
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REALISTIC-GESTURE: CO-SPEECH GESTURE VIDEO
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Figure 1: Realistic-Gesture achieves various fine-grained control over video-level gesture motion.

ABSTRACT

Co-speech gesture generation is crucial for creating lifelike avatars and enhancing
human-computer interactions by synchronizing gestures with speech in computer
vision. Despite recent advancements, existing methods often struggle with
accurately aligning gesture motions with speech signals and achieving pixel-
level realism. To address these challenges, we introduce Realistic-Gesture, a
groundbreaking framework that transforms co-speech gesture video generation
through three innovative components: (1) a speech-aware gesture tokenization that
incorporate speech context into motion pattern representation, (2) a mask gesture
generator that learns to map audio signals to gestures by predicting masked motion
tokens, enabling bidirectional contextually relevant gesture synthesis and editing,
and (3) a structure-aware refinement module that employs differentiable edge
connection to link gesture keypoints to improve video generation. Our extensive
experiments demonstrate that Realistic-Gesture not only produces highly realistic
and speech-aligned gesture videos but also supports long-sequence generation and
video gesture editing applications.

1 INTRODUCTION

In human communication, speech is often accompanied by gestures that enhance understanding and
convey emotions De Ruiter et al. (2012). As these non-verbal cues play a vital role in effective
interaction Burgoon et al. (1990), gesture generation a key component of natural human-computer
interactions. As artificial intelligence advances, equipping virtual avatars with realistic gesture
capabilities will become essential in creating immersive interactive experiences.

The relationships between the semantic and emotion content of speech context, the corresponding
gestures, and the visual appearance of the speaker’s performance are complex. As such, many
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recent works Yi et al. (2023); Liu et al. (2023; 2022d;a) address a reduced form of this problem by
generating a simplified representation of the 3D motion, consisting of joints and body parts, that
plausibly accompanies a given speech sample, which can then be rendered using standard rendering
pipelines. Such representations capture basic motion patterns, yet they neglect the importance of the
speaker’s visual appearance, resulting in a lack of realism that hinders effective communication.

Other works, e.g. ANGIE Liu et al. (2022c) and S2G-diffusion He et al. (2024), employ image-
warping techniques, constrained by keypoints obtained from optical-flow-based deformations, for
co-speech video generation. However, such approaches encounter several critical issues. First, these
keypoints only define large-scale transformations, and thus miss subtle movements of specific body
parts (e.g. hands, fingers). Second, it is difficult to connect such broad and unconstrained motions
representation to speech content. This makes it difficult to conditionally generate gestures that
are appropriately responsive to the audio, which inhibits the gestures’ naturalism and expressivity.
Finally, the generated motion patterns are often unstructured and overly reactive to large motion,
resulting in noisy and imprecise renderings, especially in the hands and shoulders. Collectively,
these challenges significantly limit the overall quality and realism of the generated video content.

To address these challenges, we introduce Realistic-Gesture, a framework designed to generate
speech-aligned gesture motions and high-fidelity speech video outputs. Our approach begins with
refined gesture motion representations using keypoints from pretrained human pose estimators,
allowing for clearer disentanglement of human motions across the face, body, and hands. To uncover
the intrinsic temporal connections between gestures and speech, we employ contrastive learning
to align these two modalities. This joint representation captures the triggers of gesture patterns
influenced by speech. We incorporate speech-contextual features into the tokenization process
of gesture motions through knowledge distillation, aiming to infuse the gesture representations
with implicit intentions conveyed in the audio. This integration creates a clear linkage between
the gestures and the corresponding speech, enabling the conditional generation of gestures that
accurately reflect the speaker’s intended meaning based on the speech input. For latent motion
generation, inspired by Muse Chang et al. (2023) and MAGE Li et al. (2023), we introduce a
masked gesture generator that refines the alignment of gesture motions with the speech signal
through bidirectional mask pretraining, enabling long sequence generation and editing capabilities.
Finally, for uplifting the latent motion generation into 2D animations, we propose a structure-aware
image refinement module that generates heatmaps of edge connections from keypoints, providing
image-level supervision to improve the quality of body regions with large motion. Extensive
experiments demonstrate that our method outperforms the existing state-of-the-art approaches in
both quantitative and qualitative metrics.

