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ABSTRACT

Federated learning aims to train models collaboratively across different clients
without sharing data for privacy considerations. However, one major challenge
for this learning paradigm is the data heterogeneity problem, which refers to the
discrepancies between the local data distributions among various clients. To tackle
this problem, we first study how data heterogeneity affects the representations of
the globally aggregated models. Interestingly, we find that heterogeneous data
results in the global model suffering from severe dimensional collapse, in which
representations tend to reside in a lower-dimensional space instead of the ambient
space. Moreover, we observe a similar phenomenon on models locally trained on
each client and deduce that the dimensional collapse on the global model is in-
herited from local models. In addition, we theoretically analyze the gradient flow
dynamics to shed light on how data heterogeneity result in dimensional collapse
for local models. To remedy this problem caused by the data heterogeneity, we
propose FEDDECORR, a novel method that can effectively mitigate dimensional
collapse in federated learning. Specifically, FEDDECORR applies a regulariza-
tion term during local training that encourages different dimensions of represen-
tations to be uncorrelated. FEDDECORR, which is implementation-friendly and
computationally-efficient, yields consistent improvements over baselines on stan-
dard benchmark datasets. Code: https://github.com/bytedance/FedDecorr.

1 INTRODUCTION

With the rapid development deep learning and the availability of large amounts of data, concerns
regarding data privacy have been attracting increasingly more attention from industry and academia.
To address this concern, McMahan et al. (2017) propose Federated Learning—a decentralized train-
ing paradigm enabling collaborative training across different clients without sharing data.

One major challenge in federated learning is the potential discrepancies in the distributions of local
training data among clients, which is known as the data heterogeneity problem. In particular, this
paper focuses on the heterogeneity of label distributions (see Fig. 1(a) for an example). Such dis-
crepancies can result in drastic disagreements between the local optima of the clients and the desired
global optimum, which may lead to severe performance degradation of the global model. Previous
works attempting to tackle this challenge mainly focus on the model parameters, either during lo-
cal training (Li et al., 2020; Karimireddy et al., 2020) or global aggregation (Wang et al., 2020b).
However, these methods usually result in an excessive computation burden or high communication
costs (Li et al., 2021a) because deep neural networks are typically heavily over-parameterized. In
contrast, in this work, we focus on the representation space of the model and study the impact of
data heterogeneity.

To commence, we study how heterogeneous data affects the global model in federated learning in
Sec. 3.1. Specifically, we compare representations produced by global models trained under dif-
ferent degrees of data heterogeneity. Since the singular values of the covariance matrix provide a
comprehensive characterization of the distribution of high-dimensional embeddings, we use it to
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(a) Data Heterogeneity

Figure 1: (a) illustrates data heterogeneity in terms of number of samples per class. (b), (c), (d)
show representations (normalized to the unit sphere) of global models trained under homogeneous
data, heterogeneous data, and heterogeneous data with FEDDECORR, respectively. Only (c) suffers
dimensional collapse. (b), (c), (d) are produced with ResNet20 on CIFAR10. Best viewed in color.

study the representations output by each global model. Interestingly, we find that as the degree of
data heterogeneity increases, more singular values tend to evolve towards zero. This observation
suggests that stronger data heterogeneity causes the trained global model to suffer from more severe
dimensional collapse, whereby representations are biased towards residing in a lower-dimensional
space (or manifold). A graphical illustration of how heterogeneous training data affect output repre-
sentations is shown in Fig. 1(b-c). Our observations suggest that dimensional collapse might be one
of the key reasons why federated learning methods struggle under data heterogeneity. Essentially,
dimensional collapse is a form of oversimplification in terms of the model, where the representation
space is not being fully utilized to discriminate diverse data of different classes.

Given the observations made on the global model, we conjecture that the dimensional collapse of the
global model is inherited from models locally trained on various clients. This is because the global
model is a result of the aggregation of local models. To validate our conjecture, we further visualize
the local models in terms of the singular values of representation covariance matrices in Sec. 3.2.
Similar to the visualization on the global model, we observe dimensional collapse on representations
produced by local models. With this observation, we establish the connection between dimensional
collapse of the global model and local models. To further understand the dimensional collapse on
local models, we analyze the gradient flow dynamics of local training in Sec. 3.3. Interestingly, we
show theoretically that heterogeneous data drive the weight matrices of the local models to be biased
to being low-rank, which further results in representation dimensional collapse.

Inspired by the observations that dimensional collapse of the global model stems from local models,
we consider mitigating dimensional collapse during local training in Sec. 4. In particular, we propose
a novel federated learning method termed FEDDECORR. FEDDECORR adds a regularization term
during local training to encourage the Frobenius norm of the correlation matrix of representations
to be small. We show theoretically and empirically that this proposed regularization term can effec-
tively mitigate dimensional collapse (see Fig. 1(d) for example). Next, in Sec. 5, through extensive
experiments on standard benchmark datasets including CIFAR10, CIFAR100, and TinyImageNet,
we show that FEDDECORR consistently improves over baseline federated learning methods. In ad-
dition, we find that FEDDECORR yields more dramatic improvements in more challenging federated
learning setups such as stronger heterogeneity or more number of clients. Lastly, FEDDECORR has
extremely low computation overhead and can be built on top of any existing federated learning
baseline methods, which makes it widely applicable.

Our contributions are summarized as follows. First, we discover through experiments that stronger
data heterogeneity in federated learning leads to greater dimensional collapse for global and local
models. Second, we develop a theoretical understanding of the dynamics behind our empirical
discovery that connects data heterogeneity and dimensional collapse. Third, based on the motivation
of mitigating dimensional collapse, we propose a novel method called FEDDECORR, which yields
consistent improvements while being implementation-friendly and computationally-efficient.

2 RELATED WORKS

Federated Learning. McMahan et al. (2017) proposed FedAvg, which adopts a simple averaging
scheme to aggregate local models into the global model. However, under data heterogeneity, FedAvg
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suffers from unstable and slow convergence, resulting in performance degradation. To tackle this
challenge, previous works either improve local training (Li et al., 2021b; 2020; Karimireddy et al.,
2020; Acar et al., 2021; Al-Shedivat et al., 2020; Wang et al., 2021) or global aggregation (Wang
et al., 2020b; Hsu et al., 2019; Luo et al., 2021; Wang et al., 2020a; Lin et al., 2020; Reddi et al.,
2020; Wang et al., 2020a). Most of these methods focus on the model parameter space, which
may result in high computation or communication cost due to deep neural networks being over-
parameterized. Li et al. (2021b) focuses on model representations and uses a contrastive loss to
maximize agreements between representations of local models and the global model. However, one
drawback of Li et al. (2021b) is that it requires additional forward passes during training, which
almost doubles the training cost. In this work, based on our study of how data heterogeneity affects
model representations, we propose an effective yet highly efficient method to handle heterogeneous
data. Another research trend is in personalized federated learning (Arivazhagan et al., 2019; Li et al.,
2021c; Fallah et al., 2020; T Dinh et al., 2020; Hanzely et al., 2020; Huang et al., 2021; Zhang et al.,
2020), which aims to train personalized local models for each client. In this work, however, we
focus on the typical setting that aims to train one global model for all clients.

Dimensional Collapse. Dimensional collapse of representations has been studied in metric learning
(Roth et al., 2020), self-supervised learning (Jing et al., 2021), and class incremental learning (Shi
et al., 2022). In this work, we focus on federated learning and discover that stronger data hetero-
geneity causes a higher degree of dimensional collapse for locally trained models. To the best of our
knowledge, this work is the first to discover and analyze dimensional collapse of representations in
federated learning.

Gradient Flow Dynamics. Arora et al. (2018; 2019) introduce the gradient flow dynamics frame-
work to analyze the dynamics of multi-layer linear neural networks under the ℓ2-loss and find deeper
neural networks biasing towards low-rank solution during optimization. Following their works, Jing
et al. (2021) finds two factors that cause dimensional collapse in self-supervised learning, namely
strong data augmentation and implicit regularization from depth. Differently, we focus on feder-
ated learning with the cross-entropy loss. More importantly, our analysis focuses on dimensional
collapse caused by data heterogeneity in federated learning instead of depth of neural networks.

