
1 Hubrecht Institute, Oncode Institute, University Medical Center Utrecht, Netherlands
2 Institute of Science and Technology Austria (ISTA), Klosterneuburg Austria

Jake Yeung1,2*, Maria Florescu1*, Peter Zeller1*, 
Buys Anton de Barbanson1, Max D Wellenstein1, Alexander van Oudenaarden1

Learning relationships between histone modi�cations in single cells

scChIX combines experimental design with inference to map multiple histone modi�cations in single cells
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scChIX framework for multimodal histone modification analysis
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e Simulation to validate inference of cell types and degree of overlapping genomic regions
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scChIX accurately maps multiple 
histone modi�cations in single cells

Di�erent histone modi�cations progress at di�erent 
rates during di�erentiation
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scChIX maps multiple histone modi�cations in single cells

Multimodal analysis of histone modi�cations unlocks new 
analyses to discover new regulatory principles 

Time-series experiment with scChIX reveals distinct 
temporal dynamics and chromatin velocity

Abstract
Regulation of chromatin states involves the dynamic interplay between 
di�erent histone modi�cations to control gene expression. Recent advanc-
es have enabled mapping of histone marks in single cells, but most meth-
ods are constrained to pro�le only one histone mark per cell. Here we pres-
ent an integrated experimental and computational framework, scChIX (sin-
gle-cell chromatin immunocleavage and unmixing), to map multiple his-
tone marks in single cells. scChIX multiplexes two histone marks together 
in single cells, then computationally deconvolves the signal using training 
data from respective histone mark pro�les. This framework learns the cell 
type-speci�c correlation structure between histone marks, and therefore 
does not require \textit{a priori} assumptions of their genomic distribu-
tions. Using scChIX, we demonstrate multimodal analysis of histone marks 
in single cells across a range of mark combinations. Modeling dynamics of 
in vitro macrophage di�erentiation enables integrated analysis of chroma-
tin velocity. Overall, scChIX unlocks systematic interrogation of the inter-
play between histone modi�cations in single cells.

Overview
Mapping histone modi�cations in single cells is still in its infancy, and has 
the potential to uncover how the chromatin is read to govern gene expres-
sion. Currently, most experimental techniques (e.g. scChIC-seq, CUT&RUN , 
and CUT&TAG) that map single-cell histone modi�cations are limited to 
only one histone modi�cation per single cell. 

We present an integrated experimental and computational framework for 
multiplexing histone modi�cations in single cells. To pro�le two histone 
modi�cations in single cells, we �rst generate three genome-wide sortChIC 
datasets: two datasets by incubating cells with one of the two histone 
modi�cation antibodies separately (single-incubated), and the third by in-
cubating cells with both histone modi�cation antibodies together (dou-
ble-incubated). We then use our two single-incubated datasets as training 
data to generate the possible pairs of genome-wide histone modi�cation 
pro�les that, when added together, �t to a single-cell pro�le from the dou-
ble-incubated dataset. For each double-incubated cell, we then decon-
volve the multiplexed data by probabilistically assigning each fragment 
back to their respective histone modi�cation. 

Methods
Check out the preprint for details:
https://www.biorxiv.org/content/10.1101/2021.04.26.440629v1

Overview of the scChIX method. (a) Chromatin regulation of different cell types (different colored cells) is regulated in part through multiple histone modifications (two histone modifications shown as an example). (b) scChIX uses three sortChIC antibody incubation conditions: two conditions each target a 
single histone modification (single-incubated) only and the third condition targeting both histone modifications simultaneously (double-incubated). (c) Schematic of scChIX for deconvolving multiplexed histone modifications. The two single-incubated sortChIC datasets (one targeting an orange histone modifica-
tion, the other a blue modification, each modification reveals three clusters) are training data to define the possible pairs of histone modification distributions that can be combined to generate a hypothetical double-incubated cell. For each observed double-incubated cell, we then assign the cell to the most 
likely pair of cell states, one from each histone modification. We then probabilistically assign each pA-MNase cut into their respective histone modification. (d) Label transfer allows joint analysis of two single-incubated sortChIC datasets targeting functionally distinct histone modifications. Information derived 
from one histone modification, such as cell types, histone mark levels, and pseudotime, can be transferred to another histone modification, using the double-incubated cells as a link. (e) Simulation study shows that scChIX can unbiasedly assign reads to each mark regardless of the amount of overlap there is 
between the two marks across the genome. p is the expected fraction of double-incubated reads in a genomic locus that belongs to mark 1. p-hat is the estimate of the probability. n=101 simulation datapoints spread evenly between 0 and 1 inclusive. Error bars are 95% confidence intervals, centers are the 
mean.

