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Abstract

Multi-Channel Imaging (MCI) contains an array of challenges for encoding useful
feature representations not present in traditional images. For example, images from
two different satellites may both contain RGB channels, but the remaining channels
can be different for each imaging source. Thus, MCI models must support a variety
of channel configurations at test time. Recent work has extended traditional visual
encoders for MCI, such as Vision Transformers (ViT), by supplementing pixel in-
formation with an encoding representing the channel configuration. However, these
methods treat each channel equally, i.e., they do not consider the unique properties
of each channel type, which can result in needless and potentially harmful redun-
dancies in the learned features. For example, if RGB channels are always present,
the other channels can focus on extracting information that cannot be captured by
the RGB channels. To this end, we propose DiChaViT, which aims to enhance
the diversity in the learned features of MCI-ViT models. This is achieved through
a novel channel sampling strategy that encourages the selection of more distinct
channel sets for training. Additionally, we employ regularization and initialization
techniques to increase the likelihood that new information is learned from each
channel. Many of our improvements are architecture agnostic and can be incorpo-
rated into new architectures as they are developed. Experiments on both satellite
and cell microscopy datasets, CHAMMI, JUMP-CP, and So2Sat, report DiChaViT
yields a 1.5− 5.0% gain over the state-of-the-art. Our code is publicly available at
https://github.com/chaudatascience/diverse_channel_vit.

1 Introduction

Most visual encoders assume they are provided with a fixed-channel representation as input (e.g.,
they take RGB inputs as input at train and test time) [1–10]. However, many applications find a
variety of imaging techniques beyond just the traditional RGB channels beneficial. For example,
satellite images or sensors onboard a robot often contain an infrared camera in addition to traditional
RGB, and microscopes can also host a significant range of potential imaging channels [11–17]. Thus,
Multi-Channel Imaging (MCI) models aim to learn good feature representations from datasets with
heterogeneous channels, where the number and type of channels can vary for each input at test time.
Training a model that is robust to changes in channel configurations can save time and resources as
only a single model needs to be learned, while also helping to prevent overfitting in small datasets
through transfer learning [14]. Prior work proposed methods to make MCI models robust to missing
channels by randomly masking them during training [18]. As shown in Fig. 1(a) left and (b) top,
this results in redundancies being learned across channels during training rather than encoding new
information. A consequence of this repetition is a model focused on learning strong cues that are easy
to identify, making it less capable of learning unique and/or challenging cues within each channel.
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Figure 1: Comparison of the redundant information learned by different models on the HPA
dataset in CHAMMI [14]). (a) Measures the mutual information between the channel tokens,
which captured the configuration of channels in an image. Note we gray out the diagonal for better
visualization. We find ChannelViT tokens have high mutual information, which suggests significant
redundancy exists across channels [34, 35]. In contrast, DiChaViT has little mutual information as
each channel is encouraged to learn different features. (b) We compute attention scores of the [CLS]
token to the patch tokens in the penultimate layers and aggregate them by channel. ChannelViT
(top) relies on certain channels (e.g., microtubules and nucleus) to make predictions and less on other
channels (e.g., protein and er). In contrast, DiChaViT demonstrates more evenly distributed attention
scores across channels, suggesting that each channel contributes more to the model’s predictions.

To address this limitation, we propose a Diverse Channel Vision Transformer (DiChaViT) that aims
to balance the robustness in different MCI configurations, which may cause redundancy, with a need
to learning diverse and informative features. First, we include a Channel Diversification Loss (CDL),
a regularization term that encourages a special channel token, which represents the presence of a
channel in the input data, to be distinct from the other channel tokens. As shown in Fig. 1(a) right,
this reduces repeated information across our model’s channels. However, this can still result in similar
features being encoded for each image patch. Thus, our Token Diversification Loss (TDL) aims to
directly diversify the features learned for each patch token as shown in the bottom of Fig. 1(b) by
encouraging that each patch token is orthogonal to the others. Finally, rather than a uniform random
channel masking strategy as used in prior work [18, 19], we introduce Diverse Channel Sampling
(DCS), in which we select channels based on their dissimilarity, further promoting feature diversity.
We observe that promoting a more diverse representation enables each channel to contribute more to
the final prediction, leading to a performance boost of up to 5.0% in downstream MCI tasks. Fig. 2
provides an overview of our approach.

The work that is closest in spirit to ours are methods that are designed to learn disentangled rep-
resentations [20–27], e.g., learning features aligned to a given set of attributes [28–30]. These
methods have shown a trade-off between the strength of the disentanglement and the downstream
tasks performance [31–33]. This is due, in part, to the fact that many attributes these methods aim
to disentangle are correlated with each other, making it challenging to know what features relate
individually to each attribute. However, unlike these tasks, MCI methods do not focus only on
disentangling features across channels. Instead, they must capture some redundant information to be
robust to missing channels while simultaneously learning features that may only arise in a subset (or
even a single) channel. In other words, in MCI some redundancy is desirable across channels even if
we could learn perfectly disentangled representations. In addition, many methods in disentangled
representation learning assume the attributes to separate are labeled, but there are no labeled attributes
in MCI. Instead, DiChaViT must automatically decide what to capture in multiple channels while
still learning important channel-specific information.

We summarize our contributions below:

• We propose DiChaViT as a solution to enhance feature diversity and robustness in MCI-ViTs,
boosting classification accuracy by 1.5 − 5.0% over the state-of-the-art on three diverse MCI
datasets: CHAMMI [14], JUMP-CP [12], and So2Sat [17].

