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Abstract

Recent advances in language modeling demon-001
strate the need for high-quality domain-specific002
training data, especially for tasks that re-003
quire specialized knowledge. General-purpose004
models, while versatile, often lack the depth005
needed for expert-level tasks because of lim-006
ited domain-specific information. Domain007
adaptation training can enhance these models,008
but it demands substantial, high-quality data.009
To address this, we propose ORBIT, a cost-010
efficient methodology for curating massive,011
high-quality domain-specific datasets from012
noisy web sources, tailored for training spe-013
cialist large language models. Using astron-014
omy as a primary case study, we refined the015
1.3T-token FineWeb-Edu dataset into a high-016
quality, 10B-token subset focused on astron-017
omy. Fine-tuning LLAMA-3-8B on a 1B-018
token astronomy subset improved performance019
on the MMLU astronomy benchmark from020
69% to 76% and achieved top results on As-021
troBench, an astronomy-specific benchmark.022
Moreover, our model (Orbit-LLaMA) outper-023
formed LLAMA-3-8B-BASE, with GPT-4o024
evaluations preferring it in 73% of cases across025
1000 astronomy-specific questions. Addition-026
ally, we validated ORBIT’s generalizability by027
applying it to law and medicine, achieving a028
significant improvement of data quality com-029
pared to an unfiltered baseline. We open-source030
the ORBIT methodology, including the curated031
datasets, the codebase, and the resulting model.032

1 Introduction033

The rapid advancement of large language mod-034

els (LLMs) has transformed natural language pro-035

cessing (NLP) and artificial intelligence (AI), with036

general-purpose models like GPT-4 and LLaMA037

demonstrating versatility across tasks such as038

knowledge retrieval, open-domain question answer-039

ing, and linguistic applications. However, these040

models often struggle in specialized domains, such041

as astronomy, where deep, nuanced understanding042

and up-to-date factual accuracy are crucial (Sing- 043

hal et al., 2023). This performance gap arises 044

because general-purpose LLMs must balance per- 045

formance across a wide range of tasks, diluting 046

domain-specific knowledge (Li et al., 2024; Yang 047

et al., 2024b). 048

To address this limitation, domain-specialized 049

LLMs can allocate their capacity toward master- 050

ing specific domains, offering greater depth and 051

accuracy. However, building these models is chal- 052

lenging due to the need for high-quality, domain- 053

specific datasets. Conventional approaches, such 054

as using academic sources like arXiv papers, tend 055

to focus on highly technical content, neglecting the 056

breadth and diversity needed for effective model 057

generalization. Alternatively, web-sourced datasets 058

offer greater diversity but are often noisy, contain- 059

ing irrelevant or low-quality content. Traditional 060

filtering methods, such as keyword-based or rule- 061

based approaches, frequently fail to balance cover- 062

age and quality, potentially excluding relevant data 063

while admitting suboptimal material. 064

In this work, we propose ORBIT, a novel, scal- 065

able data curation framework for creating high- 066

quality, domain-specific datasets. ORBIT com- 067

bines embedding-based similarity matching with 068

a BERT-based regression model to filter large- 069

scale web datasets efficiently. By focusing on 070

both semantic relevance and educational value, 071

this methodology ensures that the curated datasets 072

are both diverse and tailored to specific domains. 073

Using astronomy as the primary case study, we 074

curated a 10-billion-token dataset derived from 075

FineWeb-Edu (Penedo et al., 2024), incorporating 076

a broader range of content compared to prior ap- 077

proaches like AstroLLaMA (Nguyen et al.), which 078

rely solely on arXiv abstracts. The inclusion of 079

web-sourced educational content alongside aca- 080

demic texts enables ORBIT to balance depth and 081

diversity, capturing a more comprehensive under- 082

standing of domain-specific knowledge. 083
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To demonstrate the generalizability of ORBIT,084