In summary, our primary contributions are:

1. a speech-aware gesture motion representation obtained through knowledge distillation
from the gesture-speech aligned features from contrastive learning;

2. a masked gesture motion generator, carefully designed to enable high-quality gesture
motion generation with long sequence generation and edit-ability support; and

3. a pixel-level refinement module, which uses a structure-aware edge heatmap as supervision
to improve the final output fidelity.

2 RELATED WORK

Co-speech Gesture generation Most recent works on co-speech gesture generation employ
skeleton- or joint-level pose representations. Ginosar et al. (2019) use an adversarial framework
to predict hand and arm poses from audio, and leverage conditional generation Chan et al. (2019)
based on pix2pixHD Wang et al. (2018) for videos. Some recent works Liu et al. (2022d); Deichler
et al. (2023); Xu et al. (2023) learns the hierarchical semantics or leverage contrastive learning to
obtain joint audio-gesture embeding to assist the gesture pose generation. Rhythmic gesticulator Ao
et al. (2022) construct high and low level audio-motion embedding based on lingustic theory for
gesture generation. TalkShow Yi et al. (2023) estimates SMPL Pavlakos et al. (2019) poses, and
models the body and hand motions for talk-show videos. CaMN Liu et al. (2022b) and EMAGE Liu
et al. (2023) use large conversational and speech datasets for joint face and body modeling with
diverse style control. ANGIE Liu et al. (2022c) uses unsupervised 2D keypoints with image-
warping features based on MRAA Siarohin et al. (2021) to model body motion. It leverages
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Vector Quantization van den Oord et al. (2018) to obtain common patterns, followed by a GPT-
like network that outputs co-speech gesture videos. S2G-Diffusion He et al. (2024) uses TPS Zhao
& Zhang (2022) and optical flow prediction to extract and refine latent motion features from videos.
However, none of these works produce structure- and speech-aware motion patterns that are suitable
for achieving natural and realistic gesture rendering.

Conditional Video Generation Conditional Video Generation has undergo significant progress
for various modalities, like text Blattmann et al. (2023), pose Karras et al. (2023); Wang et al.
(2023b), and audio Ruan et al. (2023). Diffusion Models Ho et al. (2020) improve generation
qualities. AnimateDiff Guo et al. (2024) presents an efficient motion adaptation module based on
low-rank adaptation Hu et al. (2022) (LoRA) to adapt image diffusion model for video motion
generation. AnimateAnyone Hu et al. (2023) construct referencenet for fine-grained control based
on skeleton. Make-Your-Anchor Huang et al. (2024) improves avatar video generation through
disentangled face and body based on SMPL-X conditions. Champ Zhu et al. (2024) introduces
human SMPL models for guidance. EMO Tian et al. (2024) leverages audio as control signal for
talking head generation. However, these methods are based on large amount of training data and
slow in inference speed. None of them focus on the speech-gesture pixel-level video generation.

Masked Representation Learning for Generation Masked Representation Learning has been
demonstated an effective representation learning for various modalities. Devlin (2018); He et al.
(2022) Some works explored the generation capabilities using this paradigm. MAGE Li et al. (2023)
achieves high-quality image generation through iterative remasking. Muse Chang et al. (2023)
extends this idea to leverage language with region masking for image editing and achieve fine-
grained control. Recent Masking Models Pinyoanuntapong et al. (2024); Wang (2023); Mao et al.
(2024) bring this strategy to the motion and gesture domain and improves the motion generation
speed, quality, and editing capability. Inspired by these work, we propose the masked gesture
generation conditioned the audio to learn the gesture-speech correspondence during generation.

3 PRELIMINARY

Warping-Based Image Animation. Warping-based image animation methods have risen to
prominence recently Siarohin et al. (2021; 2019); Zhao & Zhang (2022). They leverage keypoint
predictor to identify pairwise corresponding keypoints between a source image and a driving image.
This information is used to warp the source image to match the driving image, thereby producing a
deformation that aligns with the driving scene. Following this, pixel-level optical flow and occlusion
masks are estimated from the deformed images to capture global motion and handle occlusions for
achieving driving image reconstruction. We defer additional details to the Appendix.