• We introduce a new channel sampling strategy to encourage the selection of more distinct channel
sets during training, thereby enhancing feature diversity in MCI models.

• We introduce regularization and initialization techniques that better balance robustness to different
configurations in MCI and facilitate learning diverse and informative features.
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Figure 2: An overview of DiChaViT. We introduce two regularization methods on the features and
a channel sampling strategy to promote diversity in feature representations. We apply (a) Channel
Diversification Loss (CDL) (Sec. 3.1) for channel tokens ( ), and (b) Token Diversification Loss
(TDL) (Sec. 3.2) on the patch tokens ( ). Additionally, we (c) sample a subset of dissimilar channels
using Diverse Channel Sampling (DCS) (Sec. 3.3).

2 Related Work

Convolutional-based models for multi-channel imaging. Researchers have been developing
convolutional-based models to keep pace with the evolving landscape of multi-channel imaging data.
Bhattacharyya et al. [36] introduced IRFacExNet, which utilizes depth-wise convolutions to merge
channel-wise features from infrared thermal images. Jiang et al. [37] introduced a double-channel
CNN that takes into account the correlation between input channels in aerial images. This approach
employs a separate sub-network for each group of channels and then performs feature fusion to
aggregate features across channels. Siegismund et al. [38] presented DCMIX to work with images
with many channels based on imaging blending concepts. While these methods can be used for MCI,
they are not designed to work on varying input channels. In a recent study, Chen et al. [14] introduced
and adapted channel-adaptive models based Depthwise convolutions, TemplateMixing [39–41],
and HyperNets [42]. These models incorporate their adaptive interface in the first layer of an
otherwise shared ConvNeXt model [8]. While these methods provide a strong baseline, they find
settings where some channels are missing during inference challenging. In our work, we aim to
improve MCI model robustness by improving the diversity of learned features.

Vision Transformers for multi-channel imaging. Vision transformers (ViT) [43] have natural
advantages when dealing with multiple channels, especially when the number of channels varies.
ViTs treat image modeling as sequence-to-sequence problems, allowing them to be flexible in handling
different numbers of image tokens. Nguyen et al. [44] introduced variable tokenization and variable
aggregation, in which they divided each input channel independently into patches and then aggregated
the patch features across channels using learnable queries. Tarasiou et al. [45] proposed TSViT,
which incorporates a tokenization scheme and temporal position encodings to process Satellite
Image Time Series. In a relevant work, Zhou et al. [46] introduced FAN, a channel reweighting
design aimed at adjusting channel features based on the observation that some channels capture
more significant information than others. In the medical domain, Hatamizadeh et al. [47] proposed
UNETR that utilized a transformer encoder followed by a skip-connected decoder for 3-D medical
image segmentation. Recently, Bao et al. [18] proposed ChannelViT that processes each input
channel independently via a shared linear projection and incorporates a learnable channel embedding
for preserving channel-specific features. In addition, the authors proposed Hierarchical Channel
Sampling (HCS), a regularization technique applied to the input channels to boost robustness and
reduce training time. ChannelViT outperforms standard ViTs in classification tasks and demonstrates
its generalization ability when only a subset of the trained channels is available during inference. In a
similar work, Bourriez et al. [15] introduced ChAda-ViT, a channel adaptive attention technique
for handling heterogeneous microscope images. However, these methods do not adequately model
the unique properties of each channel type, resulting in harmful redundancies, whereas we boost the
diversity of features across channels to enhance the robustness of MCI-ViT models.
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3 Encouraging Diverse Representations in multi-channel ViTs

Given a multi-channel image (MCI) X containing channels ci ∈ CX , our goal is to train a model M
that takes our input image X as input to make its predictions. Following [15, 18], we consider the
MCI setting where M has seen all the channels we expect to see during inference, i.e., CX ⊆ CM .
We leave the exploration of handling novel channels during inference for future work, as it presents
significant challenges, including establishing meaningful connections between existing and new
channels, and identifying informative channel weights in the presence of domain shifts. In our setting,
since we do not know what CX we may see during inference, prior work has focused primarily on
exploring methods that are robust to different choices of CX by encouraging M to redundancies
across channels (e.g., [14, 15, 18]). Specifically, they begin with a base ViT encoder [48] that uses
each channel-specific image patch pi as input. Each image patch is passed through a shared patch
projection layer and concatenated with its corresponding channel token chi. Hierarchical Channel
Sampling (HCS) [18] encourages robustness to missing channels by randomly masking some channels
during training to ensure key information can be captured in multiple channels. However, as noted in
the Introduction, this can be harmful when M does not balance this repetitive feature learning to also
capture distinctive channel-specific information.

As illustrated in Fig. 1, DiChaViT aims to better balance repetitive and distinct feature learning
through three major components. First, we use a Channel Diversification Loss (CDL) to learn diverse
representations to help prevent feature collapse in the channel tokens (Sec. 3.1). Second, our Token
Diversification Loss (TDL) encourages patch tokens to also learn distinct features (Sec. 3.2). Finally,
Diverse Channel Sampling (DCS) promotes robustness to missing channels while also encouraging
that new features are also learned during training (Sec. 3.3). These components enable our approach
to balance repetitive and channel-specific feature learning (overview in Fig. 2).

