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ABSTRACT

This paper investigates the finite-sample prediction risk of the high-dimensional
least squares estimator. We derive the central limit theorem for the prediction
risk when both the sample size and the number of features tend to infinity. Fur-
thermore, the finite-sample distribution and the confidence interval of the predic-
tion risk are provided. Our theoretical results demonstrate the sample-wise non-
monotonicity of the prediction risk and confirm “more data hurt” phenomenon.

1 INTRODUCTION

More data hurt refers to the phenomenon that training on more data can hurt the prediction per-
formance of the learned model, especially for some deep learning tasks. |Loog et al.| (2019) shows
that various standard learners can lead to sample-wise non-monotonicity. Nakkiran et al.| (2019)
experimentally confirms the sample-wise non-monotonicity of the test accuracy on deep neural net-
works. This challenges the conventional understanding in large sample properties: if an estimator is
consistent, more data makes the estimator more stable and improves its finite-sample performance.
Nakkiran| (2019) considers adding one single data point to a linear regression task and analyzes its
marginal effect to the test risk. [Derezinski et al|(2019) gives an exact non-asymptotic risk of the
high-dimensional least squares estimator and observes the sample-wise non-monotonicity on mean
square error. For adversarially robust models, Min et al.| (2020) proves that more data may increase
the gap between the generalization error of adversarially-trained models and standard models. (Chen
et al.| (2020) shows that more training data causes the generalization error to increase in the strong
adversary regime. In this work, we derive the finite-sample distribution of the prediction risk under
linear models and prove the “more data hurt” phenomenon from an asymptotic point of view.

Intuitively, the “more data hurt” stems from the “double descent” risk curve: as the model com-
plexity increases, the prediction risk of the learned model first decreases and then increases, and
then decreases again. The double descent phenomenon can be precisely quantified for certain sim-
ple models (Hastie et al.[ (2019); Mei & Montanari (2019); Ba et al.| (2019); [Belkin et al.| (2019);
Bartlett et al.| (2020); | Xing et al.|(2019)). Among these works, [Hastie et al.|(2019) and Mei & Mon-
tanari| (2019) use the tools from random matrix theory and explicitly prove the double descent curve
of the asymptotic risk of linear regression and random features regression in high dimensional setup.
Ba et al.| (2019) gives the asymptotic risk of two-layer neural networks when either the first or the
second layer is trained using a gradient flow.

The second decline of the prediction risk in the double descent curve is highly related to the more
data hurt phenomenon. In the over-parameterized regime when the model complexity is fixed while
the sample size increases, the degree of over-parameterization decreases and becomes close to the
interpolation boundary (for example p/n = 1 in Hastie et al.| (2019)), in which a high prediction
risk is achieved. However, the existing asymptotic results, which focus on the first-order limit of the
prediction risk, cannot fully describe the more data hurt phenomenon. In fact, the “double descent”
curve is a function of the limiting ratio lim p/n, which may not be able to characterize the empirical
prediction risk in finite sample situations. There will be a non-negligible discrepancy between the
empirical prediction risk and its limit, especially when the sample size or dimension is small. Fine-
grained second-order results are thus needed to fully characterize such discrepancy and further, a
confidence band for the prediction risk can be constructed to evaluate its finite sample performance.
We take Figure[T] as an example to illustrate this. According to the first-order limit, given a fixed
dimension p = 100, the prediction risks at sample size n = 90 and n = 98 are about 10.20 and
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49.02. More data hurt seems true. However, the 95% confidence interval of the prediction risks with
sample size 98 is [4.91,142.12], which contains the risk for n = 90. Then more data hurt is not
statistically significant. Hence, in this work, we characterize the second-order fluctuations of the
prediction risk and make attempts to fill this gap. We employ the linear regression task in |[Hastie
et al. (2019) and [Nakkiran|(2019), and introduce new tools from the random matrix theory, e.g. the
central limit theorems for linear spectral statistics in |Bai & Silverstein| (2004); Bai et al.| (2007), to
derive the central limit theorem of the prediction risk.

Consider a linear regression task with n data points and p features, the setup of the more data hurt
is similar to that in the classical asymptotic analysis in |Van der Vaart| (2000). According to the
classical asymptotic analysis with p fixed and n — oo, the least square estimator is unbiased and
\/n-consistent to the ground truth. This implies that the more data will not hurt and even improve
the prediction performance. However, the story is very different in the over-parameterized regime.
The prediction risk doesn’t decrease monotonously with n when p > n. More data does hurt in
the over-parameterized case. In the following, we will justify this phenomenon by developing the
second-order asymptotic results as both n and p tend to infinity. We assume p/n — ¢, and denote
0 <np <ng < +00, c; =p/ny and e¢3 = p/ny. Then the direct comparison of the prediction risk
between sample sizes n; and ny can be decomposed into three parts: (i) the gap between the finite-
sample risk under n = n; and the asymptotic risk with ¢ = ¢;; (ii) the gap between the finite-sample
risk under n = n9 and the asymptotic risk with ¢ = c; (iii) the comparison between two asymptotic
risks under ¢ = ¢; and ¢ = c5. Theorem 1 and 2 of Hastie et al.[(2019) give answers to the task (iii).
For (i) and (ii), we develop in this paper the convergence rate and the limiting distribution of the
prediction risk as n, p — +00, p/n — c. Furthermore, the confidence interval of the finite-sample
risk can be obtained as well.
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Figure 1: Sample-wise double descent. We take p = 100 and 1 < n < 200. Left: The conditional
density of the prediction risk when sample size varies from 1 to 200. According to the conditional
distribution of the prediction risk, we can observe the sample-wise double descent phenomenon.
Right: The 95%-confidence band (point-wise) of the prediction risk. In the over-parameterized
regime 1 < n < 100, there exists some pairs (n1,7n2), 1 < n; < nz < 100 such that the upper
boundary of the confidence interval at n; is smaller than the lower boundary of the confidence
interval at ny. This confirms the more data hurt phenomenon.

Risk

The main goal of this paper is to study the second order asymptotic behavior of two different types
of conditional prediction risk in the linear regression model. One is Rx g(/3,3) given both the

training data and regression coefficient while the other is RX(B, () given the training data only.
We summarize our main results as follows: (1) The regression coefficient is set to be either random
or nonrandom to cover more cases. Different convergence rates and limiting distributions of both
prediction risk are derived under various scenarios. (2) In particular, the finite-sample distribution of
the conditional prediction risk given both the training data and regression coefficient is derived and
the sample-wise double descent is characterized in Theorem [4.2] and Theorem (see Figure [I).
Under certain assumptions, the more data hurt phenomenon can be confirmed by comparing the
confidence intervals built via the central limit theorems. (3) Our results incorporate non-Gaussian
observations. For Gaussian data, the limiting mean and variance in the central limit theorems have
simpler forms, see Section @ and @ for more details.

The rest of this paper is organized as follows. Section [3] introduces the model settings and two
different prediction risk. Section [ presents the main results on CLTs for the two types of risk with
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discussion. Section [5]conducts simulation experiments to verify the main results. All the technical
proofs and lemmas are relegated to the appendix in the supplementary file.