Image-Animation Based Co-Speech Gesture Video Synthesis. In the context of co-speech
gesture video synthesis, recent advancements have employed warping-based image animation
techniques to derive motion patterns and learn the correspondence between these patterns and
audio, facilitating speech-driven generation. Given a video clip V = {I0, I1, . . . , IN} and
an accompanying audio sequence A = {a1, a2, . . . , aN}, the objective is to predict motion
representations M̂ based on the initial frame I0 and the audio input. The image animation module
reconstructs all video frames Î1 through unsupervised learning to derive motion representations and
transformations. The audio sequence serves as guidance for reconstructing motion patterns across
the entire sequence of frames following the initial frame.

However, this approach faces three significant challenges: (1) keypoints derived from global
optical-flow-based transformations, learned through unsupervised methods, often fail to capture
subtle movements of specific body parts; (2) the motion representations do not include contextual
information from the speech, making it difficult to generate gestures that are conditionally responsive
to audio; and (3) the lack of structural awareness in the motion representations leads to blurry and
noisy predictions, particularly affecting the hands and shoulders, while also rendering the system
sensitive to large motion patterns. To address these challenges, we propose the following methods
to enhance control over co-speech gesture video generation.

3
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4 REALISTIC-GESTURE
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Figure 2: An overview of our framework.

As shown in Fig. 2, our framework targets at gen-
erating realistic gesture videos. To achieve this
goal, we first learn gesture-speech alignment to build
speech-aware gesture motion representation through
contrastive learning. (Sec. 4.1) To achieve fine-
grained control over the gesture motion generation,
we propose a Masking-based Gesture Generator, with
long sequence and editing capabilities. (Sec. 4.2).
To improve the noisy hand and shoulder movement
during the uplifting of latent motion to pixel space, we
propose a structure-aware image refinement through
differentiable edge heatmaps for guidance. (Sec. 4.3).

4.1 SPEECH-AWARE GESTURE MOTION REPRESENTATION

Unlike ANGIE Liu et al. (2022c) and S2G-Diffusion He et al. (2024), which rely on unsupervised
learning of keypoints for warping-based on optical flow, we utilize 2D poses extracted from
images. While using 2D poses for image warping may slightly decrease fidelity, it significantly
enhances the perceptual quality of the generated video, shown in Sec. 5.4. With poses, gestures
can be decomposed into facial and body movements. We represent a gesture motion sequence as
G = [F ;B] = [ft; bt]

T
t=1, where T denotes the length of the motion, f represents the 2D facial

landmarks, and b denotes the 2D body landmarks. Further details on gesture representations can be
found in the appendix. For speech representation, we extract audio embeddings from WavLM Chen
et al. (2022). In addition, we extract Mel spectrogram features Rabiner & Schafer (2010) and beat
information using librosa McFee et al. (2015). These features are concatenated to form the speech
representation. For image-warping transformation, we select TPS Zhao & Zhang (2022).

Speech-Gesture Alignment. To align gesture motion patterns with the content of speech and
beats, we draw inspiration from image-language contrastive learning Radford et al. (2021). We first
project both speech and gesture modalities into a shared embedding space to enhance the speech
content awareness of gesture features. As illustrated in Fig. 3, we separately train two gesture
content encoders, Ef for face motion and Eb for body motion, alongside two speech encoders, ESf

and ESb
, to map face and body movements and speech signals into this joint embedding space. For

simplicity, we represent the general gesture motion sequence as G. We then apply mean pooling to
aggregate content-relevant information from each feature sequence, resulting in the embeddings zs
and zg for speech and gestures, respectively. We leverage CLIP-style contrastive learning to train
these content encoders. Given a batch of paired embeddings B = {(zti , z

g
i )}Bi=1, we optimize the

following loss with τ as the temperature:

Lcontrast = − 1

B

B∑
i=1

(
log

exp(zgi · zti/τ)∑B
j=1 exp(z

g
i · ztj/τ)

+ log
exp(zti · z

g
i /τ)∑B

j=1 exp(z
t
i · z

g
j /τ)

)
(1)

Unlike previous methods Ao et al. (2022); Liu et al. (2022d); Deichler et al. (2023), which primarily
capture sequence-level alignment and may overlook local temporal dynamics, to mitigate this
limitation, we randomly mask 30% of segments from both speech and gesture sequences within
the same temporal regions during training. Furthermore, we apply a linear classifier on the gesture
embedding to predict speech beats, enhancing the temporal alignment between gestures and speech.
We defer additional details of temporal-level improvement by our strategy in the Appendix.

