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ABSTRACT

Predicting the structure and the effects of mutations in RNA are pivotal for nu-
merous biological and medical applications. However, the evaluation of machine
learning-based RNA models has been hampered by disparate and limited experi-
mental datasets, along with inconsistent model performances across different RNA
types. To address these limitations, we introduce RNAGym, a comprehensive and
large-scale benchmark specifically tailored for RNA fitness and structure predic-
tion. This benchmark suite includes over 30 standardized deep mutational scanning
assays, covering hundreds of thousands of mutations, and curated RNA structure
datasets. We have developed a robust evaluation framework that integrates mul-
tiple metrics suitable for both predictive tasks while accounting for the inherent
limitations of experimental methods. RNAGym is designed to facilitate a system-
atic comparison of RNA models, offering an essential resource to enhance the
development and understanding of these models within the computational biology
community.

1 INTRODUCTION

RNA, once considered a passive intermediate between DNA and protein, is now recognized as a
dynamic and crucial agent in cellular process regulation. The complexity of RNA lies in its secondary
structure — the base-pairing patterns that form the backbone of its three-dimensional architecture —
and in its functional versatility, which ranges from catalytic activities to gene regulation. Predicting
RNA secondary structure and assessing the functional impact of sequence variations, ie. RNA fitness,
are key challenges in computational biology and machine learning. These interrelated tasks are
critical for advancing our understanding of RNA biology and its applications in fields such as drug
discovery and synthetic biology.

The prediction of RNA secondary structure remains a significant challenge. While computational
methods have made substantial progress, they still face considerable hurdles, especially for larger
RNAs (>100 nt) with complex features like multi-branched loops and pseudoknots. Experimental
methods like nuclear magnetic resonance, Cryo-EM, and X-ray crystallography can determine RNA
3D structures, but they face technical limitations when applied to RNA, resulting in RNA structures
comprising less than 1% of entries in the Protein Data Bank (PDB) (Burley et al., 2017). This scarcity
of experimental data further complicates the development and validation of computational prediction
methods.

An equally critical task is predicting RNA fitness – the functional capacity of RNA sequences when
subjected to mutations. Understanding the impact of these mutations on RNA function is crucial
for advancing our knowledge of RNA evolution and its role in cellular processes. This task is
also vital for the development of RNA-based therapeutics and the expansion of synthetic biology
applications, such as designing riboswitches for gene regulation or engineering RNA sensors for
metabolite detection. Despite its importance, accurately predicting the functional consequences
of RNA mutations, especially from sequence data alone, remains a significant challenge in the
field. Both structure and fitness prediction can benefit from evolutionary information. For structure
prediction, approaches such as maximum entropy models leverage sequence co-variation to infer
evolutionary constraints (Weinreb et al., 2016; Hopf et al., 2017; Frazer et al., 2021). Similarly,
fitness prediction methods can utilize evolutionary data to identify functionally crucial sequence
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features. However, robust methodologies for integrating this information and accurately predicting
both structure and fitness, particularly in zero-shot scenarios, remain elusive.

To address these challenges and support progress in the field, we present RNAGym, a comprehen-
sive benchmarking framework designed to evaluate and compare computational methods for RNA
secondary structure and fitness prediction. RNAGym provides a diverse collection of curated RNA
mutational scanning assays and chemical mapping data for structure prediction, multiple metrics for
model evaluation, and assesses the relative performance of diverse baselines across both tasks.

RNAGym aims to accelerate progress in computational RNA biology by offering a common platform
for assessing different approaches. By providing a systematic way to evaluate model performance
across various RNA types and prediction tasks, RNAGym can help identify strengths and weaknesses
of current methods, guide the development of more accurate algorithms, and ultimately contribute
to advancing our understanding of RNA biology and its applications in areas such as personalized
medicine, RNA-based drug design, and engineered RNA devices for synthetic biology.

2 RELATED WORK AND BACKGROUND

2.1 PRIOR RNA BENCHMARKS

Existing RNA benchmarks for variant effect prediction have been limited and fragmented, primarily
focusing on testing individual models rather than serving as comprehensive benchmarking platforms.
For instance, the RfamGen model was evaluated using five assays, including datasets on ribozymes and
tRNAs (Sumi et al., 2024). Similarly, the Evo model was assessed using seven assays, incorporating
ncRNA mutational scanning datasets (Nguyen et al., 2024). Both studies relied on overlapping
but distinct datasets to evaluate their models, making it difficult to compare performance metrics
between studies directly. These small benchmark sets restrict the ability to generalize findings and
were primarily used to test the respective models’ performance, rather than providing a broad and
standardized benchmarking framework spanning the diversity of RNA types.

This limited scope stands in stark contrast to the field of protein research, where platforms like
ProteinGym have been established to offer extensive and standardized benchmarking datasets (Notin
et al., 2023). RNAGym addresses this gap by introducing a comprehensive benchmarking platform
for RNA variant effect prediction that offers more than four times the number of assays compared to
previous efforts, across a broader array of RNA classes including mRNAs, tRNAs, aptamers, and
ribozymes.