we also applied it to law and medicine, achieving085

significant quality improvements in these domains.086

GPT-4o evaluations rated the curated datasets at an087

average educational value of 3.05 and 2.9 on a scale088

of 0-5 per document, respectively, compared to an089

unfiltered baseline of approximately 0.4. These090

results highlight ORBIT’s ability to extract domain-091

relevant, high-quality data across diverse fields.092

Fine-tuning a LLAMA-3-8B model on a ran-093

domly sampled 1B-token astronomy subset of094

the ORBIT-curated dataset results in substantial095

improvements on astronomy-specific tasks. Our096

model (Orbit-LLaMA) achieves a 7-point accu-097

racy gain over the base LLaMA-3-8B model (from098

69.08% to 76.3%) on the MMLU astronomy bench-099

mark and outperforms AstroLLaMA (66.45%) by100

a significant margin. Furthermore, ORBIT-trained101

models surpass state-of-the-art performance on var-102

ious astronomy baselines, receiving higher ratings103

from both GPT-4o evaluations and domain experts104

in the vast majority of cases. These results under-105

score the value of ORBIT’s methodology in pro-106

ducing specialized datasets that enhance both the107

depth and breadth of domain-specific knowledge108

in LLMs.109

The key contributions of this paper are:110

• We introduce ORBIT, a generalizable, scal-111

able framework for filtering noisy web data112

into high-quality, domain-specific datasets, ad-113

dressing challenges of scalability, noise, and114

coverage balance.115

• We demonstrate ORBIT’s generalizability by116

applying it to multiple domains, including as-117

tronomy, law, and medicine, achieving signifi-118

cant quality improvements in each field with119

minimal computational overhead.120

• We present a specialized astronomy dataset121

curated using ORBIT, comprising 10 billion122

tokens that combine academic rigor with web-123

scale diversity, advancing prior work limited124

to arXiv-based sources.125

• We train a state-of-the-art astronomy-126

specific language model (which we call Or-127

bit), fine-tuned on a subset of the ORBIT-128

curated dataset, achieving significant perfor-129

mance gains on astronomy-related bench-130

marks and surpassing existing models, includ-131

ing AstroLLaMA, in expert evaluations.132

By presenting ORBIT and its application to as- 133

tronomy, as well as its successful extension to law 134

and medicine, we provide a generalizable frame- 135

work for developing targeted, domain-specific AI 136

tools. This methodology has the potential to ac- 137

celerate scientific research, education, and practi- 138

cal applications across a wide range of specialized 139

fields. 140

2 Related Work 141

2.1 Data Curation for Language Models 142

Recent research has demonstrated the paramount 143

role of high-quality data in the development of 144

large language models. For instance, the techni- 145

cal reports of models like LLama-3 (Grattafiori 146

et al.) and Qwen-2 (Yang et al., 2024a) emphasize 147

extensive data curation methodologies for general- 148

purpose language models. These efforts have led 149

to significant performance gains, even when model 150

architectures and parameter sizes remain largely 151

unchanged (e.g., the transition from LLama-2 to 152

LLama-3). 153

Several efforts have focused on automated data 154

curation techniques. Chen et al. (2023) proposed 155

a method to automatically filter and clean web- 156

crawled data to build high-quality training cor- 157

pora, while Gururangan et al. (2020) developed 158

a data selection method for identifying domain- 159

relevant examples within large datasets. Further- 160

more, Kreutzer et al. (2022) demonstrated that 161

smaller, carefully curated datasets often outperform 162

larger but noisier datasets. 163

However, these methods often face limitations 164

when applied to highly specialized domains. Many 165

automated filtering techniques rely on general qual- 166

ity metrics or term whitelisting, which can inad- 167

vertently include irrelevant or low-quality content 168

while excluding high-quality data that does not fit 169

predefined patterns. For instance, filtering by spe- 170

cific terms or phrases, such as LaTeX commands, 171

may be effective in domains like mathematics but 172

fails in more diverse fields like astronomy where 173

specialized exact terms do not exist or are more 174

varied. Additionally, many datasets rely on scraped 175

web data, which presents risks related to copyright 176

issues, noise, and incomplete data extraction from 177

APIs, further limiting the potential for domain- 178

specific curation. 179
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2.2 Domain-Specific Language Models180