Feature Decorrelation. Feature decorrelation had been used for different purposes, such as pre-
venting mode collapse in self-supervised learning (Bardes et al., 2021; Zbontar et al., 2021; Hua
et al., 2021), boosting generalization (Cogswell et al., 2015; Huang et al., 2018; Xiong et al., 2016),
and improving class incremental learning (Shi et al., 2022). We instead apply feature decorrelation
to counter the undesired dimensional collapse caused by data heterogeneity in federated learning.

3 DIMENSIONAL COLLAPSE CAUSED BY DATA HETEROGENEITY

In this section, we first empirically visualize and compare representations of global models trained
under different degrees of data heterogeneity in Sec. 3.1. Next, to better understand the observations
on global models, we analyze representations of local models in Sec. 3.2. Finally, to theoretically
understand our observations, we analyze the gradient flow dynamics of local training in Sec. 3.3.

3.1 EMPIRICAL OBSERVATIONS ON THE GLOBAL MODEL

We first empirically demonstrate that stronger data heterogeneity causes more severe dimensional
collapse on the global model. Specifically, we first separate the training samples of CIFAR100 into
10 splits, each corresponding to the local data of one client. To simulate data heterogeneity among
clients as in previous works (Yurochkin et al., 2019; Wang et al., 2020a; Li et al., 2021b), we sam-
ple a probability vector pc = (pc,1, pc,2, . . . , pc,K) ∼ DirK(α) and allocate a pc,k proportion of
instances of class c ∈ [C] = {1, 2, . . . , C} to client k ∈ [K], where DirK(α) is the Dirichlet dis-
tribution with K categories and α is the concentration parameter. A smaller α implies stronger data
heterogeneity (α = ∞ corresponds to the homogeneous setting). We let α ∈ {0.01, 0.05, 0.25,∞}.

For each of the settings generated by different α’s, we apply FedAvg (McMahan et al., 2017) to train
a MobileNetV2 (Sandler et al., 2018) with CIFAR100 (observations on other federated learning
methods, model architectures, or datasets are similar and are provided in Appendix D). Next, for
each of the four trained global models, we compute the covariance matrix Σ = 1

N

∑N
i=1(zi −
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(a) Global Model (b) Local Model

Figure 2: Data heterogeneity causes dimensional collapse on (a) global models and (b) local mod-
els. We plot the singular values of the covariance matrix of representations in descending order. The
x-axis (k) is the index of singular values and the y-axis is the logarithm of the singular values.

z̄)(zi − z̄)⊤ of the representations over the N test data points in CIFAR100. Here zi is the i-th test
data point and z̄ = 1

N

∑N
i=1 zi is their average.

Finally, we apply the singular value decomposition (SVD) on each of the covariance matrices and
visualize the top 100 singular values in Fig. 2(a). If we define a small value τ as the threshold for a
singular value to be significant (e.g., log τ = −2), we observe that for the homogeneous setting, al-
most all the singular values are significant, i.e., they surpass τ . However, as α decreases, the number
of singular values exceeding τ monotonically decreases. This implies that with stronger heterogene-
ity among local training data, the representation vectors produced by the trained global model tend
to reside in a lower-dimensional space, corresponding to more severe dimensional collapse.

3.2 EMPIRICAL OBSERVATIONS ON LOCAL MODELS

Since the global model is obtained by aggregating locally trained models on each client, we conjec-
ture that the dimensional collapse observed on the global model stems from the dimensional collapse
of local models. To further validate our conjecture, we continue to study whether increasing data
heterogeneity will also lead to more severe dimensional collapse on locally trained models.

Specifically, for different α’s, we visualize the locally trained model of one client (visualizations
on local models of other clients are similar and are provided in Appendix E). Following the same
procedure as in Sec. 3.1, we plot the singular values of covariance matrices of representations pro-
duced by the local models. We observe from Fig. 2(b) that locally trained models demonstrate the
same trend as the global models—namely, that the presence of stronger data heterogeneity causes
more severe dimensional collapse. These experiments corroborate that the global model inherit the
adverse dimensional collapse phenomenon from the local models.

3.3 A THEORETICAL EXPLANATION FOR DIMENSIONAL COLLAPSE

Based on the empirical observations in Sec. 3.1 and Sec. 3.2, we now develop a theoretical under-
standing to explain why heterogeneous training data causes dimensional collapse for the learned
representations.

Since we have established that the dimensional collapse of global model stems from local models,
we focus on studying local models in this section. Without loss of generality, we study local training
of one arbitrary client. Specifically, we first analyze the gradient flow dynamics of the model weights
during the local training. This analysis shows how heterogeneous local training data drives the model
weights towards being low-rank, which leads to dimensional collapse for the representations.

3.3.1 SETUPS AND NOTATIONS

We denote the number of training samples as N , the dimension of input data as din, and total number
of classes as C. The i-th sample is denoted as Xi ∈ Rdin , and its corresponding one-hot encoded
label is yi ∈ RC . The collection of all N training samples is denoted as X = [X1, X2 . . . , XN ] ∈
Rdin×N , and the N one-hot encoded training labels are denoted as y = [y1,y2, . . . ,yN ] ∈ RC×N .
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For simplicity in exposition, we follow Arora et al. (2018; 2019) and Jing et al. (2021) and analyze
linear neural networks (without nonlinear activation layers). We consider an (L + 1)-layer (where
L ≥ 1) linear neural network trained using the cross entropy loss under gradient flow (i.e., gradient
descent with an infinitesimally small learning rate). The weight matrix of the i-th layer (i ∈ [L+1])
at the optimization time step t is denoted as Wi(t). The dynamics can be expressed as

Ẇi(t) = − ∂

∂Wi
ℓ(W1(t), . . . ,WL+1(t)), (1)

where ℓ denotes the cross-entropy loss.

In addition, at the optimization time step t and given the input data Xi, we denote zi(t) ∈ Rd as the
output representation vector (d being the dimension of the representations) and γi(t) ∈ RC as the
output softmax probability vector. We have

γi(t) = softmax(WL+1(t)zi(t)) = softmax(WL+1(t)WL(t) . . .W1(t)Xi). (2)

We define µc =
Nc

N , where Nc is number of data samples belonging to class c. We denote ec as the
C-dimensional one-hot vector where only the c-th entry is 1 (and the others are 0). In addition, let
γ̄c(t) =

1
Nc

∑N
i=1 γi(t)1{yi = ec} and X̄c =

1
Nc

∑N
i=1 Xi1{yi = ec}.

3.3.2 ANALYSIS ON GRADIENT FLOW DYNAMICS

Since our goal is to analyze model representations zi(t), we focus on weight matrices that directly
produce representations (i.e., the first L layers). We denote the product of the weight matrices of
the first L layers as Π(t) = WL(t)WL−1(t) . . .W1(t) and analyze the behavior of Π(t) under the
gradient flow dynamics. In particular, we derive the following result for the singular values of Π(t).
Theorem 1 (Informal). Assuming that the mild conditions as stated in Appendix A.3 hold. Let σk(t)
for k ∈ [d] be the k-th largest singular value of Π(t). Then,

σ̇k(t) = NL (σk(t))
2− 2

L

√
(σk(t))

2
L +M (uL+1,k(t))

⊤G(t)vk(t), (3)

where uL+1,k(t) is the k-th left singular vector of WL+1(t), vk(t) is the k-th right singular vector
of Π(t), M is a constant, and G(t) is defined as

G(t) =

C∑
c=1

µc(ec − γ̄c(t))X̄
⊤
c , (4)

where µc, ec, γ̄c(t), X̄c are defined after Eqn. (2).

The proof of the precise version of Theorem 1 is provided in Appendix A.

Based on Theorem 1, we are able to explain why greater data heterogeneity causes Π(t) to be biased
to become lower-rank. Note that strong data heterogeneity causes local training data of one client
being highly imbalanced in terms of the number of data samples per class (recall Fig. 1(a)). This
implies that µc, which is the proportion of the class c data, will be close to 0 for some classes.

Next, based on the definition of G(t) in Eqn. (4), more µc’s being close to 0 leads to G(t) being
biased towards a low-rank matrix. If this is so, the term (uL+1,k(t))

⊤G(t)vk(t) in Eqn. (3) will
only be significant (large in magnitude) for fewer values of k. This is because uL+1,k(t) and vk(t)
are both singular vectors, which are orthogonal among different k’s. This further leads to σ̇k(t)
on the left-hand side of Eqn. (3), which is the evolving rate of σk, being small for most of the k’s
throughout training. These observations imply that only relatively few singular values of Π(t) will
increase significantly after training.