With respect to 3D RNA structure prediction, several competitive benchmarks have been de-
veloped, including the Critical Assessment of Structure Prediction (CASP) and RNA-Puzzles.
CASP15 (Kryshtafovych et al., 2023), the latest iteration of CASP, introduced a dedicated cate-
gory for RNA structure prediction, reflecting the growing recognition of RNA’s importance and the
need for accurate computational models. RNA-Puzzles (Cruz et al., 2012), on the other hand, is a
community-driven initiative that presents real-world challenges to participants, who submit their
models to be evaluated against experimentally determined RNA structures. Notably, only a few RNA
molecules are evaluated at CASP and through RNA-Puzzles, limiting the ability of these high quality
datasets to act as benchmarking standards.

Train-test splits are commonly used to evaluate 2D RNA structure prediction models (Penić et al.,
2024; Chen et al., 2022). Intra-family splits involve training models on RNA sequences from the
same family, with sequences from these families appearing in both the training and test sets (Singha
et al., 2019). This approach tests a model’s ability to learn and predict structures within known
families. In contrast, inter-family splits ensure that sequences from the same RNA family in the test
set are excluded from the training set (Penić et al., 2024). This method assesses whether a model can
generalize to entirely new RNA families that were not included in the training data. While existing
benchmarks offer valuable insights, they often lack the scale and diversity to comprehensively evaluate
model performance across various RNA types and structures. Zero-shot benchmarks for secondary
structure prediction models are crucial, as they avoid biases inherent in supervised approaches and
potential overfitting, thus providing a more robust assessment of true generalization capabilities.
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2.2 BACKGROUND: THE DIVERSITY OF RNA MOLECULES

RNA molecules exhibit a remarkable range of structures and functions, highlighting their essential role
in both the fundamental processes of biology and their growing utility in medical and biotechnological
applications. From the synthesis and regulation of proteins to the catalysis of key biochemical
reactions, RNA types such as mRNA, tRNA, ribozymes, and aptamers demonstrate the diversity
of RNA molecular diversity and complexity. mRNAs (Messenger RNAs) act as the intermediary
transcript that carry genetic information from DNA to the ribosome, where they serve as a template
for protein synthesis. The sequence of mRNA dictates the amino acid sequence in a protein, thereby
directly influencing gene expression and regulatory mechanisms. tRNAs (Transfer RNAs) play a
crucial role in translation, the process of protein synthesis in the ribosome. Each tRNA molecule
transports a specific amino acid to the ribosome; its anticodon loop pairs with the corresponding
codon in the mRNA, ensuring that the correct amino acid is incorporated into the growing protein
chain. Ribozymes are catalytic RNA molecules that perform specific biochemical reactions akin to
protein enzymes. These include critical activities such as RNA splicing during gene expression, where
ribozymes help in the excision of introns from a pre-mRNA. Aptamers are short, single-stranded
RNA molecules designed to bind with high specificity and affinity to certain targets, including proteins,
small molecules, and various cellular components. Their high specificity and adaptability make
aptamers highly valuable for therapeutic uses, as well as in diagnostic and biosensing applications.

3 RNAGYM BENCHMARKS

3.1 OVERVIEW

RNAGym is a comprehensive benchmark suite advancing the development and analysis of machine
learning RNA models. It comprises three integrated layers: datasets, models, and analytics (Fig. 1),
supporting two core RNA tasks:

• Fitness prediction: Zero-shot prediction of RNA functionality across diverse RNA types,
leveraging a broad set of deep mutational scanning assays.

• Structure prediction: Zero-shot prediction of RNA secondary structure, focusing on
identifying nucleotide contacts, which is crucial for understanding RNA function.

These tasks, evaluated in a zero-shot setting, challenge models to generalize across varied RNA
contexts without task-specific fine-tuning. Our data layer includes curated datasets that are specifically
structured for these two tasks. These datasets are enriched with detailed annotations for a variety
of RNA types and are classified by mutation depth, enhancing the granularity of the data available
for analysis. Across both tasks, RNAGym integrates a diverse array of 10 predictive models, each
tailored to address the nuances of the specific tasks at hand—whether predicting RNA fitness or
determining RNA structure. The analytics layer of RNAGym is designed to provide a deep and
comprehensive evaluation of model performance. It utilizes five distinct performance metrics to
assess the effectiveness of each model in a clear and quantifiable manner. Further, the framework
allows for detailed exploration of model performance across different RNA types and mutation depths,
with the goal to understand model strengths and limitations in varied biological contexts.

3.2 DATASETS

3.2.1 FITNESS PREDICTION ASSAYS

Screening methodology We conducted a broad PubMed search for RNA mutational studies that
yielded over 11,000 results, which we then screened using a LLM with carefully designed prompts
adapted from systematic review methods. After narrowing down to 52 studies through the LLM
screening, we conducted expert manual review using specific inclusion/exclusion criteria to ensure
data quality and relevance. All details regarding search terms, prompts and inclusions/exclusions
criteria are provided in Appendix B.

Selected assays RNAGym includes 31 Deep Mutational Scanning assays containing over 350,000
variants across various mRNA, tRNA, aptamers, and ribozymes (Table 1). This represents a fourfold
increase in size over the largest prior RNA benchmarks. Notably, eleven of these assays had MSAs
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Figure 1: RNAGym benchmarks. RNAGym is a comprehensive RNA analysis framework designed
specifically for fitness and structure prediction tasks. It evaluates the performance of diverse baselines
across these tasks, and offers in-depth assessments by RNA type and mutation depth.

readily available through the RFAM database, while 20 of these assays were synthetic constructs
or had no MSA available. Unlike previous efforts, these assays are integrated into a standardized,
reusable resource, making RNAGym a more accessible and broadly applicable tool for RNA fitness
prediction. Our final processed datasets all have a consistent format with the same 3 fields across:
"Mutant" (mutation triplets), "Sequence" (mutated sequence), and "DMS score" (experimental
measurement). We also corrected the directionality of each measured experimental phenotype, to
ensure that higher DMS scores always translate to higher fitness across assays.