2 RELATED WORK

Double Descent The double descent curve describes how generalization ability changes as model
capacity increases. It subsumes the classical bias-variance trade-off, a U-shape curve, and further
show that the test error exhibits a second drop when the model capacity exceeds the interpolation
threshold (Belkin et al.|(2018); Geiger et al. (2019); |Spigler et al.| (2019); |Advani & Saxe| (2017)).
The double descent phenomenon has been quantified for certain models, including two-layer neural
networks via non-asymptotic bounds or asymptotic risk (Belkin et al.| (2019); Muthukumar et al.|
(2020); |Hastie et al.| (2019); Mei & Montanari| (2019); Ba et al.|(2019)). As our results are based on
the linear regression, we mainly focus on the literature of linear models. [Muthukumar et al.| (2020)
and Bartlett et al.| (2020) derive the generalization bounds for over-parametrized linear models and
show the benefits of the interpolation. Hastie et al| (2019) gives the first-order limit of the gen-
eralization error for linear regressions as n, p — +oc. |Derezinski et al. (2019) provides an exact
non-asymptotic expression for double descent of the high-dimensional least square estimator.
extends the first-order limit of the prediction error of the generalized weighted ridge
estimator to more general case with anisotropic features and signals. [Montanari et al.| (2019), Deng
et al| (2019) and [Kini & Thrampoulidis| (2020) investigate the sharp asymptotic of binary classifica-
tion tasks with the max-margin solution and the maximum likelihood solution. Emami et al.| (2020)
and [Gerbelot et al| (2020a) consider the double descent in generalized linear models. Furthermore,
the double descent phenomenon is also observed on linear tasks with various problems and assump-

tions, e.g. (2020); |Gerbelot et al.| (2020b); Javanmard et al.| (2020); |Dar & Baraniuk
(2020); Xu & Hsu| (2019); |Dar et al.| (2020). Xing et al.| (2019) sharply quantifies the benefit of in-

terpolation in the nearest neighbors algorithm. [Mei & Montanari| (2019)) derives the limiting risk on
the random features model and shows that minimum generalization error is achieved by highly over-
parametrized interpolators. (2019) gives the limiting risk of the regression problem under
two-layer neural networks. However, the existing asymptotic results focus on the first-order limit of
the prediction risk and do not indicate the convergence rate. There are very few second-order results
in the literature, [Shen & Bellec| (2020) establishes the asymptotic normality for the derivatives of
2-layers neural network, but not the exact limiting distribution of the risk. In this work, we are the
first to develop results on second-order fluctuations of the prediction risk in linear regressions and
provide its corresponding confidence intervals. The more data hurt phenomenon is further justified
from the asymptotic point of view.

Random Matrix Theory The primary tool for analyzing the second-order fluctuations of prediction
risk comes from random matrix theory. In particular, Bai & Silverstein| (2004) refines the central
limit theorem for linear spectral statistics of large dimensional sample covariance matrix with gen-
eral population and the population is not necessary to be Gaussian. Similar central limit theorems
are also developed for other random matrix ensembles, see [Sinai & Soshnikov| (1998)); Bai & Yao
2005)); Zheng| (2012). Other than the central limit theorem for linear spectral statistics, Bai et al.
2007) and [Pan & Zhou| (2008) study the asymptotic fluctuation of eigenvectors of sample covari-
ance matrices. Bai & Yao| (2008) considers the fluctuation of quadratic forms. All these technical
tools and results are adopted and fully utilized in this paper, especially those related to Stieltjes
transform, which are closely connected to the prediction risk studied in this paper.

3 PRELIMINARIES

3.1 PROBLEM, DATA AND ESTIMATOR

Suppose that the training data {(x;,y;) € R? xR,i=1,2,...,n} is generated independently from
the model (ground truth or teacher model):

yi :IBTXi+6i7 and (Xi,ei) ~ (PX7P€), 7 = 1,2,...,n. (1)

Here, Py is a distribution on R? such that E(x;) = 0, Cov(x;) = X, and P, is a distribution
on R such that E(¢;) = 0, Var(e;) = o2. In particular, the coordinates of x; are not necessarily
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independent, that is, 3 is not restricted to be diagonal. To proceed further, we denote

Xoxp = (x1,%2,...,%0)", ¥y=0U1Y2-¥)" -

The minimum ¢, norm (min-norm) least squares estimator, of y on X, is defined by

B = argmin |y - Xg|* = (X"X)*X"y, 0
B
where (XTX)* denotes the Moore-Penrose pseudoinverse of X™X.

3.2 BIAS, VARIANCE AND RISK

Similar to |Hastie et al.|(2019)), we define two different types of out-of-sample prediction risk. The
first one is given by

Rx(B.B) = E[(x38 — x56)*|X] = E[|8 - B]1%|X]. 3)
where x( ~ P is a test point and is independent of the training data, and the notation || 3||% stands
for 37X 3. Here 3 is assumed to be a random vector independent of xg. In this definition, the

expectation E stands for the conditional expectation for x, ﬁ and 3 when X is given. According to
the bias-variance decomposition, we have Rx (3, 3) := Bx (3, 8) + Vx (3, 3), where

Bx(8.8) = B{[E@BX) - 83X} and Vx(8,8) = TH{Cov(BX)S}. &)

Plugging the model (IJ) into the min-norm estimator (2), the bias and variance terms can be rewritten
as

2
Bx(8.8) =E{f"IENB|X} and Vx(8,8) = = Tx(E+E),

where 32 = XTX /n is the (uncentered) sample covariance matrix of X, and IT = I,, — 33 is the
projection onto the null space of X.

The second type of out-of-sample prediction risk is defined as

Rx s(B.8) = E[(x{8 — x¢8)*|X, 8] =E[|8 - B%|X. 3], (5)

where

A A A 2 A
BX,B(ﬁa /6) = ,BTHEHﬁ and VX,,@(IBa /3) = VX(lga ﬁ) = % TI(E+E)

In this definition, the parameter 3 is assumed to be given. The expectation E is the conditional

expectation for xq and B when X and 3 are given. This is consistent with the commonly-used
testing procedure, in which a trained model is evaluated by the average loss on unseen testing data.

4 MAIN RESULTS

Before stating our main results, we briefly highlight the challenges we faced in proving the more
data hurt phenomenon. First, the finite-sample behaviors of the prediction risk is required. [Hastie
et al.| (2019) gives the first-order limits of both RX,B(BHB) and Rx(ﬁ,ﬁ) as n,p — +oo and
p/n — ¢ € (0,+00). However, to prove the more data hurt phenomenon, we should fix p and
investigate the finite-sample risk with sample size n varies. This implies that only knowing the first-
order limit is not enough, the convergence rate is also needed. To solve this problem, we have derived
the central limit theorems for both Rx s(3, 3) and Rx (8, 3), respectively, which characterize the
second-order fluctuations of the risk. Then we can figure out the finite-sample behavior of the risk
by computing the gap between the risk and its limit. The confidence intervals of the risk can be
further obtained. Second, the parameter 3 also contributes randomness to the finite-sample risk,
which further influences the convergence rate. To analyze the contribution of 3, we need to make
use of the technical tools and asymptotic results for eigenvectors and quadratic forms developed in
Bai et al.|(2007)) and[Bai & Yao|(2008). Another interesting finding is that, in the over-parameterized
regime such that p > n, the two types of out-of-sample prediction risk RX”@(B, B) and Rx (3, 3)
enjoy different convergence rates.
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4.1 ASSUMPTIONS AND MORE NOTATIONS

As follows are some notations used in this paper. The p X p identity matrix is denoted by I,,. For a
symmetric matrix A € RP*P, we define its empirical spectral distribution as

FA@) = 3 1{n(4) < 1)
=1

where 1{-} is the indicator function and \;(A), 7 = 1,2, ... p are the eigenvalues of A. The notation

9, stands for the convergence in distribution. Z, /5 is the o/2 upper quantile of the standard normal
distribution, Apax(A) and Apin(A) denote the largest and smallest eigenvalues of A, respectively.

Here we list all the assumptions for X and 3 needed under different scenarios:

(A) x; ~ Py is of the form x; = X£!/2z;, where z; is a p-length random vector with i.i.d.
entries that have zero mean, unit variance, and a finite 4-th order moment ]E(zfj) = 1y,
i=1,---,pj=1,---,n.

(B1) X is a deterministic positive definite matrix, such that 0 < ¢y < Apin(E) < Apax(2) <
cq, for all n, p and some constants cg, ¢1. As p — oo, we assume that the empirical spectral
distribution F'* converges weakly to a probability measure H.

(B2) X is an identity matrix, 3 = I,.

(C1) B is a nonrandom constant vector, and || 3|3 = 873 = r2.

(C2) B ~ Pgis independent of X and follows multivariate Gaussian distribution N, (0, %Ip).