scChIX accurately deconvolves multiplexed histone modifications in single cells. (a) UMAP representation of the H3K27me3 (n=367) and 
H3K9me3 (n=376) histone modification space derived from the two single-incubated datasets (right two panels), and the H3K27me3+H3K9me3 space 
(left panel, n=290) derived from the double-incubated data. Cells are colored by their ground truth cell type labels. The cells in the H3K27me3- and 
H3K9me3-only space have unmixed double-incubated cells whose deconvolved signal has been projected onto their respective UMAPs. Lines con-
necting across datasets connect where each double-incubated cell is located in each of the three histone modification space.  (b) Matrix summarizing 
the cluster pair that scChIX selected for each double-incubated cell. Cells along the diagonal are predicted to be B cells, Granulocytes, and NK cells, 
respectively. Cells in the off-diagonal are false negatives. Barplots summarizing false discovery rate (FDR), sensitivity, and specificity of assigning each 
cell type (right). (c) Zoom-in coverage plot and single-cell cut fragments in B cells of mixed (H3K27me3+H3K9me3, grey bars), unmixed (H3K27me3 
and H3K9me3, orange and blue bars). Positions of cut fragments are shown for four single cells (single cells A, B, C, and D) for H3K27me3+H3K9me3 
signal (grey ticks) as well as their unmixed outputs (orange and blue ticks). Circled reads and arrow highlight examples of cut fragments being assigned 
to either H3\K27me3 (orange) or H3K9me3 (blue). (d) Zoom-out of the Serpinb5 locus. Cut fragments from HK27me3+K9me3 are colored based on 
whether they have been assigned to H3K27me3 (orange) or H3K9me3 (blue). Ground truth coverage are single-incubated sortChIC data targeting 
H3K27me3 (orange) and H3K9me3 (blue). (e) Heatmap of probabilities p of assigning reads to H3K27me3 (p=1, red) or H3K9me3 (p=0, blue) around 
the Bcl2 locus. Rows are single cells (ordered by predicted cell type), columns are genomic regions (50 kilobase bins). Transitions between H3K9me3- 
and H3K27me3-marked chromatin states are independent of cell type. (f) Same as (e) but at the Crim1 locus, where transitions from H3K9me3 to 
H3K27me3 (blue to red) are cell type-specific.

Applying scChIX to mouse organogenesis reveals shared heterohromatin landscapes and cell type-specific differences in 
H3K36me3:H3K9me3 ratios. (a) Schematic of mouse organogenesis to study H3K36me3 and H3K9me3 in single cells. (b) Joint UMAP of mouse or-
ganogenesis after deconvolution from scChIX (n=2911 H3K36me3 cells, n=2166 H3K9me3 cells). (c) Assignment of multiple H3K36me3 cell types to 
one H3K9me3 cluster. The H3K36me3 (columns) and H3K9me3 (rows) label for each double-incubated  (n=1197 cells) is plotted onto a matrix to 
H3K36me3 cell types to H3K9me3 clusters. Cells are colored by their cell type label as in (b). (d) Subclustering of non-blood cells for H3K9me3, repre-
sented as a UMAP. Arrow denotes a pseudotime axis. Pseudotime defined as the first principal component of the 2D UMAP. (e) Joint UMAP of decon-
volved double-incubated cells (n=1197 cells), colored by the log ratio of number of H3K36me3 cuts versus number of H3K9me3 cuts. (f) Boxplot of 
H3K36me3:H3K9me3 ratio across cell types. Number of double-incubated cells for each cell type: n=163 erythroid, n=17 white blood cells, n=24 en-
dothelial, n=136 neural tube progenitors, n=197 neurons, n=46 Schwann cell precursors, n=73 epithelial, n=458 mesenchymal progenitors, n=83 cardi-
omyocytes. Boxplots show 25th percentile, median and 75th percentile, with the whiskers spanning 97% of the data.

Applying scChIX to two active marks reveals chromatin velocity during in vitro macrophage differentiation. (a) Schematic of mouse macrophage in 
vitro differentiation time course experiment to study H3K4me1 and H3K36me3 in single cells. (b) Heatmap of histone modification signal on the bodies of dy-
namic genes over pseudotime. Rows are gene bodies and columns are single-incubated cells ordered along pseudotime. Color labels of columns are days 
from which the cells were recovered during the time course. (c) Boxplots of pseudotime estimates of single-incubated cells along the time course. Number of 
cells per day for H3K4me1: n=58 day 0, n=148 day 1, n=249 day 2, n=350 day 3, n=369 day 4, n=383 day 5, n=488 day 6, n=519 day 7. For H3K36me3: 
n=42 day 0, n=125 day 1, n=176 day 2, n=301 day 3, n=384 day 4, n=366 day 5, n=522 day 6, n=567 day 7. Boxplots show 25th percentile, median and 75th 
percentile, with the whiskers spanning 97\% of the data. (d) Estimate of the average difference of pseudotime from one day to the next. Error bars indicate 
95\% confidence intervals, calculated by a linear model of the pseudotime differences between days. Statistics derived from number of cells indicated in (c). 
(e) Estimates of two different pseudotimes from a single cell. Error bars are 95\% confidence intervals of the estimates. Each point is a double-incubated cell. 
(f) Joint UMAP of H3K4me1 and H3K36me3 from scChIX, lines connect single cells with multimodal information.  (g) Chromatin velocity estimates of an up-
regulated gene (above) and a downregulated gene (below). Red curve is the exponential relaxation fit according to the first-order differentiation equation. (h) 
High-dimensional chromatin velocities of dynamic genes projected onto the principal components one and two. Vector field estimated by smoothing across 
nearest neighbors of cells.

Video link
https://youtu.be/pjTcvZLCy3A