3.2.2 STRUCTURE PREDICTION DATA

In preparing the benchmark for our research paper, we utilized the dataset from the Stanford Ri-
bonanza Challenge, which contains DMS (dimethyl sulfate) assay data. DMS data is critical for
understanding RNA secondary structures as it selectively methylates unpaired adenine and cytosine
bases, thereby providing a chemical footprinting method to infer RNA folding. This type of data is
invaluable for validating computational models of RNA secondary structure prediction, as it offers
direct evidence of the RNA’s physical structure under in vivo-like conditions. The private test set
derived from the Ribonanza Challenge incorporates a diverse array of RNA sequences, curated
to represent a broad spectrum of RNA types and complexities. To focus on relevant data for our
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RNA Type Description # Assays # Singles # Multiples

Messenger RNA (mRNA) Splicing ability 2 0.3k 22k
Transfer RNA (tRNA) Stability and growth 3 0.4k 70k
Aptamer Target binding ability 7 0.4k 40k
Ribozyme Splicing ability 19 1.7k 226k

Total 31 2.9k 358k

Table 1: RNAGym fitness benchmark summary. RNAGym includes a large collection of DMS
assays about diverse RNA types. The table reports the number of assays and number of single and
multiple mutants per RNA type.

zero-shot analysis (see Appendix B), the dataset was refined to include approximately 115k distinct
sequences, covering over 15M nucleotide positions for structural predictions. The evaluation dataset
provides a DMS score for each nucleotide for all RNA sequences (1 row per nucleotide), reflecting
the propensity of that nucleotide to not be in contact in the RNA structure.

3.3 BASELINES

We benchmarked several RNA models including RiNALMo, Evo 1 and 1.5, RNA-FM, GenSLM,
RNAErnie and Nucleotide Transformer for fitness prediction, as well as EternaFold, CONTRAfold,
Vienna, RNAstructure, RNA-FM, and Ribonanzanet for structure prediction. All details about
baselines are provided in Appendix C.

3.4 EVALUATION

For fitness prediction, the evaluation was primarily based on the Spearman’s rank correlation between
the model predictions and experimental measurements, the Area Under the Curve (AUC) and the
Matthews Correlation Coefficient (MCC). These metrics are complementary and were chosen to
provide a comprehensive evaluation: Spearman correlation assesses the overall ranking of predictions,
AUC measures the model’s ability to distinguish between functional and non-functional mutations,
while MCC offers a balanced measure for potentially imbalanced datasets. To mitigate biases
associated with uneven assay distributions across different RNA types, we calculated an average
performance for each RNA type separately and then computed the overall performance as the mean
of these RNA-type-level averages. This approach ensures that our results are robust and reflective of
true model capabilities across varied biological categories.

For the structure prediction task, we employed three standard metrics: F1-score, Area Under the
Curve (AUC), and Mean Absolute Error (MAE). F1-score provides a balanced measure of precision
and recall in identifying nucleotide pairings. AUC assesses the model’s ability to distinguish between
paired and unpaired nucleotides. MAE offers a direct measure of prediction accuracy by quantifying
the average magnitude of errors.

Importantly, all evaluations for both tasks were conducted in a zero-shot setting, where models
were tested without any fine-tuning on task-specific labels, emphasizing their generalizability and
robustness in unseen scenarios.

4 RESULTS

4.1 FITNESS PREDICTION PERFORMANCE

Performance on all assays. The overall fitness prediction benchmark results (see Table 2) show
Evo (1.5) and RNAErnie as the leading performers, with nearly identical top metrics - Spearman
correlations of 0.222 and 0.221 respectively, and comparable AUC and MCC. These results indicate
a modest yet leading capability in predicting RNA fitness outcomes based on experimental data
(statistical significance analysis is included in Appendix G.2). The relatively low scores across
all models, particularly when compared to the stronger correlations reported for protein language
models Notin et al. (2023), suggest substantial room for improvement and warrant deeper investigation.
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Several factors may contribute to this performance gap. A primary consideration is the limited
availability of large-scale, diverse RNA datasets for model training compared to the abundance of
protein sequence data. Additionally, there may be a potential misalignment between the training data
used for these models and the taxonomical and functional distribution of our fitness landscapes. Lastly,
differences in evolutionary conservation patterns between RNAs (especially non-coding RNAs) and
proteins could also play a role, potentially affecting the models’ ability to capture fitness-relevant
features.

Rank Model name Spearman AUC MCC
1 Evo 1.5 0.222 0.606 0.163
2 RNAErnie 0.221 0.609 0.163
3 Evo 1 0.220 0.606 0.162
4 RNA-FM 0.205 0.598 0.150
5 RiNALMo 0.170 0.583 0.121
6 Nucl. Transformer 0.157 0.582 0.117
7 GenSLM 0.118 0.558 0.082

Table 2: RNAGym - Fitness prediction overall benchmark. Average of Spearman’s rank correlation,
AUC and MCC between model scores and experimental measurements on the full RNAGym fitness
prediction benchmark.