3.1 Enhancing channel token separation

Recall that in Fig. 1(a), learned channel tokens chi from prior work show high mutual information,
indicating these tokens are not well-separated. Following [41, 49–51], we partly mitigate this issue by
replacing the random initialization of chi used by prior work [15, 18] with an orthogonal initialization.
To further encourage the diversity in the features, we introduce Channel Diversification Loss (CDL)
for increased separation between the channel tokens (Fig. 2(a)). Inspired by ProxyNCA++ [52],
the idea is to use a learnable vector (i.e., an orthogonally initialized channel anchor) to represent each
channel in the input image during training. We promote diversity in the channel tokens by pulling
channel features toward their corresponding anchors while pushing them away from all other anchors.
A key benefit of this approach is that the anchors prevent channel tokens from collapsing while still
allowing for flexibility in learning useful representations.

Formally, we denote A as the set of all channel anchors, tCDL as the temperature, and ∥ · ∥2 as the
L2-Norm. We start by initializing the channel tokens chi and their channel anchors orthogonally.
Then, we apply CDL as follows:

LCDL = − log

 exp
(
−d

(
chi

∥chi∥2
, g(chi)
∥g(chi)∥2

)
· 1
tCDL

)
∑

g(a)∈A exp
(
−d

(
chi

∥chi∥2
, g(a)
∥g(a)∥2

)
· 1
tCDL

)
 , (1)

where g(chi) is a function that returns a corresponding channel anchor for channel token chi, and
d(chi, g(·)) is the squared Euclidean distance between channel token chi and an anchor. In Eq. 1, the
numerator calculates the distance of a channel token to its anchor, while the denominator computes
all these distance pairs of the channel token to all the channel anchors. When the temperature value
tCDL is set to 1, we get a standard Softmax function. Lowering the temperature can lead to a more
focused and sharp probability distribution, but we found that the results are not very sensitive to the
value of tCDL. Thus, we simply use a fixed temperature tCDL of 1/14 ≈ 0.07.

3.2 Enhancing feature diversity for patch tokens

MCI-ViT models like ChannelViT [18], ChAda-ViT [15] use a shared linear projection to extract
features independently from each input channel in the image rather than using separate projections
for each channel. With the shared projection, only the common features across channels are retained,
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while other channel-specific information is filtered out, which helps to reduce overfitting. However,
this design can also produce similar representations for all patch tokens. This is not ideal because
each patch may contain unique information that would be ignored. In our approach, we also leverage
this shared projection, but we enhance it with Token Diversification Loss (TDL), a regularization
applied to the patch token features to enhance the diversity of features learned by each patch in the
input image (see Fig. 2(b) for an overview). Specifically, we enforce an orthogonality constraint on
the tokens to ensure that each token is orthogonal to the others. Additionally, we take into account the
token type information to differentiate between tokens from the same channels and across channels.
The main idea is to make features from different channels more distinct while allowing for a certain
level of similarity among features within the same channel.

Let pi be the input patch at position i, and Wproj be the shared linear projection at the first layer.
We denote ti = Wproj · pi as the patch feature token of pi, T =

{
ti
}
i=1,2,...

as the set containing
all patch feature tokens in the input image, and h(ti) as a function that returns the corresponding
channel for input patch pi. We devise a unified loss function for each input image as follows:

Ls =
1

Ns

∑
ti,tj∈T ; h(ti)=h(tj)

⟨ti, tj⟩ (2)

Ld =
1

Nd

∑
ti,tk∈T ; h(ti) ̸=h(tk)

⟨ti, tk⟩ (3)

LTDL = λs · |Ls|+ λd · |Ld| (4)

where ⟨·, ·⟩ represents the cosine similarity, | · | denotes an absolute value, and Ns, Nd are the numbers
of patch token pairs in the two equations respectively. Eq. 2 calculates the average cosine similarity
of all feature token pairs in the same channels, while Eq. 3 calculates the average of all feature token
pairs from different channels. The two losses are combined with weights λs and λd to balance the
constraint of tokens belonging to the same channels (first term) and tokens belonging to different
channels (second term), to form the final loss LTDL in Eq. 4. Our goal is to encourage each patch
token to be orthogonal to each other to promote the diversity of patch tokens.

3.3 Diverse Channel Sampling (DCS)

Bao et al. [18] introduced HCS to reduce the training time and improve the robustness of the model.
The main concept is to randomly drop some input channels and train the model only on the remaining
channels. In the same spirit, we propose a novel method, Diverse Channel Sampling (DCS), to
sample a more diverse subset of channels during training (Fig. 2(c)). Similar to HCS, we start by
randomly sampling a number k, which is the size of a subset of channels to train on. However,
while HCS samples k channels randomly, DCS first samples an anchor channel ck. Then, we select
other k − 1 channels that are dissimilar to the anchor channel. This idea shares similarity with
Channel DropBlock [53], where a set of similar channels in a CNN layer is masked out to disrupt co-
adapted features. However, instead of keeping a fixed number of feature map channels as in Channel
DropBlock, DCS selects a flexible number of input channels for each sampling. The procedure of
DCS is outlined in Algorithm 1.

In practice, Algorithm 1 can be applied to a batch of images for faster sampling. We use channel
token chi to represent the channel feature fi. Refer to Sec. 4.4 and Tab. 5 for more discussion on
choices of f . The temperature tDCS controls the sharpness of the probability distribution. With a
large tDCS, DCS reduces to HCS, while with a small tDCS, DCS selects a random subset of channels
that are the least similar to the anchor channel.