Advances in natural language processing have led181

to the rise of domain-specific language models that182

are fine-tuned on specialized corpora. These mod-183

els are designed to perform well within particu-184

lar domains, outperforming general-purpose mod-185

els on domain-specific tasks (Beltagy et al., 2019).186

However, each of these approaches has notable187

limitations.188

For example, Azerbayev et al. (2024) introduced189

LLEMMA, an open-source language model for190

mathematics that achieves state-of-the-art results191

on the MATH benchmark. LLEMMA filters data192

based on whether it contains LaTeX syntax, a tech-193

nique well-suited to mathematics but restrictive194

when applied to other fields, such as astronomy or195

biology, where such syntactic markers do not exist.196

This method risks excluding valuable content that197

lacks LaTeX or including low-quality data simply198

because it contains LaTeX markup.199

Similarly, Singhal et al. (2023) developed Med-200

PaLM 2, a medical domain model that achieved201

85.4% accuracy on US Medical Licensing Exami-202

nation (USMLE) questions. However, its approach203

to fine-tuning is relatively limited, relying primar-204

ily on instruction fine-tuning without deep post-205

training adjustments specific to medical literature,206

limiting its adaptability for more niche medical207

tasks.208

Other domain-specific models face similar lim-209

itations in data sourcing. Yang et al. (2023) intro-210

duced FinGPT, which demonstrates strong perfor-211

mance on financial tasks, but it heavily relies on212

domain-specific data sources like SEC filings and213

NYSE transaction reports. These data sources are214

highly specific to the financial domain and do not215

generalize well to other fields, limiting the flexibil-216

ity of such models.217

Nguyen et al. introduced AstroLLaMA, a 7-218

billion-parameter model fine-tuned on the abstracts219

of 300,000 astronomy papers from arXiv. Further-220

more, Ting et al. (2024) builds upon this work with221

larger and more modern models. While these works222

show strong performance in generating scientifi-223

cally relevant text completions, limiting the dataset224

to only arXiv papers (and in this case, only to cer-225

tain sections such as the Abstract and Introduction)226

restricts the breadth and depth of the information227

available for fine-tuning. The homogeneous dis-228

tribution of similarly formatted research abstracts229

leads to a lack of data diversity that reduces the230

Algorithm 1 Domain-Specific Dataset Curation
Pipeline

Input: Corpus of documents, astronomy-related
terms, similarity threshold τ , educational value
threshold η
Output: Filtered astronomy-specific dataset
Initialize astronomy vector A by averaging em-
beddings of astronomy-related terms
Stage 1: Embedding-Based Threshold Filter-
ing
for each document D in the corpus do

Compute document vector B by aggregating
embeddings of tokens in D
Calculate similarity: Similarity(D) = A·B

|A|∗|B|

if Similarity(D) > τ then
Retain document D

end if
end for
Stage 2: BERT-Based Regressor Evaluation
for each retained document D do

Compute educational value score EV (D) us-
ing BERT-based regressor
if EV (D) > η then

Retain document D
end if

end for
Return filtered dataset

model’s capacity to generalize across broader ap- 231

plications within the domain. 232

These models highlight the importance of high- 233

quality, domain-specific datasets for effective 234

model performance but also demonstrate the chal- 235

lenges in collecting and curating sufficiently di- 236

verse and representative datasets. 237

3 Dataset Curation Methodology 238

3.1 Choice of Corpus 239

For this study, we selected the FineWeb-Edu 240

dataset (Penedo et al., 2024) as our primary corpus. 241

FineWeb-Edu is a specialized subset of FineWeb, 242

which is a large-scale, high-quality dataset derived 243

from CommonCrawl web data, specifically de- 244

signed for pretraining large language models. The 245

FineWeb-Edu dataset uses the Open Data Com- 246

mons License Attribution family. FineWeb-Edu 247

focuses on “educational content” based on prompt 248

engineering strategies and contains approximately 249

1.3 trillion tokens, curated by filtering out content 250
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with lower educational value. This subset allowed251