Performance by RNA type. When examining performance by RNA type (Table 3), several
models show specialized strengths across different RNA categories. RNA-FM achieves the highest
correlation for tRNAs (0.463), while RiNALMo leads in mRNA predictions (0.273), followed closely
by Nucleotide Transformer (0.245). For aptamers, Evo 1 demonstrates the strongest performance
(0.200), while Evo 1.5 performs best with ribozymes (0.170). These performance variations likely
reflect the diverse training data of each model. RNA-FM’s particular strength with tRNAs aligns with
its training on non-coding RNAs from RNAcentral, a database rich in these RNA types. RiNALMo
and Nucleotide Transformer’s proficiency in mRNA predictions may stem from their exposure to
coding sequences during training. The consistently strong performance of Evo models across different
RNA types, particularly in aptamers and ribozymes, suggests their training approach may capture
broader sequence-function relationships. These observations underscore the importance of targeted
model training and selection based on the specific RNA type being studied. They also suggest that
performance could potentially be improved by more tailored training data selection or by developing
ensemble methods that leverage the strengths of different models for specific RNA types.

Rank Model name mRNA tRNA Aptamer Ribozyme All
1 Evo 1.5 0.16 0.376 0.181 0.170 0.222
2 RNAErnie 0.207 0.396 0.153 0.127 0.221
3 Evo 1 0.142 0.377 0.2 0.16 0.22
4 RNA-FM 0.08 0.463 0.131 0.148 0.205
5 RiNALMo 0.273 0.258 0.057 0.093 0.17
6 Nucl. Transformer 0.245 0.093 0.178 0.111 0.157
7 GenSLM 0.123 0.116 0.113 0.119 0.118

- All 0.129 0.265 0.114 0.126 0.137

Table 3: RNAGym - Fitness prediction by RNA type. Average of Spearman’s rank correlation
between model scores and experimental measurements by RNA type and overall.

Performance by mutation type. The fitness prediction results segmented by mutation type (Table 4)
show that Evo models consistently outperform others across both single and multiple mutations.
Evo 1.5 achieves the highest correlations for both single mutations (0.240) and multiple mutations
(0.195), with Evo 1 following closely behind (0.239 and 0.188 respectively). While these results
establish Evo models as the current leaders in mutation effect prediction, the relatively low correlation
values indicate substantial room for improvement in capturing RNA sequence-function relationships.
Notably, all models show somewhat stronger performance on single mutations compared to multiple
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mutations, highlighting the increased challenge of predicting fitness effects for more complex genetic
variations. This performance gap between single and multiple mutations points to opportunities for
improving model architectures and training approaches to better handle combinatorial effects of
mutations.

Rank Model name Singles Multiples
1 Evo 1.5 0.240 0.195
2 RNAErnie 0.178 0.170
3 Evo 1 0.239 0.188
4 RNA-FM 0.193 0.171
5 RiNALMo 0.144 0.119
6 Nucl. Transformer 0.136 0.131
7 GenSLM 0.137 0.120

Table 4: RNAGym - Fitness prediction by mutation type. Average of Spearman’s rank correlation
between model scores and experimental measurements by mutation type.

Future Directions. To advance the field of RNA fitness prediction, several promising avenues of
investigation emerge. First, developing models specifically trained on diverse RNA fitness landscapes
could potentially improve performance by more closely aligning the training data with the prediction
task. Additionally, incorporating RNA secondary structure predictions or experimental structure data
into fitness prediction models may enhance their accuracy by capturing the important relationship
between RNA structure and function. Comparing zero-shot performance with fine-tuned models could
provide valuable insights into the generalizability of learned RNA features, potentially guiding future
model development strategies. Lastly, exploring new architectural elements or pre-training objectives
that better capture RNA-specific properties might lead to more robust and accurate predictions.

4.2 STRUCTURE PREDICTION PERFORMANCE

Rank Model name F1-score ↑ AUC ↑ MAE ↓
1 Ribonanzanet 0.793 0.869 0.146
2 CONTRAfold 0.610 0.650 0.372
3 RNAstructure 0.603 0.639 0.326
4 Vienna 0.602 0.638 0.324
5 EternaFold 0.600 0.640 0.360
6 RNA-FM 0.561 0.584 0.278

Table 5: RNAGym - Structure prediction benchmark. F1-score, AUC and MAE between model
predictions and experimental DMS measurements on the RNAGym structure prediction benchmark.

Performance. The RNAGym structure prediction benchmark (Table 5) reveals interesting perfor-
mance patterns across supervised and unsupervised approaches. The supervised model Ribonanzanet
demonstrates superior performance, achieving an F1-score of 0.793, AUC of 0.869, and MAE of
0.146, significantly outperforming unsupervised methods. Among unsupervised models, we observe
a remarkably tight performance distribution. CONTRAfold shows a slight edge with an F1-score
of 0.610, followed closely by RNAstructure (0.603), Vienna (0.602), and EternaFold (0.600). This
close grouping is maintained across all three evaluation metrics, suggesting that current unsuper-
vised approaches may be approaching a performance ceiling within their current methodological
framework.

Future Directions. Advancing RNA secondary structure prediction requires addressing several key
challenges. First, the substantial performance gap between Ribonanzanet and unsupervised methods
raises concerns about potential data leakage between training and test sets. A rigorous analysis
of sequence redundancy in the Ribonanza dataset is necessary to ensure fair evaluation. Current
performance metrics, while encouraging, may not fully capture a model’s ability to generalize to

7
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truly novel RNA sequences. Future work should enforce stricter evaluation protocols that control
for sequence similarity between training and test sets. Additionally, extending these approaches to
tertiary structure prediction remains an important but significantly more complex challenge.