Speech-Pattern Learning Through Knowledge Distillation. For gesture motion tokenization,
we utilize Residual Vector Quantization Lee et al. (2022) (RVQ) to capture the high diversity and
complexity of facial and body motions. To construct context-aware motion representations, we
directly encode alignment information into the gesture motion codebook. This allows the semantics
and contextual triggers from speech (e.g., pronouns like “this” or “they”) to be fused into the motion
embedding, and enables the generator to easily identify the corresponding motion representation in
response to speech triggers. To achieve this goal, we leverage gesture content encoder as the teacher
and distill knowledge to codebook latent representation. We aim to maximize the cosine similarity
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Figure 3: Left: Contrastive Learning for gesture-speech alignment. We distill the joint speech contextual-
aware feature into latent codebook. Right: We use speech for generating gesture motion tokens with Mask
Gesture Generator. We apply random mask for reconstruction during training and iterative remask based on
probability for inference. Residual Gesture Generator based on the base VQ-tokens to predict the residuals.

over time between the final RVQ quantization output and the representation from the gesture content
encoder, formulated as follows:

Ldistill =

T∑
t=1

cos
(
p(QR)

t, Es(G)t
)

(2)

where p denotes a linear projection layer, QR is the final quantization output from the RVQ-VAE,
Es(G) represents the output from the gesture content encoder, and T is the total time frames. The
overall training objective for the RVQ-VAE is defined as:

Lrvq = Ex∼p(x)

[
∥x− x̂∥2

]
+ α

R∑
r=1

Ezr∼q(zr|x)

[
∥er − sg (zr − er)∥2

]
+ βLdistill (3)

where Lrvq combines a motion reconstruction loss, a commitment loss van den Oord et al. (2018)
for each layer of quantizer with a distillation loss, with α and β weighting the contributions.

4.2 SPEECH-CONDITIONED GESTURE MOTION GENERATION

To enhance the generation of gesture motions across different layers of the quantized codebooks,
we draw inspiration from VALL-E Wang et al. (2023a) to design Masked Gesture Generator for
jointly decoding facial and body motions for the base-layer outputs of quantizers, and Residual
Gesture Generator for the face and body tokens from the subsequent R residual quantization layers.

Masked Gesture Generator. As shown in Fig. 3, during training, we derive motion tokens
by processing raw gesture sequences through both body and face tokenizers. The motion token
corresponding to the source image acts as the conditioning for all subsequent frames. For speech
control, we initialize the audio content encoder from alignment pre-training as described in Sec. 4.1.
This pre-alignment of gesture tokens with audio encoder features enhances the coherence of gesture
generation. We employ cross-attention, using the audio input as keys and values while the gesture
representation serves as the query, integrating audio information with gesture feature. To refine
control over gesture patterns, we apply Adaptive Instance Normalization (AdaIN) Huang & Belongie
(2017) after the feed-forward layers, enabling diverse gesture styles based on the speaker’s identity.

Residual Gesture Generator. The Residual Gesture Generator shares a similar architecture with
the Masked Gesture Generator, but it includes R separate embedding layers corresponding to each
RVQ residual layer. During training, we randomly select a quantizer layer j ∈ [1, R] for learning.
All tokens from the preceding layers t0:j−1 are embedded and summed to form the token embedding
input. After generating the base layer predictions of discrete tokens from the Masked Gesture
Generator, these tokens are fed into the Residual Gesture Generator. This module iteratively predicts
the tokens from the base layers, ultimately producing the final quantized output.
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Inference. While existing works Liu et al. (2023); Yi et al. (2023); Chen et al. (2024) leverage
auto-regressive next-token prediction or diffusion-based generation process, these strategies hinder
the fast synthesis for real-time applications. To resolve this problem, as in Fig. 3, we employ an
iterative mask prediction strategy to decode motion tokens during inference. Initially, all tokens are
masked except for the first token from the source frame. Conditioned on the audio input, the Mask
Gesture Generator predicts probabilities for the masked tokens. In the l-th iteration, the tokens with
the lowest confidence are re-masked, while the remaining tokens stay unchanged for subsequent
iterations. This updated sequence continues to inform predictions until the final iteration, when
the base-layer tokens are fully generated. Upon completion, the Residual Gesture Generator uses
the predicted base-layer tokens to progressively generate sequences for the remaining quantization
layers. Finally, all tokens are transformed back into motion sequences via the RVQ-VAE decoder.