us to begin with a high-quality dataset that is more252

focused and manageable for the specific tasks re-253

quired in astronomy. Figure 1 illustrates the com-254

prehensive filtering pipeline from FineWeb-Edu255

to ORBIT (our method), highlighting the quality256

and size at each step with examples of what has257

been eliminated. Our full filtering method is shown258

programmatically in Algorithm 1.259

3.2 Methodology for Domain-Specific Dataset260

Curation261

Our research presents a novel approach to curat-262

ing a high-quality, domain-specific dataset for as-263

tronomical language models. This methodology264

combines advanced natural language processing265

techniques with rigorous quality assurance mea-266

sures to produce a dataset that balances complex267

reasoning tasks with factual content in the field268

of astronomy. Our approach is designed for cost-269

effectiveness, using a combination of broad initial270

filtering and more thorough assessments at later271

stages to optimize the dataset’s quality and rele-272

vance.273

3.2.1 Stage 1: Initial Domain-Specific274

Filtering275

We developed a lexicon of 101 single-word276

astronomy-related terms, encompassing concepts277

from astrophysics, cosmology, and space explo-278

ration. To efficiently process large volumes of text,279

we implemented an embedding-based matching280

technique utilizing GloVe word embeddings (Pen-281

nington et al., 2014). A representative astronomy282

aggregated embedding vector A was computed by283

averaging the embeddings of all terms. For each284

document in FineWeb-Edu, we calculated a doc-285

ument vector and computed its cosine similarity286

with A. Documents exceeding a similarity thresh-287

old of τ = 0.2 were retained for further analysis.288

This threshold was empirically determined to bal-289

ance dataset size and quality, resulting in approxi-290

mately 10 billion tokens of high-quality, astronomy-291

relevant content. After this stage, approximately292

20B tokens of the corpus remained.293

3.2.2 Stage 2: Educational Value Assessment294

After the initial filtering, we applied a more thor-295

ough evaluation to refine the dataset further, focus-296

ing on its educational merit. Without this second297

phase, we would be left with a number of low-298

qualtiy documents, as shown in Figure 3. Furthre-299

more, if only Stage 2 was applied, the computa- 300

tional cost would increase significantly. For ex- 301

ample, if Stage 1 keeps 1
100 of the total data, the 302

number of NVIDIA A100 GPU hours needed for 303

stage 2 would decrease by 100x. See Table 1 for 304

more information. 305

We developed a BERT-based regressor model 306

(Devlin et al., 2019), using Huggingface’s 307

HUGGINGFACEFW/FINEWEB-EDU-CLASSIFIER 308

model, trained to evaluate the educational value 309

of astronomy-related text on a scale of 0 to 5. We 310

kept any value above or equal to our threshold 311

η = 3 312

The training dataset for this model was meticu- 313

lously curated through a multi-step process: 314

1. Random sampling of 50,000 documents from 315

the embedding-filtered corpus to ensure topic 316

diversity. 317

2. Automated evaluation of each sampled doc- 318

ument using GPT-4o model (OpenAI et al., 319

2024), which was prompted to assess the edu- 320

cational value on a 6-point scale (0-5). 321

3. Collection of both quantitative scores and 322

qualitative justifications for each evaluation, 323

used for prompt engineering. 324

The language model was instructed to consider 325

factors such as depth of astronomical content, clar- 326

ity of explanations, relevance to a general audi- 327

ence, and the presence of advanced concepts. Our 328

prompt, inspired by Yuan et al. (2024) (see Ap- 329

pendix), emphasized educational value specific to 330

the domain of astronomy. See Figure 2 for a visual 331

of our Stage 2 pipeline. 332

3.2.3 Cross-Domain Validation: Law and 333

Medicine 334

To assess the generalizability of ORBIT, we ex- 335

tended the dataset curation pipeline to two addi- 336

tional domains: law and medicine. Using the 337

same methodology applied to astronomy, we devel- 338

oped domain-specific lexicons for these fields. For 339

law, the lexicon included terms such as “litigation,” 340

“precedent,” and “contract,” while for medicine, it 341

featured terms like “pathology,” “oncology,” and 342

“metastasis.” The complete lists of terms for each 343

domain are provided in the Appendix. 344

Stage 1 filtering, based on embedding-based sim- 345

ilarity, was adapted to these domains by computing 346

aggregated embedding vectors from their respec- 347

tive lexicons. For each document in FineWeb-Edu, 348
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Figure 1: Comprehensive Filtering Pipeline from FineWeb-Edu to ORBIT. The pipeline emphasizes the quality
and size of the dataset. The orange includes common filtering methods formalized in Wenzek et al. (2020). The
yellow summarizes large-scale semantic filters from Raffel et al. (2023). The green includes the additional semantic
filters and the BERT-based classifier used to filter for educational relevance in FineWeb-Edu. The blue outlines our
contributions: GloVe-based embedding thresholding and a BERT classifier for educational relevance specific to
astronomy. See subsections 3.2 and 3.2.2 for details on our contributions.

Table 1: Comparison of Processing Time and Cost for Dataset Filtering. Stage 1 filtering retains 1% of documents
(and thus tokens), drastically reducing the effective dataset size for Stage 2. Stage 2 alone processes the full dataset.
The combined approach significantly lowers the time and cost of Stage 2. Pricing estimates are based on current
market rates and hardware usage. Furthermore, both stages are fully parallelizable, meaning additional hardware
can cause linear decrease in time for an approximately constant price.

