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ABSTRACT

Domain Generalization (DG) aims to train models that perform well not only on
the training (source) domains but also on novel, unseen target data distributions.
A key challenge in DG is preventing overfitting to source domains, which can
be mitigated by finding flatter minima in the loss landscape. In this work, we
propose Quantization-aware Training for Domain Generalization (QT-DoG) and
demonstrate that weight quantization effectively leads to flatter minima in the loss
landscape, thereby enhancing domain generalization. Unlike traditional quantiza-
tion methods focused on model compression, QT-DoG exploits quantization as an
implicit regularizer by inducing noise in model weights, guiding the optimization
process toward flatter minima that are less sensitive to perturbations and overfitting.
We provide both an analytical perspective and empirical evidence demonstrating
that quantization inherently encourages flatter minima, leading to better general-
ization across domains. Moreover, with the benefit of reducing the model size
through quantization, we demonstrate that an ensemble of multiple quantized mod-
els further yields superior accuracy than the state-of-the-art DG approaches with
no computational or memory overheads. Our extensive experiments demonstrate
that QT-DoG generalizes across various datasets, architectures, and quantization
algorithms, and can be combined with other DG methods, establishing its versatility
and robustness.

1 INTRODUCTION

Many works have shown that deep neural networks trained under the assumption that the training and
test samples are drawn from the same distribution fail to generalize in the presence of large training-
testing discrepancies, such as texture (Geirhos et al., 2019; Bahng et al., 2020), background (Xiao
et al., 2020), or day-to-night (Dai & Van Gool, 2018; Michaelis et al., 2019) shifts. Domain
Generalization (DG) addresses this problem and aims to learn models that perform well not only in
the training (source) domains but also in new, unseen (target) data distributions (Blanchard et al.,
2011; Muandet et al., 2013; Zhou et al., 2022).

In the broader context of generalization, with training and test data drawn from the same distribution,
the literature has revealed a relationship between the flatness of the loss landscape and the general-
ization ability of deep learning models (Keskar et al., 2017; Dziugaite & Roy, 2017; Garipov et al.,
2018; Izmailov et al., 2018; Jiang et al., 2020; Foret et al., 2021; Zhang et al., 2023). This relationship
has then been leveraged by many recent works, demonstrating that a flatter minimum also improves
Out-of-Distribution (OOD) performance (Cha et al., 2021; Ramé et al., 2023; Arpit et al., 2022). At
the heart of all these DG methods lies the idea of weight averaging (Izmailov et al., 2018), which
involves averaging weights from several trained models or at various stages of the training process.

In this work, we demonstrate that flatter minima in the loss landscape can be effectively achieved
through weight quantization using Quantization-aware Training (QAT), making it an effective ap-
proach for DG. By restricting the possible weight values to a lower bit precision, quantization imposes
constraints on the weight space, introducing quantization noise into the network parameters. This
noise, as discussed in prior works (An, 1996; Murray & Edwards, 1992; Goodfellow et al., 2016;
Hochreiter & Schmidhuber, 1994), acts as a form of regularization that naturally encourages the opti-
mization process to converge toward flatter minima. Furthermore, our results show that models trained
with quantization not only generalize better across domains but also reduce overfitting to source
domains. To the best of our knowledge, this is the first work to explicitly explore the intersection of
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Figure 1: Performance Comparison on the Domainbed Benchmark. We show the average
accuracy on 5 different datasets. One Model refers to methods training a single ResNet-50 model.
Multiple Models refers to training M models for averaging or ensembling, which affects the training
cost. We compare QT-DoG and EoQ to other state-of-the-art methods. The marker size is proportional
to the memory footprint. EoQ shows superior performance despite being 4 times smaller than its
full-precision counterpart. Additionally, QT-DoG demonstrates comparable performance to One
Model methods, despite its significantly smaller size.
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quantization and domain generalization. Through both analytical reasoning and empirical validation,
we provide strong evidence that QAT promotes flatter minima, leading to enhanced generalization
performance on unseen domains.

The benefit of having fast and light-weight quantized models then further allow us to even make an
ensemble of them, termed Ensemble of Quantization (EoQ). EoQ achieves superior performance
while maintaining the computational efficiency of a single full-precision model. This stands in
contrast to ensemble-based methods like (Ramé et al., 2023; Arpit et al., 2022), which require storing
and running multiple full-precision models. With our approach, quantization not only improves
generalization but also reduces the model’s memory footprint and computational cost at inference.
As shown in Figure 1, EoQ yields a model with a memory footprint similar to the state-of-the-art
single-model DG approaches and much smaller than other ensemble-based methods, yet outperforms
all its competitors in terms of accuracy.

Our contributions can be summarized as follows:

• Quantization for Domain Generalization. We are the first to demonstrate that quantization-
aware training, traditionally used for model compression, can serve as an implicit regularizer,
with quantization noise enhancing domain generalization.

• Flat Minima via QAT: We empirically demonstrate that QAT promotes flatter minima in
the loss landscape and provide an analytical perspective behind this effect. Additionally, we
show that QAT stabilizes model behavior on OOD data during training.

• Resource Efficiency: In contrast to traditional DG methods that often increase model size or
computational cost, QT-DoG not only improves generalization but also significantly reduces
the model size, enabling efficient deployment in real-world applications. EoQ, for instance,
requires nearly 6 times less memory than Arpit et al. (2022) and 12 times less training
compute compared to Ramé et al. (2023), which trains 60 models for diverse averaging.

• EoQ We introduce EoQ, a strategy that combines the power of quantization and ensembling
for generalization. EoQ achieves state-of-the-art results on the DomainBed benchmark while
matching the computational cost and memory footprint as a single full-precision model.

Our code and models will be made publicly available.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

Numerous multi-source domain generalization (DG) methods have been proposed in the past. In this
section, we review some of the recent approaches, categorizing them into different groups based on
their methodologies.
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2.1.1 DOMAIN ALIGNMENT

The methods in this category focus on reducing the differences among the source domains and learn
domain-invariant features (Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2022a; Sun et al.,
2016; Sagawa et al., 2020; Ganin et al., 2016; Li et al., 2023; Cheng et al., 2024). The core idea is
that, if the learnt features are invariant across the different source domains, they will also be robust to
the unseen target domain. For matching feature distributions across source domains, DANN (Ganin
et al., 2016) uses an adversarial loss while CORAL (Sun & Saenko, 2016) and DICA (Muandet et al.,
2013) seek to align latent statistics of different domains. Unfortunately, most of these methods fail
to generalize well and were shown not to outperform ERM on various benchmarks (Gulrajani &
Lopez-Paz, 2021; Ye et al., 2022; Koh et al., 2021a).