Furthermore, Π(t) being biased towards being low-rank will directly lead to dimensional collapse
for the representations. To see this, we simply write the covariance matrix of the representations in
terms of Π(t) as

Σ(t) =
1

N

N∑
i=1

(zi(t)− z̄(t))(zi(t)− z̄(t))⊤ = Π(t)

(
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)⊤
)
Π(t)⊤. (5)

From Eqn. (5), we observe that if Π(t) evolves to being a lower-rank matrix, Σ(t) will also tend to
be lower-rank, which corresponds to the stronger dimensional collapse observed in Fig. 2(b).
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Figure 3: FEDDECORR effectively mitigates dimensional collapse for (a-b) local models and (c-d)
global models. For each heterogeneity parameter α ∈ {0.01, 0.05}, we apply FEDDECORR and plot
the singular values of the representation covariance matrix. The x-axis (k) is the index of singular
values. With FEDDECORR, the tail singular values are prevented from dropping to 0 too rapidly.

4 MITIGATING DIMENSIONAL COLLAPSE WITH FEDDECORR

Motivated by the above observations and analyses on dimensional collapse caused by data hetero-
geneity in federated learning, we explore how to mitigate excessive dimensional collapse.

Since dimensional collapse on the global model is inherited from local models, we propose to al-
leviate the problem during local training. One natural way to achieve this is to add the following
regularization term on the representations during training

Lsingular(w,X) =
1

d

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

, (6)

where λi is the i-th singular value of the covariance matrix of the representations. Essentially,
Lsingular penalizes the variance among the singular values, thus discouraging the tail singular values
from collapsing to 0, mitigating dimensional collapse. However, this regularization term is not
practical as it requires calculating all the singular values, which is computationally expensive.

Therefore, to derive a computationally-cheap training objective, we first apply the z-score normal-
ization on all the representation vectors zi as follows: ẑi = (zi − z̄)/

√
Var(z). This results in the

covariance matrix of ẑi being equal to its correlation matrix (i.e., the matrix of correlation coeffi-
cients). The following proposition suggests a more convenient cost function to regularize.
Proposition 1. For a d-by-d correlation matrix K with singular values (λ1, . . . , λd), we have:

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

= ∥K∥2F − d. (7)

The proof of Proposition 1 can be found in Appendix B. This proposition suggests that regularizing
the Frobenius norm of the correlation matrix ∥K∥F achieves the same effect as minimizing Lsingular.
In contrast to the singular values, ∥K∥F can be computed efficiently.

To leverage this proposition, we propose a novel method, FEDDECORR, which regularizes the
Frobenius norm of the correlation matrix of the representation vectors during local training on each
client. Formally, the proposed regularization term is defined as:

LFedDecorr(w,X) =
1

d2
∥K∥2F, (8)

where w is the model parameters, K is the correlation matrix of the representations. The overall
objective of each local client is

min
w

ℓ(w,X,y) + βLFedDecorr(w,X), (9)

where ℓ is the cross entropy loss, and β is the regularization coefficient of FEDDECORR. The
pseudocode of our method is provided in Appendix G.

To visualize the effectiveness of LFedDecorr in mitigating dimensional collapse, we now revisit the
experiments of Fig. 2 and apply LFedDecorr under the heterogeneous setting where α ∈ {0.01, 0.05}.
We plot our results in Fig. 3 for both local and global models. Figs. 3(a-b) show that for local models,
FEDDECORR encourages the tail singular values to not collapse to 0, thus effectively mitigating
dimensional collapse. Moreover, as illustrated in Figs. 3(c-d), this desirable effect introduced by
FEDDECORR on local models can also be inherited by the global models.
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Method
CIFAR10 CIFAR100

α = 0.05 0.1 0.5 ∞ 0.05 0.1 0.5 ∞
FedAvg 64.85±2.01 76.28±1.22 89.84±0.13 92.39±0.26 59.87±0.25 66.46±0.16 71.69±0.15 74.54±0.15

+ FEDDECORR 73.06±0.81 80.60±0.91 89.84±0.05 92.19±0.10 61.53±0.11 67.12±0.09 71.91±0.04 73.87±0.18

FedProx 64.11±0.84 76.10±0.40 89.57±0.04 92.38±0.09 60.02±0.46 66.41±0.27 71.78±0.19 74.34±0.03

+ FEDDECORR 71.38±0.81 81.74±0.34 89.96±0.26 92.14±0.20 61.33±0.19 67.00±0.46 71.64±0.10 74.15±0.06

FedAvgM 71.34±0.71 77.51±0.58 88.39±0.17 91.35±0.15 59.64±0.20 66.36±0.14 71.17±0.22 74.20±0.16

+ FEDDECORR 73.60±0.82 79.21±0.15 88.70±0.26 91.33±0.13 61.48±0.27 66.60±0.11 71.26±0.21 73.86±0.25

MOON 68.79±0.69 78.70±0.66 90.08±0.10 92.62±0.17 56.79±0.17 65.48±0.29 71.81±0.14 74.30±0.12

+ FEDDECORR 73.46±0.84 81.63±0.55 90.61±0.05 92.63±0.19 59.43±0.34 66.12±0.20 71.68±0.05 73.70±0.25

Table 1: CIFAR10/100 Experiments. We run experiments under various degrees of heterogeneity
(α ∈ {0.05, 0.1, 0.5,∞}) and report the test accuracy (%). All results are (re)produced by us and
are averaged over 3 runs (mean± std). Bold font highlights the highest accuracy in each column.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Method
TinyImageNet

α = 0.05 0.1 0.5 ∞
FedAvg 35.02±0.46 39.30±0.23 46.92±0.25 49.33±0.19

+ FEDDECORR 40.29±0.18 43.86±0.50 50.01±0.27 52.63±0.26

FedProx 35.20±0.30 39.66±0.43 47.16±0.07 49.76±0.36

+ FEDDECORR 40.63±0.05 44.19±0.14 50.26±0.27 52.37±0.36

FedAvgM 34.81±0.09 39.72±0.11 47.11±0.04 49.67±0.25

+ FEDDECORR 39.97±0.23 43.95±0.26 50.14±0.11 52.05±0.37

MOON 35.23±0.26 40.53±0.28 47.25±0.66 50.48±0.57

+ FEDDECORR 40.40±0.24 44.20±0.22 50.81±0.51 53.01±0.45

Table 2: TinyImageNet Experiments. We run with α ∈
{0.05, 0.1, 0.5,∞}) and report the test accuracy (%). All
results are (re)produced by us and are averaged over 3
runs (mean± std is reported). Bold font highlights the
highest accuracy in each column.

Datasets: We adopt three popu-
lar benchmark datasets, namely CI-
FAR10, CIFAR100, and TinyImageNet.
CIFAR10 and CIFAR100 both have
50, 000 training samples and 10, 000
test samples, and the size of each image
is 32 × 32. TinyImageNet contains 200
classes, with 100, 000 training samples
and 10, 000 testing samples, and each
image is 64×64. The method generating
local data for each client was introduced
in Sec. 3.1.

Implementation Details: Our code
is based on the code of Li et al.
(2021b). For all experiments, we use
MobileNetV2 (Sandler et al., 2018).
We run 100 communication rounds for
all experiments on the CIFAR10/100
datasets and 50 communication rounds on the TinyImageNet dataset. We conduct local training
for 10 epochs in each communication round using SGD optimizer with a learning rate of 0.01, a
SGD momentum of 0.9, and a batch size of 64. The weight decay is set to 10−5 for CIFAR10 and
10−4 for CIFAR100 and TinyImageNet. We apply the data augmentation of Cubuk et al. (2018) in
all CIFAR100 and TinyImageNet experiments. The β of FEDDECORR (i.e., β in Eqn. (9)) is tuned
to be 0.1. The details of tuning hyper-parameters for other federated learning methods are described
in Appendix F.

