
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATTENTION TO MAMBA:
A RECIPE FOR CROSS-ARCHITECTURE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State Space Models (SSMs) such as Mamba have become a popular alternative to
Transformer models, due to their reduced memory consumption and higher through-
put at generation compared to their Attention-based counterparts. On the other
hand, the community has built up a considerable body of knowledge on how to train
Transformers, and many pretrained Transformer models are readily available. To
facilitate the adoption of SSMs while leveraging existing pretrained Transformers,
we aim to identify an effective recipe to distill an Attention-based model into a
Mamba-like architecture. In prior work on cross-architecture distillation, however,
it has been shown that a naïve distillation procedure from Transformers to Mamba
fails to preserve the original teacher performance, a limitation often overcome
with hybrid solutions combining Attention and SSM blocks. The key argument
from our work is that, by equipping Mamba with a principled initialization, we
can recover an overall better recipe for cross-architectural distillation. To this end,
we propose a principled two-stage approach: first, we distill knowledge from a
traditional Transformer into a linearized version of Attention, using an adaptation
of the kernel trick. Then, we distill the linearized version into an adapted Mamba
model that does not use any Attention block. Overall, the distilled Mamba model
is able to preserve the original Pythia-1B Transformer performance in downstream
tasks, maintaining a perplexity of 14.11 close to the teacher’s 13.86. To show the
efficacy of our recipe, we conduct thorough ablations at 1B scale with 10B tokens
varying sequence mixer architecture, scaling analysis on model sizes and total
distillation tokens, and a sensitivity analysis on tokens allocation between stages.

1 INTRODUCTION AND MOTIVATION

Much of the development of natural language processing over the last decade can be directly attributed
to the effectiveness of the Attention mechanism (Bahdanau et al., 2015; Vaswani et al., 2017) in
generating rich, context-aware tokens representations, and unlocking parallel training. The power of
Attention, however, comes at a computational cost scaling quadratically in the length of the input
sequence L. The attempt to curb this requirement has triggered the development of a number of
alternatives to Attention, which could retain linear complexity in L. Among these, some of the
most successful are Linear Attention (Katharopoulos et al., 2020), RWKV (Peng et al., 2023), and
State-Space Models (SSMs), particularly represented by Mamba (Gu & Dao, 2023; Dao & Gu, 2024).

On the one hand, the promise of faster inference times and reduced memory requirements provided
by linear alternatives to Attention is undoubtedly appealing; on the other, their performance on
downstream tasks still tends to fall short of that of Transformers, especially at scale. At the same
time, research on Transformers is more mature, with a larger number of models available (Wolf
et al., 2020), and considerable computational resources already spent into pretraining said models
(Castaño et al., 2024). In light of this, instead of training SSMs from scratch, a promising direction
is distillation (Hinton et al., 2015), which allows to directly leverage the knowledge embedded in
readily-available pretrained Transformer models. Naïve direct distillation between Transformer and
Mamba architectures, however, has shown to be challenging (Wang et al., 2024; Bick et al., 2024),
and often failing to preserve teacher performance. In our work, we identify a critical missing piece:
architectural alignment through principled initialization. Rather than forcing knowledge transfer
across fundamentally different computational paradigms, we propose a two-stage bridging strategy
(illustrated in Fig. 2) that exploits the mathematical connections between sequence mixers. We first

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

NormNorm

+
Hedgehog 

Linear Attention
Mamba 
Mixer

Linear

σ(Q K⊤) V×

Linear

ϕ(Q)ϕ(K)⊤ V

Softmax 
Attention

ϕ

+

∘ Λ
SSM

×

Conv

.
σ

Q K
Q K

Two-stage 
Distillation 

MLP

Gate

Figure 1: We propose a two-stage recipe to distill quadratic Softmax Attention (green) in a Trans-
former layer to a subquadratic Mamba-based Mixer module. Our sequence mixer (HedgeMamba) is
a hybrid of a learned linear Attention (Hedgehog (Zhang et al., 2024) in blue) and Mamba Gu & Dao
(2023) (yellow). Note that we keep the rest of the Transformer layer as it is from the teacher model
(grey); we only swap Softmax Attention with our proposed HedgeMamba mixer.

distill standard Softmax Attention into Linear Attention, building up on the Hedgehog approach
illustrated in Zhang et al. (2024). This is grounded in an application of the kernel trick, whereby the
exponentials in the Attention scores computation are approximated by scalar products of specific
features. The Linear Attention weights recovered after this first step are then used as an initialization
for the Mamba parameters, and the whole model is further fine-tuned. The recipe is designed to
guarantee effective knowledge transfer while limiting training cost to a fraction of the one used in
pretraining the teacher Transformer. As teacher models, we consider the family of pretrained Pythia
Transformers (Biderman et al., 2023), which we distill on an SSM-adaptation of their architecture.
For the distillation procedure, we use data from the OpenWebText dataset (Gokaslan et al., 2019).
The performance of our distillation recipe is measured both in terms of sheer perplexity, and on
effectiveness on downstream tasks from lm-eval-harness (Gao et al., 2021). Our approach
retains most of the teacher model’s performance: for 1B models, the student reaches a perplexity of
14.11 (from the teacher’s 13.86), with good overall scores on downstream tasks. We further establish
the robustness of our approach through ablations over student architecture components, a scaling
analysis on model size and total distillation tokens, and a sensitivity analysis on the token budget
allocation between stages.

Contributions Overall, the main contributions from our work are two-fold:

• We propose a novel method for cross-architecture distillation from a Transformer to a
Mamba model. The method composes of two stages, whereby distillation is performed
first from Attention to Linear Attention, and then onto Mamba, with the goal of favoring
knowledge transfer between the two architectures.

• We evaluate the method effectiveness via extensive ablation, scaling and sensitivity studies.
These are aimed both at refining the details of our distillation procedure, as well as verifying
its robustness with respect to the available distillation budget.

1.1 PREVIOUS WORK

Attention linearization Attention linearization techniques aim at simplifying the operations in-
volved in the assembly and/or application of the Attention matrix, so that their computational
complexity scales linearly (rather than quadratically) with the sequence length. Some methods
proposed in the literature achieve this by directly modifying the structure of the Attention matrix,
either by sparsifying it (Beltagy et al., 2020; Zaheer et al., 2021) or by reducing it to low-rank
(Wang et al., 2020; Xiong et al., 2021). Most relevant for our work is a different approach, namely
kernel-based Attention linearization (Katharopoulos et al., 2020; Choromanski et al., 2022; Peng et al.,
2023; Qin et al., 2022; Peng et al., 2021). This line of research interprets the positive semi-definite

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Attention matrix as a kernel application, which gets decomposed as dot products of feature vectors in
high-dimensional space. Effectively, this allows to reduce Attention to a Recurrent Neural Network
(RNN) application. The kernel-based approach is hence of particular relevance to us as it helps
bridging the gap between our two targets architectures, namely Transformers and Mamba: the latter
can in fact be interpreted as a specific RNN instantiation.

State-Space Models State-Space Models are a specialization of RNNs relying on recurrence
formulas which are purely linear in the hidden state. Imposing linearity has the advantage of
rendering the computation of the recurrence relationship parallelizable along the input sequence
during training, thus overcoming one of the main limitations of classical RNNs. The line of research
analyzing the properties of SSMs has been particularly active (Gu et al., 2020; 2022a;b; Cirone et al.,
2025), eventually producing the Mamba architecture (Gu & Dao, 2023), which has gained particular
traction as a Transformer alternative. More recently, Dao & Gu (2024) has drawn a direct connection
between Mamba and Linear Attention (equipped with a learnable causal mask). This, together with
the performance showcased by Mamba, acts as main motivation for using the Mamba architecture as
a representative for Linear Attention alternatives, and for adopting it in our student model definition.