3.4 Training Objective

The final loss consists of the primary loss for the specific task (e.g., cross-entropy for classification),
Channel Diversification Loss (CDL) applied to channel tokens, and Token Diversification Loss (TDL)
used on patch tokens. These terms work together to promote diversity in channel and patch token
features, resulting in a more robust model, as shown in Eq. 5:

Lfinal = Ltask + λCDL · LCDL + LTDL (5)
where λCDL is a weight to balance CDL. Note that TDL is balanced by λs and λd in Eq. 4.
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Algorithm 1: Diverse Channel Sampling (DCS)
Input : Image X with m channels c1, ..., cm

Channel feature fi for each input channel ci
Temperature tDCS

1 Sample a random variable k uniformly from the set {1, 2, ...,m}
2 Sample an anchor channel ck uniformly from all m channels
3 Compute the cosine similarity between channel ck and the other m− 1 channels:

s = [⟨fk, fi⟩ ,...], ∀i ̸= k (s ∈ Rm−1)
4 Convert 1− s to probability using softmax with temperature tDCS:

p = softmax((1− s)/tDCS) (p ∈ Rm−1)
5 Sample k − 1 distinct channels from m− 1 channels with probability p
6 Combine the k − 1 channels with channel ck to create a set of k sampled channels.

Output : Image X with only k sampled channels

4 Experiments

4.1 Experimental Setup

Baseline methods. We adopt the following baseline methods.

• DepthwiseViT [14] utilizes a depthwise convolution layer to independently filter each input
channel. The resulting features are averaged to create a new feature representation, which is then
fed into a ViT backbone.

• TemplateMixingViT [39, 40] generates weights for each channel by learning a linear combination
of shared, learnable parameter templates. These weights are formed into a patch project layer,
followed by a ViT backbone.

• HyperNetViT [42] employs a neural network (e.g., MLP) to independently generate weights for
each channel, which are then concatenated to form a patch projection layer. This patch projection
layer is subsequently used in a ViT backbone.

• ChAda-ViT [15] uses a shared projection layer to extract features from each channel separately,
then feeds these tokens, together with their corresponding positional embeddings and channel
embeddings, into a ViT backbone.

• ChannelViT [18] is the same general architecture as ChAda-ViT, but also employs Hierarchical
Channel Sampling (HCS) during training.

Implementation details. As HCS proves robust in multi-channel imaging [18], we incorporate this
technique for DepthwiseViT, TemplateMixingViT, and HyperNetViT to ensure a fair comparison
in these adaptive baselines used by Chen et al. [14]1. For ChannelViT and ChAda-ViT, due to their
similarity (primarily a difference in whether HCS is included), we use the implementation from [18]
for both methods2. All baselines utilize a ViT small architecture (21M parameters) implemented in
DINOv2 [54] as the backbone 3. We use AdamW optimizer [55] to train the models, minimizing
cross-entropy loss on JUMP-CP and So2Sat, and proxy loss on CHAMMI. For the learning rate, we
use a scheduler with linear warmup and cosine decay. Refer to Appendix Sec. A for details.

Metrics. We evaluated the methods by calculating their top-1 classification accuracy on the
So2Sat [17] and JUMP-CP [12] datasets. For CHAMMI [14], we used the evaluation code4 provided
by the authors, in which a 1-Nearest Neighbour classifier is used to predict the macro-average
F1-score for each task separately. We report the average score on WTC and HPA, and present the
detailed results in Tab. 7 of the Appendix.

4.2 Datasets

CHAMMI [14] consists of varying-channel images from three sources: WTC-11 hiPSC dataset
(WTC-11, three channels), Human Protein Atlas (HPA, four channels), and Cell Painting datasets

1https://github.com/chaudatascience/channel_adaptive_models
2https://github.com/insitro/ChannelViT
3https://github.com/facebookresearch/dinov2
4https://github.com/broadinstitute/MorphEm
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Table 1: Comparison of test accuracy of channel adaptive models. "Full" refers to inference on
all channels, while "Partial" means testing on a subset of channels (Sentinel-1 channels for So2Sat,
fluorescence channels for JUMP-CP). We find our model outperforms other baselines, with a 5.0%
boost on CHAMMI and a 1.5− 2.5% point improvement on JUMP-CP and So2Sat.

CHAMMI [14] JUMP-CP [12] So2Sat [17]

Model Avg score Full Partial Full Partial

HyperNetViT [42] 54.54 47.07 42.43 60.73 41.88
DepthwiseViT [14] 60.94 49.86 44.98 60.41 43.41

TemplateMixingViT [39, 40] 57.02 52.48 43.85 55.86 37.28
ChAda-ViT [15] 63.88 65.03 42.15 56.98 12.38
ChannelViT [18] 64.90 67.51 56.49 61.03 46.16
DiChaViT (ours) 69.68 69.19 57.98 63.36 47.76

Table 2: Test accuracy of DiChaViT and ChannelViT on partial channels of JUMP-CP [12].
Each column represents mean±std for all combinations when tested on partial channels. For example,
column "7" indicates testing on 7 out of 8 channels, and, thus, the reported variance is due to the pres-
ence or absence of a channel. See to Tab. 9 in the Appendix for detailed results for each combination
for column "7" with model variance. DiChaViT consistently exhibits improved robustness in the
presence of missing channels during inference.