Training Objective. To train our gesture generation models, Lmask, and Lres functions for two
generaors respectively by minimizing the categorical cross-entropy loss, as illustrated below:

Lmask =

T∑
i=1

− log pϕ(ti|Es(S),MASK), Lres =

V∑
j=1

T∑
i=1

− log pϕ(t
j
i |t

1:j−1
i , Es(S), j). (4)

In this formulation, Lmask predicts the masked motion tokens ti at each time step i based on the
input audio and the special [MASK] token. Conversely, Lres focuses on learning from multiple
quantization layers, where tji represents the motion token from quantizer layer j and t1:j−1

i includes
the tokens from preceding layers. We also feed the predicted tokens into the RVQ decoder for
gesture reconstructions, with velocity and acceleration losses Tevet et al. (2022); Siyao et al. (2022).

4.3 STRUCTURE-AWARE IMAGE REFINEMENT

To transfer gesture generation to pixel-level video synthesis, we leverage TPS Zhao & Zhang
(2022) to achieve portrait animation based on gesture pattern keypoints from Sec. 4.2 through
image warping. To address the uncertainties by optical-flow-based deformation, particularly in
large motion regions such as the hands and shoulders, we propose a Semantic-Aware Generator.
Auto-Link He et al. (2023) demonstrates that the learning of keypoint connections for image
reconstruction aids the model in understanding image semantics. Based on this, we leverage
keypoint connections as semantic guidance for image refinement.

Learnable Edge Heatmaps. Using the gesture motion keypoints, we establish linkages between
them to provide structural information. To optimize computational efficiency, we limit the number
of keypoint connections to those defined by body joint relationships Wan et al. (2017), rather than
considering all potential connections in He et al. (2023).

For two keypoints ki and kj within predefined connection groups, we create a differentiable edge
map Sij . This edge is modeled as a Gaussian function extending along the line connecting the
keypoints. Formally, the edge map Sij for keypoints (ki,kj) is defined as:

Sij(p) = exp
(
vij(p)d

2
ij(p)/σ

2
)
, (5)

where σ is a learnable parameter controlling the edge thickness, and dij(p) is the L2 distance
between the pixel p and the edge defined by keypoints ki and kj :

dij(p) =


∥p− ki∥2 if t ≤ 0,

∥p− ((1− t)ki + tkj)∥2 if 0 < t < 1,

∥p− kj∥2 if t ≥ 1,

where t =
(p− ki) · (kj − ki)

∥ki − kj∥22
. (6)

Here, t denotes the normalized distance between ki and the projection of p onto the edge.

To derive the edge map S ∈ RH×W , we take the maximum value at each pixel across all heatmaps:
S(p) = max

ij
Sij(p). (7)

We generate heatmaps at various resolutions. Inspired by SPADE Park et al. (2019), we treat these
structural heatmaps as semantic guidance for image generation. A U-Net with residual blocks
utilizes spatial semantic control from the edge heatmaps to refine the final video output.

Training Objective. We employ a conditional adversarial loss Mirza & Osindero (2014), along
with perceptual similarity loss Johnson et al. (2016) and L1 loss for image refinement. The

6
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Figure 4: Visual comparisons. Our method generates high-quality hand and shoulder motions, and presents
metaphoric gestures when saying “90 joules,” and “in each case.”

discriminator utilizes the edge heatmap as a condition to compare generation against ground truth:
LcGAN (G,D) =EIgt,map [logD (Igt,map)] + Emap [log (1−D (map, Igan))] , (8)

where map denotes the edge heatmap, and (·, ·) indicates concatenation.

5 EXPERIMENTS

Since our work focuses on joint gesture motion and video generation, the main experiments primar-
ily compare our approach with existing methods that also address joint generation. Comparisons
specifically for gesture motion generation and avatar video rendering are deferred to the Appendix,
where they are treated as separate, disentangled modules and compared with relevant works.

5.1 EXPERIMENTAL SETTINGS

Dataset and preprocessing. We utilize PATS Ginosar et al. (2019); Ahuja et al. (2020) for the
experiments. It contains 84,000 clips from 25 speakers with a mean length of 10.7s, 251 hours in
total. For a fair comparison, following the literature Liu et al. (2022c); He et al. (2024) and replace
the missing subject, with 4 speakers are selected (Noah, Kubinec, Oliver, and Seth). All video clips
are cropped with square bounding boxes, centering speaks, resized to 256 × 256. We defer the
additional details in the Appendix. After filtering, we obtain around 1000 clips for each speaker,
randomly divided into 90% for training and 10% for evaluation, 4,000 in total.