Cross-architecture distillation Knowledge Distillation (Hinton et al., 2015) is an established
method for efficiently leveraging the knowledge embedded in an already-trained teacher model in
order to accelerate the training of a student model, with a history of successful applications (Gou et al.,
2021; Yang et al., 2024; Mansourian et al., 2025; Busbridge et al., 2025). While the focus of most of
the available literature is on distilling a teacher into a (generally smaller) student of the same model
class, in our work we are interested in distilling across two different architectures, with the purpose of
reducing the computational complexity of Attention. The literature on quadratic-to-linear Attention
distillation is much less developed in this sense, but the rise of Linear alternatives to Attention has
recently sparkled interest in this specific area. For example, Scavenging Hyena (Ralambomihanta
et al., 2024) distilled a Transformer model into a Hyena model (Poli et al., 2023) (but only for small
scales <70M); SUPRA replaced softmax Attention directly with a linear application (Mercat et al.,
2024); Wang et al. (2024) proposed distillation techniques for creating efficient hybrid Transformer-
Mamba models; Mao (2022) simplifies distillation onto decaying fast weights, and (He & Garner,
2025) studies cross-architecture alignment strategies. More recently, MOHAWK (Bick et al., 2024;
2025) has attempted Transformer-to-Mamba distillation, proposing a three-stage recipe where the
output of Attention and the SSM are progressively aligned before finetuning. A direct quantitative
comparison with MOHAWK is confounded by fundamental differences in the underlying model
architectures (our work is based on Pythia, while MOHAWK utilizes Phi as backbone), and the
training sets (importantly, MOHAWK uses C4 which includes Book3, a dataset known to contain
copyrighted material). However, a qualitative comparison of the methodologies is instructive. Both
approaches aim to harness the expressivity of Mamba-like models, but differ significantly in their
design and complexity. MOHAWK employs a complex three-stage training pipeline with distinct
objectives and frozen modules for each stage. By contrast, our method proposes a two-stage recipe,
theoretically grounded in the functional analogies between Transformers and SSMs, offering a more
direct and computationally streamlined approach. Also relevant is LoLCATs (Zhang et al., 2025),
which builds upon ideas from Hedgehog (Kasai et al., 2021; Zhang et al., 2024) (where softmax
Attention is approximated via a learnable linear kernel) and aims at improving the architecture
expressivity equipping it with windowed Attention and LoRA finetuning (Hu et al., 2021). While our
work also builds on Hedgehog, LoLCats is unsuitable for direct comparison due scale differences and
its instruction-finetuning loss, which cannot be applied to our pretraining-style setting.

2 PRELIMINARIES

In this section, we provide an overview of the target architectures for our distillation procedure,
namely Transformer as teacher model and Mamba as SSM student model. We also highlight the
connection between linearized forms of Attention and Mamba, which we leverage in developing our
distillation recipe, as detailed in Sec. 3.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.1 DESCRIPTION OF TARGET ARCHITECTURES

As representatives for the Transformer architecture, we consider models from the Pythia suite
(Biderman et al., 2023). The suite contains publicly available models ranging in scale from 14M to
12B parameters, consistently trained following the same recipe. As target student model, we choose
the Mamba architecture (Gu & Dao, 2023; Dao & Gu, 2024) which arguably represents the current
state-of-the-art in SSM performance. For reference, schematics of the two architectures are provided
in Fig. 4. It is worth pointing out that Mamba has been trained with the same tokenizer as Pythia, and
for a similar number of steps.

At the highest level of abstraction, both the Transformer and Mamba architectures share a similar
structure, which consists of interweaving two types of modules: one responsible for mixing tokens
within a sequence (also called sequence mixer), the other for mixing components of each individual
token embedding (generally performed by an MLP). Arguably, the most significant difference lies in
the way the sequence mixing is performed in the two architectures, as described next.

Attention In the case of Transformers, it is the Self-Attention mechanism that is responsible for
mixing the tokens embeddings sequence-wise. Its action on an input sequence X ∈ RL×d (with L
being the sequence length, and d the embedding dimension) is represented as

YAttn := AAttnV , with AAttn := softmax

(
QKT

√
d

)
, (1)

where Q,K,V ∈ RL×d are linear transformations of X , denoting queries, keys and values.

SSM mixer For Mamba, the sequence mixing is mainly performed by the SSM layer1. This reduces
to unrolling a linear recurrence relationship in the form

hl = Λl ⊙ hl−1 +Bl ⊗Xl,:

Yl,: = CT
l hl,

for l = 1 . . . L,

h0 = 0 ∈ RN×d,
(2)

for parameters Λl ∈ RN×d, and Bl,Cl ∈ RN , N being the hidden state size. To highlight the
similarity with (1), the solution to the above recurrence can be expressed in matrix form as

YSSM := ASSMX, with [ASSM]i,j := CT
i

j+1∏
k=i

ΛkBj , (3)

which also indicates how, at training time, the SSM mixer can be applied in a parallel fashion along
the sequence, similarly to Attention. The main particularity of Mamba, which sets it apart from other
SSM models, lies in the fact that the recurrence parameters Λl,Bl,Cl all depend on the input Xl,:.
Indeed, this formulation makes it akin to Linear Attention alternatives, as we outline in the following.

Linear Attention and SSMs Linearized alternatives to Attention aim at turning the application of
the Attention layer (1) from a quadratic- to a linear-complexity operation in L. One way to achieve
this consists in simplifying the layer by dropping the softmax operator, to obtain

YLinAttn := (Q̂K̂T)V̂ = Q̂(K̂TV̂ ). (4)

This simplification allows one to leverage associativity in matrix multiplication, computing first
K̂TV̂ and thus only instantiating much smaller matrices K̂, Q̂, V̂ ∈ Rd×L, rather than the full
Attention matrix ∈ RL×L.

By comparing (4) with (3), we can draw a direct connection between Linear Attention and (input-
dependent) SSMs: indeed, by simplifying Λk ≡ I , one can see that the parameter B,C,X in the
SSM mixer cover a similar role as the K̂, Q̂, V̂ matrices in Linear Attention. This correspondence
is outlined more in detail by Dao & Gu (2024), and further justifies the choice of Mamba in our
experiments as a representative for linearized forms of Attention. In this work, we directly leverage
such correspondence to ground our distillation recipe, as described in Sec. 3.2.

1We note that the convolution layer in Mamba applied before the SSM can also perform sequence mixing.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Linear

σ(Q K⊤) V×

Linear

ϕ(Q)ϕ(K)⊤ V

ϕ

∘ Λ
SSM

×

Conv

.
σ

Q K
Q K

Stage 1

Softmax 
Attention

Hedgehog 
Linear Attention

Stage 2

Linear*

ϕ
Q K

ϕ(Q)ϕ(K)⊤ V×

params introduced

HedgeMamba

copy params frozen*

Gate

Figure 2: Schematics of the overall approach followed in our two-stage Transformer-to-Mamba
distillation recipe. In stage one, we distill vanilla Attention into a linearized version, by learning a
feature map ϕ which approximates the action of softmax (following the Hedgehog procedure (Zhang
et al., 2024)). In stage two, we introduce additional components from the Mamba block, to boost the
overall expressivity of the model. The resulting hybrid layer, named HedgeMamba, is then further
finetuned to close the performance gap with the original teacher model.

3 CROSS-ARCHITECTURE DISTILLATION

In this section, we outline the distillation recipe designed and tested in this project. The driving
goal is to leverage the high-level similarity of Transformers and Mamba architectures to improve the
distillation procedure. To this end, we split our distillation recipe into two stages. In the first stage,
we train a feature map to effectively distill the action of softmax Attention into Linear Attention,
following the Hedgehog procedure introduced in Zhang et al. (2024). In the second stage, we translate
the extracted Linear Attention layer into an initialization for Mamba, leveraging the correspondence
outlined in Sec. 2.1 and Dao & Gu (2024), and proceed with further fine-tuning to improve overall
performance. We refer to Fig. 2 for an overview of each stage.

