L earning relationships between histone modifications in single cells
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Abstract scChIX combines experimental design with inference to map multiple histone modifications in single cells Different histone modifications progress at different
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tone marks in single cells. scChIX multiplexes two histone marks together
in single cells, then computationally deconvolves the signal using training
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OVE rVI EW Overview of the scChIX method. (a) Chromatin regulation of different cell types (different colored cells) is regulated in part through multiple histone modifications (two histone modifications shown as an example). (b) scChiX uses three sortChIC antibody incubation conditions: two conditions each target a 1=
. . . . . . . e e . . single histone modification (single-incubated) only and the third condition targeting both histone modifications simultaneously (double-incubated). (¢) Schematic of scChliX for deconvolving multiplexed histone modifications. The two single-incubated sortChIC datasets (one targeting an orange histone modifica- S I
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scChiX accurately deconvolves multiplexed histone modifications in single cells. (a) UMAP representation of the H3K27me3 (n=367) and N 0@/\ Q\@\Q @(\é‘* o o o o o
H3K9me3 (n=376) histone modification space derived from the two single-incubated datasets (right two panels), and the H3K27me3+H3K9me3 space F < Q& M u Itl m Od a I a na IyS I S Of h IStO n e m Od Iﬁ CatIO n S u n IOC kS n ew
(left panel, n=290) derived from the double-incubated data. Cells are colored by their ground truth cell type labels. The cells in the H3K27me3- and

H3K9me3-only space have unmixed double-incubated cells whose deconvolved signal has been projected onto their respective UMAPs. Lines con Applying scChiX to mouse organogenesis reveals shared heterohromatin landscapes and cell type-specific differences in o o o
) ) ' i H3K36me3:H3K9me3 ratios. (a) Schematic of mouse organogenesis to study H3K36me3 and H3K9me3 in single cells. (b) Joint UMAP of mouse or-

necting across datasets connect where each double-incubated cell is located in each of the three histone modification space. (b) Matrix summarizing ganogenesis after deconvoluticfn)from scChIX (n=2911 H??K36rgr11e3 cells, n=21y66 H3K9me3 cells). (c) Assignmegt of multi(pl)e H3K36me3 cell types to a na Iyses to d IScover neW reg u Iato ry prl nCI p I eS
the cluster pair that scChlX selected for each double-incubated cell. Cells along the diagonal are predicted to be B cells, Granulocytes, and NK cells, one H3K9me3 cluster. The H3K36me3 (columns) and H3K9me3 (rows) label for each double-incubated (n=1197 cells) is plotted onto a matrix to
respectively. Cells in the off-diagonal are false negatives. Barplots summarizing false discovery rate (FDR), sensitivity, and specificity of assigning each H3K36me3 cell types to H3K9me3 clusters. Cells are colored by their cell type label as in (b). (d) Subclustering of non-blood cells for H3K9me3, repre-

. d I : k cell type (right). () Zoom-in coverage plot and single-cell cut fragments in B cells of mixed (H3K27me3+H3K9me3, grey bars), unmixed (H3K27me3 sented as a UMAP. Arrow denotes a pseudotime axis. Pseudotime defined as the first principal component of the 2D UMAP. (e) Joint UMAP of decon-
VI eO I n and H3K9me3, orange and blue bars). Positions of cut fragments are shown for four single cells (single cells A, B, C, and D) for H3K27me3+H3K9me3 volved double-incubated cells (n=1197 cells), colored by the log ratio of number of H3K36me3 cuts versus number of H3K9me3 cuts. (f) Boxplot of
signal (grey ticks) as well as their unmixed outputs (orange and blue ticks). Circled reads and arrow highlight examples of cut fragments being assigned H3K36me3:H3K9me3 ratio across cell types. Number of double-incubated cells for each cell type: n=163 erythroid, n=17 white blood cells, n=24 en-
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httpS://yOUtu.be/pjTCVZ LCy3A to either H3\K27me3 (orange) or H3K9mes3 (blue). (d) Zoom-out of the Serpinbb locus. Cut fragments from HK27me3+K9me3 are colored based on dothelial, n;136 neural tube progenitors, n=1.97 neurons, Nn=46 échwann cell precursors, n=73 ep.ith_elial, n=458 m’es;nchymal progenitors’, n_=83 cardi- TI me-serles experl ment Wlth SCCh IX revea IS d IStI nCt
whether they have been assigned to H3K27me3 (orange) or H3K9me3 (blue). Ground truth coverage are single-incubated sortChlC data targeting . . .

temporal dynamics and chromatin velocity

o S omyocytes. Boxplots show 25th percentile, median and 75th percentile, with the whiskers spanning 97% of the data.
H3K27me3 (orange) and H3K9me3 (blue). (e) Heatmap of probabilities p of assigning reads to H3K27me3 (p=1, red) or H3K9me3 (p=0, blue) around

the Bcl2 locus. Rows are single cells (ordered by predicted cell type), columns are genomic regions (50 kilobase bins). Transitions between H3K9me3-
and H3K27me3-marked chromatin states are independent of cell type. (f) Same as (e) but at the Crim7 locus, where transitions from H3K9me3 to
H3K27me3 (blue to red) are cell type-specific.