2.1.2 REGULARIZATION

In the literature, various ways of regularizing models (implicit and explicit) have also been proposed
to achieve better generalization. For example, invariant risk minimization (Arjovsky et al., 2019)
relies on a regularization technique such that the learned classifier is optimal even under a distribution
shift. Moreover, (Huang et al., 2020) tries to suppress the dominant features learned from the
source domain and pushes the network to use other features correlating with the labels. Furthermore,
(Krueger et al., 2021) proposes risk extrapolation that uses regularization to minimize the variance
between domain-wise losses, considering that it is representative of the variance including the target
domain.

2.1.3 VISION TRANSFORMERS

Recent studies have increasingly utilized vision transformers for domain generalization (Shu et al.,
2023; Sultana et al., 2022). Some approaches enhance vision transformers by integrating knowledge
distillation (Hinton et al., 2015) and leveraging text modality from CLIP (Radford et al., 2021) to
learn more domain-invariant features (Moayeri et al., 2023; Addepalli et al., 2024; Chen et al., 2024;
Huang et al., 2023; Liu et al., 2024).

2.1.4 ENSEMBLING

Ensembling of deep networks (Lakshminarayanan et al., 2017; Hansen & Salamon, 1990; Krogh
& Vedelsby, 1995) is a foundational strategy and has consistently proven to be robust in the past.
Many works have been proposed to train multiple diverse models and combine them to obtain
better in-domain accuracy and robustness to domain shifts (Arpit et al., 2022; Thopalli et al., 2021;
Mesbah et al., 2022; Li et al., 2022; Lee et al., 2022; Pagliardini et al., 2023). However, ensembles
require multiple models to be stored and a separate forward pass for each model, which increases the
computational cost and memory footprint, especially if the models are large.

2.1.5 WEIGHT AVERAGING

Combining or averaging weights from different training stages or models has emerged as a robust
approach to improve OOD generalization (Wortsman et al., 2022b; Matena & Raffel, 2022; Wortsman
et al., 2022a; Gupta et al., 2020; Choshen et al., 2022; Wortsman et al., 2021; Maddox et al., 2019;
Benton et al., 2021; Cha et al., 2021; Jain et al., 2023; Ramé et al., 2023). Techniques like SWAD (Cha
et al., 2021) leverage weight averaging to identify flat minima, reducing overfitting and enhancing
generalization under distribution shifts. Similarly, DiWA (Rame et al., 2022b) combines weights
from independently trained models to improve robustness through increased diversity.

Arpit et al. (2022) integrates ensembling with weight averaging, yielding superior performance
compared to either method alone, albeit with significant memory and computational costs. To address
these challenges, we demonstrate that quantization can improve generalization while reducing
resource demands.

Although flatter minima are not universally indicative of better domain generalization (An-
driushchenko et al., 2023), they remain a valuable tool for improving robustness in many scenarios.
Moreover, recent findings (Mueller et al., 2023) highlight that selective application of SAM (Foret
et al., 2021), such as restricting it to normalization layers, can further refine its effectiveness. The
consistent empirical success of SAM underscores its reliability as a method for enhancing domain
generalization, despite the nuanced relationship between flatness and performance across different
settings.
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2.2 MODEL QUANTIZATION

Model quantization is used in deep learning to reduce the memory footprint and computational
requirements of deep network. In a conventional neural network, the model parameters and activations
are usually stored as high-precision floating-point numbers, typically 32-bit or 64-bit. The process of
model quantization entails transforming these parameters into lower bit-width representations, such
as 8-bit integers or binary values. Existing techniques fall into two main categories. Post-Training
Quantization (PTQ) quantizes a pre-trained network using a small calibration dataset and is thus
relatively simple to implement (Nagel et al., 2020; Li et al., 2021; Frantar & Alistarh, 2022; Zhao
et al., 2019; Cai et al., 2020; Nagel et al., 2019; Shao et al., 2024; Lin et al., 2024; Chee et al., 2023).
Quantization-Aware Training (QAT) retrains the network during the quantization process and thus
better preserves the model’s full-precision accuracy. Yang et al. (2023); Esser et al. (2020); Zhou et al.
(2017); Bhalgat et al. (2020); Yamamoto (2021); Yao et al. (2020); Shin et al. (2023). In the next
section, we provide some background on quantization and on the method we will use in our approach.
Our goal in this work is not to introduce a new quantization strategy but rather to demonstrate the
impact of quantization on generalization.

3 DOMAIN GENERALIZATION BY QUANTIZATION

We build our method on the simple ERM approach to showcase the effects of quantization on the
training process and on the generalization to unseen data from a different domain. Despite the
simplicity of this approach, we will show in Section 4.3 that it yields a significant accuracy boost on
the test data from the unseen target domain. Furthermore, it stabilizes the behavior of the model on
OOD data during training, making it similar to that on the in-domain data. In the remainder of this
section, we focus on providing some insights on how quantization enhances DG.

3.1 QUANTIZATION

Let w be a single model weight to be quantized, s the quantizer step size, and QN and QP the number
of negative and positive quantization levels, respectively. We define the quantization process that
computes w̄, a quantized and integer scaled representation of the weights, as

w̄ = ⌊clip(w/s,−QN , QP )⌉, (1)

where the function clip(k, r1, r2) is defined as

clip(k, r1, r2) =


⌊k⌉ if r1 < k < r2
r1 if k ≤ r1
r2 if k ≥ r2

(2)

Here, ⌊k⌉ represents rounding k to nearest integer. If we quantize a weight to b bits, for unsigned
data QN = 0 and QP = 2b − 1, and for signed data QN = 2b−1 and QP = 2b−1 − 1.