3.1 STAGE 1: SOFTMAX ATTENTION TO LINEAR ATTENTION

The purpose of our first step is to effectively substitute softmax Attention with a linear variant that
can adequately approximate its action. However, as highlighted in Zhang et al. (2024), there is still a
notable performance gap between the original softmax Attention and many existing linearizations.
Motivated by this, the work in Zhang et al. (2024) focuses instead on distillation via a learnable
feature map. This is at the core of the Hedgehog procedure introduced in Zhang et al. (2024), which
we leverage in our distillation method. We briefly define the procedure next.

Hedgehog The softmax Attention scores are computed starting from various exponential terms
eQl,:K

T
l,: , but we want to remove this nonlinearity. Invoking Mercer’s theorem (Mercer, 1909) allows

us to re-write the positive definite exponential operator as a scalar product of feature vectors,

ex
Tx′

=: κ(x,x′) = ϕ(x)Tϕ(x′), ∀x,x′ ∈ Rd, (5)

for a certain feature map ϕ(x) : Rd → H. Specifically, for the exponential kernel (also known
as the Gaussian kernel), its feature space H is infinite-dimensional, and the feature map ϕ(x) can
be approximated via Taylor expansion of ez around z = 0. Linear Attention variants that aim to
approximate this feature map tend to do so by keeping only the first few terms in the sum in its
Taylor expansion (Katharopoulos et al., 2020). However, as pointed out by Zhang et al. (2024), these
variants typically do not retain some relevant features of softmax Attention, such as spikiness in the
activations and dot-product monotonicity. To overcome this, Zhang et al. (2024) propose to learn the
feature map in (5) via a (single-layer) MLP:

ϕ(x) ≈ ϕMLP(x) := σ(Wx+ b), (6)

with nonlinearity σ. The learnable weights W ∈ Rd×d, b ∈ Rd are optimized by matching the
output of each teacher Attention block with that of its Hedgehog-linearized version, via cosine

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

similarity. In Zhang et al. (2024), the authors showcase how such learnable MLP feature map
greatly improves the distillation performance of Linear Attention while remaining computationally
efficient (we refer to their work for additional evaluation and implementation details of the Hedgehog
procedure). However, while in Zhang et al. (2024) the distillation procedure stops here, in this
work we improve this approach by including the learned Hedgehog feature map into the Mamba
architecture, and further refining the distillation onto this adapted architecture. More details are
outlined next.

3.2 STAGE 2: LINEAR ATTENTION TO MAMBA

With the first distillation step, we have identified a way to substitute the softmax Attention operation
in (1) with a Linear Attention one. In the second step, we want to use this Linear Attention solution as
an initialization to Mamba, and further fine-tune to improve the distillation performance by leveraging
the additional expressivity that the Mamba module provides. In this section we show how to adapt the
Mamba layer to achieve exactly this. We refer the resulting Hedgehog-Mamba layer as HedgeMamba.

Parameters initialization As mentioned in Sec. 2, we can match the output of an SSM mixer
(2) with that of a Linear Attention layer (4) by substituting Λl ≡ I and by having the parameters
B,C,X cover a similar role as K̂, Q̂, V̂ . For the specific case of Hedgehog, this translates into the
substitutions

B(X) 7→ K̂(X) := ϕMLP(K(X)), C(X) 7→ Q̂(X) := ϕMLP(Q(X))

Λ 7→ I, and X 7→ V̂ (X) := V (X),
(7)

where K(X),Q(X),V (X) are the key/query/value linear maps from the original softmax Atten-
tion layer (1), while ϕMLP is the freshly-learned Hedgehog feature map (6). Notice that the original
Mamba architecture does not allow for a value transformation X 7→ V (X) before the application of
the SSM mixer, so we modify its implementation to accommodate for this. Moreover, to ensure that
the whole Mamba block output matches that of Hedgehog at initialization, we also set the parameters
of the gate branch and the convolution so that they reduce to the identity operator. Additional details
can be found in App. B.

Attention scores normalization With the substitution in (7), the SSM mixer outputs

Yϕ :=
(
ϕMLP(Q)ϕMLP(K)T

)
V . (8)

However, the Attention scores in this formula come in an un-normalized fashion. For the Attention
scores formulation to more closely follow the target one in (1), we further include a normalization
factor in their definition:

Yϕ 7→ Yϕ/Ȳϕ, with Ȳϕ :=
(
ϕMLP(Q)ϕMLP(K)T

)
1. (9)

Notice that both Yϕ and Ȳϕ can be computed with a single pass through the SSM mixer, provided we
expand V with an all-one tensor, and duplicate the state matrix Λ, that is

V 7→ concat[V ;1], and Λ 7→ concat[Λ;Λ]. (10)

Fine-tuning With Mamba initialized as in (7), and modified to accommodate for normalization
as per (9) and (10), we are ready to resume training and enter the second stage of our distillation
procedure. This amounts to fine-tuning the whole architecture (except the embedding layers) via
Cross-Entropy loss with respect to the ground-truth. Particularly, we also unlock the additional
convolution and gate branches available in the original Mamba block, completing our definition of
the HedgeMamba layer: see also Fig. 2 for an outline of its components fine-tuned in this final stage.

The key argument from our work is that by equipping Mamba with a Hedgehog initialization we can
recover an overall better recipe for cross-architectural distillation. As we illustrated in this section,
our two-stage approach is theoretically grounded in Mercer’s theorem, together with the superior
expressive power of Mamba over vanilla Linear Attention. In the following section, we proceed to
justify our approach also empirically, by benchmarking models trained following our recipe.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 RESULTS

In this section, we present an extensive evaluation of the distillation procedure outlined in Sec. 3.
Specifically, we conduct ablation, scaling, and sensitivity studies with Pythia-1B teacher model and
10B distillation tokens across several key axes: (i) mixer architecture, by systematically expanding
vanilla Hedgehog Linear Attention with components from Mamba (Tab. 2); (ii) sensitivity analysis
on token budget allocation in different stages (Tab. 3); and (iii) scaling with respect to number of
distillation tokens (Tab. 4). Our default settings are highlighted in their respective tables. In App. A.1
we further expand on the results in this section, including results on applying our distillation procedure
to different model sizes (160M, 410M, and 1B), and reporting standard error for results in Tab. 2 to 4.

Experimental setup For all experiments we use standard Pythia-1B (Biderman et al., 2023) as
teacher model. This model has been widely adopted by the open source community, and the suite
provides both the model weights (for different scales), and the detailed full training procedure. We
distill our models using the OpenWebText (Gokaslan et al., 2019) dataset. This is an open-source
reproduction of the dataset used to train GPT2 (Radford et al., 2019), and it is commonly used in
language modeling research (Biderman et al., 2023; Sanh et al., 2019; Dao et al., 2022; Shoeybi
et al., 2019; Zhuang et al., 2021). We employ the same GPT-NeoX tokenizer used for the original
Pythia and Mamba models, making our results directly comparable. This amounts to a total of
about 9B tokens available for training. We keep a 0.0005% split on the dataset for validation, which
corresponds to 4M tokens, as in prior works (Dao et al., 2022). Unless otherwise reported, we
use a total of 10B tokens (roughly corresponding to 1.1 epochs of OpenWebText) which, to the
best of our knowledge, establishes our work as the currently largest sensitivity study with respect
to token budget in distillation. We evaluate the final distilled student models both in terms of
upstream perplexity as well as performance on selected downstream tasks. For the latter, we rely
on the lm-eval-harness (Gao et al., 2021) test suite, and consider language understanding
and common sense reasoning used in prior work (Biderman et al., 2023; Gu & Dao, 2023; Dao &
Gu, 2024). More specifically, we report accuracy scores for ARC-Easy (Clark et al., 2018), Social
IQA Sap et al. (2019), PiQA Bisk et al. (2020), Lambada (Paperno et al., 2016), BoolQ (Clark
et al., 2019), RACE (Lai et al., 2017), LogiQA (Liu et al., 2020), and WinoGrande (Sakaguchi et al.,
2019), and accuracy normalized by sequence length for ARC-Challenge (Clark et al., 2018) and
HellaSwag (Zellers et al., 2019), as in (Bick et al., 2024; Gu & Dao, 2023; Dao & Gu, 2024; Sanh
et al., 2019). We refer the reader to (Gao et al., 2021) for more details regarding evaluation.