Throughout this paper, we consider the limiting distributions and the convergence rates of the out-
of- sample prediction risk when n, p — oo such that p/n = ¢, — ¢ € (0,00). If ¢ > 1, the sample
size n is smaller than the number of parameters p, we call this case “over-parametrized”. Otherwise
when ¢ < 1, we call it “under-parameterized”.

4.2 UNDER-PARAMETRIZED ASYMPTOTICS

In this section, we focus on the risk of the min-norm estimator (2) jn the under-parametrized regime.
According to Theorem 1 of [Hastie et al.| (2019), both Bx g(3,3) and Bx(3,3) converge to
o%c/(1 — c) almost surely. The following Theorem and show that both Bx (83, 8) and
Bx g (3, B) converge to o2¢/(1 — ) at the rate 1/p. Furthermore, the limiting distributions are de-
rived by making use of the CLT for linear spectral statistics of large-dimensional sample covariance
matrices.

Theorem 4.1. Suppose that the training data is generated from the model (I)), and the assumptions

(A) and (B1) hold. Then the first type of out-of-sample prediction risk Rx (B, B3) of the min-norm
estimator (2)) satisfies that, as n,p — oo such that p/n = ¢,, — ¢ < 1,

N n0? \ 4
p(Bx(8.8) = 12— )  N(pe,0?), ©)
where 2 2 2 2( ) 3 4 3 4( )
c‘o oc*(vy — 3 9 2c’o cco*(vg — 3
= d =
fe (c—1)2 + 1—c e e (c—1)* * (1—1c¢)?
Conclusively, R
P(La,c < RX(,@,,g) < Ua,c) —-1- @, (7)
where 1 — « is the confidence level and
Cno? 1 cno? 1
Locc: - (:_Za c)y Uac: —\Mec Za c)-
’ lfanrp(M f20¢) ’ 176n+p(’u+ f20¢)

Under the assumptions of Theorem 4.1} we know that TT = I, — 3+3 = 0 and

~ ~ ~ ~ 0'2 ~
BX(/@7/8) = Bx,ﬁ(ﬂaﬂ) = 07 VX(/Bvﬂ) = Vx,ﬁ(@ﬁ) = ;Tr(z—i_z)

Thus Rx (3, 8) equals to Rx (83, 8) and the two risk share the same asymptotic limit.
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Theorem 4.2. Under the assumptions of Theorem the second type of out-of-sample prediction

risk Rx g (,@, B) of the min-norm estimator (2) satisfies that, as n,p — oo such that p/n = ¢, —

c<1,
cno?

p(Rx 5(B,8) ) & N(e,0?),

1—oc,
and R
P(Loc,c < RX,,B(/B7/8) < UD&,C) —1-q

where [, Uf, Ly, and U, . are the same as those in Theorem

4.3 OVER-PARAMETRIZED ASYMPTOTICS

In this section, we consider the min-norm estimator (]Z[) in the over-parametrized case ¢ > 1. The bias
term, either Bx (B, 3) or Bx 3 (,é, ), is generally nonzero. According to Lemma 2 in
2019), both Bx(ﬁ7 (3) and Bxﬁ(ﬁ, B3) converge to r%(1 — 1/c) asn,p — +oc and p/n — ¢ > 1.
[his implies that the bias term can influence the asymptotic behavior of the prediction risk, including
the convergence rate. Hence to derive the CLT of the out-of-sample prediction risk, we need to
consider both the bias and variance terms in (@).

"

In the following, we investigate the asymptotic properties of the two prediction risk Rx(ﬁ ,03) and

Rx s (,é, (3) under various combinations of the assumptions (A1), (B2) for X and scenarios (C1),
(C2) for both random and nonrandom 3. We start with the case when 3 is a constant vector.

Theorem 4.3. Suppose that the training data is generated from the model (1)), and the assumptions

(A), (B2) and (C1) hold. Then the first type of out-of-sample prediction risk Rx (B, 3) of the min-
norm estimator (2) satisfies that, as n,p — oo such that p/n = ¢, — ¢ > 1,

2
9 (2

VP{Rx(8.8) ~ (1~ —)r* -

Cn Cp —

d
b Nl o)), ®)

where .1 = 0 and 0271 = %r‘l. A more practical version is to replace 1.1 and 031 with
ﬂclzi{ co? 0’2<V4—3)} and 5§1=2<0_1>r4 1{ 2c3 4 +ca4(z/4—3)}
' VP L(1—c¢)? c—1 ' c? pl(1—c)* (c—1)2
Conclusively,
P(Loz,c S RX(B?/B) S Ua,c) —1- «, (9)
where 1 — « is the confidence level and
1 o? 1
La c = 1—— 2 = ~c - Za ~C ’
: ( Cn)r +cn71+\/ﬁ(u 1 /20¢.1)
1 o? 1 . -
Ua c - (1 - 7)7ﬂ2 + + 7(/@:,1 + Za/2ac,1)-

’ Cn, cn—1 /D

Remark 4.1. Under assumption (C1), Bx(8,3) = Bx. (8, 3) and Rx(3,8) = Rx s(3,03).
Thus Theoremstill holds if we replace Rx(,é, B) with Rxﬂ(ﬁ, B).

Remark 4.2. Under Assumption (B2), the eigenvector of 3 s asymptotically Haar distributed.
Therefore, the bias term Bx (,[9 B) is only related to the length of 8. However, in the anisotropic
settings with general X5, the eigenvector of the 3 is no longer asymptotically Haar distributed. The
limiting behavior of BX(B, ) heavily relies on the interaction between 3 and the eigenvectors of

3. Therefore, we conjecture that there is no universal convergence rate for the bias term Bx (3, 3)
that can cover arbitrary non-random (3 and anisotropic ¥ in the over-parametrized case, not to
mention the prediction risk Rx (8, 3). A small simulation experiment is conducted in Appendix
to confirm our conjecture on this point.

Next we consider the case when 3 is a random vector that follows assumption (C2).
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Theorem 4.4. Suppose that the training data is generated from the model (1), and the assumptions
(A), (B2) and (C2) hold. Then as n,p — oo such that p/n = ¢, — ¢ > 1, the first type of
out-of-sample prediction risk Rx (3, B) of the min-norm estimator (2)) satisfies,

2

A 1 o d
p{Bx(B.8) = (1= =) = =} & Nl(pez. 0%),
where
lies = CG‘2 0'2(V4 — 3) and 0_32 _ 2030'4 00'4(1/4 — 3)
’ (1—c¢)? c—1 ' (1—c¢)? (c—1)2

Hence we have R
P(La,c < RX(/BMB) < UOé,C) - 1—a

where
o2 1 1
La,c = p— 1 + (1 — Z)TQ —+ 1;(,[1@12 — Za/g(fqg),
o2 1 1
Ua,c = cn_]_ +(1_Z)TZ—F;?(HC,Z"’ZCV/?UC’Q)'

As for Rx, /3(5' , B), we have the following theorem.

Theorem 4.5. Suppose that the training data is generated from the model (1), and the assumptions
(A), (B2) and (C2) hold. Then, as n,p — oo such that p/n = ¢, — ¢ > 1, the second type of

out-of-sample prediction risk Rx s (/é, 3) of the min-norm estimator (2) satisfies,
A 1

VP{Bx8(8.8) - (1 - —)r* -

Cn n

where .3 = 0 and 02)3 =2(1- %)7“4. A more practical version is to replace . 3 and 03)3 with

! S L, 1 20t cot(us
fe3 = {(CJ —|—U(V4 3)} and 52,3—2(1—)1"44-{(60 —|—CU(V4 3)}

0.2

b5 Nl 02y), (10)

VP L (1—¢)? c—1 c p L (1—c¢)* (c—1)2
The corresponding (1 — «)-confidence interval is given by
P(La.c < Rx,p(8,8) < Ua,c) = 1 —a, (1)
with
2
Loe = g+ 0= 4 s = Zupatiea)
o2

1 1 -
Cn — 1 + (1 - a)TQ + %(NCB + Zoz/20—c,3)~
Remark 4.3. Note that besides the leading constants in (tic,3,0¢3), the version (fic3,0c.3) also
contains smaller order terms, including terms of order O(1/./p) in fi. 3 and terms of order O(1/p)
in 0. 3. These smaller order terms will vanish when p and n grow very large, but for finite sam-
ple situations, these smaller order terms will provide a finer approximation for the finite sample
distribution of Rx B(B, B). As shown in the following experiments, these terms have indeed made

Ua,c

non-negligible contributions to fitting the empirical distribution of Rxﬁ(ﬁ, B), which sheds new
lights for practitioners.