Note that the quantization process described in Eq. 1 yields a scaled value. A quantized representation
of the data at the same scale as w can then be obtained as

wq = w̄ × s. (3)

This transformation results in a discretized weight space that inherently introduces noise. We
demonstrate generalization ability of QT-DoG with different quantization methods in section 4.3.4.

3.2 QUANTIZATION LEADS TO FLAT MINIMA

In the literature (Rame et al., 2022b; Arpit et al., 2022; Krueger et al., 2021; Cha et al., 2021; Rame
et al., 2022b; Foret et al., 2021), it has been established that a model’s generalization ability can
be increased by finding a flatter minimum during training. This is the principle we exploit in our
work, but from the perspective of quantization, and provide an analytical view into how it contributes
to achieving flatter minima. In practice, ERM can have several solutions with similar training loss
values but different generalization ability. Even when the training and test data are drawn from the
same distribution, the standard optimizers, such as SGD and Adam (Kingma & Ba, 2015), often lead
to sub-optimal generalization by finding sharp and narrow minima (Keskar et al., 2017; Dziugaite &
Roy, 2017; Garipov et al., 2018; Izmailov et al., 2018; Jiang et al., 2020; Foret et al., 2021). This has
been shown to be prevented by introducing noise in the model weights during training (An, 1996;
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Murray & Edwards, 1992; Goodfellow et al., 2016; Hochreiter & Schmidhuber, 1994). Here, we
argue that quantization inherently induces such noise and thus helps to find flatter minima.

Let ŷi = f(x,w) represent the predicted output of the network f , which is parameterized by the
weights w. A quantized network can then be represented as

f(x,wq) = f(x,w +∆) = ŷi
q,

where wq denotes the quantized weights and ŷi
q the corresponding prediction. The quantized weights

can thus be thought of as introducing perturbations (∆) to the full-precision weights, akin to noise
affecting the weights.

Such noise induced by the weight quantization can also be seen as a form of regularization, akin to
more traditional methods. For small perturbations, (An, 1996; Murray & Edwards, 1992; Goodfellow
et al., 2016) show that this type of regularization encourages the parameters to navigate towards
regions of the parameter space where small perturbations of the weights have minimal impact on the
output, i.e., flatter minima.

When noise is introduced via quantization, second-order Taylor series approximation of the loss
function for the perturbed weights w +∆ can be expressed as

L(w +∆) ≈ L(w) +∇L(w)⊤∆+
1

2
∆⊤H∆, (4)

where L(w) is the loss at the original weights w, ∇L(w) is the gradient of the loss at w, and
H = ∇2L(w) is the Hessian matrix, which contains second-order partial derivatives of the loss
function with respect to the weights, representing the curvature of the loss surface.

Eq. 4 shows how the quantization noise ∆ interacts with the curvature H of the loss function. In
regions with large curvature (sharp minima), the Hessian H has large eigenvalues, and even small
perturbations ∆ result in large increases in the loss (Dinh et al., 2017). In contrast, in flat regions
(small eigenvalues of H), the loss remains nearly unchanged for small perturbations. Quantization
noise acts as an implicit regularizer by introducing perturbations ∆ that disrupt the model’s weight
updates. In sharper minima, where the Hessian H eigenvalues are large, small noise significantly
increases the loss, causing the model to "escape" these regions and search for flatter, more stable
minima. In flatter regions, where the Hessian H eigenvalues are small, the noise has less impact,
helping the model settle into these regions with lower loss. This encourages convergence to solutions
that are less sensitive to small changes in the input or model parameters, which is beneficial for
out-of-distribution (OOD) generalization.

In the case of quantization-aware training, the induced noise ∆ is influenced by the quantization bin
width or the quantizer step size s, and thus ranges between − s

2 and + s
2 . This s is directly dependent

on the quantization levels or the bit-width chosen for weight quantization. As the number of bits
per weight decreases, the amount of induced noise increases. Hence, the impact of the additional
noise can be weighed by choosing an optimal bit-width. As will be shown in Section 4, certain
bit-widths thus yield better and flatter minima that enhance generalization. However, if we induce
too much noise(very low bit-precision), it introduces over-regularization. This excessive noise can
overly restrict the search space, preventing the model from reaching a good solution. Instead, the
optimization process may focus on minimizing the loss in a way that avoids sharp regions, but
sacrifices the ability to find true minimum of the loss function. This is also evident in Table 10 in the
appendix.

Moreover, Rissanen (1978); Hochreiter & Schmidhuber (1997) show that a flatter minimum cor-
responds to a low complexity network and requires fewer bits of information per weight. More
importantly, Hochreiter & Schmidhuber (1997) demonstrates the importance of the bit-precision
of the network weights and adds a regularization term in the loss function that seeks to lower the
weight bit-precision to lead to flatter minima. Here, by using quantization, we are explicitly reducing
bit-precision of the network weights, thus achieving the same goal.

3.3 EMPIRICAL ANALYSIS OF QUANTIZATION-AWARE TRAINING AND FLATNESS

In this section, we demonstrate that a flatter minimum is reached when incorporating quantization
in the ERM process. Similar to (Dinh et al., 2017; Cha et al., 2021), we interpret flat minima as "a
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Figure 2: Local Flatness Comparison: We plot the average training (left) and testing (right) local flatness
Fγ(w) (Eq. 5) for ERM (Gulrajani & Lopez-Paz, 2021), SAM (Foret et al., 2021), SWA (Izmailov et al., 2018)
and SWAD (Cha et al., 2021) by varying the radius γ on different domains of PACS. We evaluate the training
flatness FγS(w) on the seen domains (left) and the test flatness FT

γ (w) on the unseen domains (right).

large connected region in weight space where the error remains approximately constant," as defined
by (Hochreiter & Schmidhuber, 1997). Our loss flatness analysis shows that QT-DoG can find a flatter
minimum in comparison to not only ERM but also SAM (Foret et al., 2021) and SWA (Izmailov
et al., 2018).

Following the approach in Cha et al. (2021), we quantify local flatness Fγ(w) by measuring the
expected change in loss values between a model with parameters w and a perturbed model with
parameters |w′| = |w|+γ, where w′ lies on a sphere of radius γ centered at w.. This is expressed as

Fγ(w) = E∥w′∥[E(w′)− E(w)], (5)

where E(w) denotes the accumulated loss over the samples of potentially multiple domains. For our
analysis, we will evaluate flatness in both the source domains and the target domain, and thus E(w)
is evaluated using either source samples or target ones accordingly.