Training In the first stage of recipe (Sec. 3.1), we replace the Attention block in the teacher
model with the Hedgehog linearization, with the goal of learning the feature map (6). Except for
the parameters defining this feature map (which are learned from scratch in stage 1), all the other
parameters are copied directly from the teacher model and kept frozen. These include MLPs, layer
norms, and input-output embedding matrices. We match the output of each Transformer layer
(consisting of MLP, sequence mixer, and residual stream) in the student model with those from the
teacher via cosine embedding matching loss. We use 1B tokens for stage 1 of our distillation recipe
with batch size 48 and sequence length 1024, which corresponds to 20K training steps. In the second
stage (Sec. 3.2), we introduce additional Mamba parameters, initialized to the identity operator (see
App. B). We keep the input-output embedding layers frozen, and finetune the rest of the model with
standard cross-entropy loss. Second-stage training continues for another 9B tokens, corresponding to
additional 180K training steps.

Implementation remarks For our implementation of the HedgeMamba layer in Fig. 2, we di-
rectly adapt the Mamba code, while still leveraging their hardware-aware CUDA selective scan,
as to not sacrifice efficiency2 (see the corresponding code in App. C). We use the teacher models
implementations and pretrained weights directly from the HuggingFace Transformers library (Wolf
et al., 2020). Student models are implemented by swapping the softmax Attention modules from the
teacher with Mamba Mixer modules from Gu & Dao (2023), equipped with the Hedgehog feature
maps from Zhang et al. (2024). Further implementation details are in App. A.2.

2We point out that Mamba selective scan implementation, albeit perfectly parallel, imposes a hard-cap of
256 on model dimension (pprp, 2024), forcing serialization for larger values. In our experiments we reach 2048,
resulting in inflated figures (> 8×) for our training times (around 12d 9h on a 8xA100 node to distill 10B tokens
using a 1B model). We refer then to distillation token budget as a more reliable metric for our procedure cost.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Baseline comparison Our main objective is to showcase the ability of our two-stage recipe to retain
the performance of the original teacher model. We point out that this is not guaranteed, given the
substantial differences with the teacher’s architecture, and the fact that we consider a pure Linear
Attention variant—and not hybrids like in some prior works (Wang et al., 2024; Bick et al., 2024).
Moreover, the original Pythia-1B teacher model was trained with 300B tokens (Biderman et al.,
2023), but we distill it with only 10B, corresponding to ∼2.7% of the token budget used to train
the teacher (334B tokens). The distillation results are reported in Tab. 1. We compare our recipe
against the Hedgehog baseline, distilled using the same cosine matching objective in stage 1 and
cross-entropy in stage 2, although in this case the split in distillation tokens is 50/50 among the two
stages, as per their original work (Zhang et al., 2024; 2025). Overall, our approach manages to retain
the teacher performance for the large part, scoring a perplexity of 14.11 versus the original 13.86. We
also point out that our approach outperforms the scaled-up Hedgehog baseline with 10B tokens in
both upstream and downstream performance, highlighting the efficacy of our approach. As additional
baseline (not reported here), we tested against naïve direct distillation onto a Mamba architecture, but
consistently resulted in unsatisfactory results (PPL>100), confirming the findings from Bick et al.
(2024).

Table 1: Comparison with teacher and prior work.

Model (1B) ↓ PPL ↑ Arc-C Arc-E SIQA PiQA Lambada BoolQ RACE LogiQA WinoG HSwag

Pythia (Teacher) 13.86 27.04 56.98 39.86 70.72 42.07 60.82 32.92 22.12 53.43 47.16
Hedgehog (Baseline) 14.89 26.45 52.74 38.38 68.01 30.60 54.80 30.43 21.65 50.91 40.79
HedgeMamba (Ours) 14.11 27.13 53.66 39.76 68.72 32.31 55.20 30.91 20.89 52.17 41.87

Ablating Mamba components In the ablation study in Tab. 2, we investigate the role of the
additional Mamba components included in stage 2 in improving the final performance of the stu-
dent model. Specifically, we consider simple Hedgehog as a baseline (Zhang et al., 2024), and
systematically add the following components from Mamba: (+SSM) the SSM mixer parameters,
particularly the learnable causal mask Λ and input and output matrices C and B from (2); (+Conv)
the short-convolution layer at the input; (+Gate) the gate branch with SiLU non-linearity. These
added components are initialized to behave like the identity, not to affect the Hedgehog feature map
learned in stage 1 (see App. B). The other SSM mixer parameters C and B are instead directly
copied from their equivalent in the Hedgehog module, as described in (7). To analyze the impact
of the new introduced mixer components in a targeted manner, all the other ablation parameters are
kept fixed: particularly, we use 10B distillation tokens, split evenly (50/50) among stages 1 and 2.
The corresponding results are reported in Tab. 2. There, we can see how each additional Mamba
component contributes to improving the performance of vanilla Hedgehog. Interestingly, the largest
improvements in perplexity and average downstream performance are yielded by the gate branch.
This finding is consistent with recent works (Qiu et al., 2025; Hua et al., 2022; Bondarenko et al.,
2023), that suggest adding a gate branch to Attention modules to improve their performance.

Table 2: Mixer architecture ablations: perplexity on validation set and downstream task performance.

Model (1B) #params ↓ PPL ↑ Arc-C Arc-E SIQA PiQA Lambada BoolQ RACE LogiQA WinoG HSwag

Hedgehog 1,014M 14.89 26.45 52.74 38.38 68.01 30.60 54.80 30.43 21.66 50.91 40.79

+SSM 1,020M 14.89 26.54 52.90 38.02 68.23 31.24 55.63 30.05 22.73 51.38 40.77
+Conv 1,020M 14.89 26.62 52.74 38.28 68.93 31.63 55.84 30.14 22.43 51.78 40.74
+Gate(HedgeMamba) 1,087M 14.58 26.19 53.11 39.56 68.77 32.16 57.61 31.00 24.42 50.99 41.81

Token budget allocation between stages One relevant design choice for our recipe consists in
determining how to best allocate our distillation tokens budget among the two stages. In Tab. 3 we
verify this empirically, and report student performance evaluations when varying how the distillation
tokens are split between stages 1 and 2. Notice that in the original Hedgehog paper Zhang et al.
(2024), the authors settle for a 50/50 split; our results instead show that it is progressively more
beneficial to invest into stage 2, up to 90% of the total token budget. Still, both stages are needed
to guarantee performance, as testified by the poor results attained by the extreme 100/0 and 0/100

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Sensitivity analysis on the token budget allocation. Total 10B distillation tokens. Distillation
on full HedgeMamba, with convolution layer and gate branch. Notice that a 100/0 split indicates that
no fine-tuning is performed, and all tokens are used for learning the Hedgehog map in stage 1 (S1);
conversely, 0/100 indicates only fine-tuning (S2) on the HedgeMamba architecture.

