reverse the step above by multiplying both sides by 7−1.”,
so the order of the two should be reversed.
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Therefore, in order to meet the requirements of StepProof, I deleted the statements that could not be
formalized and corrected the sequence to obtain the following proof sequence.

1 Note that $14$, $46$, and $100$ all have a common factor of $2$,
so we can divide it out: the solutions to $$14u \equiv 46
\pmod{100}$$ are identical to the solutions to $$7u \equiv 23
\pmod{50}.$$

↪→

↪→

↪→

2

3 We know that $7ˆ{-1}$ exists modulo $50$ because $7$ and $50$ are
relatively prime.↪→

4

5 Now we can multiply both sides of the congruence by $7$ to obtain
$$49u \equiv 161 \pmod{50},$$ which also has the same
solutions as the previous congruence, since we could reverse
the step above by multiplying both sides by $7ˆ{-1}$.

↪→

↪→

↪→

6

7 Replacing each side of $49u\equiv 161$ by a $\pmod{50}$
equivalent, we have $$-u \equiv 11\pmod{50},$$ and thus $$u
\equiv -11\pmod{50}.$$ This is the set of solutions to our
original congruence.

↪→

↪→

↪→

8

9 The two smallest positive solutions are $-11+50 = 39$ and
$-11+2\cdot 50 = 89$.↪→

10

11 Their average is $\boxed{64}$.

A.2 FORMAL CONTENT COMPARISON BETWEEN FULL-PROOF AND STEP-PROOF

Problem: Given that 1 < x < 2, show that
√

(x− 1)2 + |x− 2| can be reduced to 1.

Solution: Since x > 1, we know that
√
(x− 1)2 = x − 1. And since x < 2, we know that

|x− 2| = 2−x. Therefore, it can be rewritten as x− 1+ 2−x, and we know that it can be reduced
to 1.

After formalize the problem we get following Isabelle statement.

1 theorem sqrt_abs_simplify:
2 assumes h0: "1 < x"
3 and h1: "x < 2"
4 shows "sqrt((x - 1)ˆ2) + abs(x - 2) = 1"

Using Full-Proof, we can directly obtain the following formal proof.

1 proof -
2 have h2: "sqrt((x - 1)ˆ2) = x - 1"
3 using h0 by (simp add: abs_of_nonneg)
4 have h3: "abs(x - 2) = 2 - x"
5 using h1 by (simp add: abs_of_nonpos)
6 have "sqrt((x - 1)ˆ2) + abs(x - 2) = (x - 1) + (2 - x)"
7 using h2 h3 by simp
8 also have "... = 1"
9 by simp

10 finally show ?thesis .
11 qed

In the StepProof approach, we would firstly input the first step

1 Since $x > 1$, we know that $\sqrt{(x-1)ˆ2} = x - 1$.

Then after formalization, we can get corresponding formal proof.
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1 have h2: "sqrt((x - 1)ˆ2) = x - 1" using h0 by simp

After this formal step has been verified, we will input the next steps in the same way.

1 And since $x < 2$, we know that $|x-2| = 2-x$.

1 have h3: "abs(x - 2) = 2 - x" using h1 by simp

1 Therefore, it can be rewritten as $x - 1 + 2 - x$, and we know
that it can be reduced to 1.↪→

1 show ?thesis using h2 h3 by simp

After the global goal has been proven, the system will automatically align the formal proof with the
informal proof. Then we will get the over all formal proof of StepProof as following

1 proof-
2 (*Since $x > 1$, we know that $\sqrt{(x-1)ˆ2} = x - 1$.*)
3 have h2: "sqrt((x - 1)ˆ2) = x - 1" using h0 by simp
4 (*And since $x < 2$, we know that $|x-2| = 2-x$.*)
5 have h3: "abs(x - 2) = 2 - x" using h1 by simp
6 (*Therefore, it can be rewritten as $x - 1 + 2 - x$, and

we know that it can be reduced to 1.*)↪→

7 show ?thesis using h2 h3 by simp
8

9 qed

14


	Introduction
	Related Work
	StepProof
	FULL-PROOF
	STEP-PROOF

	Experiment
	Experiment Setup
	Experiment Results
	Experiment Analysis

	Limitations & Future Research
	Conclusion
	Appendix
	Additional Case of Manual Modification for Step Proof Fitting
	Formal Content Comparison between Full-Proof and Step-Proof