5 RESOURCES

Codebase. We open source under an MIT License all resources curated for the RNAGym benchmark
via our GitHub repository. In particular, we consolidate of the numerous RNA structure and fitness
prediction models discussed in Appendix C and make them available via a common interface, which
will facilitate the seamless integration and evaluation of new models as they are developed. This
resource aims to provide researchers with robust tools, reducing the technical barrier to entry for
conducting advanced RNA analysis and enhancing the reproducibility of results across the scientific
community.

Processed datasets. We have made available all datasets used in our fitness and structure prediction
benchmarks, including both raw and processed versions, as detailed in Section 3.2. Our GitHub
repository provides instructions for downloading these resources. To enhance the utility of our
benchmarks, we have included several additional components. For the fitness benchmark, where
available, we provide tertiary structure PDB files and multiple sequence alignments for the relevant
protein families. In the case of the secondary structure prediction benchmark, we have mapped
all sequences in the test set to similar RNA sequences found in the PDB, RFam, and PseudoBase
databases, providing easy access to the rich annotations contained in these databases. Furthermore, to
support researchers interested in supervised learning approaches, we offer training datasets for both
the fitness and secondary structure prediction tasks (Appendix B).

6 CONCLUSION

RNAGym addresses the significant gap in large-scale benchmarks for the robust evaluation of models
tailored for RNA structure prediction and fitness assessment. It enables the direct comparison of
methods across several dimensions of interest (e.g., RNA type, mutation type). We anticipate that
the RNAGym benchmarks and the accompanying data assets we release to the public will serve as
invaluable resources for the Machine Learning and Computational Biology communities. We plan to
continually update the benchmarks as new data and baseline models become available.
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APPENDIX

A DATASET COLLECTION

Prioritization of studies for expert review The selection process for prioritized studies for expert review
was structured as follows. We initiated with a targeted PubMed search, utilizing specific queries to ensure a
comprehensive capture of relevant literature:

1. Deep Mutational Scan: (deep[All Fields] OR comprehensive[All Fields]) AND (mutational[All
Fields] OR muta*) AND (scan OR scans OR scanning) AND RNA

2. Saturation Mutagenesis: (saturat* muta*) AND RNA

3. MAVE: (“Multiplex* assay” AND “variant*”) AND RNA

4. MPRA: (“MPRA” OR “Massively parallel reporter assay*”) AND RNA NOT protein

5. Other: (“Fitness Landscape” AND muta*) AND RNA

These initial searches proved to be either overly restrictive or too broad, which complicated the manual screening
process. Ultimately, this approach resulted in the identification of only 20 primary articles. To enrich our review,
an additional 10 articles were identified by scraping references from other pertinent studies, including those cited
in previous research such as (Sumi et al., 2024; Nguyen et al., 2024), and RNA-related datasets from studies like
ProteinGym (Notin et al., 2023).

Hypothesizing that our initial search strategy may have missed relevant studies, we conducted a comprehensive
PubMed search using the following query:

Broad Search: (deep OR comprehensive OR MPRA OR multiplex assay OR massively parallel OR landscape
OR saturation) AND (muta* OR variant OR variants) AND (scan OR scans OR screen OR landscape OR assay)
AND (RNA OR ribozyme* OR microRNA OR miRNA OR siRNA OR snoRNA OR tRNA OR lncRNA OR
(RNA AND aptamer) OR circRNA)

A.1 LITERATURE PRE-SCREENING WITH LLM

The prior search yielded an overwhelming 11,635 results. To efficiently handle this volume, we utilized a
large language model (LLM), specifically GPT4-0125-preview, for secondary screening. We adapted a recent
prompting approach designed for systematic review screening (Cao et al., 2024). The LLM was instructed with
clear study objectives and specific inclusion/exclusion criteria, effectively narrowing down the pool to fewer
than 500 articles, thereby making manual curation manageable. To enhance the sensitivity of this process, the
LLM’s prompt was refined using an initial set of 30 positively identified articles as a control group. This novel
use of LLMs for data extraction markedly improved our capacity to pinpoint relevant studies. Consequently, we
were able to incorporate an additional 22 studies into our initial screen, resulting in a total of 52 studies ready for
manual expert review.

We used the following prompt to pre-screen relevant studies during our extensive literature search:

"The goal of this study is to create a benchmark that contains RNA deep mutational scanning or fitness landscape
datasets. We are generating these datasets to benchmark RNA fitness prediction algorithms, and need our datasets
we evaluate to have information on RNA mutants/variants and their relative ’fitness’.