Number of channels for evaluation

Method 8 7 6 5 4 3 2 1

ChannelViT [18] 67.51 60.36±9.1 52.74±12.2 44.89±13.2 36.88±12.3 29.36±9.3 23.70±5.0 20.78±1.6

DiChaViT (ours) 69.19 61.91±9.3 54.49±12.4 46.35±13.4 38.00±12.4 30.09±9.3 23.97±4.9 20.90±1.6

(CP, five channels). The three sub-datasets contain a total of 220K microscopy images, of which
100K images are for training and the rest for testing across various tasks. The models are trained to
learn feature representation and then evaluated on domain generalization tasks.

JUMP-CP [12] comprises images and profiles of cells that were individually perturbed using chemical
and genetic methods. Our experiments focus on the compound perturbation plate BR00116991,
which contains 127K training images, 45K validation images, and 45K test images. Each image has
eight channels, with the first five being fluorescence and the remaining three containing brightfield
information. The dataset consists of 161 classes, including 160 perturbations and a control treatment.

So2Sat [17] contains synthetic aperture radar and multispectral optical image patches from remote
sensing satellites. Each image in the dataset has 18 channels, of which eight Sentinel-1 and 10
Sentinel-2 channels. The dataset consists of 17 classes, each representing a distinct climate zone. We
use the city-split version of the dataset, which includes 352K training images and 24K test images.

4.3 Results

Tab. 1 shows that DiChaViT outperforms the state-of-the-art ChannelViT by up to 5.0% points on
all three datasets: CHAMMI [14], JUMP-CP [12], and So2Sat [17]. For JUMP-CP and So2Sat, we
consider two scenarios: tested on all training channels (denoted as "Full") and tested on a subset of
channels (denoted as "Partial"). In the full channels setting, our model shows a 1.5 − 2.5% point
improvement compared with other baselines on JUMP-CP and So2Sat. When tested on partial
channels, DiChaViT demonstrates its robustness by achieving a 1.5% improvement compared with
the baselines. This demonstrates that diversifying feature representations in MCI-ViT models boosts
both performance and robustness.

Tab. 2 presents a detailed evaluation of DiChaViT and the best baseline model, ChannelViT, when
tested on partial channels of the JUMP-CP dataset (with a total of eight channels). For the partial
channel evaluation, we exclude some of the channels that the models were trained on and only test the
model on the remaining channels. Then, we calculate the average accuracy across all combinations,
e.g., testing on seven channels, as shown in column "7", involves averaging the results of C7

8 = 8
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Table 3: Model ablations of DiChaViT. Removing any component in DiChaViT has a negative
impact on overall performance, with significant decreases observed on the Partial setting when DCS
is removed. Including all components improves performance across all three datasets.

CHAMMI [14] JUMP-CP [12] So2Sat [17]

Model Avg score Full Partial Full Partial

DiChaViT 69.66 69.19 57.98 63.36 47.76
w/o CDL 68.07 67.66 56.87 62.20 45.74
w/o TDL 67.61 68.12 56.62 62.39 46.87
w/o DCS 65.32 66.03 42.37 59.20 17.88
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Figure 3: Performance of
DiChaViT on JUMP-CP and
CHAMMI with and without
channel tokens. Using channel to-
kens with orthogonal initialization
(green) improves performance.

combinations (refer to Tab. 9 in the Appendix for detailed results). Our findings consistently show
that DiChaViT demonstrates improved robustness when some input channels are missing.

To provide more insight into the contribution of each component of DiChaViT, Tab. 3 presents the
model’s performance when a component is removed. The results highlight the critical role of the
DCS component, as its removal has the most detrimental effect on performance, particularly in the
Partial setting, with a decrease of 16% and 30% points on JUMP-CP and So2Sat, respectively. The
absence of CDL and TDL results in similar performance drops across all datasets. The highest scores
are achieved when all components are integrated, indicating that each component plays a crucial role
in the model’s design. Refer to Tab. 8 in the Appendix for a comprehensive analysis.

4.4 Analysis and Discussion

4.4.1 Role of Channel Tokens in MCI-ViT Models

The role of channel tokens. In MCI-ViT models such as ChannelViT [18] and ChAda-ViT [15],
channel tokens play a crucial role in learning channel-specific features, particularly when dealing
with multiple channels where each contains unique information. To assess the impact of channel
tokens, we compared the performance of DiChaViT on JUMP-CP and CHAMMI with (orange bars)
and without channel tokens (blue bars), as shown in Fig. 3. The results indicate that DiChaViT
demonstrates significant improvements with channel tokens, resulting in 8.0% and 15.0% point
increases on JUMP-CP and CHAMMI, respectively, highlighting their importance.

Orthogonal initialization of channel tokens boosts performance. As shown in Fig. 3, using
orthogonal initialization (green) provides a 1.0% gain on JUMP-CP and CHAMMI. This may suggest
that by initializing the weights orthogonally, the model can more effectively capture diverse patterns
within the data, resulting in boosting its overall performance.

4.4.2 Ablation on Feature Diversification Losses (CDL and TDL)

Impact of λCDL (Eq. 5) in CDL. Fig. 4(a) and (b) show the performance of DiChaViT (mean and
std) across different values of λCDL on So2Sat and CHAMMI datasets. We can observe that selecting
a value that is too large is not beneficial to the performance. It is worth finding a suitable value for
λCDL. On the So2Sat, the best performance is achieved with λCDL = 0.001, while the suitable value
for CHAMMI is 0.1.