5.2 FEDDECORR SIGNIFICANTLY IMPROVES BASELINE METHODS

To validate the effectiveness of our method, we apply FEDDECORR to four baselines, namely Fe-
dAvg (McMahan et al., 2017), FedAvgM (Hsu et al., 2019), FedProx (Li et al., 2020), and MOON
(Li et al., 2021b). We partition the three benchmark datasets (CIFAR10, CIFAR100, and Tiny-
ImageNet) into 10 clients with α ∈ {0.05, 0.1, 0.5,∞}. Since α = ∞ is the homogeneous setting
where local models should be free from the pitfall of excessive dimensional collapse, we only expect
FEDDECORR to perform on par with the baselines in this setting.

We display the CIFAR10/100 results in Tab. 1 and the TinyImageNet results in Tab. 2. We ob-
serve that for all of the heterogeneous settings on all datasets, the highest accuracies are achieved
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Figure 4: Test accuracy (%) at each communication round. Results are averaged over 3 runs.
Shaded areas denote one standard deviation above and below the mean.

by adding FEDDECORR on top of a certain baseline method. In particular, in the strongly hetero-
geneous settings where α ∈ {0.05, 0.1}, adding FEDDECORR yields significant improvements of
around 2% ∼ 9% over baseline methods on all datasets. On the other hand, for the less heteroge-
neous setting of α = 0.5, the problem of dimensional collapse is less pronounced as discussed in
Sec 3, leading to smaller improvements from FEDDECORR. Such decrease in improvements is a
general trend and is also observed on FedProx, FedAvgM, and MOON. In addition, surprisingly, in
the homogeneous setting of α = ∞, FEDDECORR still produces around 2% of improvements on
the TinyImageNet dataset. We conjecture that this is because TinyImageNet is much more com-
plicated than the CIFAR datasets, and some other factors besides heterogeneity of label may cause
undesirable dimensional collapse in the federated learning setup. Therefore, federated learning on
TinyImageNet can benefit from FEDDECORR even in the homogeneous setting.

# clients Method α = 0.05 0.1 0.5

10
FedAvg 35.02 39.30 46.92

+ FEDDECORR 40.29 43.86 50.01

20
FedAvg 31.21 35.30 43.64

+ FEDDECORR 39.41 41.27 46.17

30
FedAvg 26.20 30.88 37.22

+ FEDDECORR 36.50 39.02 44.38

50
FedAvg 25.70 28.88 34.89

+ FEDDECORR 34.50 36.67 42.34

100
FedAvg 21.53 24.69 30.21

+ FEDDECORR 30.55 33.85 38.65

Table 3: Ablation study on the number of
clients. Based on TinyImageNet, we run exper-
iments with different number of clients and differ-
ent amounts of data heterogeneity.

To further demonstrate the advantages of FED-
DECORR, we apply it on FedAvg and plot how
the test accuracy of the global model evolves
throughout the federated learning in Fig. 4. In
this figure, if we set a certain value of the test-
ing accuracy as a threshold, we see that adding
FEDDECORR significantly reduces the number
of communication rounds needed to achieve the
given threshold. This further shows that FED-
DECORR not only improves the final perfor-
mance, but also greatly boosts the communica-
tion efficiency in federated learning.

5.3 ABLATION
STUDY ON THE NUMBER OF CLIENTS

Next, we study whether the improvements
brought by FEDDECORR are preserved as num-
ber of clients increases. We partition the Tiny-
ImageNet dataset into 10, 20, 30, 50, and 100
clients according to different α’s, and then run
FedAvg with and without FEDDECORR. For
the experiments with 10, 20 and 30 clients, we run 50 communication rounds. For the experiments
with 50 and 100 clients, we randomly select 20% of the total clients to participate the federated
learning in each round and run 100 communication rounds. Results are shown in Tab. 3. From
this table, we see that the performance improvements resulting from FEDDECORR increase from
around 3% ∼ 5% to around 7% ∼ 10% with the growth in the number of clients. Therefore, in-
terestingly, we show through experiments that the improvements brought by FEDDECORR can be
even more pronounced under the more challenging settings with more clients. Moreover, our exper-
imental results under random client participation show that the improvements from FEDDECORR
are robust to such uncertainties. These experiments demonstrate the potential of FEDDECORR to be
applied to real world federated learning settings with massive numbers of clients and random client
participation.

8



Published as a conference paper at ICLR 2023

Ac
cu
ra
cy

Figure 5: Ablation study on β. We apply FEDDECORR with different choices of β on FedAvg.

5.4 ABLATION STUDY ON THE REGULARIZATION COEFFICIENT β

Next, we study FEDDECORR’s robustness to the β in Eqn. (9) by varying it in the set
{0.01, 0.05, 0.1, 0.2, 0.3}. We partition the CIFAR10 and TinyImageNet datasets into 10 clients
with α equals to 0.05 and 0.1 to simulate the heterogeneous setting. Results are shown in Fig. 5.
We observe that, in general, when β increases, the performance of FEDDECORR first increases, then
plateaus, and finally decreases slightly. These results show that FEDDECORR is relatively insensi-
tive to the choice of β, which implies FEDDECORR is an easy-to-tune federated learning method. In
addition, among all experimental setups, setting β to be 0.1 consistently produces (almost) the best
results. Therefore, we recommend β = 0.1 when having no prior information about the dataset.

5.5 ABLATION STUDY ON THE NUMBER OF LOCAL EPOCHS

E Method
CIFAR100 TinyImageNet

α = 0.05 0.1 0.05 0.1

1
FedAvg 50.67 55.98 32.31 34.88

+ FEDDECORR 53.18 57.02 36.49 38.99

5
FedAvg 59.57 65.02 36.02 40.75

+ FEDDECORR 61.42 65.98 41.68 44.77

10
FedAvg 59.87 66.46 35.02 39.30

+ FEDDECORR 61.53 67.12 40.29 43.86

20
FedAvg 58.50 66.37 31.23 37.23

+ FEDDECORR 60.65 66.86 35.44 42.04

Table 4: Ablation study on local epochs. Experi-
ments with different number of local epochs E.

Lastly, we ablate on the number of local
epochs per communication round. We set
the number of local epochs E to be in the
set {1, 5, 10, 20}. We run experiments with
and without FEDDECORR, and we use the
CIFAR100 and TinyImageNet datasets with
α being 0.05 and 0.1 for this ablation study.
Results are shown in Tab. 4, in which one ob-
serves that with increasing E, FEDAVG per-
formance first increases and then decreases.
This is because when E is too small, the lo-
cal training cannot converge properly in each
communication round. On the other hand,
when E is too large, the model parameters
of local clients might be driven to be too
far from the global optimum. Nevertheless,
FEDDECORR consistently improves over the baselines across different choices of local epochs E.

5.6 ADDITIONAL EMPIRICAL ANALYSES

We present more empirical analyses in Appendix C. These include comparing FEDDECORR with
other baselines (Appendix C.4) and other decorrelation methods (Appendix C.2), experiments on
other model architectures (Appendix C.3) and another type of data heterogeneity (Appendix C.5),
and discussing the computational advantage of FEDDECORR (Appendix C.1).

6 CONCLUSION

In this work, we study representations of trained models under federated learning in which the
data held by clients are heterogeneous. Through extensive empirical observations and theoretical
analyses, we show that stronger data heterogeneity results in more severe dimensional collapse for
both global and local representations. Motivated by this, we propose FEDDECORR, a novel method
to mitigate dimensional collapse during local training, thus improving federated learning under the
heterogeneous data setting. Extensive experiments on benchmark datasets show that FEDDECORR
yields consistent improvements over existing baseline methods.
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A PROOF OF THEOREM 1 IN MAIN PAPER

A.1 NOTATIONS REVISITED

Here, for the reader’s convenience, we summarize the notations used in both the main text and this
appendix.