The following is an excerpt of two sets of criteria. A study is considered included if it meets all the inclusion
criteria. If a study meets any of the exclusion criteria, it should be excluded. Here are the two sets of criteria:

Inclusion Criteria (all must be fulfilled): 1. Studies involve RNA. We are also interested in RNA subclasses such
as Ribozyme, lncRNA, tRNA, rRNA, microRNA (miRNA), Aptamer, Riboswitch, mRNA 2. Studies report on
fitness prediction. Other terms for fitness prediction can include deep mutational scans, comprehensive multiplex
assays, or comprehensive fitness landscapes, among others 3. Studies with greater than 100 experimental
measurements 4. Studies that report on mutant fitness through reporter assays, bulk RNA-sequencing, single-
cell RNA sequencing assay, fluorescence in-situ hybridization (FISH) assay, flow cytometry assay, imaging
mass cytometry assay, evolution of ligands by exponential enrichment assay, single cell imaging, multiplexed
fluorescent antibody imaging, binding assays, cell proliferation assay, splicing assays, survival assessment assay
selection types, or similar. 5. Studies that report on enzymatic activity, binding affinity, stability, fluorescence,
proliferation selection assays, or similar assays. 6. The study must be primary research and generate a novel
dataset

Exclusion Criteria (if any met then exclude): 1. Studies only reporting on protein mutational scans, with no
relevance or mention of RNA being mutated 2. Studies that do not focus on fitness quantification 3. Review
articles (systematic reviews, case reports, case series, etc.) or other non-primary research sources.
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Instructions

We now assess whether the paper should be included in the systematic review by evaluating it against each and
every predefined inclusion and exclusion criterion. First, we will reflect on how we will decide whether a paper
should be included or excluded. Then, we will think step by step for each criteria, giving reasons for why they
are met or not met. Studies that may not fully align with the primary focus of our inclusion criteria but provide
data or insights potentially relevant to our review deserve thoughtful consideration. Given the nature of abstracts
as concise summaries of comprehensive research, some degree of interpretation is necessary. Our aim should be
to inclusively screen abstracts, ensuring broad coverage of pertinent studies while filtering out those that are
clearly irrelevant. We will conclude by outputting (on the very last line) ’XXX’ if the paper warrants exclusion,
or ’YYY’ if inclusion is advised or uncertainty persists. We must output either ’XXX’ or ’YYY’.

Title and Abstract in investigation:

Title: #Insert title of study#

Abstract: #Insert abstract of paper#"

Expert review process The process for accepting a paper involved several steps to ensure the quality and
relevance of the data. First, we checked whether the data was openly available and could be integrated into our
benchmark. If data was not accessible, study authors were contacted.

Next, we used the following inclusion and exclusion criteria during our through expert review process:

Inclusion Criteria

• Assay must focus on RNA

• Assay must have at least 100 experimental variants tested, with a sufficiently wide dynamic range

• Assay must be relevant to fitness prediction, and report on mutant fitness

• Assay must only focus on substitutions, not insertions or deletions

Exclusion Criteria

• Assays focusing on DNA or Proteins

• Assays that are not primary research

• Assays with mutants of varying lengths

B DATASETS DETAILS

B.1 FITNESS ASSAYS

References An exhaustive list of the publications from which the assays included our fitness benchmark
originated from is provided in Table B.1.

Licenses All fitness assays were licensed under CC-BY 4.0 (https://creativecommons.org/
licenses/by/4.0/), or the ACS AuthorChoice Usage Agreement (https://pubs.acs.org/page/
policy/authorchoice_termsofuse.html).

Cross-validation splits For users interested in supervised RNA fitness prediction, we provide two types of
cross-validation splits:

• Random: a random 80%-20% train-test split;

• Minimum similarity: a 80%-20% split in which we minimized the sequence similarity between
training and validation RNA sequences.

B.2 STRUCTURE PREDICTION DATASET

We constructed the data for our structure prediction challenge from the DMS data from the
Ribonanza Challenge hosted on Kaggle (https://www.kaggle.com/competitions/
stanford-ribonanza-rna-folding/data). To ensure the integrity of our dataset and pre-
vent data leakage, we removed sequences that were previously utilized by the Ribonanzanet model in the
training dataset, as well as the ‘public’ portion of the evaluation dataset. The final dataset comprises 115, 000
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Title Year RNA type # Assays Reference License
Saturation mutagenesis reveals manifold de-
terminants of exon definition

2017 mRNA 1 (Ke et al., 2017) CC BY 4.0

Fitness landscape of a dynamic RNA struc-
ture

2021 ribozyme 1 (Soo et al., 2021) CC BY 4.0

Comprehensive sequence-to-function map-
ping of cofactor-dependent RNA catalysis
in the glmS ribozyme

2020 ribozyme 1 (Andreasson et al.,
2020)

CC BY 4.0

High-throughput assay and engineering of
self-cleaving ribozymes

2015 ribozyme 3 (Kobori et al.,
2015)

CC BY 4.0

Identification of the determinants of tRNA
function and susceptibility to rapid tRNA
decay by high-throughput in vivo analysis

2014 tRNA 1 (Guy et al., 2014) CC BY 4.0

Deep sequencing analysis of aptazyme vari-
ants based on a pistol ribozyme

2018 ribozyme 1 (Kobori et al.,
2017)

ACS Author-
Choice Usage
Agreement

High-throughput cellular RNA device engi-
neering

2015 aptamer 5 (Townshend et al.,
2015)

CC BY 4.0

Rapid Construction of Empirical RNA Fit-
ness Landscapes

2010 ribozyme 1 (Pitt & Ferré-
D’Amaré, 2010)

CC-BY 4.0

Dynamic RNA Fitness Landscapes of a
Group I Ribozyme during Changes to the
Experimental Environment

2022 ribozyme 1 (Peri et al., 2022) CC-BY 4.0

RNA sequence to structure analysis from
comprehensive pairwise mutagenesis of
multiple self-cleaving ribozymes