Ablation on TDL (Eq. 4). Fig. 4(c) reports the performance of our model across different ratios of
λd and λs in TDL. We set a fixed value of λs at 0.05 and vary λd. We observe that using a larger
λd compared with λs leads to better performance for DiChaViT. This suggests that knowing which
channel a token comes from, i.e., the same or different channel, is necessary. The results indicate
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Figure 4: Impact of CDL and TDL on DiChaViT’s performance. (a) & (b) We demonstrate the
average top-1 test accuracy and standard deviation over three runs for different values of λCDL on
So2Sat and CHAMMI. (c) Performance with different ratios of λd and λs in TDL on So2Sat.

Table 4: Ablation on the two components of TDL.
Only Ls indicates using only within channel tokens
(i.e., λd = 0), while Only Ld indicates the use of only
tokens from different channels in Eq. 4. Incorporating
both components in TDL gives the best performance.

So2Sat [17] CHAMMI [14]

Only Ls 61.43 65.47
Only Ld 62.50 68.15

Both 63.36 69.66

Table 5: Different choices of channel feature f in DCS (Algorithm 1). We compare the performance
when using the channel tokens (chi) and patch tokens (i.e., image patches after passing through the
projection layer) to compute the similarity score for sampling.

So2Sat [17] CHAMMI [14]

Patch tokens 63.00 65.57
Channel tokens 63.36 69.68

Table 6: Effect of temperature tDCS on DCS (Algorithm 1). The first column (≈ 0) indicates the
use of a very small value of tDCS, which is reduced to selecting the lowest similarity channels. The
last column indicates a large value of tDCS, which is reduced to HCS [18]. Using tDCS = 0.1 obtain
the best results on So2Sat and CHAMMI datasets.

Temperature tDCS ≈ 0 0.001 0.01 0.1 0.2 HCS

So2Sat [17] 62.51 63.21 63.30 63.36 61.92 62.15
CHAMMI [14] 67.22 66.91 68.96 69.66 66.07 66.30

imposing stricter constraints on tokens from different channels compared with tokens from the same
channel obtains the best performance. Tab. 4 shows the impact of each component in TDL. We
see that considering only tokens within the same channels (denoted by "Only Ls") is insufficient,
resulting in a significant drop in performance. In contrast, using both Ls and Ld in TDL yields the
best performance of DiChaViT.

4.4.3 Ablations for Diverse Channel Sampling (DCS)

Channel feature f in DCS. Tab. 5 compares the performance of using channel tokens (chi) and patch
tokens (i.e., image patches after passing through the projection layer) to compute the similarity score
for sampling in Algorithm 1 (line 3). We observe that using channel tokens gains better performance
on So2Sat and CHAMMI datasets. Note that while channel tokens are shared across all input images,
patch tokens differ for each input image.

Impact of temperature on DCS. Tab. 6 shows the effect of temperature tDCS used in Algorithm 1
on DCS. When tDCS is set to a very small value, as reported in the first column (denoted as "≈ 0"),
DCS selects channels with the lowest similarity scores to the anchor channel. Conversely, when tDCS

is assigned a large value, denoted as "HCS" in the last column, DCS is reduced to HCS [18], meaning
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Figure 5: Comparison of DCS and HCS [18] in terms of the frequency (%) each channel is
sampled during training on So2Sat. Unlike HCS, which provides a uniform distribution for all
channels (red dashed line), some channels in DCS are trained much more than others (blue bars). For
example, Real Lee-Cov channel (rightmost) is sampled twice as much as Band B8a (first bar).

that it selects the subset of channels randomly. We find that always selecting the lowest similar
channels (≈ 0) does not yield the best performance. Instead, setting the temperature to tDCS = 0.1
produces favorable results for both So2Sat and CHAMMI.

DCS and HCS on the distribution of number sampling of the channels. Fig. 5 compares the
number of times each channel is sampled during training with DCS (blue bars) and HCS [18] (red
dashed line). DCS offers a different distribution for its channels compared with HCS, with some
channels receiving more training than others. For example, Real part of Lee-filtered covariance
matrix (Real Lee-Cov) in the last bar, is sampled twice as frequently as Band B8a channel (first bar).

5 Conclusion

In this paper, we present DiChaViT, a model aimed at enhancing feature diversity and robustness
in Multi-Channel Imaging (MCI) ViTs. First, we introduce Diverse Channel Sampling, a novel
channel sampling strategy that encourages the selection of more distinct channel sets during training,
thereby promoting feature diversity. Additionally, DiChaViT incorporates Token Diversification
Loss on the patch tokens and Channel Diversification Loss for channel tokens to further diversify the
features learned in MCI-ViTs. Our experiments demonstrate a 1.5− 5.0% point improvement over
state-of-the-art methods on satellite and microscopy imaging datasets. Many of our enhancements
are not tied to any specific architecture and can be incorporated into new architectures as they are
developed. DiChaViT represents a promising advancement in addressing the challenges associated
with MCI, paving the way for more effective MCI-ViT models.