Tokens split ↑ Downstream evals

S1 / S2 (%) ↓ PPL Arc-C Arc-E SIQA PiQA Lambada BoolQ RACE LogiQA WinoG HSwag

Hedgehog (no FT) 100 / 0 25.71 25.85 48.70 36.34 66.49 12.12 61.47 27.27 20.58 50.83 26.14
90 / 10 16.15 25.00 52.06 38.69 68.93 28.08 56.15 30.24 22.43 51.14 39.69
75 / 25 15.18 26.71 52.31 38.59 69.26 30.66 60.61 30.24 20.58 49.96 41.02
50 / 50 14.58 26.19 53.11 39.56 68.77 32.16 57.61 31.00 24.42 50.99 41.81
25 / 75 14.25 26.19 53.91 39.71 68.93 31.90 55.41 30.81 21.35 51.30 41.59

Default 10 / 90 14.11 27.13 53.66 39.76 68.72 32.31 55.20 30.91 20.89 52.17 41.87
Finetune only 0 / 100 17.08 26.11 50.67 37.31 67.03 27.61 54.01 30.33 21.35 50.51 40.25

splits. We point out however that the second stage is generally more computationally expensive: total
training time2 increases from 12d 9h to 13d 16h for the 0/100 split.

Scaling number of distillation tokens For reference, in Tab. 4 we report how the final performance
of our student model scales with respect to the number of distillation tokens available. We distill
Pythia-1B onto full HedgeMamba, with convolution layer and gate branch. The tokens budget split
between the two stages is fixed at the optimal 10/90, and we only vary total budget. Overall, student
perplexity improves as the token budget increases, and at 10B it has not yet reached saturation.

Table 4: Scaling study on the distillation token budget.

Token budget ↓ PPL ↑ Arc-C Arc-E SIQA PiQA Lambada BoolQ RACE LogiQA WinoG HSwag

1B 16.56 26.19 52.27 38.74 67.68 27.32 57.49 29.76 20.43 52.25 40.67
2B 15.61 25.94 51.05 38.79 69.04 29.30 56.45 29.57 23.04 51.85 40.29
3B 15.15 25.09 52.69 38.43 69.10 30.56 56.57 29.28 23.04 51.93 41.03
10B 14.11 27.13 53.66 39.76 68.72 32.31 55.20 30.91 20.89 52.17 41.87

5 CONCLUSION

In this paper, we propose a novel recipe to distill a Transformer model into an SSM-based architecture.
The goal is to allow the user to reduce inference time (from quadratic in sequence length, as in classical
softmax Attention, to linear), without having to train a new architecture from scratch, and instead
aptly leveraging already-available pretrained models. The design of our architecture relies on a
principled approach, first approximating softmax Attention with a Linear Attention variant, and then
use it to initialize a Mamba block, to boost its expressivity. Mirroring these steps, the distillation
procedure is also composed of two stages: the first with the goal of aligning Attention weights, and
the second allowing for further fine-tuning of the whole architecture. In particular, the inclusion
of this first stage has proven to boost outputs alignment between student and teacher, over naïve
direct distillation. The effectiveness of the procedure is evaluated both in terms of perplexity and
performance on downstream tasks, showcasing its overall ability to preserve the teacher performance.

Limitations and future work To maintain a clear focus, we targeted our analysis on a specific
Transformer architecture (namely, Pythia). In principle, our recipe is flexible enough to be extended
to other Attention-based models, but we have not investigated its effectiveness on other variants, also
in light of the computational resources generally required for distillation (see Sec. 4). For similar
reasons, we do not isolate the effect of distillation dataset quality on the final student performance, and
limit our experiments to OpenWebText only. Finally, in the scope of this work, we investigated one
way of boosting the student model expressivity, that is by incorporating components from the Mamba
architecture: the space of possible extensions, however, remains open to additional exploration which
might further increase final performance. This notwithstanding, we believe that our work represents a
meaningful step in this exploration, covering a previously unexplored approach to bridging the gap
between Attention and Mamba.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we train our models on publicly available data using
open-source libraries and we will publish the code. We also provide comprehensive details on our
methodology and implementation. Specifically, the full architectural schematics of HedgeMamba
and its components are presented in Fig. 4, with detailed pseudocode provided in App. C. We also
specify the initialization strategies for Mamba parameters in App. B.2. Our training setup, including
hardware, optimizer, learning rate schedules, and regularization techniques, is thoroughly documented
in App. A.2. Finally, evaluation metrics and their associated standard errors, derived from 100,000
bootstrap repetitions using lm-eval settings, are reported in Tab. 5.

ETHICS STATEMENT

We adhere to ICLR’s Code of Ethics. In this work we introduce an improved recipe to distill Trans-
formers into Mamba architectures. Our method can help reducing the inference cost of generative
models, reducing energy usage, and helping to democratize the access to AI capabilities for re-
searchers and organizations with limited resources. Like any other language modeling research, the
models derived from this work could potentially be misused.

REFERENCES

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations, ICLR
2015, 2015.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Aviv Bick, Kevin Li, Eric P. Xing, J Zico Kolter, and Albert Gu. Transformers to SSMs: Distilling
quadratic knowledge to subquadratic models. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
FJlrSZBMCD.

Aviv Bick, Tobias Katsch, Nimit Sohoni, Arjun Desai, and Albert Gu. Llamba: Scaling distilled
recurrent models for efficient language processing, 2025. URL https://arxiv.org/abs/
2502.14458.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on Artificial Intelligence,
volume 34, pp. 7432–7439, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
outliers by helping attention heads do nothing. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=sbusw6LD41.

Dan Busbridge, Amitis Shidani, Floris Weers, Jason Ramapuram, Etai Littwin, and Russ Webb.
Distillation scaling laws, 2025. URL https://arxiv.org/abs/2502.08606.

Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, and Justus Bogner. Analyzing the
evolution and maintenance of ml models on hugging face, 2024. URL https://arxiv.org/
abs/2311.13380.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers, 2022. URL https://
arxiv.org/abs/2009.14794.

10

https://arxiv.org/abs/2004.05150
https://openreview.net/forum?id=FJlrSZBMCD
https://openreview.net/forum?id=FJlrSZBMCD
https://arxiv.org/abs/2502.14458
https://arxiv.org/abs/2502.14458
https://openreview.net/forum?id=sbusw6LD41
https://arxiv.org/abs/2502.08606
https://arxiv.org/abs/2311.13380
https://arxiv.org/abs/2311.13380
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theo-
retical foundations of deep selective state-space models, 2025. URL https://arxiv.org/
abs/2402.19047.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Gold-
ing, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model
evaluation, September 2021. URL https://doi.org/10.5281/zenodo.5371628.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. OpenWebText corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation:
A survey. International Journal of Computer Vision, 129(6):1789–1819, March 2021. ISSN
1573-1405. doi: 10.1007/s11263-021-01453-z. URL http://dx.doi.org/10.1007/
s11263-021-01453-z.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Re. HiPPO: Recurrent memory with
optimal polynomial projections, 2020. URL https://arxiv.org/abs/2008.07669.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022a. URL https://arxiv.org/abs/2111.00396.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models, 2022b. URL https://arxiv.org/abs/2206.11893.

Mutian He and Philip N. Garner. Joint fine-tuning and conversion of pretrained speech and language
models towards linear complexity, 2025. URL https://arxiv.org/abs/2410.06846.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 9099–9117. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/hua22a.html.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A. Smith. Finetuning pretrained transformers into RNNs, 2021. URL
https://arxiv.org/abs/2103.13076.

11

https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/1905.10044
https://doi.org/10.5281/zenodo.5371628
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/2008.07669
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2206.11893
https://arxiv.org/abs/2410.06846
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://proceedings.mlr.press/v162/hua22a.html
https://arxiv.org/abs/2103.13076


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pp. 5156–5165. PMLR, 2020.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
(eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pp. 785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A challenge
dataset for machine reading comprehension with logical reasoning, 2020.