2023 ribozyme 5 (Roberts et al.,
2023)

CC-BY 4.0

Pairwise and higher-order genetic interac-
tions during the evolution of a tRNA

2018 tRNA 1 (Domingo et al.,
2018)

CC-BY 4.0

Emergent properties as by-products of
prebiotic evolution of aminoacylation ri-
bozymes

2022 ribozyme 5 (Janzen et al.,
2022)

CC-BY 4.0

Predicting higher-order mutational effects
in an RNA enzyme by machine learning of
high-throughput experimental data

2022 ribozyme 1 (Beck et al., 2022) CC-BY 4.0

The fitness landscape of a tRNA gene 2016 tRNA 1 (Li et al., 2016) CC-BY 4.0

Comprehensive analysis of RNA-protein in-
teractions by high-throughput sequencing-
RNA affinity profiling

2014 aptamer 2 (Tome et al.,
2014)

CC-BY 4.0

The complete local genotype-phenotype
landscape for the alternative splicing of a
human exon

2016 mRNA 1 (Julien et al.,
2016)

CC-BY 4.0

Table A1: RNAGym fitness prediction data. We developed our fitness prediction benchmark by
curating and processing 31 assays from 16 publications.

distinct sequences, encompassing over 15, 000, 000 positions where structural predictions have been applied.
This extensive dataset underpins the robustness and comprehensive nature of our RNA structure prediction
challenge. The original data from the challenge is made available under a CC-BY 4.0 license.

C BASELINES

C.1 RNA FITNESS PREDICTION MODELS

Our fitness prediction benchmarks currently include the following 7 baselines:

• RiNALMo (Penić et al., 2024) is a 650 million parameter RNA language model trained on 36 million
non-coding RNA sequences, achieving high performance in RNA structural and functional prediction
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tasks. Variants were scored using the masked marginal scoring strategy from the ESM sequence
modeling framework.

• Evo (Nguyen et al., 2024) is a 7 billion parameter model trained on 2.7M prokaryotic and phage
genomes to generate DNA sequences using a context length of 8k (further extended to131k tokens). It
is based on StripedHyena, a deep signal processing architecture designed to improve efficiency and
quality over the prevailing Transformer architecture. We use the 8k version of the model, refered as
Evo 1. The recently released Evo 1.5 builds upon Evo 1 by increasing the pretraining data from 300
billion to 450 billion tokens Merchant et al. (2024).

• RNA-FM (Chen et al., 2022) is a RNA foundation model based on the BERT language model
architecture. It was trained on 23 million unlabeled non-coding RNA sequences from over 800,000
species, collected from RNA-central. Variants were scored using the wild-type marginal scoring
strategy from the ESM sequence modeling framework, which RNA-FM builds upon.

• GenSLM (Zvyagin et al., 2023) includes an autoregressive RNA language model with codon-level
tokenization, along with stable diffusion, to model genome-scale interactions and predict SARS-CoV-2
evolution. It was trained on 110 million prokaryotic coding sequences from BV-BRC. Variant sequence
likelihoods were scored using the 2.5 billion parameter language model.

• RNAErnie (Wang et al., 2024) is a 12-layer transformer-based RNA language model pre-trained on 23
million ncRNA sequences using masked language modeling. With 105 million trainable parameters,
it achieves high performance in RNA sequence classification, RNA–RNA interaction, and RNA
secondary structure prediction.

• Nucleotide Transformer (Dalla-Torre et al., 2023) is a 2.5B parameter model trained on 850 species.
The 2.5b-multi-species version was used.

C.2 RNA STRUCTURE PREDICTION MODELS

Our structure prediction benchmarks currently include the following 5 baselines (in addition to RNA-FM,
introduced earlier):

• EternaFold (Wayment-Steele et al., 2020) is built on the principles derived from the Eterna massive
open online game, where players design RNA sequences that fold into target shapes. This model
incorporates crowd-sourced insights from thousands of players to refine its algorithms, significantly
enhancing its ability to predict RNA structures under varied environmental conditions and complexities.

• CONTRAfold (Do et al., 2006) is a machine learning-based RNA secondary structure prediction
model that utilizes conditional log-linear models for structure inference.

• Vienna (Gruber et al., 2008) is one of the most widely used RNA secondary structure prediction tools.
It employs dynamic programming algorithms based on thermodynamic models to accurately predict
RNA secondary structures, including handling pseudoknotted structures as extensions.

• RNAstructure (Reuter & Mathews, 2010) is a model designed for the prediction and analysis of
RNA secondary structures. It is known for its dual ability to use either thermodynamic or machine
learning-based methods to predict RNA folding patterns.

• RNA-FM (Chen et al., 2022) as described above was also used for RNA structure prediction by
utilizing its downstream second-order structure prediction module.

We also contextualize our zero-shot results by contrasting performance with the supervised model Ribonan-
zanet (He et al., 2024). This model is a sequence-only deep neural network trained on the data from the Stanford
Ribonanza Challenge. It was further fine tuned on pseudo labels derived from the predictions of the top 3 models
from the Kaggle challenge.