As in Cha et al. (2021), we approximate Fγ(w) by Monte-Carlo sampling with 100 samples. In
Figure 2, we compare the Fγ(w) of QT-DoG to that of ERM (Gulrajani & Lopez-Paz, 2021),
SAM (Foret et al., 2021), SWA (Izmailov et al., 2018) and SWAD (Cha et al., 2021) for different radii
γ. QT-DoG not only finds a flatter minimum than ERM, SAM and SWA but also yields a comparable
flatness to SWAD’s despite being 75% smaller in model size.

3.4 STABLE TRAINING PROCESS

Here, we demonstrate the robustness of out-of-domain performance to model selection using the
in-domain validation set. Specifically, we seek to show that accuracy on the in-domain validation data
is a good measure to pick the best model for out-of-domain distribution. Therefore, we assume that
during training, the model selection criterion based on this validation data can select the best model for
the OOD data even if the model starts to overfit. In other words, it is expected that the out-of-domain
evaluation at each point of the training phase should improve or rather stay stable if the model is close
to overfitting to the in-domain data. For these experiments, we use the TerraIncognita dataset (Beery
et al., 2018) and consider the same number of iterations as for the DomainBed protocol (Gulrajani &
Lopez-Paz, 2021).

As can be seen in Figure 3, vanilla ERM (without quantization) quickly overfits to the in-domain
validation/training dataset. That is, the OOD performance is highly unstable during the whole training
process. By contrast, our quantized model is much more stable. Specifically, we quantize our model
at 2000 steps, and it can be seen that the model performance on out-of-domain distribution is also
unstable before that. Once the model weights are quantized, we see a regularization effect and the
performance becomes much more stable on the OOD data. We provide training plots encompassing
different domains as target settings for the sake of completeness. This inclusion serves to illustrate
that quantization genuinely enhances stability in the training process. On the left, "te_location_100"
is considered as target domain while "te_location_46" is used as the target domain for the plot on
the right. These experiments evidence that model selection based on the in-domain validation set is
much more reliable when introducing quantization into training.

3.5 ENSEMBLES OF QUANTIZATION

For our ensemble creation, we train multiple models independently from initialization, using random
seeds to ensure diversity and, incorporate quantization into the training process to obtain smaller
quantized models. We refer to this as the Ensemble of Quantization (EoQ). As Breiman (1996), we
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Figure 3: Model Quantization improves out-of-domain performance as well as training stability. The plots
were computed using the TerraInc dataset with domain L100 (left) and L46 (right) as test domain, and the other
domains as training/validation data. The top two plots illustrate in-domain validation accuracy, while the bottom
two represent out-of-domain test accuracy. The network used for these plots was a ResNet-50. For our quantized
models, shown in blue in each plot, we quantized the model after 2000 steps. Note that the model accuracy is not
only better with quantization but also much more stable for out of distribution data after the quantization step.

use the bagging method to combine the multiple predictions. Therefore, the class predicted by EoQ
for an input x is given by

ŷ = argmax
k

Softmax

(
1

E

E∑
i=1

f(x;wi
q)

)
k

(6)

where E is the total number of models in the ensemble, wi
q denotes the parameters of the ith quantized

model, and the subscript k denotes the kth element of the vector argument. Finally, we use the
in-domain validation set performance to pick the best model state (weights) wi

q of the ith quantized
model used in the ensemble.
4 EXPERIMENTS

4.1 DATASETS AND METRICS

We demonstrate the effectiveness of our proposed method on diverse classification datasets used for
evaluating multi-source Domain Generalization:

PACS (Li et al., 2017) is a 7 object classification challenge encompassing four domains, with a total
of 9,991 samples. It serves to validate our method in smaller-scale settings. VLCS (Fang et al.,
2013) poses a 5 object classification problem across four domains. With 10,729 samples, VLCS
provides a good benchmark for close Out-of-Distribution (OOD), featuring subtle distribution shifts
simulating real-life scenarios. OfficeHome (Venkateswara et al., 2017) comprises a total of 15,588
samples. It presents a 65-way classification challenge featuring everyday objects across four domains.
TerraIncognita (Beery et al., 2018) addresses a 10 object classification challenge of animals captured
in wildlife cameras, with four domains representing different locations. The dataset contains 24,788
samples, illustrating a realistic use-case where generalization is crucial. DomainNet (Peng et al.,
2019) provides a 345 object classification problem spanning six domains. With 586,575 samples, it is
one of the largest datasets.

We report out-of-domain accuracies for each domain and their average, i.e., a model is trained
and validated on training domains and evaluated on the unseen target domain. Each out-of-domain
performance is an average of three different runs with different train-validation splits for the quantized
models. We then combine the predictions of the different quantized models for our EoQ results.

4.2 IMPLEMENTATION DETAILS

All implementation details are provided in the Appendix.

4.3 RESULTS

In this section, we demonstrate the superior performance of our proposed approach by comparing it to
recent state-of-the-art DG methods. We also present some visual evidence for the better performance
of our quantization approach. Furthermore, we show how quantization not only enhances model
generalization but also yields better performance on in-domain data.
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Table 1: Comparison with domain generalization methods. Performance benchmarking on 5 datasets of the
DomainBed benchmark. Highest accuracy is shown in bold, while second best is underlined. † do not report
confidence interval and ensembles do not have confidence interval because an ensemble uses all the models
to make a prediction. Our proposed method is colored in Gray. Average accuracies and standard errors are
reported from three trials. For all the reported results, we use the same training-domain validation protocol as
(Gulrajani & Lopez-Paz, 2021). Models corresponds to the number of models trained during training and Size
corresponds to the relative network size.