Notation Explanation
N Number of training data points.
C Total number of classes.
X The collection of the N training samples, X ∈ Rdin×N .
y The collection of one hot labels of the N training samples, y ∈ RC×N .
γ The collection of model output softmax vectors given all N input data, γ ∈ RC×N

Wi(t) The i-th layer weight matrix at the t-th optimization step.
Π(t) The product of the weight matrices of the first L layers: Π(t) = WL(t) . . .W1(t).
σl,k The k-th singular value of Wl.
ul,k The k-th left singular vector of Wl.
vl,k The k-th right singular vector of Wl.
σk The k-th singular value of Π.
uk The k-th left singular vector of Π.
vk The k-th right singular vector of Π.
Nc Number of samples of class c.
µc The proportion of class c samples w.r.t. the whole training samples: µc =

Nc

N
ec The C-dimensional one-hot vector where only the c-th entry is 1.
X̄c Mean vector of the training examples in class c: X̄c =

1
Nc

∑N
i=1 Xi1{yi = ec}

γ̄c Mean output softmax vector given samples in class c: γ̄c = 1
Nc

∑N
i=1 γi1{yi = ec}

A.2 TWO LEMMAS

Here, we elaborate two useful lemmas from Arora et al. (2019; 2018).

The first lemma is adopted from Arora et al. (2019):
Lemma 1. Assuming the weight matrix W evolves under gradient descent dynamics with infinites-
imally small learning rate, the k-th singular value of this matrix (denoted as σk) evolves as

σ̇k(t) = (uk(t))
⊤Ẇ (t)vk(t), (10)

where uk(t) and vk(t) are the k-th left and right singular vectors of W (t), respectively.

Proof. By performing an SVD on W (t), we have W (t) = U(t)S(t)V (t)⊤. Therefore, by the chain
rule in differention, we have:

Ẇ (t) = U̇(t)S(t)V (t)⊤ + U(t)Ṡ(t)V (t)⊤ + U(t)S(t)V̇ (t)⊤. (11)

Next, for both sides of the above equation, we left multiply U(t)⊤ and right multiply V (t):

U(t)⊤Ẇ (t)V (t) = U(t)⊤U̇(t)S(t) + Ṡ(t) + S(t)(V̇ (t))⊤V (t). (12)

Since S(t) is a diagonal matrix, we consider the k-th diagonal entry of S(t), namely σk(t):

(uk(t))
⊤Ẇ (t)vk(t) = (uk(t))

⊤u̇k(t)σk(t) + σ̇k(t) + σk(t)(vk(t))
⊤v̇k(t). (13)

Since uk(t) and vk(t) are unit vectors and are evolving in time with infinitesimal rate, we have
(uk(t))

⊤u̇k(t) = 0 and (vk(t))
⊤v̇k(t) = 0. Next, Eqn. (13) can be simplified as

σ̇k(t) = (uk(t))
⊤Ẇ (t)vk(t). (14)

The proof is thus complete.

The second lemma is adopted from Arora et al. (2018).
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Lemma 2. Given L consecutive linear layers in a neural network characterized by weight matrices
W1,W2, . . . ,WL. We denote Π = WLWL−1 . . .W1. We further denote Wj(t) as weight matrix Wj

after the t-th gradient descent optimization step. Correspondingly, the initialization of Wj is Wj(0).
Assuming we have Wj(0)(Wj(0))

⊤ = (Wj+1(0))
⊤Wj+1(0) for any j ∈ [L − 1] at initialization.

Then, under the gradient descent dynamics, Π(t) satisfies

Π̇(t) = −
L∑

j=1

[
Π(t)Π(t)⊤

]L−j
L

∂ℓ(Π(t))

∂Π

[
Π(t)⊤Π(t)

] j−1
L , (15)

where [·]
L−j
L and [·]

j−1
L are fractional power operators defined over positive semi-definite matrices.

Proof. Here, we first define some additional notation. Given any square matrices (or possibly scalar)
A1, A2, . . . , Am, we denote diag(A1, A2, . . . , Am) to be the block diagonal matrix

diag(A1, A2, . . . , Am) =


A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Am

 .

Here, we first consider dynamics of an arbitrary Wj where j ∈ [L− 1]. By the chain rule, we have

Ẇj(t) = −∂ℓ(W1(t), . . . ,WL+1(t))

∂Wj(t)

= −(Wj+1(t)
⊤ . . .WL(t)

⊤)
∂ℓ(Π(t))

∂Π
(W1(t)

⊤ . . .Wj−1(t)
⊤).

(16)

Given Eqn. (16), we right multiply Ẇj(t) by (Wj(t))
⊤ and we left multiply Ẇj+1(t) by

(Wj+1(t))
⊤, which yields

Ẇj(t)(Wj(t))
⊤ = (Wj+1(t))

⊤Ẇj+1(t). (17)

Applying the same trick on Wj(t)
⊤ and Wj+1(t)

⊤ yields

Wj(t)(Ẇj(t))
⊤ = (Ẇj+1(t))

⊤Wj+1(t). (18)

Adding Eqns. (17) and (18) on both sides yields

Ẇj(t)(Wj(t))
⊤ +Wj(t)(Ẇj(t))

⊤ = Wj+1(t)
⊤Ẇj+1(t) + (Ẇj+1(t))

⊤Wj+1(t). (19)

Next, by the chain rule for differentiation, Eqn. (19) directly implies that

d(Wj(t)Wj(t)
⊤)

dt
=

d(Wj+1(t)
⊤Wj+1(t))

dt
. (20)

Since we have assumed that Wj(0)Wj(0)
⊤ = Wj+1(0)

⊤Wj+1(0), we can conclude that

Wj(t)Wj(t)
⊤ = Wj+1(t)

⊤Wj+1(t). (21)

Next, we apply an SVD on Wj(t) and Wj+1(t) in Eqn. (21). This yields

Uj(t)Sj(t)S
⊤
j (t)U⊤

j (t) = Vj+1(t)S
⊤
j+1(t)Sj+1(t)V

⊤
j+1(t). (22)

Based on Eqn. (22) and given the uniqueness property of SVD, we know:

Sj(t)Sj(t)
⊤ = S⊤

j+1(t)Sj+1(t) = diag(ρ1Id1
, ρ2Id2

, . . . , ρmIdm
), (23)

where
√
ρ1, . . . ,

√
ρm represent the m distinct singular values satisfying ρ1 > ρ2 > . . . > ρm ≥ 0,

and Idr for any r ∈ [m] are identity matrix of size dr × dr. Since Eqn. (23) holds for any j, we
know by induction that the set of values of ρ’s is the same across all layers j ∈ [L]. In addition,
there exist orthogonal matrices Oj,r ∈ Rdr×dr for any r ∈ [m] such that

Uj(t) = Vj+1(t)diag(Oj,1, Oj,2, . . . , Oj,m). (24)
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Given Eqns. (24), next, we study Wj+1(t)Wj(t)W
⊤
j (t)W⊤

j+1(t) for any j ∈ [N − 1]:

Wj+1(t)Wj(t)W
⊤
j (t)W⊤

j+1(t)

= Uj+1Sj+1V
⊤
j+1UjSjS

⊤
j U⊤

j Vj+1S
⊤
j+1U

⊤
j+1

= Uj+1Sj+1diag(Oj,1, Oj,2, . . . , Oj,m)SjS
⊤
j diag(O⊤

j,1, O
⊤
j,2, . . . , O

⊤
j,m)S⊤

j+1U
⊤
j+1

(plugging-in (24))

= Uj+1Sj+1SjS
⊤
j S⊤

j+1U
⊤
j+1 (Sj commutes with diag(Oj,1, Oj,2, . . . , Oj,m))

= Uj+1diag(ρ
2
1Id1 , ρ

2
2Id2 , . . . , ρ

2
mIdm)U⊤

j+1.
(25)

Similarly, it holds that

W⊤
j (t)W⊤

j+1(t)Wj+1(t)Wj(t) = Vjdiag(ρ
2
1Id1

, ρ22Id2
, . . . , ρ2mIdm

)V ⊤
j . (26)

Next, by induction and Eqns. (25),

WL(t) . . .Wj(t)Wj(t)
⊤ . . .WL(t)

⊤

= ULdiag(ρ
L−j+1
1 Id1

, ρL−j+1
2 Id2

, . . . , ρL−j+1
m Idm

)U⊤
L , (27)

by induction and Eqns. (26), it holds that

W⊤
1 (t) . . .W⊤

j (t)Wj(t) . . .W1(t) = V1diag(ρ
j
1Id1 , ρ

j
2Id2 , . . . , ρ

j
mIdm)V ⊤

1 . (28)

From Eqns. (27), we know that for any j ∈ [L− 1],

Π(t)Π(t)⊤ = WL(t) . . .W1(t)W1(t)
⊤ . . .WL(t)

⊤

= ULdiag(ρ
L
1 Id1

, ρL2 Id2
, . . . , ρLmIdm

)U⊤
L

=
[
ULdiag(ρ

L−j
1 Id1

, ρL−j
2 Id2

, . . . , ρL−j
m Idm

)U⊤
L

] L
L−j

=
[
WL(t) . . .Wj+1(t)Wj+1(t)

⊤ . . .WL(t)
⊤] L

L−j .