Broader Impacts and limitations. The development of DiChaViT represents an advancement in
MCI, with potential positive impacts such as improved medical diagnosis and accelerated healthcare
research. Additionally, its versatility in satellite imaging holds promise for environmental monitoring.
However, there are also potential negative impacts, including the risk of bad actors using this
research to develop harmful applications, such as invasive surveillance systems. This highlights the
importance of ethical considerations and responsible deployment. One of the limitations of our work
is that it is not designed to handle novel channels. Generalizing to unseen channels is challenging
because it requires establishing a connection between existing and new channels. This is further
complicated in the presence of domain shifts, which makes finding the informative channel weights
even more difficult. Thus, investigating techniques to adapt to new channels at test time is a promising
research direction in MCI. In addition, our approach requires extra hyperparameter tuning, which
may necessitate additional compute resources.
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A Implementation details

We utilize a ViT small architecture (21M parameters) implemented in DINOv2 [54] as the backbone
for all the baselines 5. Specifically, we use ViT-S/16 (patch size of 16) on CHAMMI and JUMP-CP,
and ViT-S/8 (patch size of 8) on So2Sat. The AdamW optimizer [55] is used to train the models,
minimizing cross-entropy loss on JUMP-CP and So2Sat, and proxy loss on CHAMMI.

CHAMMI dataset [14]. The goal of CHAMMI is to train a model to learn the feature representation
for the input image. Thus, we use the [CLS] token at the final layer as the feature representation
and train the model to minimize the proxy loss [52]. We then evaluate the model on various tasks
following the evaluation code provided by the authors, in which a 1-Nearest Neighbour classifier is
used to predict the macro-average F1-score for each task separately 6. The channel-adaptive interfaces
are adapted from the author’s implementation code 7. Besides the model, we incorporate the same
data augmentation as introduced by the authors, such as thin-plate-spline (TPS) transformations [56].
We train each model for 60 epochs with a learning rate of 0.00004, and a batch size of 64.

JUMP-CP [12] and So2Sat [17] datasets. Following Bao et al. [18], the learning rate is warmed up
for the initial 10 epochs, peaking at 0.0005 after which it will gradually decay to 10−6 following a
cosine scheduler. We also apply a weight decay of 0.04 to the weight parameters, excluding the bias
and normalization terms to mitigate overfitting. Additionally, we use the same data augmentation
as used in the code provided by the authors. To get the final prediction, we pass the Transformer
encoder’s representation for the [CLS] token into a classifier head to predict the probability of each
class. We train each model for 100 epochs, with a batch size of 64 on JUMP-CP, and 128 on So2Sat.
We adapt the code provided by the authors [18] for the baselines in our work 8.

Compute resources. In this study, experiments were conducted on So2Sat and CHAMMI using a
single NVIDIA RTX (48GB RAM) and three Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz. For
experiments on JUMP-CP, two NVIDIA RTX A6000 GPUs and six Intel(R) Xeon(R) Gold 6226R
CPUs @ 2.90GHz were utilized.

B Additional experimental results

Extended main results. Tab. 7 shows an extension of the main resulting table in the main paper
(Tab. 1), where we include CNN-based (ConvNeXt backbone [8]) models from [14]. To ensure a
fair comparison, we adjust the number of layers in these CNN-based models so that all models in
Tab. 7 have approximately 21M parameters. We can observe that in general, DiChaViT outperforms
CNN-based and ViT-based models on the three datasets.

Extensive ablation results on DiChaViT. Tab. 8 extends Tab. 3 in the main paper to have a better
understanding of the individual effects and contributions of each of the losses. We observe that
adding DCS helps improve the performance (e.g., by 4% on CHAMMI), and robustness of the model,
especially when tested on partial channels (a boost of 35% on So2Sat Partial). Similarly, TDL and
CDL also show improvement across the three datasets. For example, TDL improves the performance
by 2.5% on CHAMMI and 1.7% on So2Sat on full channels.

Effect of CDL on channel token distributions. Fig. 6 illustrates the distributions of channel tokens
with (blue) and without (red) CDL. Each subplot presents the distribution of a trained channel token
on the CHAMMI dataset. We observe that CDL results in more flattened distributions with more
non-zero values in the channel tokens.

Attention scores of the [CLS] token to the patch tokens at different layers. Fig. 7 shows an
extended version of Fig. 1(b) in the main paper, where we calculate the attention scores of the [CLS]
token to the patch tokens at layers 4, 8, and 12 (the penultimate layer), and then aggregate them
by channel. This indicates that ChannelViT (top) relies more heavily on specific channels (e.g.,
microtubules and nucleus) for making predictions, while other channels (e.g., protein and er) are less
considered. In contrast, DiChaViT (bottom) displays more evenly distributed attention scores across
channels, indicating that each channel contributes more significantly to the model’s predictions.

5https://github.com/facebookresearch/dinov2
6https://github.com/broadinstitute/MorphEm
7https://github.com/chaudatascience/channel_adaptive_models
8https://github.com/insitro/ChannelViT
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Table 7: Test accuracy of channel-adaptive models across multi-channel datasets. DiChaViT
performs better than other CNN- and ViT-based baselines. It shows overall better performance on
CHAMMI, especially on Allen and CP, and a 1.5− 2.5% improvement on JUMP-CP and So2Sat.
"Full" refers to testing on all channels, while "Partial" means testing on a subset of channels. We use
Sentinel-1 channels for So2Sat, and fluorescence channels for JUMP-CP.