Algorithm Models Size PACS VLCS Office TerraInc DomainNet Avg.
ResNet-50 (25M Parameters, Pre-trained on ImageNet)

ERM 1 1x 84.7 ± 0.5 77.4 ± 0.3 67.5 ± 0.5 46.2 ± 0.4 41.2 ± 0.2 63.8
IRM 1 1x 84.4 ± 1.1 78.1 ± 0.0 66.6 ± 1.0 47.9 ± 0.7 35.7 ± 1.9 62.5
Group DRO 1 1x 84.1 ± 0.4 77.2 ± 0.6 66.9 ± 0.3 47.0 ± 0.3 33.7 ± 0.2 61.8
Mixup 1 1x 84.3 ± 0.5 77.7 ± 0.4 69.0 ± 0.1 48.9 ± 0.8 39.6 ± 0.1 63.9
MLDG 1 1x 84.8 ± 0.6 77.1 ± 0.4 68.2 ± 0.1 46.1 ± 0.8 41.8 ± 0.4 63.6
CORAL 1 1x 86.0 ± 0.2 77.7 ± 0.5 68.6 ± 0.4 46.4 ± 0.8 41.8 ± 0.2 64.1
MMD 1 1x 85.0 ± 0.2 76.7 ± 0.9 67.7 ± 0.1 49.3 ± 1.4 39.4 ± 0.8 63.6
Fish 1 1x 85.5 ± 0.3 77.8 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 63.9
Fishr 1 1x 85.5 ± 0.4 77.8 ± 0.1 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 65.7
SWAD 1 1x 88.1 ± 0.4 79.1 ± 0.4 70.6 ± 0.3 50.0 ± 0.4 46.5 ± 0.2 66.9
MIRO 1 1x 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
CCFP 1 1x 86.6 ±0.2 78.9 ±0.3 68.9 ±0.1 48.6 ±0.4 41.2 ± 0.0 64.8
ARM† 1 1x 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 1 1x 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 1 1x 85.2 77.1 65.5 46.6 38.9 62.7
Mixstyle† 1 1x 85.2 77.9 60.4 44.0 34.0 60.3
SagNet† 1 1x 86.3 77.8 68.1 48.6 40.3 64.2
QT-DoG (ours) 1 0.22x 87.8± 0.3 78.4± 0.4 68.9± 0.6 50.8± 0.2 45.1±0.9 66.2

ERM Ens. † 6 6x 87.6 78.5 70.8 49.2 47.7 66.8
DiWA† 60 1x 89.0 78.6 72.8 51.9 47.7 68.0
EoA† 6 6x 88.6 79.1 72.5 52.3 47.4 68.0
DART 4-6 4x-6x 78.5 ± 0.7 87.3 ± 0.5 70.1 ± 0.2 48.7 ± 0.8 45.8 ± 0.0 66.1
EoQ (ours)† 5 1.1x 89.3 79.5 72.3 53.2 47.9 68.4

4.3.1 COMPARISON WITH DG METHODS

Table 1 reports out-of-domain performances on five DG benchmarks and compares our proposed
approaches to prior works. These results demonstrate the superiority of EoQ across five DomainBed
datasets, with an average improvement of 0.4% over the state-of-the-art EoA while reducing the
memory footprint by approximately 75%. Compared to DiWA, we significantly reduce the computa-
tional burden and memory requirements for training, achieving a 12-fold reduction, as DiWA requires
training 60 models for diverse averaging. EoQ achieves the most significant gain (7% improvement)
on TerraIncognita (Beery et al., 2018), with nonetheless substantial gains of 3-5% w.r.t. ERM on
PACS (Li et al., 2017) and DomainNet (Peng et al., 2019).

The results also demonstrate that simply introducing quantization into the ERM-based approach (Gul-
rajani & Lopez-Paz, 2021) surpasses or yields comparable accuracy to many existing works, although
the size and computational budget of our quantization-based approach is significantly lower than that
of the other methods. For our results in Table 1 and Figure 1, we employed 7-bit quantization on the
network. Therefore, as shown in Figure 1, the model size is drastically reduced, becoming more than
4 times smaller than the other methods. Being smaller in memory footprint, our quantization-based
approach can utilize ensembling without increasing the memory storage and computational resources.
Moreover, quantization not only reduces the memory footprint but also the latency of the model. For
example, running a ResNet-50 model on an AMD EPYC 7302 processor yields a latency of 34.28ms
for full-precision and 21.02ms for our INT8 quantized model.

4.3.2 COMBINATIONS WITH OTHER METHODS

Since QT-DoG requires no modifications to training procedures or model architectures, it is universally
applicable and can seamlessly integrate with other DG methods. As shown in Table 3, we integrate
QT-DoG with CORAL (Sun et al., 2016) and MixStyle (Zhou et al., 2021). Both CORAL and
MixStyle demonstrate improved performance when combined with QT-DoG, reinforcing our findings
that QAT aids in identifying flat minima, thereby enhancing domain generalization.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm Type In-domain Out-domain

No quant - 96.6 ± 0.2 84.7 ± 0.5
OBC PTQ 96.8 ± 0.2 83.7 ± 0.4
INQ QAT 97.1 ± 0.2 87.4 ± 0.3
LSQ QAT 97.3 ± 0.2 87.8 ± 0.3

Table 2: Model quantization with different quan-
tization algorithms. We report the average target
domain accuracy and the average source domain
accuracy across all domains in PACS.

Algorithm PACS TerraInc C

CORAL 85.5 ± 0.6 47.1 ± 0.2 -
CORAL + QT-DoG 86.9 ± 0.2 50.6 ± 0.3 4.6x
MixStyle 85.2 ± 0.3 44.0 ± 0.4 -
MixStyle + QT-DoG 86.8 ± 0.3 47.7 ± 0.2 4.6x

Table 3: Combination with other methods. Results of
PACS and Terra Incognita datasets incorporating QT-DoG
with CORAL and MixStyle. C represents the compres-
sion factor of the model.

Algorithm Backbone PACS TerraInc Compression

ERM_ViT Deit-Small 84.3 ± 0.2 43.2 ± 0.2 -
ERM-SD_ViT Deit-Small 86.3 ± 0.2 44.3 ± 0.2 -
ERM_ViT + QT-DoG Deit-Small 86.2 ± 0.3 45.6 ± 0.4 4.6x

Table 4: Quantization of a Vision Transformer Comparison of performance on PACS and TerraInc datasets
with and without QT-DoG quantization of ERM_ViT (Sultana et al., 2022) with DeiT-Small backbone.