Amir M. Mansourian, Rozhan Ahmadi, Masoud Ghafouri, Amir Mohammad Babaei, Elaheh Badali
Golezani, Zeynab Yasamani Ghamchi, Vida Ramezanian, Alireza Taherian, Kimia Dinashi, Amirali
Miri, and Shohreh Kasaei. A comprehensive survey on knowledge distillation, 2025. URL
https://arxiv.org/abs/2503.12067.

Huanru Henry Mao. Fine-tuning pre-trained transformers into decaying fast weights, 2022. URL
https://arxiv.org/abs/2210.04243.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing large language models, 2024. URL https://arxiv.org/abs/2405.
06640.

J. Mercer. Functions of positive and negative type, and their connection with the theory of integral
equations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 209:415–446, 1909. ISSN 02643952.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context, 2016. URL https://arxiv.org/abs/
1606.06031.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun
Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer
era, 2023. URL https://arxiv.org/abs/2305.13048.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random feature attention, 2021. URL https://arxiv.org/abs/2103.02143.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

pprp. Runtimeerror: Selective_scan only supports state dimension ≤ 256. https://github.
com/state-spaces/mamba/issues/120, 2024. Issue #120, Accessed: 2025-08-01.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention, 2022. URL https:
//arxiv.org/abs/2202.08791.

Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu,
Fei Huang, Suozhi Huang, Dayiheng Liu, Jingren Zhou, and Junyang Lin. Gated attention for
large language models: Non-linearity, sparsity, and attention-sink-free, 2025. URL https:
//arxiv.org/abs/2505.06708.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

12

https://aclanthology.org/D17-1082
https://arxiv.org/abs/2503.12067
https://arxiv.org/abs/2210.04243
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2103.02143
https://github.com/state-spaces/mamba/issues/120
https://github.com/state-spaces/mamba/issues/120
https://arxiv.org/abs/2202.08791
https://arxiv.org/abs/2202.08791
https://arxiv.org/abs/2505.06708
https://arxiv.org/abs/2505.06708


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tokiniaina Raharison Ralambomihanta, Shahrad Mohammadzadeh, Mohammad Sami Nur Islam,
Wassim Jabbour, and Laurence Liang. Scavenging hyena: Distilling transformers into long
convolution models, 2024. URL https://arxiv.org/abs/2401.17574.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In NeurIPS EMC2 Workshop, 2019.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 4463–4473, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/D19-1454/.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models, 2024. URL https://arxiv.org/abs/
2408.15237.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 14138–14148, 2021.

Chuanpeng Yang, Wang Lu, Yao Zhu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and
Yiqiang Chen. Survey on knowledge distillation for large language models: Methods, evaluation,
and application, 2024. URL https://arxiv.org/abs/2407.01885.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences, 2021. URL https://arxiv.org/abs/2007.14062.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the
porcupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal,
Krithik Ramesh, and Christopher Ré. LoLCATs: On low-rank linearizing of large language models,
2025. URL https://arxiv.org/abs/2410.10254.

13

https://arxiv.org/abs/2401.17574
https://aclanthology.org/D19-1454/
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2407.01885
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2410.10254


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized BERT pre-training approach
with post-training. In Sheng Li, Maosong Sun, Yang Liu, Hua Wu, Kang Liu, Wanxiang Che,
Shizhu He, and Gaoqi Rao (eds.), Proceedings of the 20th Chinese National Conference on
Computational Linguistics, pp. 1218–1227, Huhhot, China, August 2021. Chinese Information
Processing Society of China. URL https://aclanthology.org/2021.ccl-1.108/.

14

https://aclanthology.org/2021.ccl-1.108/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS AND IMPLEMENTATION DETAILS

A.1 EXPANDED RESULTS

Summary

In this section we expand the results in Sec. 4 and find that:
• Increasing the scale of the architectures (from 160M, to 410M and 1B) reduces PPL

and increases all other performances, as shown in Tab. 6.
• Even though stage 2 provides the larger benefits in decreasing overall PPL, the role

of stage 1 is key in improving performance, as shown in Fig. 3.

In this section we expand upon the results provided in Sec. 4. Particularly, Tab. 5 collects the results
in Tab. 2 to 4, and reports also their associated standard error over 100,000 bootstrap repetitions (as
per default lm-eval settings3). Overall, standard deviation remains low across all tasks, indicating
their robustness.

Table 5: Results from experiments in Sec. 4, including standard error for LM evaluations.

Model (1B) ↑ Arc-C Arc-E SIQA PiQA Lambada BoolQ RACE LogiQA WinoG HSwag

Pythia(Teacher) 27.051.30 56.991.02 39.871.11 70.731.06 42.070.69 60.820.85 32.921.45 22.121.62 53.431.40 47.160.50

Architecture ablations
Hedgehog baseline 26.451.29 52.741.02 38.381.10 68.011.09 30.600.64 54.800.87 30.431.42 21.661.62 50.911.41 40.790.49

+SSM 26.541.29 52.901.02 38.021.10 68.231.09 31.240.65 55.630.87 30.051.42 22.731.64 51.381.40 40.770.49

+Conv 26.621.29 52.741.02 38.281.10 68.931.08 31.630.65 55.840.87 30.141.42 22.431.64 51.781.40 40.740.49

+Gate(HedgeMamba) 26.191.28 53.111.02 39.561.11 68.771.08 32.160.65 57.610.86 31.001.43 24.421.69 50.991.40 41.810.49

Sensitivity: token allocation – stage1 / stage2 (%) split
100 / 0 25.851.28 48.701.03 36.341.09 66.491.10 12.120.45 61.470.85 27.271.38 20.581.60 50.831.40 26.140.48

90 / 10 25.001.27 52.061.03 38.691.10 68.931.08 28.080.65 56.150.87 30.241.43 22.431.59 51.141.40 39.690.49

75 / 25 26.711.29 52.311.02 38.591.10 69.261.08 30.660.65 60.610.87 30.241.43 20.581.61 49.961.40 41.020.49

50 / 50 26.191.28 53.111.02 39.561.11 68.771.08 32.160.65 57.610.86 31.001.43 24.421.69 50.991.40 41.810.49

25 / 75 26.191.28 53.911.02 39.711.11 68.931.08 31.900.64 55.410.85 30.811.42 21.351.60 51.301.41 41.590.49

10 / 90 27.131.30 53.661.02 39.761.11 68.721.08 32.310.63 55.200.87 30.911.42 20.891.64 52.171.40 41.870.49

0 / 100 26.111.28 50.671.03 37.311.09 67.031.10 27.610.62 54.010.87 30.331.42 21.351.61 50.511.41 40.250.49

Scaling: overall token budget
1B 26.191.28 52.271.03 38.741.10 67.681.09 27.320.61 57.490.87 29.761.41 20.431.58 52.251.40 40.670.49

2B 25.941.28 51.051.03 38.791.10 69.041.08 29.300.63 56.450.87 29.571.41 23.041.65 51.851.40 40.290.49

3B 25.091.27 52.691.02 38.431.10 69.101.08 30.560.64 56.570.87 29.281.41 23.041.65 51.931.40 41.030.49

10 27.131.30 53.661.02 39.761.11 68.721.08 32.310.63 55.200.87 30.911.42 20.891.64 52.171.40 41.870.49

In Tab. 6 we report an additional analysis on the performance of our distillation procedure when
applied to models of various sizes (160M and 410M, on top of our already-presented 1B results).
Overall, the results confirms the trend of HedgeMamba consistently showing improvements over the
Hedgehog approach.