Scenario Processing Unit Total Time Total Cost Quality

Stage 1 Only Intel Core i9 (16 cores) 177 hours $44 Medium
Stage 2 Only A100 PCIe GPU (1 unit) 12,000 hours $16,200 Highest
Stage 1 + Stage 2 Intel Core i9 + A100 PCIe GPU 297 hours $206 Highest

Figure 2: Full Stage 2 pipeline visualized.

the cosine similarity between its embedding vec-349

tor and the domain-specific aggregated vector was350

calculated. Documents exceeding the similarity351

threshold of 0.2 were retained for further analysis.352

4 Experiments353

To validate the effectiveness of the ORBIT method-354

ology, we conducted a series of experiments focus-355

ing on the quality of the curated dataset, the impact356

of fine-tuning on model performance, and the in-357

fluence of different thresholding values within the358

pipeline. These experiments aim to assess how359

ORBIT’s two-stage filtering approach improves360

dataset relevance and educational value while bal-361

ancing dataset size and computational cost. Addi-362

tionally, we evaluate the performance of models363

fine-tuned on ORBIT-curated datasets with varying364

Figure 3: Distribution of educational value scores (rang-
ing from 0 to 5) assigned by the BERT-based regressor
model to a sample of 1000 astronomy-related docu-
ments. This visualization demonstrates the validity of
the classifier by showing alignment with expected dis-
tributions based on held-out test sets and expert evalua-
tions.

similarity and educational value thresholds, exam- 365

ining their impact on downstream tasks. The results 366

provide insights into the trade-offs between dataset 367

size, quality, and curation efficiency, while demon- 368

strating the effectiveness of ORBIT for training 369

astronomy-specialized language models. Below, 370

we outline the experimental setup, datasets, and 371

evaluation metrics used to address these questions. 372
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4.1 Experimental Setup373

For our experiments, we utilized the Delta GPU374

cluster at the National Center for Supercomput-375

ing Applications, equipped with 8 NVIDIA A100376

GPUs, each with 40GB of memory. The model,377

named Orbit-LLaMA, was derived from Meta’s378

LLaMA-3-8B, an 8-billion-parameter language379

model optimized for large-scale training. We used380

the Punkt tokenizer from NLTK for sentence seg-381

mentation during preprocessing. LLaMA-3 op-382

erates under the LLaMA 3 Community License383

Agreement. See the Appendix for more training384

details.385

4.2 Effect of Thresholding, Embedding386

Methods, and Keyword Search387

To explore the effectiveness of various filtering388

strategies, we tested the impact of:389

1. Different threshold values in embedding simi-390

larity filters.391

2. Multiple embedding methods, including fast-392

Text, 100-dimensional, and 300-dimensional393

embeddings.394

3. Keyword filtering approaches compared to un-395

filtered datasets.396

This analysis assessed how these methods bal-397

ance dataset quality and coverage. The perfor-398

mance of each filtering strategy was measured399

based on average scores obtained from downstream400

tasks, as shown in Figure 4. Error bars indicate the401

standard error of the mean (SEM), highlighting402

variability. The results underscore how keyword fil-403

ters and embedding-based thresholds can improve404

dataset curation by focusing on the most relevant405

content.406

The results demonstrate that:407

• Higher threshold values generally reduce408

dataset size while maintaining or improving409

average scores.410

• Embedding methods showed slightly varying411

efficacy.412

• Keyword filtering, while simpler, achieved413

competitive performance by focusing on414

domain-specific terminology.415

• No filtering resulted in the largest datasets but416

the lowest scores.417

Figure 4: Average Score vs Percent Kept, comparing
different filtering methods: embedding thresholds (fast-
Text, 100d, 300d), keyword filtering, and no filtering.
The x-axis is log-scaled for clarity.