(29)

Similarly, from Eqn. (28), we know that for any 2 ≤ j ≤ L− 1,

Π(t)⊤Π(t) = W1(t)
⊤ . . .WL(t)

⊤WL(t) . . .W1(t)

= V1diag(ρ
L
1 Id1 , ρ

L
2 Id2 , . . . , ρ

L
mIdm)V ⊤

1

=
[
V1diag(ρ

j−1
1 Id1 , ρ

j−1
2 Id2 , . . . , ρ

j−1
m Idm)V ⊤

1

] L
j−1

=
[
W⊤

1 . . .W⊤
j−1Wj−1(t) . . .W1(t)

] L
j−1 .

(30)

With everything derived above, we now study the dynamics of Π(t) as follows

Π̇(t) =

L∑
j=1

[WL(t) . . .Wj+1(t)] (Ẇj(t)) [Wj−1(t) . . .W1(t)] (differential chain rule)

= −
L∑

j=1

[
WL(t) . . .Wj+1(t)Wj+1(t)

⊤ . . .WL(t)
⊤]

× ∂ℓ(Π(t))

∂Π

[
W⊤

1 (t) . . .W⊤
j−1(t)Wj−1(t) . . .W1(t)

]
(plugging-in (16))

= −
L∑

j=1

[
Π(t)Π(t)⊤

]L−j
L

∂ℓ(Π(t))

∂Π

[
Π(t)⊤Π(t)

] j−1
L (plugging-in (29) and (30)).

(31)
This completes the proof.
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Figure 6: Alignment effects between the singular spaces of WL+1(t) and Π(t). We train a 3-layer
linear neural network on the MNIST dataset and visualize the models at 3, 5, 7, 9 training epochs,
respectively. In each figure, the k′-th row and k-th column pixel is the value of |uk(t)

⊤vL+1,k′(t)|.
Darker colors denote values close to 1 while lighter colors denote values close to 0. From the figures,
we empirically observe that |uk(t)

⊤vL+1,k′(t)| = 1{k = k′} approximately holds.

A.3 ASSUMPTIONS

Assumption 1. We assume that the initial values of the weight matrices satisfy W⊤
i+1(0)Wi+1(0) =

Wi(0)W
⊤
i (0) for any i ∈ [L− 1].

Assumption 2. We assume |uk(t)
⊤vL+1,k′(t)| = 1{k = k′} holds for all t, where uk(t) is the

k-th left singular vector of Π(t) and vL+1,k′(t) is the k′-th right singular vector of WL+1(t).

Remark: For Assumption 1, it can be achieved in practice by proper random initialization. For
Assumption 2, Ji & Telgarsky (2018) proved that under some assumptions, gradient descent opti-
mization will drive consecutive layers of linear networks to satisfy it. We also provide empirical
evidence in Fig. 6 to corroborate that this assumption approximately holds.

A.4 PROOF OF THEOREM 1 IN THE MAIN TEXT

Theorem 1 (formally stated). Let σk(t) for k ∈ [d] be the k-th largest singular value of Π(t).
Then, under Assumptions 1 and 2, we have

σ̇k(t) = NL (σk(t))
2− 2

L

√
(σk(t))

2
L +M (uL+1,k(t))

⊤G(t)vk(t), (32)

where uL+1,k(t) is the k-th left singular vector of WL+1(t), vk(t) is the k-th right singular vector
of Π(t), M is a constant, and G(t) is defined as

G(t) =

C∑
c=1

µc(ec − γ̄c(t))X̄
⊤
c . (33)

Proof. Recall that for (L+1)-layer linear neural networks, given the i-th training sample Xi ∈ Rd,
we have

γi(t) = softmax(WL+1(t)zi(t)) = softmax(WL+1(t)Π(t)Xi), (34)
and the loss is the standard cross-entropy loss defined as follows

ℓ(Π(t),WL+1(t)) =

N∑
i=1

−y⊤
i log γi(t). (35)

By the chain rule, we can derive gradient of ℓ with respect to WL+1 and Π, which are respectively,

∂ℓ(Π(t),WL+1(t))

∂WL+1
= −(y − γ(t))X⊤Π(t)⊤, (36)

and
∂ℓ(Π(t),WL+1(t))

∂Π
= −WL+1(t)

⊤(y − γ(t))X⊤. (37)
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Next, under the gradient descent dynamics, the dynamics on WL+1 satisfies

ẆL+1(t) = −∂ℓ(Π(t),WL+1(t))

∂WL+1
= (y − γ(t))X⊤Π(t)⊤, (38)

while the dynamics on Π requires invoking Lemma 2, which allows us to write

Π̇(t) = −
L∑

j=1

[Π(t)Π(t)⊤]
L−j
L

∂ℓ(Π(t))

∂Π
[Π(t)⊤Π(t)]

j−1
L

=

L∑
j=1

[Π(t)Π(t)⊤]
L−j
L WL+1(t)

⊤(y − γ(t))X⊤[Π(t)⊤Π(t)]
j−1
L .

(39)

Next, we invoke Lemma 1 on Eqn. (39) and Eqn. (38), respectively, yielding:

σ̇k(t) = (uk(t))
⊤Π̇(t)(vk(t))

=

L∑
j=1

uk(t)
⊤
[Π(t)Π(t)⊤]

L−j
L WL+1(t)

⊤(y − γ(t))X⊤[Π(t)⊤Π(t)]
j−1
L vk(t)

= L(σk(t))
2− 2

Luk(t)
⊤
WL+1(t)

⊤(y − γ(t))X⊤vk(t)

(SVD on Π(t))

= L(σk(t))
2− 2

L

∑
k′

σL+1,k′uk(t)
⊤
vL+1,k′(t)(uL+1,k′(t))⊤(y − γ(t))X⊤vk(t)

(SVD on WL+1(t))

= L(σk(t))
2− 2

LσL+1,k(uL+1,k(t))
⊤(y − γ(t))X⊤vk(t) (Assumption 2).

(40)
and

σ̇L+1,k(t) = uL+1,k(t)
⊤(y − γ(t))X⊤Π(t)⊤vL+1,k(t)

=
∑
k′

σk′uL+1,k(t)
⊤(y − γ(t))X⊤vk′(t)u⊤

k′vL+1,k(t)

= σkuL+1,k(t)
⊤(y − γ(t))X⊤vk(t) (Assumption 2).

(41)

Combining Eqns. (40) and (41), we have:
1

L
(σ̇k(t))(σk(t))

2
L−1 = σL+1,k(t)(σ̇L+1,k(t)). (42)

Next, apply integration on both sides, which yields

(σL+1,k(t))
2 = (σk(t))

2
L +M, (43)

where M a constant.

By Eqn. (43), Eqn. (40) can be rewritten as

σ̇k(t) = L(σk(t))
2− 2

L

√
(σk(t))

2
L +M (uL+1,k(t))

⊤(y − γ(t))X⊤vk(t). (44)

Finally, notice that (y − γ(t))X⊤ can be rewritten as

(y − γ(t))X⊤ =

N∑
i=1

(y − γi(t))X
⊤
i = N

C∑
c=1

µc(ec − γ̄c(t))X̄
⊤
c . (45)

We further substitute Eqn. (45) into Eqn. (44) and obtain

σ̇k(t) = NL(σk(t))
2− 2

L

√
(σk(t))

2
L +M (uL+1,k(t))

⊤G(t)vk(t), (46)

where G(t) is defined as

G(t) =

C∑
c=1

µc(ec − γ̄c(t))X̄
⊤
c . (47)

This completes the proof.
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B PROOF OF PROPOSITION 1 IN THE MAIN PAPER

Proposition 1 (restated). For a d-by-d correlation matrix K with singular values (λ1, . . . , λd), we
have:

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

= ∥K∥2F − d. (48)

Proof. Given a d-by-d correlation matrix K, since the diagonal entries of K are all 1, we have

d∑
i=1

λi = tr(K) = d. (49)

This is because for any symmetric positive definite matrix, the sum of all singular values equals the
trace of the matrix.