Remark 4.4. If we compare the results in Theoremand we will find out that Rx (,é , 3) with
constant 3 and Rxﬂ([:}, 3) with random [ share the same first-order limit and second-order error
rate O(pil/ 2). This is quite intuitive because both risk treat (3 as a constant. Their differences are
reflected in their limiting variances. Nevertheless, it’s very interesting to observe from Theorem[#.4)
that, Rx(,é, 3) with random ( under the over-parametrized case has a smaller second-order error
rate O(p~1). It enjoys the same rate as the under-parametrized case in Theorem A possible
explanation would be that averaging over the randomness in B can partially offset the curse of
dimensionality so that RX(B, 3) achieves the same error rate for all p,n combinations.

Remark 4.5. It’s worth mentioning that the only assumption regarding data distribution is assump-
tion (A), where only finite fourth order moment is required. Non-Gaussianity allows our theoretical
results more widely applied.
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4.4 DISCUSSION

In this section, we first make a short conclusion of what we have done theoretically in this paper and
further discuss some possible directions of extension.

We have systematically investigated the second-order fluctuations of two types of prediction risk,
Rx(B,3) and Rx B(B 3), for the high d1men%10nal least square estimators 3. Theorem and

@ are for Rx(ﬁ, (3) while Theorem [4.2[ and |.5| are for Rxﬁ(ﬁ, (). Both fixed effect and ran-
dom effect of the regression coefficients 3 are discussed following the settings in

(2019). Rx(ﬁ, 3) and Rygg(f)7 () are the same when 3 is nonrandom as established in Theo-
rem (4.3l Asymptotic results are categorized into the under-parametrized case (p < n) and the
over-parametrized case (p > n).

Although the first-order limits of the prediction risk in high dimensional linear models have already
been well studied in recent years, including general extensions to anisotropic features and signals in
, the “double descent” risk curve is just a function of the limiting ratio lim p/n.
There is still a non-negligible discrepancy between the finite-sample prediction risk and its first-order
limit on the “double descent” curve. How large is this discrepancy? How fast does the risk converge
to its limit? Our CLTs provide answers to such questions and give a fine-grained characterization of
the second-order fluctuations of the prediction risks. Not only explicit forms of the leading constants
in the limiting means and variances are shown in the main theorems, smaller order terms are also
derived to improve the empirical performance for practitioners.

It is also important to recognize the limitations of our results. First, the present paper only concerns
linear regression tasks since the linear regression task is simple but important as well. Some recent
works linearize neural networks at the initialization and employ Neural Tangent Kernels
(2018)) to approximate the training procedure of a strongly over-parametrized neural network by
solving a linear regression task, e.g. [Du et al.| (2018)); [Arora et al.| (2019); [Lee et al| (2019). Though
the setting considered in this paper is simple and limited, the problem has not however been fully
understood so far in the literature. Therefore, we are among the first to take the task and develop the
second-order fluctuation results for the prediction risk. Second, we assume general covariance 3 and
non-Gaussianity for the under-parametrized case, which fits the most updated and realistic settings in
the literature, however we only investigate the isotropic settings while still allow for non-Gaussianity
under over-parametrization. We haven’t extended it to the more general anisotropic settings yet. The
reasons are two-fold. On the one hand, according to (2020), the first-order limits depend
on the Stieltjes transforms of the unknown spectral distribution of 3. Since 3 is unknown, we
cannot obtain any explicit characterization of the first-order limits, not to mention the second-order
fluctuations. The CLTs would only be written as certain complicated implicit functions of ¥ and
would be too abstract to evaluate practically. More restrictions would be imposed on X to guarantee
the second-order convergence. On the other hand, from the technical perspective, the techniques
required for anisotropic over-parametrized cases are very different from the isotropic cases due to
difference in the bias-variance decomposition in (). The tools in random matrix theory have not
been fully developed yet for anisotropic cases. Since we have considered various scenarios in this
paper, including random and nonrandom signals 3 for both conditional and unconditional risks, it
will take great efforts and continuous work to extend all of them to the most general settings, which
would lead to many subsequent works in the field of machine learning and random matrix theory
literature.

5 EXPERIMENTS

In this section, we carry out simulation experiments to examine the central limit theorems and the
corresponding confidence intervals in Theorem [d.2]and Theorem [4.5] We generate data points from
the linear model (I) and directly compute the prediction risk via the bias-variance decomposition
in @). The generative distribution Py is taken to be the standard normal distribution. The noise
distribution P, is taken to be N (0, 1). In the following, we present the gap between the finite-sample
distribution of the prediction risk and the corresponding limiting distribution to check the central
limit theorems and use the cover rate to measure the effectiveness of the confidence intervals. More
simulation results, including cases with non-Gaussian distributions for Py and P, are relegated to
the Appendix due to space limitations.
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Example 1. This example examines the results in Theorem§.2] We define a statistic

L= (Rxs(B.0) —0* 7= ) ¢

1—c¢c, 0.’

According to Theorem 4.2} T;, weakly converges to the standard normal distribution as n, p — oo.
In this example, ¢ = 1/2 and p = 50, 100, 200. The finite-sample distribution of T, is presented by
the histogram of 7}, in Figure 2] with 1000 repetitions, where the solid blue curve stands for standard
normal density function. It can be seen that the finite-sample distribution of T}, is very consistent
with the standard normal distribution, especially when n, p become larger. When o = 0.05, the
empirical cover rates of the 95%-confidence interval are 94.2%, 93.5% and 95.3% for p = 50, 100
and 200, respectively. All these experiments verify the correctness of our theoretical results.

s Normal s Normal s Normal

p=50 p=100 p=200
0.4 0.4 0.4

0.3

0.2

Density

0.1 0.1 0.1

0.0 0.0 0.0

Figure 2: The histogram of T},. The solid line is the density of the standard normal distribution.

Example 2. This example verifies the results in Theorem 4.5 Here we define two statistics:

~ 0'2 c
Tuo = Y2{Rxp(.f)~ (1 Sy T} tes

’ c,3 Cn cn_l o'c,?),
\/I_) 5 1 2 02 ﬂc3

Toi = {Bxap.p)-(1- -y - T} - Led
O0c,3 '8( ) ( Cn) cn —1 O0c¢,3

According to Theorem@ both T}, o and T, ; weakly converge to the standard normal distribution
as n,p — +oo. Compared to T}, o, T}, 1 provides a better approximation for the finite sample distri-

bution of Rx_ﬂ(,é, 3) because it contains smaller order terms in the asymptotic mean and variance.
We take ¢ = 3/2 and p = 150, 300, 450. Similarly the finite-sample distributions of T, ¢ and T}, ;
are presented by the histogram of 7}, o and 7}, ; with 1000 repetitions. The comparison between
these two statistics is shown in Figure [3] It can also be seen that the finite sample distributions of
T,,0 and T;, ; both match the standard normal distribution quite well, especially 7}, ; with more
precise characterization. The empirical cover rates of the 95%-confidence interval are 93.8%,
94.7% and 94.4% for p = 150, 300 and 600 respectively, which further shows the validity of our
theoretical results.

p=150 p=300 p=600

p=150 p=300 p=600

-a

Figure 3: The histograms of T}, o and T}, ;. The solid line is the density of the standard normal
distribution.