4.3.3 BIT PRECISION ANALYSIS
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Figure 4: Bit precision analysis for efficient quanti-
zation. We show results on out-of-domain test accuracy
with two different datasets, i.e., PACS and TerraIncog-
nita. For each bit precision, we report the increase in the
test domain accuracy averaged across all domains. The
7-bit quantized model exhibits the maximum increase
for both datasets. We quantize the model at 2000 steps.

Here, we empirically analyze the effect of dif-
ferent bit-precisions for quantization on the gen-
eralization of the model. We perform experi-
ments with four different bit levels and present
an analysis in Figure 4 on the PACS (Li et al.,
2017) and TerraIncognita (Beery et al., 2018)
datasets. We report the test1 domain accuracy
averaged across all domains. For both datasets,
7-bit precision was found to be the optimal bit
precision to have the best out-of-domain gener-
alization while maintaining in-domain accuracy.
Nonetheless, 8 bits and 6 bits also show improve-
ments, albeit smaller than with 7-bit quantiza-
tion. These results evidence that, even with a
6 times smaller model, quantization still yields
better out-of-domain performance without sac-
rificing the in-domain accuracy.

4.3.4 DIFFERENT
QUANTIZATION METHODS

In this section, we perform an ablation study by replacing LSQ (Esser et al., 2020) with other
quantization algorithms. We use INQ (Zhou et al., 2017) as another quantization-aware training
method but also perform quantization using OBC (Frantar et al., 2022), that uses a more popular
post-training quantization (PTQ) approach to quantize a network. We perform this ablation study on
the PACS dataset, and the results are shown in Table 2. All the experiments are performed with 7-bit
quantization. We observe that, while the QAT approaches tend to enhance generalization, the PTQ
approach fails to do so. This is due to the fact that there is no training involved after the quantization
step in PTQ. That is, with PTQ, we do not train the network with quantization noise to find a flatter
minimum.
4.3.5 GENERALITY WITH VISION TRANSFORMER

In Table 4, we present the results of quantizing a vision transformer (ERM-ViT, DeiT-small) (Sultana
et al., 2022) for domain generalization. We compare the performance of the baseline ERM-ViT
to its quantized counterpart on the PACS and Terra Incognita datasets, demonstrating QT-DoG’s
effectiveness across different architectures. The results clearly show that QT-DoG also improves the
performance of vision transformers. Additionally, we provide results for ResNeXt-50 32x4d in the
appendix, following a similar evaluation as in Arpit et al. (2022).

1In-domain results for different bit-precisions are provided in the appendix.
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Figure 5: GradCAM visualization for ERM (Gulrajani & Lopez-Paz, 2021) and QT-DoG. We show results
on the PACS dataset (Li et al., 2017) and consider a different domain as test domain in each run, indicated by the
different columns in the figure.

4.3.6 VISUALIZATIONS

GradCAM Results. In Figure 5, we present some of the examples2 from the PACS dataset and show
GradCAM (Gildenblat & contributors, 2021) results in the target domain. We perform four different
experiments by considering a different target domain for each run, while utilizing the other domains
for training. We use the output from the last convolutional layer of the models with and without
quantization. Both models are trained under the same settings as in Gulrajani & Lopez-Paz (2021).
For our method, we quantize the model after 2000 iteration and employ 7-bit precision as it provides
the best out-of-domain performance.

These visualizations evidence that quantization focuses on better regions than ERM, and with a much
larger receptive field. In certain cases, ERM does not even focus on the correct image region. It
is quite evident that quantization pushes the model to learn more generalized patterns, leading to a
model that is less sensitive to the specific details of the training set. These qualitative results confirm
the quantitative evidence provided in Table 1.

5 DISCUSSION AND LIMITATIONS

Despite showing success and surpassing the state-of-the-art methods in terms of performance, EoQ
also has some limitations. First, it requires training multiple models like Rame et al. (2022b); Arpit
et al. (2022), to create diversity and form an ensemble. This ensemble creation increases the training
computational load. Nevertheless, our quantized ensembling models are much smaller in size.

Another limitation of this work is the challenge of determining the optimal bit precision for achieving
the best performance in OOD generalization. In our experiments on the DomainBed benchmark,
we identified 7 bits as the optimal precision. However, this may not hold true for other datasets. A
potential future direction is to utilize a small number of target images to identify the optimal bit
precision, which would significantly reduce the computational overhead associated with this process.

Lastly, given our utilization of a uniform quantization strategy, it would be interesting to investigate
whether specific layers can be more effectively exploited than others through mixed-precision
techniques to have even better domain generalization performance.

6 CONCLUSION

We introduced QT-DoG, a novel generalization strategy based on neural network quantization. Our
approach leverages the insight that QAT can find flatter minima in the loss landscape, serving as
an effective regularization method to reduce overfitting and enhance the generalization capabilities.
We empirically demonstrated, supported by analytical insights, that quantization not only enhances
generalization but also helps stabilize the training process. Our extensive experiments across diverse
datasets show that incorporating quantization with an optimal bit-width significantly enhances
domain generalization, yielding performance comparable to existing methods while reducing the
model size. Additionally, we proposed EoQ, a powerful ensembling strategy that addresses the
challenges of memory footprint and computational load by creating ensembles of quantized models.
EoQ outperforms state-of-the-art methods while being approximately four times smaller than its
full-precision ensembling counterparts.

2More examples are provided in the appendix.
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A PER-DOMAIN PERFORMANCE IMPROVEMENT

We also report per-domain performance improvement for PACS (Li et al., 2017) and Terra Incog-
nito (Beery et al., 2018) dataset. We choose the best model based on the validation set and report
the results in 5 and 6. The results with quantization correspond to 7 bit-precision and we perform
quantization after 2000 steps. Table 5 and 6 show that EoQ is consistently better than the current
state-of-the-art methods across domains for different datasets.

Algorithm Art Cartoon Painting Sketch Avg.

ERM (our runs) 89.8 79.7 96.8 72.5 84.7
SWAD 89.3 83.4 97.3 82.5 88.1
EoA 90.5 83.4 98.0 82.5 88.6
DiWA 90.6 83.4 98.2 83.8 89.0
QT-DoG 89.1 82.4 96.9 82.3 87.8
EoQ 90.7 83.7 98.2 84.8 89.3

Table 5: Per-Domain Accuracy Comparison for PACS. We report the accuracy for each domain of
the PACS dataset along with the average across all domains. Our proposed quantization is shaded in
Gray.