Baseline Methods. We benchmark Realistic-Gesture against several co-speech gesture video
generation methods: (1) ANGIE Liu et al. (2022c), a work in co-speech gesture video synthesis; (2)
MM-Diffusion Ruan et al. (2023), an audio-video generation model demonstrated on the AIST++
dataset Li et al. (2021) that produces audio-driven human motion videos; and (3) S2G-Diffusion He
et al. (2024), the most recent advancement in this domain. Notably, due to MM-Diffusion’s fixed
generation of 34 frames, we segment the audio accordingly for each generation.

5.2 QUANTITATIVE EVALUATION

Evaluation Metrics. We evaluate gesture motion and pixel-level video quality separately. For
gesture motion metrics, we use Fréchet Gesture Distance (FGD) Yoon et al. (2020) to measure

7
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Table 1: Quantitative results on the test set. Bold indicates the best performance. Our method performs better
in terms of both gesture motions and video generation quality.

Name Gesture-Motion Evaluation Video Quality Assessment
FGD ↓ Div. ↑ BAS ↑ PCM ↑ FVD ↓ VQAA ↑ VQAT ↑

Ground Truth (GT) 0.0 14.012 1.00 1.000 0.0 95.694 5.329
ANGIE 67.524 6.674 0.783 0.372 526.247 88.144 4.729

MM-Diffusion 137.62 3.212 0.646 0.112 - 79.561 4.238
S2G-Diffusion 23.646 10.848 0.974 0.447 486.134 93.553 5.401

Ours 1.303 13.260 0.996 0.572 476.120 96.326 6.081

the distribution gap between real and generated gestures in feature space, Diversity (Div.) Lee et al.
(2019) to calculate the average feature distance between generated gestures, Beat Alignment Score
(BAS) following Li et al. (2021), and Percent of Correct Motion parameters (PCM), difference of
generation deviate from ground-truth following Chen et al. (2024). We extract 2D human poses for
face and body using MMPose OpenMMLab (2020), which differs from S2G-Diffusion that focuses
solely on body poses. The first two metrics utilize an auto-encoder trained on PATS poses.

For pixel-level video quality, we assess Fréchet Video Distance (FVD) Unterthiner et al. (2018) for
the overall quality of gesture videos, VQAA for aesthetics and VQAT for technical quality based
on Dover Wu et al. (2023), pretrained on a large-scale dataset with labels ranked by real users.

Evaluation Results. We present quantitative evaluations in Tab. 1. Our approach significantly
outperforms existing methods in gesture motion metrics, achieving an FGD of 1.303 and a Diversity
score of 13.260. These results indicate that our generated gesture patterns closely resemble those
from ground-truth videos, exhibiting both high naturalness and a broader range of motion patterns.
For video quality assessment, we use the FVD metric to evaluate the similarity of the generated video
distribution to the ground-truth videos. Our model achieves the lowest FVD among the compared
methods, demonstrating superior performance. The VQAA and VQAT metrics measure perceived
user preferences for video generation content. Notably, our approach yields a VQAA of 96.326
and a VQAT of 6.081, surpassing the ground-truth videos. This success can be attributed to our
structure-aware image enhancement design. In contrast, MM-Diffusion produces limited gesture
patterns due to its design, which generates only a few continuous frames and struggles to learn
diverse motion patterns from speech audio. ANGIE leverages MRAA Siarohin et al. (2021) for
regional coarse motion patterns but lacks the precision necessary for motion control aligned with
speech, resulting in low diversity and beat alignment. S2G-Diffusion performs better than ANGIE
but still fails to generate fine-grained gesture patterns, as it relies on image optical flows without
adequately focusing on the nuances of human facial and body movements.