Under review as a conference paper at ICLR 2021

REFERENCES

Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization error in neural
networks. arXiv preprint arXiv:1710.03667, 2017.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322-332, 2019.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-
layer neural networks: An asymptotic viewpoint. In International Conference on Learning Rep-
resentations, 2019.

Zhidong Bai and Jack W. Silverstein. Clt for linear spectral statistics of large-dimensional sample
covariance matrices. The Annals of Probability, 32(1A):553-605, 2004.

Zhidong Bai and Jianfeng Yao. On the convergence of the spectral empirical process of wigner
matrices. Bernoulli, 11(6):1059-1092, 2005.

Zhidong Bai and Jianfeng Yao. Central limit theorems for eigenvalues in a spiked population model.
Annales de I'IHP Probabilités et statistiques, 44(3):447-474, 2008.

Zhidong Bai and YongQua Yin. Limit of the smallest eigenvalue of a large dimensional sample
covariance matrix. In Advances In Statistics, pp. 108—127. World Scientific, 2008.

Zhidong Bai, Baiqi Miao, and Guangming Pan. On asymptotics of eigenvectors of large sample
covariance matrix. The Annals of Probability, 35(4):1532—-1572, 2007.

Peter L Bartlett, Philip M Long, Gabor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning
and the bias-variance trade-off. stat, 1050:28, 2018.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. arXiv
preprint arXiv:1903.07571, 2019.

Lin Chen, Yifei Min, Mingrui Zhang, and Amin Karbasi. More data can expand the generalization
gap between adversarially robust and standard models. arXiv preprint arXiv:2002.04725, 2020.

Yehuda Dar and Richard G Baraniuk. Double double descent: On generalization errors in transfer
learning between linear regression tasks. arXiv preprint arXiv:2006.07002, 2020.

Yehuda Dar, Paul Mayer, Lorenzo Luzi, and Richard G Baraniuk. Subspace fitting meets regression:
The effects of supervision and orthonormality constraints on double descent of generalization
errors. arXiv preprint arXiv:2002.10614, 2020.

Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for high-
dimensional binary linear classification. arXiv preprint arXiv:1911.05822, 2019.

Michat Derezinski, Feynman Liang, and Michael W Mahoney. Exact expressions for double descent
and implicit regularization via surrogate random design. arXiv preprint arXiv:1912.04533, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, and Alyson K
Fletcher. Generalization error of generalized linear models in high dimensions. arXiv preprint
arXiv:2005.00180, 2020.

Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio Biroli,
and Matthieu Wyart. Jamming transition as a paradigm to understand the loss landscape of deep
neural networks. Physical Review E, 100(1):012115, 2019.

10



Under review as a conference paper at ICLR 2021

Cedric Gerbelot, Alia Abbara, and Florent Krzakala. Asymptotic errors for teacher-student con-
vex generalized linear models (or: How to prove kabashima’s replica formula). arXiv preprint
arXiv:2006.06581, 2020a.

Cédric Gerbelot, Alia Abbara, and Florent Krzakala. Asymptotic errors for convex penalized linear
regression beyond gaussian matrices. arXiv preprint arXiv:2002.04372, 2020b.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571—
8580, 2018.

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training
for linear regression. arXiv preprint arXiv:2002.10477, 2020.

Ganesh Kini and Christos Thrampoulidis. Analytic study of double descent in binary classification:
The impact of loss. arXiv preprint arXiv:2001.11572, 2020.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pp. 8572-8583,
2019.

Daniel LeJeune, Hamid Javadi, and Richard Baraniuk. The implicit regularization of ordinary least
squares ensembles. In International Conference on Artificial Intelligence and Statistics, pp. 3525—
3535, 2020.

Marco Loog, Tom Viering, and Alexander Mey. Minimizers of the empirical risk and risk mono-
tonicity. In Advances in Neural Information Processing Systems, pp. 7478-7487, 2019.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

Yifei Min, Lin Chen, and Amin Karbasi. The curious case of adversarially robust models: More
data can help, double descend, or hurt generalization. arXiv preprint arXiv:2002.11080, 2020.

Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of max-
margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. arXiv
preprint arXiv:1911.01544, 2019.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless inter-
polation of noisy data in regression. IEEE Journal on Selected Areas in Information Theory,
2020.

Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent. arXiv
preprint arXiv:1912.07242, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In International Conference on Learn-
ing Representations, 2019.

G. M. Pan and W. Zhou. Central limit theorem for signal-to-interference ratio of reduced rank
linear receiver. Ann. Appl. Probab., 18(3):1232-1270, 06 2008. doi: 10.1214/07-AAP477. URL
https://doi.org/10.1214/07-AAP477.

Yiwei Shen and Pierre C Bellec. Asymptotic normality and confidence intervals for derivatives of
2-layers neural network in the random features model. In Neural Information Processing Systems,
2020.

Ya Sinai and Alexander Soshnikov. Central limit theorem for traces of large random symmetric
matrices with independent matrix elements. Boletim da Sociedade Brasileira de Matemdtica-
Bulletin/Brazilian Mathematical Society, 29(1):1-24, 1998.

11


https://doi.org/10.1214/07-AAP477

Under review as a conference paper at ICLR 2021

S Spigler, M Geiger, S d’Ascoli, L Sagun, G Biroli, and M Wyart. A jamming transition from under-
to over-parametrization affects generalization in deep learning. Journal of Physics A: Mathemat-
ical and Theoretical, 52(47):474001, 2019.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Denny Wu and Ji Xu. On the optimal weighted 12 regularization in overparametrized linear regres-
sion. arXiv preprint arXiv:2006.05800, 2020.

Yue Xing, Qifan Song, and Guang Cheng. Benefit of interpolation in nearest neighbor algorithms.
arXiv preprint arXiv:1909.11720, 2019.

Ji Xu and Daniel J Hsu. On the number of variables to use in principal component regression. In
Advances in Neural Information Processing Systems, pp. 5094-5103, 2019.

Shurong Zheng. Central limit theorems for linear spectral statistics of large dimensional f-matrices.
Annales de I'IHP Probabilités et statistiques, 48(2):444-476, 2012.

Shurong Zheng, Zhidong Bai, and Jianfeng Yao. Substitution principle for clt of linear spectral
statistics of high-dimensional sample covariance matrices with applications to hypothesis testing.
The Annals of Statistics, 43(2):546-591, 2015.

A PROOF OF THEOREM AND THEOREM

Let X = ZX1/2, According to the Bai-Yin theorem (Bai & Yin|(2008)), the smallest eigenvalue of
Z*7Z/n is almost surely larger than (1 — /c)?/2 for sufficiently large n. Thus

1 1
)\7,”;"(7XTX) 2 CO)\min(*ZTZ) Z %)(1 - \/E)2a
n n

which implies that the matrix XX /n is almost surely invertible for large n. By Section II1=0,

Bx(8,8) = Bxﬁ(B,ﬂ) = 0and Vx(8,8) = VXﬁ(B,B). Thus the CLT of Rx (8, 3) is same to
that of Rx_ g(,(;’ ,3). For simplicity, we focus on Rx (3, 3) in the following. Notice that

~ o N
Vx(B,8) = ?Tr(Z] 's)
2 T
_ 7 —1/2 A ~1/2
= T (z(ES)n )
2 P 2
1 1
= TN 2 TP L ap,s)
n S; n s

=1

where Fy is the spectral measure of Z*Z/n. According to Theorem 1 of [Hastie et al.| (2019), as
n,p — oo such that p/n = ¢, — ¢ € (0,00), Fz(x) weakly converges to the standard Marcenko-
Pastur law F.(z) and

c

Vx(8,8) — 020/ %ch(s) = 021

— c !
Here the standard Marcenko-Pastur law F.(z) has a density function

1 .
pe(z) = { Vb=, ifa<z<h

where a = (1—/c)%, b = (1+/c)? and p.(z) has a point mass 1 — % at the origin if ¢ > 1. Hence

. . 2 1 1
Rx(8.0) - ' 1 = TP [Ldrs(o) - oo [ LaF., ()