Algorithm L100 L38 L43 L46 Avg.

ERM (our runs) 58.2 38.3 57.1 35.1 47.2
SWAD 55.4 44.9 59.7 39.9 50.0
DiWA 57.2 50.1 60.3 39.8 51.9
EoA 57.8 46.5 61.3 43.5 52.3
QT-DoG 60.2 46.4 55.2 41.4 50.8
EoQ 61.8 48.2 59.2 43.7 53.2

Table 6: Per-Domain Accuracy Comparison for Terra Incognito. We report the accuracy for
each domain of the Terra Incognito dataset along with the average across all domains. Our proposed
quantization is shaded in Gray.

B BIT PRECISION ANALYSIS EXTENDED

In contrast to main manuscript, Table 7 provides all the results in a tabular form. We show how
quantization outperforms the vanilla ERM approach. This shows the superior performance of
quantization over ERM despite being more than 6 times smaller in the case of 5 bit-precision.

Algorithm Compression PACS TerraInc
In-domain Out-domain In-domain Out-domain

ERM (our runs) - 96.9 ± 0.1 84.7 ± 0.5 91.7 ± 0.2 47.2 ± 0.4
QT-DoG(8) 4x 97.0 ± 0.1 85.0 ± 0.1 90.9 ± 0.2 49.1 ± 0.1
QT-DoG(7) 4.6x 97.3 ± 0.2 87.8 ± 0.3 92.3 ± 0.2 50.8± 0.2
QT-DoG(6) 5.3x 97.1 ± 0.1 86.5 ± 0.1 91.1 ± 0.0 49.0 ± 0.3
QT-DoG(5) 6.4x 97.0 ± 0.1 85.3 ± 0.4 91.0 ± 0.1 48.4 ± 0.2

Table 7: Model quantization with different bit-precisions vs vanilla ERM. We report the average
target domain accuracy as well as the average source domain accuracy across all domains for the
PACS (Li et al., 2017) and TerraIncognita (Beery et al., 2018) datasets. Quantization not only
enhances the generalization ability but also retains the source domain performance. QT-DoG(x)
indicates a model quantized with x bit-precision.
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However, as shown in Table 8, decreasing bit-precision through quantization does not always
improve performance above the baseline; after a point, there is a tradeoff between compression and
generalization. Specifically, our experiments with 4-bit precision and lower did not yield satisfactory
results - see the Table below. Finding the sweet spot for balancing speed and performance can be an
interesting research direction. Our results evidence that there exist configurations that can improve
both speed and performance.

Algorithm Bit-Precision PACS

ERM 32 84.7 ± 0.5

QT-DoG

7 87.8 ± 0.3
6 86.5 ± 0.1
5 85.3 ± 0.4
4 84.3 ± 0.3
3 83.3 ± 0.4
2 82.8 ± 0.2

Table 8: Effect of aggressive quantization. Performance comparison between ERM and QT-DoG
with varying bit-precision on PACS.

C EXPERIMENTS WITH LARGER PRE-TRAINING DATASETS

We also show experimental results with ResNeXt-50-32x4 in Table 9. Note that both ResNet-50 and
ResNeXt-50-32x4d have 25M parameters. However, ResNeXt-50-32x4d is pre-trained on a larger
dataset i.e Instagram 1B images(Yalniz et al., 2019). It is evident from Table 9 that incorporating
quantization into training consistenlty improve accuracy even when a network is pre-trained on a
larger dataset. Furthermore, EoQ again showed superior performance in comparison to other methods
across five DomainBed datasets.

Algorithm M S PACS VLCS Office TerraInc DomainNet Avg.
ResNeXt-50 32x4d (25M Parameters, Pre-trained 1B Images)

ERM 1 1x 88.7 ± 0.3 79.0 ± 0.1 70.9 ± 0.5 51.4 ± 1.2 48.1 ± 0.2 67.7
SMA 1 1x 92.7 ± 0.3 79.7 ± 0.3 78.6 ± 0.1 53.3 ± 0.1 53.5 ± 0.1 71.6
QT-DoG (ours) 1 1x 92.9 ± 0.3 79.2 ± 0.4 78.9 ± 0.3 54.1 ± 0.2 53.9 ± 0.2 71.8
ERM Ens.† 6 6x 91.2 80.3 77.8 53.5 52.8 71.1
EoA† 6 6x 93.2 80.4 80.2 55.2 54.6 72.7
EoQ† (ours) 5 1.1x 93.5 80.3 80.3 55.6 54.8 72.9

Table 9: Comparison with other methods for ResNeXt-50. Performance benchmarking on 5 datasets of the
DomainBed benchmark. Highest accuracy is shown in bold, while second best is underlined. Ensembles† do not
have confidence interval because an ensemble uses all the models to make a prediction. Our proposed method
is colored in Gray. Average accuracies and standard errors are reported from three trials. For all the reported
results, we use the same training-domain validation protocol as (Gulrajani & Lopez-Paz, 2021). M corresponds
to the number of models trained during training and S corresponds to the relative network size.

D IN-DOMAIN PERFORMANCE IMPROVEMENT USING QUANTIZATION

We further study the in-domain test accuracy of our quantization approach without ensembling on
PACS and TerraIncognita datasets. As (Cha et al., 2021), we split the in-domain datasets into training
(60%), validation (20%), and test (20%) sets. We choose the best model based on the validation
set and report the results on the test set in Table 10. The results with quantization correspond to 7
bit-precision.
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QT-DoG also enhances the in-domain performance. The regularization effect introduced by quan-
tization prevents the model from overfitting to edge cases and pushes it to learn more meaningful
and generalizable features, which we also demonstrate in Section 4.3.6. As the training data consists
of various domains and the quantization limits the range of weight values, it discourages the model
from becoming overly complex and overfitting to the noise in the training data. Therefore, the model
is more robust to minor input fluctuations.