4.3 Cross-Domain Validation: Law and 418

Medicine 419

To evaluate ORBIT’s generalizability, we applied 420

the dataset curation pipeline to two additional do- 421

mains: law and medicine. Stage 1 filtering was 422

adapted to these domains by constructing domain- 423

specific lexicons, following the methodology de- 424

scribed in Section 3.2. For law, the lexicon in- 425

cluded terms such as “litigation,” “precedent,” and 426

“contract,” while for medicine, it featured terms 427

like “pathology,” “oncology,” and “metastasis” (see 428

Appendix for full term lists). 429

Embedding-based similarity filtering retained ap- 430

proximately 1.0% of the initial corpus for law and 431

1.0% for medicine, similar to the retention rate 432

observed for astronomy. The average educational 433

value scores, evaluated using GPT-4o, showed sig- 434

nificant improvements over the unfiltered baseline 435

(0.3), with 2.9 for medicine and 3.05 for law. 436

These scores align closely with the results ob- 437

tained for astronomy, indicating that Stage 1 fil- 438

tering alone is sufficient to extract high-quality, 439

domain-specific content across diverse fields. 440

4.4 Benchmarks and Baselines 441

We evaluated Orbit-LLaMa using multiple datasets, 442

including the astronomy section of the MMLU 443

benchmark (Hendrycks et al., 2021) and two 444

versions of AstroBench. Baseline models were 445

AstroLLaMA-3-8B (Pan et al., 2024), the prior 446

state-of-the-art in astronomy language modeling, 447

and Meta-LLaMA-3-8B, a general-purpose model. 448

A total of three datasets were used for quantita- 449

tive analysis: 450

1. Hugging Face AstroBench Subcategories: 451
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Organized into subcategories:452

• Basic Knowledge (BK): Tests core as-453

tronomy concepts.454

• Scientific Calculation (SC): Involves455

solving astrophysical numerical prob-456

lems.457

• Knowledge Application (KA): Assesses458

applying knowledge to novel scenarios.459

Each subcategory is scored separately for de-460

tailed performance analysis.461

2. Official AstroBench Benchmark: A com-462

prehensive dataset of 4,425 multiple-choice463

questions from 885 Annual Review of Astron-464

omy and Astrophysics articles (1963–2023).465

It provides an aggregated performance score,466

covering diverse topics such as quasars, cos-467

mological simulations, and the circumgalactic468

medium.469

3. MMLU Benchmark: The astronomy section470

of MMLU evaluates factual knowledge and471

reasoning across topics like stellar formation472

and cosmology, testing scientific depth in lan-473

guage models.474

Evaluation Methodology. We used multiple-475

choice perplexity prediction to select answers and476

conducted qualitative pairwise comparisons rated477

by expert astronomers and GPT-4 for accuracy, clar-478

ity, and reasoning.479

4.4.1 Qualitative Analysis480

Qualitative evaluations compared responses from481

Orbit-LLaMA, AstroLLaMA, and Meta-LLaMA482

using 24 test questions developed by Astronomy483

Ph.D. students and faculty. Responses were ranked484

for accuracy (or, for active areas of research, likeli-485

hood), clarity, and reasoning using two methods:486

1. Preference Ratings: Four graduate students487

selected the best response for each question.488

Majority consensus was reached for 83% of489

questions, with Orbit-LLaMA preferred for490

66% of total responses (Table 2).491

2. Detailed Feedback: Reviewers noted:492

• Meta-LLaMA: Responses often re-493

peated content and lacked focus.494

• Orbit-LLaMA: Delivered clear and con-495

cise answers resembling student-created496

work.497

Model Selected Output(%)

Meta-LLaMA 22.1%
Orbit-LLaMA 66.3%
AstroLLaMA 11.6%

Table 2: The total number of times each model’s re-
sponse was selected from total votes cast (N = 95).

• AstroLLaMA: Long, research-style re- 498

sponses with structural and coherence 499

issues. 500

4.5 Experiment Results 501

Orbit-LLaMa outperformed baselines on all met- 502

rics. On the MMLU astronomy section, Orbit- 503

LLaMa scored 76 compared to 69 (Meta-LLaMA) 504

and 66.45 (AstroLLaMA). On AstroBench subcate- 505

gories, Orbit-LLaMa excelled in Basic Knowledge 506

(45.53%), Scientific Calculation (30.28%), and 507

Knowledge Application (45.53%). On the official 508

AstroBench, Orbit-LLaMa scored 69.7, surpassing 509

AstroLLaMA (66.4) and Meta-LLaMA (61.5). 510

Table 3 summarizes the results, showing Orbit’s 511

superior performance in both specific tasks and 512

overall benchmarks. 513

Pairwise comparisons confirmed Orbit- 514

LLaMA’s superiority, with win rates over 92% 515

against baselines (Table 4). Expert feedback 516

highlighted its accuracy, clarity, and reasoning 517

improvements. See the appendix for detailed 518

examples. 519

5 Discussion 520

The results demonstrate the utility of the OR- 521

BIT methodology in addressing key challenges in 522

domain-specific dataset curation and fine-tuning. 523

By using a two-stage filtering process, ORBIT bal- 524

ances relevance and quality while remaining com- 525

putationally efficient. Stage 1’s embedding-based 526

similarity filtering significantly reduces the dataset 527

size, while Stage 2’s educational value assessment 528

ensures the retained data is highly relevant and 529

informative. This layered approach enables the cre- 530

ation of datasets that are both comprehensive and 531

focused, as evidenced by its application to astron- 532

omy, law, and medicine. 533

Fine-tuning Orbit-LLaMA on the ORBIT- 534

curated dataset led to notable improvements across 535

multiple benchmarks, including MMLU astronomy 536

and AstroBench. The gains in both quantitative 537

metrics and qualitative evaluations highlight the 538
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Table 3: Performance Comparison of Models on MMLU and AstroBench.