1—oc,
_ %, / %(dFZ(s) dF,,(s).
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According to Theorem 1.1 of |[Bai & Silverstein| (2004),

p(Rx(8.8) = * =) % N(pe, 02), (12)
where
B a’e 1 em(2)3(1+ m(z)) 3
He 27TZ % P {1 _cm(z)g(l +m(z))_2}2 13)
020(1/4 =3) [1 em(2)2(1+m(z))3
5’5 T em(z)2(1 +m(z)) 2
9 1 d d
e = 27r2 5561 §é2 2122 (m(21) — m(22))? Thm(ZI)T@m(Z2)dZ1dZ2 (1

V4 - 3 1
_T fél ygz 2122 (1+m(z1))%(1 + m(z2))2dm(zl)dm(z2)~

Here the contours in (13)) and (14)) are closed and taken in the positive direction in the complex plane,
enclosing the support of Fyz,ie. [(1 — /€)%, (1 4 /c)?]. The Stieltjes transform m(z) satisfies the
equation

1 c

J— + .

m 1+m

To further simplify the integrations in p. and o, let z = 1 + \/c(ré + %) + ¢ and perform change
of variables, then we have

m<z):_Tiﬁ7”§’ dZ:\/E(r—i)d& dm:Ldf

and when £ moves along the unit circle |£] = 1 on the complex plane, z will orbit around the center
point 1 4 c along an ellipse which enclosing the support of Fz. Thus

e = _Te gl em@P(+m(z)?
¢ 2mi J, z (1 —em(2)?(1 + m(z))~2)?

_a%(m—s)yg 1 em(2)(1+ m())

dz

dz

3
2ms 5 21— em(2)2(1 4+ m(z))~2

o3¢ 1

2mi 755 (et e+ erg) (€ - e+ D)

dg

o2e(vy — 3) 1
i B OOV

o2c? o2c%(vy — 3)

(c—1)2 1-c

As for o2, note that

1 ¢ 1 d
- — 5 adm
2mi [, z1(my — mo)? 1

1

_ 7% 1 . Vers
2mi Jig =1 14 Velr&r + ) +e o (my + o )*(1 +\fr1§1)
_ L Verié
2mi Jje =1 (& + )(ﬁfl\f‘f— DA{(ri&ve+1)m, + 1}
&

(c=1){(c— my - 1}*

13



Under review as a conference paper at ICLR 2021

therefore
oc? 1
dmad
) # 2122(my — 1my)2 miamsy
20402 ¢ c m
- i Mo
2 Jigy =1 za(c — 1) {(c — D)my — 137
20%¢? ;5 Versés dé 2c304
= - g = .
21 Jig,=1 (¢ = D)1+ /eraba) (Ve +1262)3 (c—1)4
Meanwhile,
1 1 1
- —————dm(z
2mi 557 21 (14 m(z1))? m(z1)
_ 1 1 g —
210 Jigj=1 Ve§(1 + Veré) (Ve + 1) c—1’
hence

Lot —3) 1 (o \dim( _ o' —3)
in? ?gﬁé w7 (LT (o) P m)E o) im(z2) = ==

and
5 2c304 otc3(vy —3)

et (1-0)?

Let

According to (I2), we have
P(La,c S RX,B(ﬁaﬁ) S Ua,c) = P(_Za/Q S Tn S Zoc/2) —1— «,

where

1
Ly. = o +];(,uc_ oz/2O-C)a

1
Use = o’ +};(Nc+Za/2O'c)'

B PROOF OF THEOREM

Notice that
Bx(B,8) = B"(I,-x'%)8
= lim 8" (Ip—(f)—l—zIp)_lﬁ]),B

z—0*t

= lim 28%(2 +2I,)7'8.
z—0*t

Since 3 is a constant vector, we can make use of the results in Theorem 3 in[Bai et al.| (2007) and
Theorem 1.3 in[Pan & Zhou| (2008) regarding eigenvectors. Their works investigate the sample co-

variance matrix A, = Tp1 / QXZT)Xprl /2 /n, where T}, is an p x p nonnegative definite Hermitian
matrix with a square root Tp1 /% and X is ann x p matrix with i.i.d. entries (X;;)nxp- Let UpA Uy
denote the spectral decomposition of A, where A, = diag(A1,---,A,) and U, is a unitary ma-
trix consisting of the orthonormal eigenvectors of A,. Assume that &, is an arbitrary nonrandom
unit vector and y = (y1,¥y2, - ,¥Yp)" = U, z,, two empirical distribution functions based on
eigenvectors and eigenvalues are defined as

a p
1
9= IS, PR =33 1005 )
i=1 =

B
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Then for a bounded continuous function g(x), we have

PRIALTEY —fZg )= [ s@irt@ - [ g@irt).

The results in |Bai et al. (2007) and Pan & Zhou| (2008) show that

Lemma B.1. (Theorem 3 Bai et al.|(2007) and Theorem 1.3 Pan & Zhou! (2008)) Suppose that
(1) xi;’s are i.i.d. satisfying E(x;;) = 0, E(|x;;]?) = 1 and E(|x;;|*) < o0
(2) =y (0, 00);

(3) T, is nonrandom Hermitian non-negative definite with with its spectral norm bounded in p,

with H, = FT» 2 H a proper distribution function and x} (T, — zI,) ', = mpn(2),
where mpu (z) denotes the Stieltjes transform of H (t);

(4) g1,--- , gk are analytic functions on an open region of the complex plain which contains
the real interval

[limpinf Amin (Tp)L(0,1)(c)(1 — V)%, limsup Amaz (Tp)L(0,1)(c) (1 + \/5)2];
P

(5) asn,p — oo,
1
1+ tmpen.m, (2)

N (mgen ity ()T, — L) 'y — / dHn(t)H ~0.

Define G,(x) = \/ﬁ(FlA" (x) — FA»(x)), then the random vectors

([ s [ awi,m)

forms a tight sequence and converges weakly to a Gaussian vector Xq, , - - - , Xg, With mean zero and
covariance function
(20mqy — 21m,)?
COV(Xm ) xqz = 2 52 / / 91 21 92 22 5 dz1dzs.
7 Je, Je, 2222 — 21)(my — my)
The contours Cy, Cy are disjoint, both contained in the analytic region for the functions (g1, - , k)

and enclose the support of F¢fv for all large p.

(6) If H(x) satisfies
/ dH (t) B / dH(t) / dH (t)
(14 tm(20)) (1 +tm(2)) ) T+tm(z) ) 1+ tm(z)’

then the covariance function can be further simplified to

Covlxg1,%0,) = / 01 (2) g2 () dF > (z) — / g1 (2)dFH (z) / go(2)dFH (z)).

Recall that Bx (3, 8) = lim,_,+ 287 (X + 2I,) "' 8. Let g(z) = 1/(x + 2) and ,, = B/r. Then

we have )
[ 9(@)dGn(a) = Vi 567 (E 4 21,) B~ [ glw)aF, (@),

where F,, (z) is the standard Marcenko-Pastur law. It is not difficult to check that under Assump-
tions (A1), (B1) and (C1), all the conditions (/)-(6) in Lemma [B.T] are satisfied.

To proceed further, denote a = (1 —+/c)2, b = (1++/c)?. If cis replaced by c,,, a and b are denoted
by a,, and b,, respectively. By some algebraic calculations, we have

1.1 be 1 1
dF, = (1-—)-= : by — —ap)d
Jo@ara e = -2y [ Ve G - ads
1.1 —ltentz—/AB+20(—1)+(1+2)7?
z

= (1= —2)-
( cn) 2cp2

)
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and
Var(x,) = (/{g VY2 dF.(x {/ x)dF,(z >
= ,((1_,).i+/7 vV (b—x)( x—adm)
c ¢’ 22 o (@+2)? 2mcx
2 1.1 (O TeE
_E((l_g).;—’—/a T4z 2mex b-a a:—adx).
Therefore,
. 1 2(c—1)
1 dF,, (x)=1—— and lim 2V :
Jlim 2 / g(x)dF,, (x) . and  lim z ar(xy) = =

Furthermore, as n,p — o0, p/n = ¢, — ¢ > 1,
« 1 2(c—1
Vi(Bx(8.8)~ (1 - =3?) 4 v (0, 25D,
n
This can be rewritten as
. 1.5\ a 2c—1) ,
VB(Bx(8,8) - (1= —)r?) % N (0, 2—=rt).