Architecture CHAMMI [14] JUMP-CP [12] So2Sat [17]

Model Allen HPA CP Full Partial Full Partial

HyperNet [42] ConvNeXt 58.43 65.93 26.53 53.48 10.58 58.97 41.54
Depthwise [14] ConvNeXt 58.76 57.60 27.39 49.34 39.88 58.60 38.87

TemplateMixing [39, 40] ConvNeXt 60.21 63.44 25.98 49.74 43.74 60.79 40.61
HyperNet [42] ViT 45.17 63.90 26.23 47.07 42.43 60.73 41.88
Depthwise [14] ViT 50.35 71.52 27.74 49.86 44.98 60.41 43.41

TemplateMixing [39, 40] ViT 49.51 64.52 25.65 52.48 43.85 55.86 37.28
ChAda-ViT [15] ViT 67.08 60.67 24.60 65.03 42.15 56.98 12.38
ChannelViT [18] ViT 67.66 62.14 27.62 67.51 56.49 61.03 46.16
DiChaViT (ours) ViT 75.69 63.67 28.98 69.19 57.98 63.36 47.76

Table 8: Extensive Ablation Studies on DiChaViT. We expanded Tab. 3 in the main paper to show
the performance improvements achieved with different combinations of our components, offering
more insights into the roles of each component. We report mean±std over three runs.

CHAMMI JUMP-CP So2Sat

Exp. Model Avg Score Full Partial Full Partial

1. ChannelViT w/o HCS (ChAda-ViT) 63.88±0.34 65.03±0.98 42.15±2.33 56.98±0.46 12.38±2.03
2. + HCS (ChannelViT) 64.90±0.75 67.51±0.35 56.49±0.53 61.03±0.17 46.16±0.40
3. + DCS 67.74±0.33 67.90±0.37 56.61±0.43 62.17±0.23 47.30±0.43
4. + TDL 66.27±0.38 65.77±0.58 43.89±1.89 58.68±0.53 15.63±5.01
5. + CDL 64.24±0.54 66.75±0.57 42.74±1.74 57.70±0.11 15.08±4.00
6. + DCS + TDL 68.07±0.44 67.66±0.28 56.87±0.78 62.20±0.18 45.74±0.42
7. + TDL + CDL 65.32±0.48 66.03±0.39 42.37±1.16 59.20±0.43 17.88±3.14
8. + DCS + CDL 67.61±0.44 68.12±0.60 56.62±0.78 62.39±0.13 46.87±0.24
9. + TDL + CDL + HCS 67.46±0.39 67.50±0.90 57.10±0.96 62.05±0.09 45.08±0.60

10. + TDL + CDL + DCS (DiChaViT) 69.66±0.43 69.19±0.47 57.98±0.41 63.36±0.11 47.76±0.23

(a) ChannelViT (b) DiChaViT

Figure 6: The effect of Channel Diversification Loss (CDL) on channel embedding distributions.
Each subplot shows the distributions of a channel token after training on the CHAMMI dataset. (a)
ChannelViT’s features (red) are more concentrated around 0. (b) In contrast, DiChaViT shows
more flattened distributions with more non-zero values (blue).
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Figure 7: Attention scores of HPA channels (CHAMMI) across different layers. We compute
attention scores of the [CLS] token to the patch tokens in a layer (layers 4, 8, and 12) and aggregate
them by channel. ChannelViT (top) relies on certain channels (e.g., microtubules and nucleus)
to make predictions and less on other channels (e.g., protein and er). In contrast, DiChaViT
demonstrates more evenly distributed attention scores across channels, suggesting that each channel
contributes more to the model’s predictions.

Table 9: Detailed performances of ChannelViT and DiChaViT on JUMP-CP in the leave-one-
channel-out at test time setting. We present the details of column "7" in Tab. 2 of the main paper.
DiChaViT achieves 1− 2% better performance on each combination compared with ChannelViT.

Channels at inference ChannelViT DiChaViT (ours)

{0, 1, 2, 3, 4, 5, 6} 67.37±0.60 69.21±0.19
{0, 1, 2, 3, 4, 5, 7} 67.20±0.59 69.06±0.20
{0, 1, 2, 3, 4, 6, 7} 67.28±0.53 69.12±0.16
{0, 1, 2, 3, 5, 6, 7} 58.52±0.63 59.61±0.17
{0, 1, 2, 4, 5, 6, 7} 37.70±0.60 38.83±0.46
{0, 1, 3, 4, 5, 6, 7} 61.90±0.48 63.28±0.31
{0, 2, 3, 4, 5, 6, 7} 61.21±0.41 62.72±0.28
{1, 2, 3, 4, 5, 6, 7} 61.72±0.48 63.48±0.20

Leave-one-channel-out at test time. In Tab. 9, we provide individual channel combination results
when using seven channels (of eight) of the JUMP-CP dataset for inference. This corresponds to
the details in column "7" from Tab. 2 in the main paper, representing C7

8 = 8 different channel
combinations. For each combination, we report the mean and std of the models computed over three
runs. Our results demonstrate that DiChaViT gets 1− 2% better performance for each combination
while also providing more stable results (i.e., smaller model variance) than baseline ChannelViT.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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of the paper (regardless of whether the code and data are provided or not)?
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
We release the code and instructions on downloading the datasets at https://github.
com/chaudatascience/diverse_channel_vit.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the implementation details in Section 4.1 and Section A in the
appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
We provide error bars in our results, such as in Table 2 and Fig. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the implementation details with computer resources in Section A
in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• Examples of negative societal impacts include potential malicious or unintended uses
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groups), privacy considerations, and security considerations.
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from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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• If assets are released, the license, copyright information, and terms of use in the
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

We plan to release the code with a document on how to use it.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
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well as details about compensation (if any)?

Answer: [NA]

This paper does not use crowdsourcing.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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human subjects.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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