Method PACS TerraInc Compression

ERM 96.6 ± 0.2 90.1 ± 0.2 -
SAM 97.3 ± 0.1 90.8 ± 0.1 -
SWA 97.1 ± 0.1 90.7 ± 0.1 -
SMA 96.8 ± 0.2 90.7 ± 0.4 -
SWAD 97.7 ± 0.2 90.8 ± 0.3 -
QT-DoG 97.3 ± 0.2 91.1 ± 0.2 ∼4.6x

Table 10: Comparison between generalization methods on PACS and TerraInc for IID settings. We report
the accuracy averaged across all domains. Our proposed approach is shaded in Gray. Highest accuracy is shown
in bold, while second best is underlined.

E RESULTS ON WILDS DATASET

We performed experiments with 7 bit quantization on two datasets from the WILDS benchmark (Koh
et al., 2021b). We utilized the same experimental settings as outlined in the WILDS benchmark
repository and incorporated quantization into the training process. The results presented below
confirm our findings on Domainbed [PACS, Terra, VLCS, Office, DomainNet] benchmark:

Dataset Method In-dist Out-dist Metric

Amazon ERM 71.9 ± 0.1 53.8 ± 0.8 10th percentile acc
Amazon QT-DoG 79.2 ± 0.5 55.9 ± 0.6 10th percentile acc
Camelyon ERM 93.2 ± 5.2 70.3 ± 6.4 Average acc
Camelyon QT-DoG 96.4 ± 2.1 78.4 ± 2.2 Average acc

Table 11: Comparison between ERM and QT-DoG on the Amazon and Camelyon datasets. We report the
in-domain and out-of-domain accuracy with respective metrics as shown.

F ABLATION ON LAYERWISE AND CHANNELWISE SCALE

we conducted an ablation study where we set s at the layer level, rather than on a per-channel basis.
We see that Channelwise s can lead to 1.5% accuracy as compared to layerwise s. The results of this
experiment on the PACS dataset with 7 bit quantization are shown below:

Scale OOD Accuracy

No quantization 84.7 ± 0.5
Layerwise 86.3 ± 0.4
Channelwise 87.8 ± 0.3

Table 12: OOD Accuracy with channelwise vs layerwise Scaling factor for quantization.
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G ABLATION ON QUANTIZATION STEPS

We conducted an ablation study on the PACS dataset to identify the optimal number of steps after
which quantization should be applied. We perform 7-bit quantization and the results are summarized
below:

Quantization Step OOD Accuracy

No quantization 84.7 ± 0.5
1000 86.2 ± 0.4
2000 87.8 ± 0.3
3000 86.9 ± 0.4
4000 85.1 ± 0.3

Table 13: OOD Accuracy across different quantization steps.

H VISUALIZATION

H.1 MORE GRADCAM RESULTS

In Figure 7, 8, 9, 10, we present some of the examples from the Terra dataset and show Grad-
CAM (Gildenblat & contributors, 2021) results on the target domain. We use the output from the
last convolutional layer of the models with and without quantization for GradCAM. Similar to our
experiments on PACS dataset, we perform four different experiments by considering a different target
domain for each run, while utilizing the other domains for training. Both models are trained with the
similar settings as (Gulrajani & Lopez-Paz, 2021). For quantization method, we quantized the model
after 2000 iteration and employ 7 bit-precision as it provides the best out-of-domain performance.
Moreover, we present some more examples for PACS dataset in Figure 6

These visualizations further proves that quantization pushes the model to be less sensitive to the
specific details of the training set.

I IMPLEMENTATION DETAILS

We use the same training procedure as DomainBed (Gulrajani & Lopez-Paz, 2021), incorporating
additional components from quantization. Specifically, we adopt the default hyperparameters from
DomainBed (Gulrajani & Lopez-Paz, 2021), including a batch size of 32 (per-domain). We employ
a ResNet-50 (He et al., 2016) pre-trained on ImageNet (Russakovsky et al., 2015) as initial model
and use a learning rate of 5e-5 along with the Adam optimizer, and no weight decay. Following
SWAD(Cha et al., 2021), the models are trained for 15,000 steps on DomainNet and 5,000 steps on
the other datasets. In the training process, we keep a specific domain as the target domain, while the
remaining domains are utilized as source domains. During this training phase, 20% of the samples
are used for validation and model selection. We validate the model every 300 steps using held-out
data from the source domains, and assess the final performance on the excluded domain (target).

We use LSQ (Esser et al., 2020) and INQ (Zhou et al., 2017) for model quantization, with the same
configuration as existing quantization methods (Esser et al., 2020; Bhalgat et al., 2020; Dong et al.,
2019; Yao et al., 2020; Zhou et al., 2017), where all layers are quantized to lower bit precision except
the last one. We quantize the models at 8,000 steps for DomainNet and 2,000 steps for the other
datasets. Moreover, each channel in a layer has a different scaling factor.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 6: GradCAM visualization for ERM (Gulrajani & Lopez-Paz, 2021) and QT-DoG. We
show results on the PACS dataset (Li et al., 2017) and consider a different domain as test domain in
each run, indicated by the different rows in the figure.

J REPRODUCIBILITY

To guarantee reproducibility, we will provide the source code publicly along with the details of the
environments and dependencies. We will also provide instructions to reproduce the main results of
Table 1 in the main paper. Furthermore, we will also share instructions and code to plot the loss
surfaces and GradCAM results.

Every experiment in our work was executed on a single NVIDIA A100, Python 3.8.16, PyTorch
1.10.0, Torchvision 0.11.0, and CUDA 11.1.
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Figure 7: Visualization of GradCAM results on the Terra Incognito dataset with L38 as test
domain. We show original image, GradCAM with ERM (Gulrajani & Lopez-Paz, 2021) and
GradCAM with QT-DoG [Left to Right].

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Visualization of GradCAM results on the Terra Incognito dataset with L46 as test
domain. We show original image, GradCAM with ERM (Gulrajani & Lopez-Paz, 2021) and
GradCAM with QT-DoG [Left to Right].
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Figure 9: Visualization of GradCAM results on the Terra Incognito dataset with L43 as test
domain. We show original image, GradCAM with ERM (Gulrajani & Lopez-Paz, 2021) and
GradCAM with QT-DoG [Left to Right].
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Figure 10: Visualization of GradCAM results on the Terra Incognito dataset with L100 as
test domain. We show original image, GradCAM with ERM (Gulrajani & Lopez-Paz, 2021) and
GradCAM with QT-DoG [Left to Right].
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