Next we deal with the variance term VX(B, 3). According to the Assumption (B1), the variance
term is

- o2 - 02~ 1
Vx(8.8) = T T (E) = T3~
i=1""

where s;, ¢ = 1,...,n are the nonzero eigenvalues of X" X /n. Let {t;, ¢ = 1,...n} denote the
non-zero eigenvalues of XX™ / p, then we have
1 o?
—=— [ =dF t) — )
Z CdPxxrp(t) = ——

By interchanging the role of p and n, from the result in Theorem asn,p — 00, p/n = ¢, —
c>1, we have
/

c vy —3 2¢ vy —3
Zi N(/ 2+ (4/)7 / 4+ (4/2))'
1-¢, (¢ —1) 1-c¢ (¢ —1) (1-¢)
where ¢/, = n / p = 1/cy, ¢ = 1/c. This result can be rewritten as

"1 P d c (vy — 3) 2¢3 c(vy — 3)
—— N .
;ti o1 ((1—@24r + )

c—1 "7 (1—-0* (c—1)2
Hence the CLT of VX(,@, B3) is given by

(1.0 2 75) S (T + S )

Notice that Cov (BX (3,8), Vx(8, ,8)) = 0. According to the consistency rate and the limiting

distribution of Bx(ﬁ,,ﬂ) and Vx(ﬁ,ﬁ), we know that the bias Bx(ﬁ, () is the leading term of
Rx (8, B). This implies that

~ 1 d
VH{Rx(8,8) - (1= )83 - ———=} 4 N(0,62,),
Cn cn—1
1 = 2(c —1)r*/c%. A practical version of this CLT is given by

. 2
VH{Rx(B.8) = (1 = DB~ 77} % N(jen,524).

cp —1

where crf

where

= Gl e
N =
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C PROOF OF THEOREM [4_4]

First we consider the bias term BX(B, (). By Assumption (A1), (B1), and (C2),

Bx(8,8) = E["IISIB|X] = E[B"IIB|X]
= T {(I, - ST E)E(BB7X) }

= jT‘r{IZ, -3t} =121 —n/p).

Alternatively, we can rewrite the bias as
Bx(8.8) = lim E[B™(I, - (5 +2I,)"'%)8/X]
= lim E[z87(2 + 2I,) ' 8|X]
z—0t

r? .
= lim z2— Tr(Z +2I,)" "

z—0t p

Define that f,,(z) = z% Tr(2+2I,)"". Notice that | f,,(z)| and | f, ()| are bounded above. By the

Arzela-Ascoli theorem, we deduce that f,,(z) converges uniformly to its limit. Under Assumption
(C2), by the Moore-Osgood theorem, almost surely,

A 2 A
lim Bx(8,8) = lim lim z— Te(S+2I,)""

n,p— 00 z—0t n,p—o0  p

= lim lim zTr(XXT—l—zIn) ,
n

z—0t n,p—oo P

In fact,
lim Bx(3,8)=r? lim i —~
nie BX(B.B) =1 i, I 2min (=)
where m., (z) is the Stieltjes transform of empirical spectral distribution of 3= XTX /mn. Accord-
ing to Theorem 2.1 in|Zheng et al.|(2015)) and Lemma 1.1 in[Bai & Silverstein| (2004)), the truncated
version of p(my,(z) — m(z)) converges weakly to a two-dimensional Gaussian process M (-) satis-
fying

_ em?(1 + m) c(vy — 3)m?
EME) = {1+m)?2 —em?}? 1+ m){(1+m)*—cm?}’
and
m/ (z1)m’ (22 1
Cov(M(z1). M(z2)) = 2{ (m(ZE) zm(Zz)))2 (- 22)2}

c(vs — 3)m/ (21)m/ (22)
(14 m(21))%(1 + m(z2))?’

where m = m(z) represents the Stieltjes transform of limiting spectral distribution of companion
matrix XX /n satisfying the equation
1 c 1-c

z = “m + T’ m(z) = Y + em(z).

When p > n, we can actually solve m(z) equation and obtain that

~l+c—z++/—42+ (1 —c+2)?

m(z) = P ;
l—c—z+4++/—4z4+(1—c+2)?
m(z) = v 5 .

17
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Therefore, by some algebraic calculations, we have

lim Bx(ﬁ,,@) = lim 72 lim zm,(—2) =7r? lim {zm(—z) +2(1— 1)1}

n,p—r00 ,P— 00 z—0t z—0*F c' z

1
= lim 7? lim zﬁmn(z) =7?= lim zm(—2)

n,p—oo  z—0t P C z—0t
=7r?(1 — %)
Moreover,
Var(M(z)) = Zlggglzz Cov (M (z1), M(z2))
_2m/(m)m"(2) — 3(m"(2))* | c(va —3)(m'(2))*
6(m’(2))? (1+m(2))*

By substituting of the explicit form of m/(z), we can easily derive that
lim 2E[M(—2)] =0, lim z*Var(M(—z)) =0,
z—0Tt

z—0t

which means that the second-order limit of Bx (3, 8) is still r2(1 — 1/¢). All in all, Bx (8, 8) is
identical with a constant 72(1 — 1/¢) in distribution.

On the other hand, by Assumption (B1),

. 2 A 2 n
Vx(8.8) = T (87} = T30

i=1

where s;, 4 = 1,...,n are the nonzero eigenvalues of XX /n. Similar to the proof of Theorem 4.3]
the CLT of Vx (3, 3) is given by
2 2 3.4 4
. d co 0%(vy —3) 2c°0 co*(vy — 3)
Vx (8, 8) - )4 ( , )
p( x(8.8) en—1 (1—¢)? c—1 (I-0c)* (c—1)2

Combining the results of Bx (3, 3) and Vx (3, 3), we have

5 2 1 o? d 2
p{RX(,@,,B)*T (1707)7 c _1} —>N(/LC,27U(:,2)’
where 2 2 3 4 4
co oc°(vgy — 3 2c’o co*(vy — 3
He,2 = 2 s )’ 03,2: i b 2)
(1-c¢) c—1 (1-c¢) (c—1)

D PROOF OF THEOREM

Note that under Assumption (B/) and (C2), Bx,g(,é,,@) = pg'Ip = g, — ﬁ)*ﬁ))ﬁ. If we

directly consider 3" (I, — ﬁ]+ﬁ])ﬁ, we can make use of the asymptotic results for quadratic forms
Theorem 7.2 in|/Bai & Yao| (2008)) stated as follows.

Lemma D.1. (Theorem 7.2 in Bai & Yao|(2008)) Let {A,, = [a;;(n)]} be a sequence of n x n
real symmetric matrices, {X;},.y be a sequence of i.i.d. K dimensional real random vectors, with

E(x;) = 0, E(x;x7) = (7ij) k x x and E[||x;]|*] < oo. Denote
Xi = (Xe))kx1, X(0) = (Xer, oo Xen)”, £=1, K, i=1,---,n,
assume the following limits exist
w= lim 1 zn:afi(n), 6 = lim 1 Tr A2,
n—oo N = n—0o0 1
Then the K -dimensional random vectors

1
Zy = (Zn7€)K><17 Ine = E(X(E)TATLX(E) — Yee Tr{An})7 1</4< Ka

converge weakly to a zero-mean Gaussian vector with covariance matrix D = Dy + Do where
[D1]eer = w{E(a7,37,) — veeyerr } 5 [Daleer = (0 — w)(veeyee +vie), 1 < 6,0 < K.