Model AS CC CP CPH HSC HSP KA SC BK AstroBench

AstroLLaMA 66.45 47.00 38.24 55.74 53.20 41.06 39.84 29.48 63.75 66.4
Meta-LLaMA 69.08 44.00 37.25 54.04 52.22 41.72 41.46 25.90 65.50 61.5
Orbit-LLaMA 76.30 52.00 47.10 56.20 53.70 43.10 45.53 30.28 69.96 69.7

Table 4: Win Rates and Tie Percentages Between Models.

Models Compared Meta-LLaMA Orbit-LLaMA AstroLLaMA Tie

Meta-LLaMA vs Orbit-LLaMA 25.4 73.0 - 1.6
Meta-LLaMA vs AstroLLaMA 84.3 - 10.5 5.22
Orbit-LLaMA vs AstroLLaMA - 93.0 5.0 2.0

impact of curating diverse and high-quality domain-539

specific data. The inclusion of a mix of academic540

and educational content allowed the model to excel541

in tasks requiring both factual knowledge and nu-542

anced reasoning, demonstrating the value of com-543

bining depth with breadth in training corpora.544

The success of ORBIT in multiple domains also545

suggests its scalability and adaptability. However,546

differences in domain-specific challenges, such as547

interdisciplinary overlaps or evolving knowledge in548

fields like medicine, highlight the need for further549

refinement. Future work could focus on automating550

lexicon creation and optimizing threshold selection551

to streamline application to new domains.552

Overall, the experiments validate the potential553

of domain-adapted LLMs when supported by ro-554

bust curation pipelines like ORBIT. This approach555

addresses limitations in general-purpose models556

for specialized tasks, emphasizing the importance557

of targeted datasets for achieving state-of-the-art558

performance in specific fields.559

6 Conclusion560

This paper presents a novel approach to creating561

high-quality, domain-specific datasets for training562

language models, with a focus on the field of as-563

tronomy. Our methodology, combining embedding-564

based matching and BERT-based regression for565

data filtering and selection, has demonstrated sig-566

nificant potential for enhancing the performance of567

language models in specialized scientific domains.568

Furthermore, we validated the scalability and gen-569

eralizability of this approach by extending it to the570

domains of law and medicine, achieving similar571

improvements in dataset quality.572

The key findings of our study include:573

1. The effectiveness of our data curation method-574

ology in creating balanced, high-quality 575

datasets that support both complex reason- 576

ing and factual knowledge across multi- 577

ple domains, including astronomy, law, and 578

medicine. 579

2. Significant improvements in model perfor- 580

mance on astronomy-related tasks, even with 581

relatively small-scale training data, highlight- 582

ing the potential for efficient resource utiliza- 583

tion. 584

3. The adaptability of our methodology to di- 585

verse scientific and professional fields, demon- 586

strating that domain-specific models can out- 587

perform general-purpose models in special- 588

ized tasks. 589

In conclusion, our work represents a significant 590

step toward more efficient and effective AI tools 591

for specialized scientific and professional domains. 592

As this field continues to evolve, we anticipate 593

that domain-specific language models will play 594

an increasingly important role in supporting re- 595

search, education, and decision-making across a 596

wide range of disciplines. Moreover, we believe 597

that ongoing collaboration between AI researchers 598

and domain experts will be essential to unlocking 599

the full potential of these models in addressing 600

complex, real-world challenges. 601
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7 Limitations609