Figure 3 provides the detailed evolution of the validation perplexity during training, for the token
allocation splits discussed in Tab. 3. As a reminder, we train for a total 200K steps: each train step uses
49,200 tokens, so that the total number of tokens used in training are 49,200×200,000=9,840,000,000
≈ 10B. The training steps are allocated between the first and second stage of our recipe in Sec. 3
depending on the split considered: for instance, a 10/90 split signifies that 10% of the training steps
(i.e. 20K steps) are used for stage 1 and 90% (180K steps) for stage 2. From Fig. 3 we can infer that,
even though stage 2 provides the larger benefits in decreasing overall PPL, the role of stage 1 is key
in improving performance. Allocating all training tokens to stage 2, in fact, causes PPL to stall at a
much higher value than if we allocated even a small fraction (with as small as 10% giving the best
results) also to stage 1.

3LM harness evaluation estimates the Standard Error of the Mean (SEM) using bootstrap resampling: it
repeatedly samples a set of multiple choice questions (for a specified number of bootstrap iterations, 100K in our
case) and then calculates the SEM of the metric scores obtained from these samples. Relevant code for this error
computation can be found in https://github.com/EleutherAI/lm-evaluation-harness.

15

https://github.com/EleutherAI/lm-evaluation-harness/blob/c5acce0c7485a3bc8cbb7d80bf6a577a6922bafa/lm_eval/api/metrics.py#L445


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Scaling analysis with respect to model size.

Model ↓ PPL ↑ Arc-C Arc-E SIQA PiQA Lambada BoolQ RACE LogiQA WinoG HSwag
16

0M Pythia(Teacher) 39.38 23.63 43.64 36.75 62.30 22.38 56.88 28.71 19.05 51.22 30.28
Hedgehog (Baseline) 35.95 18.26 42.47 37.05 61.15 14.48 59.66 26.41 21.04 50.43 28.93
HedgeMamba (Ours) 26.84 23.04 43.27 37.36 60.88 16.34 57.68 26.03 19.35 51.07 29.71

41
0M Pythia(Teacher) 16.50 24.32 51.89 38.95 66.70 36.60 60.58 30.72 21.97 53.27 40.62

Hedgehog (Baseline) 17.66 19.97 47.31 37.97 65.23 24.04 48.44 28.04 19.35 50.28 34.63
HedgeMamba (Ours) 16.48 23.81 49.54 38.69 64.69 25.91 51.68 28.42 21.35 52.80 36.28

1B

Pythia (Teacher) 13.86 27.04 56.98 39.86 70.72 42.07 60.82 32.92 22.12 53.43 47.16
Hedgehog (Baseline) 14.89 26.45 52.74 38.38 68.01 30.60 54.80 30.43 21.65 50.91 40.79
HedgeMamba (Ours) 14.11 27.13 53.66 39.76 68.72 32.31 55.20 30.91 20.89 52.17 41.87

A.2 IMPLEMENTATION DETAILS

We use PyTorch with Distributed Data Parallel with mixed precision (bfloat16) for training. For our
implementation of the HedgeMamba layer in Fig. 2, we directly adapt the Mamba code, while still
leveraging their hardware-aware CUDA selective scan, as to not sacrifice efficiency. We point out
that Mamba selective scan implementation, albeit perfectly parallel, imposes a hard-cap of 256 on
model dimension (pprp, 2024), forcing serialization for larger values. In our experiments we reach
2048, resulting in inflated figures (> 8×) for our training times (around 12d 9h on a 8xA100 node to
distill 10B tokens using a 1B model). We refer then to distillation token budget as a more reliable
metric for our procedure cost (see the corresponding code in App. C).

We use the teacher models implementations and pretrained weights directly from the HuggingFace
Transformers library (Wolf et al., 2020). Student models are implemented by swapping the softmax
Attention modules from the teacher with Mamba Mixer modules from Gu & Dao (2023), equipped
with the Hedgehog feature maps from Zhang et al. (2024).

All the models are distilled on a compute node with 8 NVIDIA A100 GPUs. We use AdamW
optimizer (β1 = 0.9, β2 = 0.95) with linear warm-up and cosine decay to 0.1× peak LR schedule in
our distillation procedure. Empirically, for models of size 1B, a peak learning rate of 0.01 was found

Figure 3: Visualizing evolution of validation perplexity during stage 2 training, for different
stage1/stage2 token allocation splits. ♦ indicates the PPL value at completion of stage 1. All
sensitivity studies were run for 200K training steps, corresponding to roughly 10B tokens.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

to be suitable for stage 1, while a learning rate in the 1e-5 range worked best for stage 2. Following
prior work (Gu & Dao, 2023; Dao & Gu, 2024), we use gradient clipping of 1.0 and weight decay
0.1.

B ADDITIONAL ARCHITECTURE DETAILS

B.1 FULL ARCHITECTURES SCHEMATICS

For reference, the diagrams in Fig. 4 describe the complete architectures discussed in this project.
The Pythia Transformer Biderman et al. (2023), which is the teacher model used throughout our
experiments, appears on the top. The original Mamba architecture Gu & Dao (2023) is reported
on the bottom right. Notice how in both architectures the main components are a sequence mixer
(Attention for the Transformer, and the SSM Mixer for Mamba) interwoven with MLPs (in Mamba,
this role is covered by the gate branch). In the bottom left, we can see how the Hedgehog block
attains Attention linearization. Finally, in the bottom-middle of Fig. 4, acting as a bridge between the
Hedgehog and Mamba architectures, we illustrate the HedgeMamba hybrid we proposed and used
as student in this work: most of the architecture is inherited directly from Pythia, but the sequence
mixer is substituted with a combination of Hedgehog and components from Mamba.

NormNorm

+

Linear

σ(Q K⊤) V×

Softmax 
Attention

Q KMLP

  N layers×

NormNorm

+

MLP

  N layers×

Linear

ϕ
Q K

ϕ(Q)ϕ(K)⊤ V×
Hedgehog Attention

Linear

ϕ(Q)ϕ(K)⊤ V

ϕ

∘ Λ
SSM

×

Conv

.
σ

Gate

NormNorm

+

MLP

  N layers×
HedgeMamba

Norm

.
σ

Norm

Linear

C⊤B X×

Mamba 
Mixer

C B

Conv

∘ Λ

  N layers×

Gate

Figure 4: Schematics of architectures discussed in this project. Top: Pythia Transformer. Bottom,
from left to right: Hedgehog, HedgeMamba, and Mamba.

B.2 INITIALIZATION OF MAMBA PARAMETERS IN STAGE 2

A distinguishing feature of Mamba consists in its ability to prescribe a learnable causal mask Dao
& Gu (2024) via its state matrix Λ (3). On top of this, the Mamba block also contains a short
sequence-wise convolution and a gate branch. All these features contribute to set Mamba apart from
other Linear Attention alternatives. We only leverage these three additional components in the second
stage of our distillation method, while in the first stage we freeze them and make sure that they have
no effect on the block output (see also the schematics in Fig. 2). This can be achieved by an opportune
parameter initialization, described next.

State matrix The state matrix Λ in Mamba is obtained by exponentiating a product of two
parameters: a rate-of-decay λ ∈ RN×d and a time-step ∆ = ∆(X) ∈ RN . In particular, the latter
is recovered by applying an MLP to the input X ∈ RL×d: two linear applications with weights

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and biases (Wd, bd) ∈ Rd×dr × Rdr and (Wu, bu) ∈ Rdr×N × RN , respectively, followed by a
SoftPlus nonlinearity. The overall formula is given by

Λl = e−λ⊙(∆l⊗1⊤), with ∆l = SoftPlus((Xl,:Wd+bd)Wu+bu), ∀l = 1 . . . L. (11)

We reduce the operation to identity by imposing λ ≡ 0. Notice that ∆l also affects the definition
of B in (3): to nullify its effect, we must have ∆l ≡ 1. To this end, we also impose Wu ≡ 0 and
bu ≡ SoftPlus−1(1) · 1 ≈ 0.541324 · 1.