18
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According to the results in Lemma , let A, =1I=1I, — ﬁ]*ﬁ], then we have, as p — oo,

\/ﬁ{ﬁTHﬂ . ’;Tr(n)} & N(0,d? = d? + d?),

where
. 1 2 1
w= pli)n;OEZHW 0 _pan;O;Tr(n )=1--,
and
p
d? = w {]E x/lxa ’Yu} = W(j (54) - 1)
dy = (0—w)(vi +75) =2(0 —w)r!

Since in the proof of Theorem [4.4] we have already shown that
2
"oy =21 - D).
p p

In particular, if 3 follows multivariate Gaussian distribution, i.e. 3 ~ Np(O, %Ip), then as p — oo,
3 2 n\ 4 L\ 4
VP{Bxp(8.8) ~ (1= )} 4 N (0,200 rt).

Moreover, Vx g (B, B) = Vx (B, B), we have already proved in Theorem that

o2 co o2(vy — Aot cot(yy —
p(Vx,8(B.8) - — 1) = N(( + (ci 1 3)’ (127 c)t (0(41)23))

c)?
Note that COV(BXﬁ(ﬁ7 ,3), Vxﬁ(ﬁ, 3)) O ccording to the consistency rate of BXﬁ(B, 3)

and Vx g (B, B). we know that the bias Bx (8, 8) is the leading term of Rx s (B, 3). This implies
that
1 o?

Vi{ Bxp(8.8) = r*(1— —) -

n Cp —

-5 N(0,02y).
where 02 3 = 2r*(1 — 1/¢). A practical version of this CLT is given by

0.2

VB{Rx p(8.8) ~ (1~ ) -

n Cn —

d ~ ~
1 } — N(/U‘C,?)a 02,3)7

where

1 {( co? 02(1/4—3)}7

ﬁ 1—c)? c—1
9 1.4 11 230  co*(va—3
Oes = 21=7)r 7{ (1—c)* * (c(— 1)2 )}

E MORE EXPERIMENTS

E.1 MORE RESULTS OF EXAMPLE 1
This example checks Theorem[d.2] We define a statistic
Cn c
R

1-— Oc

According to Theorem[d.2] T;, weakly converges to the standard normal distribution as n, p — oco. In
this example, ¢ = 1/2 and p = 50, 100, 200. To make sure the assumption (A) holds, the generative
distribution P is taken to be the standard normal distribution, the centered gamma with shape 4.0
and scale 0.5, and the normalized Student-t distribution with 6.0 degree of freedom. The finite-
sample distribution of T3, is estimated by the histogram of 7T}, under 1000 repetitions. The results
are presented in Figure[d] One can find that the finite-sample distribution of T}, tends to the standard
normal distribution as n, p — +00. When o = 0.05, the empirical cover rates of the 95%-confidence
interval are reported in Figure 5]
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Figure 4: The histogram of 7;,. The solid line is the density of the standard normal distribution.
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Figure 5: The cover rate of the confidence interval @) as p creases. The confidence level is 95%.
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E.2 MORE RESULTS OF EXAMPLE 2

The Example 2 checks Theorem[#.5] Here we consider the standardized statistics:

D A 1 o?
To = PLrx(B.8)- (1 - 12— T ) tes,
0c,3 Cn cn — 1 O0¢,3
D N 1 o2 [l
Ty = PrxB.B) - (- Sy T} fes
0c,3 Cn cn—1 Oc¢,3

According to the central limit theorem @ and its practical version, both T}, o and T}, ; weakly
converge to the standard normal distribution as n, p — +o0o0. We take ¢ = 2 and p = 100, 200, 400.
The finite-sample distributions of T, o and T}, ; are estimated by the histogram of T, o and T, ;
under 1000 repetitions. The results are presented in Figure [6] and Figure [7] When oo = 0.05, the
empirical cover rates of the 95%-confidence interval are reported in Figure
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0.4 0.4 0.4
203 03 203
£ & @
G g o
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-4 -4 -2 0 2 4 -4 -2 0 2 a4
Too Tno
Gamma Gamma
0.5 0.5 0.5
p=200 p=400
0.4 0.4- 0.4
203 203 203
‘© ‘0 ‘o
] @ G
a 0.2 a 0.2 a 0.2
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0.0 0.0 . . T 0.0 . .
-4 -4 -2 0 2 4 -4 -2 0 2 a4
Tho Tho Tho
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Figure 6: The histogram of T, . The solid line is the density of the standard normal distribution.
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Figure 7: The histogram of T}, ;. The solid line is the density of the standard normal distribution.
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Figure 8: The cover rate of the confidence interval as p creases. The confidence level is 95%.
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E.3 EXAMPLE 3

This example checks Theorem@ To proceed further, we denote two statistics:

D A 1 o?
Lo = PLrx(B.8) - (1 - 1p2 - T ) ted
Oc,1 Cn cn—1 Oc,1
'D N 1 o2 [l
Ly = YPLRx(d.8) (- —p? - T} et
Oc,1 Cn cn—1 Oc,1

According to the central limit theorem @ and its practical version, both T}, o and T;, 3 weakly
converge to the standard normal distribution as n, p — +oco0. We take ¢ = 2 and p = 100, 200, 400.
The finite-sample distributions of T, » and T}, 3 are estimated by the histogram of T}, » and T, 3
under 1000 repetitions. The results are presented at Figure [9] and Figure One can see that the
finite-sample distributions of T}, » and 7, 3 are close to the standard normal distribution, and the
finite-sample performance of T}, 3 is better than that of T}, . When a@ = 0.05, the empirical cover
rates of the 95%-confidence interval (E[) are reported in Figure
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Figure 9: The histogram of T, 5. The solid line is the density of the standard normal distribution.
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Figure 10: The histogram of T}, 5. The solid line is the density of the standard normal distribution.
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Figure 11: The coverage of confidence interval (EI) as p increases. The confidence level is 95%.
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F AN EXAMPLE FROM FIGURE[]

Confidence Interval

200 -
175 -

=0 142,12

125 -

=1 10.20
4.91 :

Sample Size

Figure 12: According to the first-order limit, given a fixed dimension p = 100, the prediction risks at
sample size n = 90 and n = 98 are about 10.20 and 49.02. More data hurt seems true. However, the
95% confidence interval of the prediction risks with sample size 98 is [4.91, 142.12], which contains
the risk for n = 90. Then more data hurt is not statistically significant.

G AN ANISOTROPIC EXAMPLE FOR REMARK [4.2]

In the over-parameterized case, the bias term Bx (ﬁ, ) = BTIIXIIA is non-zero while the variance

term Vx (,é’ , 3) remains the same as under-parameterized case. Therefore in this section, we conduct
a small simulation to examine the fluctuation of the bias Bx for both isotropic and anisotropic X
in the over-parameterized case with non-random [ satisfying Assumption (C1). In particular, in the
following we set = 1.

We consider both localized and delocalized 3 such that

1. Localized case: 81 = (1,0,---,0);
2. Delocalized case: 3y = —= (1,---,1);

and both the isotropic and anisotropic 3
3. Identity case: 31 = Ip;
4. Compound symmetric case: 3p = 0.5, + 0.51,1.

Then we fix p/n = 2 and let p vary from 10 to 300, we present in Figurethe empirical variance
of \/p * Bx and p * Bx under various combinations of 3 and 3 with 1000 replications.

From the plot on the top left panel in Figure (13} we can see that the variance of ,/p * Bx for both
B1 and B, remain constant as p grows, which indicates that the convergence rate of Bx is 1/,/p
under the isotropic case regardless of localized or delocalized 3. As for the anisotropic case on the
top right corner, the variance of ,/p* Bx stabilizes for B1, while decays for 32, which indicates that
convergence rate of Bx under (X9, 32) and (X2, 31) are different.

This simulation result further confirms our conjecture that in the over-parameterized case, there is
no universal CLT for the prediction risk Rx (3, 3) under the anisotropic setting for non-random g3.
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Figure 13: The upper panel is the empirical variance of /p * Bx, the lower panel is for p x Bx.
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