5.3 QUALITATIVE EVALUATION
Table 2: Subjective evaluation results are
shown as Mean Opinion Scores (MOS).

Methods MOS1 MOS2 MOS3 MOS4

User Study
GT 4.7 4.7 4.7 4.65

MM-Diffusion 1.35 1.65 1.4 1.55
ANGIE 1.95 3.25 1.9 2.25

S2G-Diffusion 3.0 3.6 3.15 3.0
Ours 3.35 3.05 3.35 3.25

Evaluation Results. We provide qualitative evalu-
ations of video generation in Fig. 4. MM-Diffusion
generates unrealistic shoulder movements. ANGIE
produces misaligned gesture motions with the ac-
companying speech. Although S2G-Diffusion shows
improvement over ANGIE, it struggles with local
regions, such as the hands, due to its reliance on unsupervised keypoints for global transformations,
which neglects local deformations. In contrast, our method demonstrates high-quality video
generation, particularly in the facial and body areas. The alignment between gesture and speech
is notably enhanced through our speech-content-aware gesture latent representation. For example,
when the actor says ”90 joules,” he points to the screen, and he emphasizes phrases like ”so
two ways” and ”in each case” by raising his hands as metaphoric gestures. This coordination
exemplifies our approach’s capability to produce contextually relevant and expressive gestures.

User Study. We conducted a user study to evaluate the visual quality of our method. We sampled
80 videos from each method and ground-truth, and invited 20 participants to conduct Mean Opinion
Scores (MOS) evaluations. The rating ranges from 1 (poorest) to 5 (highest). Participants rated the
videos on: (1) MOS1: “How realistic does the video appear?”, (2) MOS2: “How diverse does the
gesture pattern present?”, (3) MOS3: “Are speech and gesture synchronized in this video?” and (4)
MOS4: “What is your overall evaluation of the video”. The videos were presented in random order

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Ablations of our method. We exam the keypoint design, gesture representation, gesture generator
architecture, training & inference strategy and image-refinement. Bold indicates the best performance.

Kp Repr. FVD↓ LPIPS↓ PSNR↑
Unsup-kp 387.05 0.05 27.41
2D-pose 272.18 0.05 27.26
+ flex kp 377.14 0.06 25.36

full-model 225.77 0.04 27.17
(a) Configurations for keypoint
design.

G-Repr. FGD↓ Div.↑ PCM↑
baseline 262.675 18.142 0.279
+RVQ 34.940 6.713 0.327

+ separate 21.473 10.536 0.412
+ distill 1.303 13.260 0.582

(b) Gesture motion representa-
tions.

G-Gen. FGD↓ Div.↑ PCM↑
w/o res 3.372 11.359 0.513
concat 3.415 11.314 0.514

w/o align 8.382 11.452 0.373
full-model 1.303 13.260 0.582
(c) Generator archiecture design.

Refine VQAA↑ VQAT ↑ FVD↓
w/o refine 91.248 5.381 492.341

+ UNet 93.958 5.479 484.323
+ skeleton 95.902 5.479 475.636
+ heatmap 96.326 6.081 476.120
(d) Image-refinement strategies.

M-Ratio FGD↓ Div.↑ PCM↑
Uni 0-1 3.348 14.312 0.513
Uni .3-1 3.232 12.58 0.512
Uni .5-1 1.303 13.260 0.582
Uni .7-1 1.790 13.49 0.572
(e) mask-ratio during training.

iter. FGD↓ Div.↑ PCM↑
5 1.303 13.260 0.582
10 1.642 13.40 0.575
15 1.828 13.49 0.573
20 1.881 13.49 0.572
(f) Mask decoding steps.

unsupervised keypoints

2D poses

- RVQ + Distill

+RVQ +RVQ + Distill

+RVQ base layer (No residual) + Distill w/o refine

w refine

Figure 5: Ablation visualizations. Left: motion by unsupervised keypoints or 2d poses; Middle: RVQ-based
gesture representation and generation; Right: image-refinement helps hand generation.

to capture participants’ initial impressions. As shown in Tab. 2, our method outperformed others
across realness, synchronization, and overall quality, but lower in diversity than S2G-Diffusion. We
defer additional details of the user study in the appendix.

5.4 ABLATION STUDY

In this section, we present ablation study of keypoint design for image warping, gesture pattern
representation exploraton, gesture generator architecture design, and varios comparisons of image-
refinement. We defer additional experiments in the Appendix.