Next, for the left-hand side of Eqn. (7), we have:

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

=

d∑
i=1

(λi − 1)2 (Plug-in Eqn. (49))

=

d∑
i=1

λ2
i − 2

d∑
i=1

λi + d

=

d∑
i=1

λ2
i − d (Plug-in Eqn. (49)).

(50)

Next, for the right-hand side of Eqn. (7), we have:

∥K∥2F − d = tr(K⊤K)− d

= tr(USV ⊤V S⊤U⊤)− d (Apply SVD on K)

= tr(USS⊤U⊤)− d

=

n∑
i=1

λ2
i − d.

(51)

Therefore, we have shown that the left-hand side of Eqn. (7) equals its right-hand side.

C ADDITIONAL EMPIRICAL ANALYSES

C.1 COMPUTATIONAL EFFICIENCY

We demonstrate FEDDECORR’s advantage vis-à-vis some of its competitors in terms of its compu-
tational efficiency. We compare FEDDECORR with some other methods that also apply additional
regularization terms during local training such as FedProx and MOON. We partition CIFAR10, CI-
FAR100 and TinyImageNet into 10 clients with α = 0.5 and report the total computation times
required for one round of training for FedAvg, FedProx, MOON, and FEDDECORR . Results are
shown in Tab. 5. All results are produced with a NVIDIA Tesla V100 GPU. We see that FED-
DECORR incurs a negligible computation overhead on top of the naı̈ve FedAvg, while FedProx and
MOON introduce about 0.5 ∼ 1× additional computation cost. The advantage of FEDDECORR in
terms of efficiency is mainly because it only involves calculating the Frobenius norm of a matrix
which is extremely cheap. Indeed this regularization operates on the output representation vectors
of the model, without requiring computing parameter-wise regularization like FedProx nor extra
forward passes like MOON.
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CIFAR10 CIFAR100 TinyImageNet

FedAvg 6.7 6.9 25.4
FedProx 12.1 12.3 33.2
MOON 12.2 12.7 38.1
FEDDECORR 6.9 7.1 25.7

Table 5: Comparison of computation times. We report the total computation times (in minutes)
for one round of training on the three datasets for FedAvg, FedProx, MOON, and FEDDECORR.
Here, FEDDECORR stands for applying FEDDECORR to FedAvg.

C.2 COMPARISON WITH OTHER DECORRELATION METHODS

Some decorrelation regularizations such as DeCov (Cogswell et al., 2015) and Structured-
DeCov (Xiong et al., 2016) were proposed to improve the generalization capabilities in standard
classification tasks. Both these methods operate directly on the covariance matrix of the represen-
tations instead of the correlation matrix like our proposed method—FEDDECORR. To compare our
FEDDECORR with the existing decorrelation methods, we follow the same procedure as in FED-
DECORR and apply DeCov and Structured-DeCov during local training. Our experiments are based
on TinyImageNet and FedAvg. TinyImageNet is partitioned into 10 clients according to various α’s.
Results are shown in Tab. 6. Surprisingly, we see that unlike our FEDDECORR which steadily im-
proves the baseline, adding DeCov or Structured-DeCov both degrade the performance in federated
learning. We conjecture that this is because directly regularizing the covariance matrix is highly
unstable, leading to undesired modification on the representations. This experiment shows that our
design of regularization of the correlation matrix instead of the covariance matrix is of paramount
importance.

FedAvg DeCov St.-Decov FEDDECORR

α = 0.05 35.02 32.88 32.04 40.29
α = 0.1 39.30 37.29 37.74 43.86
α = 0.5 46.92 46.29 45.85 50.01

Table 6: Comparison with other decorrelation methods. Based on FedAvg and the TinyImageNet
dataset, we use different decorrelation regularizers in local training.

C.3 EXPERIMENTS ON OTHER MODEL ARCHITECTURES

In this section, we demonstrate the effectiveness of our method across different model architec-
tures. Here, besides the MobileNetV2 used in the main paper, we also experiment on ResNet18
and ResNet32. Note that ResNet18 is the wider ResNet whose representation dimension is 512 and
ResNet32 is the narrower ResNet whose representation dimension is 64. The coefficient of the Fed-
Decorr objective is set to be 0.1 as suggested to be a good universal value of β in the paper. The
heterogeneity parameter α is set to be 0.05 and we use the CIFAR10 dataset. Our results are shown
in Tab. 7. As can be seen, FedDecorr yields consistent improvements across different neural network
architectures. One interesting phenomenon is that the improvements brought about by FedDecorr
are much larger on wider networks (e.g., MobileNetV2, ResNet18) than on narrower ones (e.g.
ResNet32). We conjecture this is because the dimension of the ambient space of wider networks
are clearly higher than that of shallower networks. Therefore, relatively speaking, the dimensional
collapse caused by data heterogeneity will be more severe for wider networks.

MobileNetV2 ResNet18 ResNet32

FedAvg 64.85 71.51 65.76
+ FEDDECORR 73.06 76.54 67.21

Table 7: Effectiveness of FEDDECORR on other model architectures.
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Method
CIFAR10 CIFAR100

α = 0.05 0.1 0.5 ∞ 0.05 0.1 0.5 ∞
Scaffold 51.99±2.54 74.36±3.10 87.05±0.39 89.77±0.24 54.51±0.26 61.42±0.54 68.37±0.44 70.97±0.04

FedNova 63.07±1.59 79.98±1.56 90.23±0.41 92.39±0.18 60.22±0.33 66.43±0.26 71.79±0.17 74.47±0.13

FedAvg 64.85±2.01 76.28±1.22 89.84±0.13 92.39±0.26 59.87±0.25 66.46±0.16 71.69±0.15 74.54±0.15

+ FEDDECORR 73.06±0.81 80.60±0.91 89.84±0.05 92.19±0.10 61.53±0.11 67.12±0.09 71.91±0.04 73.87±0.18

FedProx 64.11±0.84 76.10±0.40 89.57±0.04 92.38±0.09 60.02±0.46 66.41±0.27 71.78±0.19 74.34±0.03

+ FEDDECORR 71.38±0.81 81.74±0.34 89.96±0.26 92.14±0.20 61.33±0.19 67.00±0.46 71.64±0.10 74.15±0.06

FedAvgM 71.34±0.71 77.51±0.58 88.39±0.17 91.35±0.15 59.64±0.20 66.36±0.14 71.17±0.22 74.20±0.16

+ FEDDECORR 73.60±0.82 79.21±0.15 88.70±0.26 91.33±0.13 61.48±0.27 66.60±0.11 71.26±0.21 73.86±0.25

MOON 68.79±0.69 78.70±0.66 90.08±0.10 92.62±0.17 56.79±0.17 65.48±0.29 71.81±0.14 74.30±0.12

+ FEDDECORR 73.46±0.84 81.63±0.55 90.61±0.05 92.63±0.19 59.43±0.34 66.12±0.20 71.68±0.05 73.70±0.25

Table 8: CIFAR10/100 Experiments. We run experiments under various degrees of heterogeneity
(α ∈ {0.05, 0.1, 0.5,∞}) and report the test accuracy (%). All results are (re)produced by us and
are averaged over 3 runs (mean± std). Bold font highlights the highest accuracy in each column.
We add results of Scaffold and FedNova comparing to Tab. 1 in the main paper.

Method
TinyImageNet

α = 0.05 0.1 0.5 ∞
Scaffold 35.16±0.77 37.87±0.78 44.24±0.14 44.88±0.29

FedNova 35.28±0.04 39.73±0.07 47.05±0.42 49.57±0.09

FedAvg 35.02±0.46 39.30±0.23 46.92±0.25 49.33±0.19

+ FEDDECORR 40.29±0.18 43.86±0.50 50.01±0.27 52.63±0.26

FedProx 35.20±0.30 39.66±0.43 47.16±0.07 49.76±0.36

+ FEDDECORR 40.63±0.05 44.19±0.14 50.26±0.27 52.37±0.36

FedAvgM 34.81±0.09 39.72±0.11 47.11±0.04 49.67±0.25

+ FEDDECORR 39.97±0.23 43.95±0.26 50.14±0.11 52.05±0.37

MOON 35.23±0.26 40.53±0.28 47.25±0.66 50.48±0.57

+ FEDDECORR 40.40±0.24 44.20±0.22 50.81±0.51 53.01±0.45

Table 9: TinyImageNet Experiments. We run with α ∈ {0.05, 0.1, 0.5,∞} and report the test
accuracies (%). All results are (re)produced by us and are averaged over 3 runs (mean± std is
reported). Bold font highlights the highest accuracy in each column. We add results of Scaffold and
FedNova comparing to Tab. 2 in the main paper.