D LIMITATIONS

Experimentally assaying RNA fitness, while resource-intensive, provides critical insights that help advance
our understanding of RNA function. However, such experimental assays may not always accurately mimic
the cellular environment, which can lead to variations between observed in vitro results and actual in vivo
functionality. Chemical mapping experiments using dimethyl sulfate (DMS) offer valuable data on RNA
secondary structures by identifying accessible adenine and cytosine bases that interact with DMS. This technique,
although powerful for revealing the in-vivo-like structure of RNA in a relatively high-throughput manner, has its
limitations. DMS mapping can be affected by incomplete coverage, as it primarily marks only two of the four
nucleotide types. Additionally, the resolution of DMS mapping might not always distinguish closely spaced
structural features, potentially obscuring important details about RNA folding and interaction sites. The accuracy
of predictions from DMS data also heavily depends on the computational tools used to interpret the chemical
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reactivity patterns, necessitating ongoing improvements in both experimental and analytical methodologies to
enhance the precision and utility of RNA structural studies. There is also sampling bias for the RNA families
that were assayed using high-throughput fitness assays, with not all families equally represented. The majority
of fitness assays were focused on ribozymes while other RNA families such as mRNA and tRNA had far fewer
available datasets to evaluate.

E SOCIETAL IMPACT

The advancement of RNA models holds transformative potential across a spectrum of applications. By accurately
predicting RNA structure and fitness, researchers can unlock new therapies by targeting previously intractable
genetic conditions, enhance crop resilience through agricultural biotechnology, and even engineer microbial
systems for cleaner energy production. The creation of benchmarks like RNAGym is crucial in this endeavor,
as they drive the field forward by setting standards for model performance and fostering innovation through
competition and collaboration. However, as it is the case for any approach that facilitates the development of
novel biological sequences for good, the potential misuse of these technologies to create harmful biological
agents cannot be ignored (Urbina et al., 2022). It is imperative to proceed with a careful framework that promotes
secure use, ethical guidelines, and synthesis monitoring (Baker & Church, 2024) to mitigate risks associated
with dual-use capabilities. Ultimately, benchmarks like RNAGym not only validate the effectiveness of emerging
RNA models but also, by highlighting the methods leading to step-change performance improvements, encourage
their integration into real-world applications, ensuring that these innovations contribute positively to society.

F COMPUTE RESOURCES

In our benchmarking work for RNA fitness prediction and structure analysis, we primarily rely on GPUs as
hardware accelerators to handle the computationally intensive tasks involved. We estimate our compute budget
for both fitness and structure prediction benchmarks to approximately 30 V100 GPU days.

G DETAILED EXPERIMENTAL RESULTS

G.1 FITNESS PREDICTION PERFORMANCE BY ASSAY

We report the assay-level Spearman performance, across all assays in the RNAGym fitness prediction benchmark
in Fig G.1.

G.2 STATISTICAL SIGNIFICANCE OF FITNESS PREDICTION PERFORMANCE

We report the statistical significance for the relative Spearman performance by RNA type in Table A2. We follow
the same methodology as in ProteinGym (Notin et al., 2023) and assess statistical significance by computing the
non-parametric bootstrap standard error of the difference between the Spearman performance of a given model
and that of the best overall model.

Rank Model name mRNA tRNA Aptamer Ribozyme All

Diff SE Diff SE Diff SE Diff SE Diff SE

1 Evo 1.5 -0.114 0.027 -0.087 0.05 -0.02 0.013 0 0 0 0
2 RNAErnie -0.066 0.022 -0.067 0.096 -0.048 0.043 -0.043 0.021 -0.001 0.017
3 Evo 1 -0.132 0.029 -0.085 0.052 0 0 -0.011 0.011 -0.002 0.008
4 RNA-FM -0.193 0.002 0 0 -0.07 0.07 -0.022 0.026 -0.016 0.023
5 RiNALMo 0 0 -0.204 0.151 -0.144 0.052 -0.077 0.024 -0.051 0.02
6 Nucl. Transformer -0.029 0.093 -0.369 0.091 -0.022 0.044 -0.059 0.019 -0.065 0.019
7 GenSLM -0.151 0.068 -0.346 0.121 -0.087 0.046 -0.051 0.025 -0.104 0.023

Table A2: Fitness prediction by RNA type - Difference in Spearman to best score by category
Difference in average of Spearman’s rank correlation between model scores and experimental
measurements to the best model by category, by RNA type and overall. The standard error reported
corresponds to the non-parametric bootstrap standard error of the difference between the Spearman
performance of a given model and that of the best overall model for a given category, computed over
10k bootstrap samples from the set of assays in the RNAGym fitness benchmark.
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Figure 2: RNAGym fitness prediction benchmark - Detailed performance. Spearman’s rank
correlation between model predictions and experimental values for each assay in the RNAGym fitness
prediction benchmark.
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G.3 STRUCTURE PREDICTION - PSEUDOKNOTS

We mapped RNA sequences in our evaluation set to pseudoknot annotations from PseudoBase (van Batenburg
et al., 2000) (358 test sequences mapped), and report the corresponding global F1 score and crossed pair F1 score
(Table A3). Out of our various structure prediction baselines, only RNAstructure, Ribonanzanet and RNA-FM
are able to score pseudoknots.

Rank Model name Global F1 score Crossed Pair F1 score
1 Ribonanzanet 0.758 0.583
2 RNA-FM 0.654 0.423
3 RNAstructure 0.639 0.211
4 CONTRAfold 0.596 N/A
5 EternaFold 0.588 N/A
6 Vienna 0.579 N/A

Table A3: Structure prediction - Pseudoknots. Global and Crossed Pair F1 score on subset of eval
sequences with annotations in PseudoBase.
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