Convolution The convolution component applies the following operation: given an input X ∈
RL×d, and its kernel weights W ∈ Rκ×d (for a kernel of size κ) and biases b ∈ Rd, the output is
given by:

Yl,: = b+

κ∑
i=1

Wi,: ⊙Xl−κ+i,: . (12)

To collapse this to the identity operation, it suffices then to pick b ≡ 0, Wκ,: ≡ 1, and Wi̸=κ,: ≡ 0.
Notice that in the original Mamba block, the convolution is followed by a nonlinearity, which acts
before the SSM mixing layer. In our architecture, we remove this nonlinearity, on the ground that it is
already subsumed by the Hedgehog MLP (6).

Gate The gate branch, on the other hand, consists of a linear layer (of weights W ∈ Rd×d and
biases b ∈ Rd), followed by a SiLU nonlinearity. The output is then element-wise multiplied by the
output of the SSM mixer (here denoted as XSSM ). Overall, this amounts to

Y = XSSM ⊙ SiLU(XW + b). (13)

To obtain the identity, then, it suffices to set W ≡ 0, and b = SiLU−1(1) · 1 ≈ 1.27846 · 1.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C PSEUDOCODE

Here we provide pseudocode for the application of the forward pass of the student model used in our
experiments.

More in detail, Lst. 1 reports the implementation of the whole adapted Pythia block Biderman et al.
(2023). As in the original Pythia model, the flow of operations in this block is split into two branches
(see also Fig. 4). On the one hand, we have an MLP with pre-normalization; on the other, the vanilla
Attention layer is substituted with the hybrid HedgeMamba layer described in Sec. 3.2.

# --- modified pythia layer powered by hedge-mamba module --- #
class HedgeMambaLayer(GPTNeoXLayer):

def __init__(
self,
config: PretrainedConfig,

):
super().__init__(config) # standard pythia layer init
self.mixer_config = mixer_config
# overwrite attention module with mamba-mixer
self.attention = HedgeMambaMixer(config)

def forward(
self,
hidden_states: torch.FloatTensor,
cache_params: Optional[MambaCache] = None,

):
# attention stream
attn_output = self.input_layernorm(hidden_states)
attn_output = self.attention(attn_output, cache_params=cache_params)
attn_output = self.post_attention_dropout(attn_output)

# mlp stream
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output)

# pythia layer with parallel MLP and attention streams
# pseudocode: x = x + attn(ln1(x)) + mlp(ln2(x))
hidden_states = hidden_states + attn_output + mlp_output
return hidden_states

Listing 1: Implementation of our PyMambaLayer, which replaces the Softmax Attention module
in the Pythia Transformer with our HedgeMamba mixer. Code for the latter is provided in Lst. 2.

HedgeMamba is the core module introduced in our work, and pseudocode for its implementation is
detailed in Lst. 2. Its code blueprint closely follows the one for the Mamba SSM mixer Gu & Dao
(2023), including a gate branch and a short convolution before the mixer application, but presents
three main differences: (i) the SSM parameters B,C (covering the roles of keys and queries in Linear
Attention) are further modified according to the Hedgehog map; (ii) the input to the SSM is mapped
through an additional linear layer to recover the values in the linearized version of Attention; (iii) the
SSM hidden state is expanded to accommodate for normalization terms, as per (10).

Finally, in Lst. 3 we report also our implementation of the Hedgehog projection operator, used within
the HedgeMamba layer. Like in the original Hedgehog paper, the output of the feature map ϕ (6),
is duplicated by collating its opposite. As a nonlinearity, we apply a softmax operation along the
embedding dimension, instead of vanilla exponentiation as done in Zhang et al. (2024): this is to
guarantee better numerical stability.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

# --- hedge-mamba mixer module --- #
class HedgeMambaMixer(nn.Module):

def __init__(self, config):
super().__init__()
self.hidden_size_per_head = config.hidden_size // config.num_attention_heads

# from mamba
# state_size == hidden_size to mimic attention
self.gate_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.conv1d = nn.Conv1d(config.hidden_size, hidden_size)
self.x_proj = nn.Linear(

config.hidden_size, config.time_step_rank + config.hidden_size * 2
)
A = nn.Parameter(self.init_A(config))
self.dt_proj = nn.Linear(config.time_step_rank, self.hidden_size_per_head)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)

# additional projections to replicate linear attention
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size) # values
self.hhog_q = HedgehogProjection(config, self.hidden_size_per_head) # hedgehog
self.hhog_k = HedgehogProjection(config, self.hidden_size_per_head)
self.rotary_ndims = int(self.hidden_size_per_head * config.rotary_pct)
self._init_rope() # rope positional encoding

def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate = F.silu(self.gate_proj(hidden_states))
hidden_states = self.conv1d(hidden_states)

# linear proj to recover SSM parameters
dt, B, C = torch.split(self.x_proj(hidden_states),

[time_rank, state_size, state_size],
dim=-1)

# apply hedgehog feature map
B = self.hhog_k(B.view(batch_size, seq_len, num_heads, hidden_size_per_head))
C = self.hhog_q(C.view(batch_size, seq_len, num_heads, hidden_size_per_head))

# rope positional encoding as in pythia
C = self.rotary_emb(C, seq_len=C.shape[1]) # equivalent to Q from attention
B = self.rotary_emb(B, seq_len=B.shape[1]) # equivalent to K from attention

# value projection
V = self.v_proj(hidden_states)

# duplicate for score normalization as in attention
A = torch.cat([self.A, self.A], dim=0)
dt = torch.cat([dt, dt], dim=1)
V = torch.cat([V, torch.ones_like(V)], dim=1)

# leverage Mamba SSM mixer
scan_outputs = selective_scan_fn(V, dt, A, B, C)

# apply normalization
scan_outputs = scan_outputs[:, : self.hidden_size_per_head, :] /

scan_outputs[:, self.hidden_size_per_head :, :]

# gate
scan_outputs = scan_outputs * gate
return self.out_proj(scan_outputs)

Listing 2: PyTorch-style pseudocode of our HedgeMamba sequence mixer, which equips the vanilla
Mamba SSM mixer with the Hedgehog feature map (Zhang et al., 2024) for Attention linearization.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

# --- hedgehog projection module --- #
class HedgehogProjection(nn.Module):

def __init__(self, config, head_size, bias=True):
super().__init__()
self.config = config
self.phi = nn.Linear(head_size, head_size, bias=bias)

def forward(self, x: torch.Tensor) -> torch.Tensor:
# x.shape: [B, S, H, D]
#
# B: batch size
# H: number of heads
# S: sequence length
# D: per head embedding size
x = self.phi(x)

# negative mapping enabled as in hedgehog
x = torch.cat([x, -x], dim=-1) # [B, H, S, 2D]

# NOTE: we use softmax as activation function here instead of
# default exponential following hedgehog paper appendix to
# avoid numerical overflows; softmax is applied on embedding
# dimension here NOT sequence length as in standard softmax attention
return x.softmax(dim=-1)

Listing 3: Implementation of the Hedgehog projection layer for Softmax Attention linearization (see
Sec. 3.1 for details).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D USE OF LLMS FOR WRITING

We acknowledge the use of large language models (LLMs) to refine the writing and presentation of
this paper. These tools were exclusively employed for grammatical correction, stylistic improvements,
and overall polishing of the text. All original content, ideas, and research presented herein were
conceived and developed solely by the authors.

22


	Introduction and Motivation
	Previous work

	Preliminaries
	Description of target architectures

	Cross-architecture distillation
	Stage 1: Softmax Attention to Linear Attention
	Stage 2: Linear Attention to Mamba

	Results
	Conclusion
	Additional results and implementation details
	Expanded Results
	Implementation Details

	Additional Architecture details
	Full architectures schematics
	Initialization of Mamba parameters in stage 2

	Pseudocode
	Use of LLMs for writing