C.4 COMPARISON WITH OTHER FEDERATED LEARNING BASELINES

In this section, we compare FEDDECORR with two other baselines, namely Scaffold (Karimireddy
et al., 2020) and FedNova (Wang et al., 2020b). We use the same experimental setups as in the main
paper to implement these two baselines. Results on CIFAR10/100 and TinyImageNet are shown
in Tab. 8 and Tab. 9, respectively. As shown in the tables, across various datasets and degrees of
heterogeneity, adding FEDDECORR on top of a baseline method can outperform the baselines when
there is some heterogeneity across the agents, i.e., α < ∞.

C.5 EXPERIMENTS ON ANOTHER TYPE OF HETEROGENEITY

In this section, we run experiments under another type of data heterogeneity. Specifically, we follow
McMahan et al. (2017) and split the CIFAR10 dataset across different clients such that each client
only has a fixed number of classes C (e.g., C = 2 indicates each client only has data of two classes).
We split the data across 10 clients and choose C to be 2 and 3. Results are shown in Tab. 10. As can
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Figure 7: Data heterogeneity causes similar dimensional collapse on other federated learning meth-
ods such as FedAvgM (Hsu et al., 2019), FedProx (Li et al., 2020), and MOON (Li et al., 2021b).
The x-axis (k) is the index of singular values.
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Figure 8: Data heterogeneity causes similar dimensional collapse on other model architectures dur-
ing federated learning. The x-axis (k) is the index of singular values.

be observed, under this different heterogeneity scenario, FEDDECORR also yields noticeable and
consistent improvements.

C = 2 C = 3

FedAvg 45.61 67.53
+ FEDDECORR 47.63 74.51

Table 10: FEDDECORR yields noticeable and consistent improvements under another type of data
heterogeneity.

D ADDITIONAL VISUALIZATIONS ON GLOBAL MODELS

In this section, we provide additional visualizations on global models with different federated learn-
ing methods, model architectures, and datasets. Through our extensive experimental results, we
demonstrate that dimensional collapse is a general problem under heterogeneous data in federated
learning.

D.1 VISUALIZATION ON GLOBAL MODELS OF OTHER FEDERATED LEARNING METHODS

In the main text, we have shown that global models produced by FedAvg (McMahan et al., 2017)
suffer stronger dimensional collapse with increasing data heterogeneity. To further show such di-
mensional collapse phenomenon is a general problem in federated learning, we visualized global
models produced by other federated learning methods such as FedAvg with server momentum (Hsu
et al., 2019), FedProx (Li et al., 2020), and MOON (Li et al., 2021b). Specifically, we follow the
same procedure as in the main text and plot the singular values of covariance matrices of represen-
tations. Results are shown in Fig. 7. From the figure, one can see that all these three other methods
also demonstrated the similar hazard of dimensional collapse as in FedAvg.

D.2 VISUALIZATION ON GLOBAL MODELS OF OTHER MODEL ARCHITECTURES

In the main text, we have shown the dimensional collapse on global models caused by data het-
erogeneity with MobileNetV2. In this section, we perform the similar visualization based on other
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Figure 9: Data heterogeneity causes similar dimensional collapse on other datasets during federated
learning. The x-axis (k) is the index of singular values.

model architectures such as ResNet32 and ResNet18. Note that ResNet32 is a narrower ResNet
whose representation dimension is 64 and ResNet18 is a wider ResNet whose representation dimen-
sion is 64. We visualize the top 50 singular values for ResNet32 and the top 100 singular values for
ResNet18. Results are shown in Fig. 8. From the figure, one can observe that heterogeneous data
also lead to dimensional collapse on ResNet32 and ResNet18.

D.3 VISUALIZATION ON GLOBAL MODELS OF OTHER DATASETS

In the main text, we use the CIFAR100 dataset for our visualizations. In this section, we perform
similar visualizations with other datasets such as CIFAR10 and TinyImageNet. Results are shown
in Fig. 9. From the figure, one can also observe that dimensional collapse results from data hetero-
geneity.

E VISUALIZATION ON OTHER LOCAL CLIENTS

In the main text Fig. 2(b), under the four different degrees of data heterogeneity (i.e., α ∈
{0.01, 0.05, 0.25,∞}), we compare representations of local models of client 1 and empirically show
how data heterogeneity affects representations produced by the local models. In this section, to fur-
ther corroborate our conclusion, we follow the same procedure and visualize singular values of the
covariance matrix of representations produced by local models trained on the rest of the 9 clients
under the same α’s. Results are shown in Fig. 10. From the results, we can obtain the similar obser-
vations as in Fig. 2(b) of the main text, namely that stronger data heterogeneity causes more severe
dimensional collapse for local models.

F HYPERPARAMETERS OF OTHER FEDERATED LEARNING METHODS

The regularization coefficient of FedProx (Li et al., 2020) µ is tuned across
{10−4, 10−3, 10−2, 10−1} and is selected to be µ = 10−3; the regularization coefficient of
MOON (Li et al., 2021b) µ is tuned across {0.1, 1.0, 5.0, 10.0} and is selected to be µ = 1.0; the
server momentum of FedAvgM (Hsu et al., 2019) ρ is tuned across {0.1, 0.5, 0.9} and is selected to
be ρ = 0.5.

G PSEUDO-CODE OF FEDDECORR

Here, we provide a pytorch-style pseudo-code for FEDDECORR in Alg. 1. All FEDDECORR-specific
components are highlight in blue. As indicated in the pseudocode, the only additional operation of
FEDDECORR is in adding a regularization term LFedDecorr(w,X) defined in Eqn. (8). This shows
that FEDDECORR is an extremely convenient plug-and-play federated learning method.

H STABILITY OF FEDDECORR REGULARIZATION LOSS

In this section, we first split CIFAR10 into 10 clients with α = 0.5. Then, we plot how FedDecorr
loss evolve within 10 local epochs for all the 10 clients in Fig. 11. All training configurations are
the same as in the main paper. From the results, one can observe that the optimization process of
FedDecorr loss is stable.
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Figure 10: Heterogeneous local training data cause dimensional collapse. For each of the clients,
given the four models trained under different degrees of heterogeneity, we plot the singular values
of covariance matrix of representations in descending orders (the results of client 1 are shown in
main text Fig. 2(b)). Representations are computed over the CIFAR100 test set. The x-axis (k) is
the index of singular values and the y-axis is the logarithm of the singular values.
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Figure 11: How FedDecorr loss evolve within 10 local epochs.
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Algorithm 1 PyTorch-style Pseudocode for FEDDECORR. (Blue highlights FEDDECORR-specific
code)

def FedDecorrLoss(z):
# N: batch size
# d: representation dimension
# z: a batch of representation, with shape (N, d)
N,d = z.shape

# z-score normalization
z = (z - z.mean(0)) / z.std(0)

# estimate correlation matrix
corr mat = 1/N*torch.matmul(z.t(), z)

# calculate FedDecorr loss
loss fed decorr = (corr mat.pow(2)).mean()
return loss fed decorr

def LocalTraining(train_loader, local_epochs, beta):
for e in range(local_epochs):

for data, targets in train_loader:
# forward propagation.
# given the batch of data, compute batch representations z and loss
loss, z = ...

loss += beta*FedDecorr(z)

# back propagation and update local model parameters
...

def GlobalAggregation():
# receiving models from each clients
...
# aggregating local models with certain schemes
...
# sending aggregated models back to clients
...

def main():
# n_comm_round: number of communication rounds.
# train_loader: data loader of training data.
# n_local_epochs: number of local trainig epochs on each client.
# beta: coefficient of the FedDecorr regularization.
for comm in range(n_comm_round):

LocalTraining(train_loader, n_local_epochs, beta)
GlobalAggregation()
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