Motion Keypoint Design We evaluate three keypoint representations for image-warping: (1)
unsupervised keypoints for global optical-flow transformation (as in ANGIE and S2G-Diffusion),
(2) 2D human poses, and (3) 2D human poses augmented with flexible learnable points. Each
design is assessed using TPS Zhao & Zhang (2022) transformation, with self-reconstruction based
on these keypoints for evaluation. We compare the full-model reconstruction with refinement against
the first three designs without refinement. As shown in Tab. 3a, learnable keypoints lead to a
significant decrease in FVD, highlighting their inadequacy for motion control. The 2D landmark-
based keypoints yield slightly lower SSIM scores, likely due to their limited capacity to represent
global transformations. The inclusion of flexible keypoints does not enhance the image-warping
outcomes. Consequently, we opt to utilize 2D pose landmarks exclusively for our study.

Motion Representation. We evaluate several configurations: (1) baseline: no motion representa-
tion, relying solely on the generator to synthesize raw 2D landmarks; (2) + RVQ: utilizing Residual
VQ (RVQ) to encode joint face-body keypoints; (3) + separate motion: employing two RVQs for
independent face and body motions; (4) + distill: learning joint embeddings for speech and gesture
in both face and body motions, followed by distillation for RVQ tokenization. We discover RVQ
significantly improve the precise pose location while distillation leads to natural movements.
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M M M M
M M M

M M M M

Long sequence Generation Gesture Pattern Transfer

M M M

Gesture Video Editing

Figure 6: Our model supports multiple video gesture generation end editing applications.

Generator Design. We explore various designs for the gesture generator: (1) w/o res: no residual
gesture decoder; (2) concat: instead of using cross-attention for audio control, we concatenate
the audio features with gesture latent features element-wise during generation; (3) w/o align: the
audio encoder is randomly initialized rather than initialized from face and body contrastive learning.
Our findings indicate that the Residual Gesture Generator significantly enhances finger motion
generation. The cross-attention design outperforms element-wise concatenation, while the pre-
alignment of the audio encoder notably improves FGD. We attribute this improvement to the shared
similarities in the codebook and audio encoders during contrastive alignment.

Image Refinement. We examine various network designs for motion generation, specifically: (1)
w/o refine: no image refinement, relying solely on image warping; (2) + UNet: employing a standard
UNet; (3) + pose skeleton: integrating connected skeleton maps as in the diffusion ReferenceNet Hu
et al. (2023); (4) + edge heatmap: substituting the previous design with our learnable edge heatmap.
Our experiments reveal that the edge heatmap outperforms skeleton maps, likely due to the learnable
thickness of connections, which provides better semantic-aware generation guidance.

Training and Inference Strategy. We evaluate the mask ratio during training and the number of
inference steps during decoding. As shown in Tab. 3f, our model requires only 5 inference steps, in
contrast to over 50 or 100 steps in diffusion-based models. Furthermore, a uniform masking ratio
between 0.5 and 1 during training yields optimal performance.

5.5 APPLICATION

Long Sequence Generation. Shown on the left of Fig. 6, to generate long sequences, we start
with the initial frame and the corresponding target audio, which we segment into smaller windows.
After generating the first segment, we use the last few frames of the generated output as the new
starting frame conditions for the next segment of audio, allowing for a iterative outpainting.

Video Gesture Editing. For gesture editing and inpainting, we first extract the keypoints from a
given video sequence and tokenize the face and body movements into motion tokens. Thanks to the
model’s bidirectional decoding capability, we insert [MASK] tokens wherever edits are needed.
Trained on temporal masking, the model generate coherent gestures in the masked areas. By
incorporating different speech input and speaker embeddings, we can create new gesture patterns
and re-render the video based on the edited latent motion tokens.

Gesture Pattern Transfer. Given the design of our framework, with different identity embedding,
the model can generate different gesture patterns given the input identity embedding control given
the same audio. Please see the demo videos in our Appendix for more details.

6 CONCLUSION

We present Realistic-Gesture, a framework for generating realistic co-speech gesture videos. To
ensure the gestures cohere well with speech, we propose speech-content aware gesture motion
representation though knowledge distillation from the gesture-speech aligned features obtained
through contrastive learning. Our masked gesture motion generator enables the creation and editing
of long, high-quality gesture motion sequences. Our pixel-level refinement module further improves
the transformation of inferred gesture motions into realistic animations for large-scale body motion.
We believe this work will encourage further exploration of the relationship between gesture patterns
and speech context for more compelling gesture video generations in the future.
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