While the ORBIT methodology and the resulting610

Orbit model show significant promise, it is essen-611

tial to acknowledge several limitations that may612

impact their applicability and effectiveness. These613

limitations are categorized into technical and social614

aspects to provide a comprehensive understanding615

of the challenges involved.616

7.1 Technical Limitations617

The primary technical limitations of the ORBIT618

methodology and the Orbit model are as follows:619

• Domain-Specific Generalizability. Although620

ORBIT has proven effective in the field of as-621

tronomy, its applicability to other domains622

remains untested. Domains with less struc-623

tured data or those that are highly interdisci-624

plinary may require additional adaptations to625

the filtering and evaluation processes. Defin-626

ing domain-specific terms and educational627

value criteria in such fields could pose unique628

challenges that the current methodology does629

not address.630

• Dependence on Embedding Models. The631

embedding-based filtering approach relies632

heavily on the quality and coverage of pre-633

trained word embeddings, such as fastText.634

These embeddings may not fully capture the635

nuances of highly specialized or emerging as-636

tronomical terminology, potentially leading637

to the exclusion of relevant content or the in-638

clusion of less pertinent material. Enhancing639

embedding models to better represent domain-640

specific language could mitigate this limita-641

tion.642

• Computational and Resource Constraints.643

Despite the efficiency gains from using frame-644

works like DeepSpeed and FlashAttention v2,645

the fine-tuning process for large models like646

Orbit demands substantial computational re-647

sources. This requirement may limit accessi-648

bility for smaller research teams or institutions649

with limited budgets. Additionally, scaling the650

methodology to accommodate larger datasets651

or models with higher parameter counts may652

encounter practical barriers related to memory653

and processing power.654

• Evaluation Scope. The current evaluations655

are primarily focused on astronomy-specific656

tasks and benchmarks such as MMLU and 657

AstroBench. This narrow scope may limit 658

the generalizability of the findings, as broader 659

benchmarks that include interdisciplinary or 660

collaborative tasks have not been assessed. 661

Expanding the evaluation to encompass a 662

wider range of benchmarks would provide 663

a more comprehensive assessment of the 664

model’s utility. 665

• Dynamic Nature of Scientific Knowledge. 666

Astronomy is a rapidly evolving field, and the 667

curated dataset represents a specific temporal 668

snapshot. As new discoveries and theories 669

emerge, the model’s relevance and accuracy 670

may decline without ongoing updates. Devel- 671

oping methods for efficiently integrating new 672

knowledge into existing models is necessary 673

to maintain their effectiveness over time. 674

Addressing these technical limitations will re- 675

quire future work to explore the adaptability of 676

the ORBIT methodology across domains, enhance 677

embedding models for better domain-specific repre- 678

sentation, and develop scalable solutions to manage 679

computational demands. 680

We acknowledge the assistance of ChatGPT for 681

paraphrasing and shortening text in this document. 682

All content generated with AI was carefully re- 683

viewed and validated by the authors. 684

8 Ethical Considerations 685

The development of domain-specific language mod- 686

els like Orbit raises several ethical considerations 687

that warrant careful examination: 688

• Transparency and Open Sourcing. Open- 689

sourcing the methodology, dataset, and code- 690

base promotes transparency and ensures that 691

other researchers can replicate and validate 692

our findings. However, this accessibility also 693

increases the risk of misuse. For example, 694

malicious actors could adapt the approach to 695

create highly specialized LLMs for unethi- 696

cal purposes, such as generating misleading 697

or pseudoscientific content within specialized 698

domains. 699

• Mitigation of Misuse. To mitigate risks of 700

misuse, safeguards such as dataset provenance 701

disclosure, ethical use guidelines, and commu- 702

nity oversight should be implemented. Openly 703

documenting the sources and filtering criteria 704
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ensures clarity about the data used, while eth-705

ical use guidelines can provide clear bound-706

aries for the responsible use of the dataset707

and methodology. Encouraging the research708

community to establish and enforce standards709

for domain-specific LLMs can help prevent710

misuse.711

• Bias and Representation. While we have712

curated a dataset with a focus on educational713

value and scientific rigor, the model could in-714

advertently propagate biases present in the715

source data. Historical datasets may reflect716

outdated or unbalanced perspectives, such717

as overrepresenting contributions from cer-718

tain geographic regions or underrepresenting719

emerging subfields within astronomy. These720

biases can perpetuate systemic inequities if721

not carefully addressed.722

• Bias Mitigation Strategies. Post-hoc audits723

can analyze representation across subfields,724

geographic regions, and demographics of au-725

thorship. Iterative refinement, through peri-726

odic dataset updates and expanding coverage727

of underrepresented areas, can further reduce728

bias. Engaging a diverse group of domain729

experts to guide future dataset expansions en-730

sures inclusive curation processes.731

• Representation and Inclusivity. The cu-732

rated dataset may inadvertently exclude con-733

tributions from underrepresented groups or734

regions, thereby limiting the model’s inclu-735

sivity. Ensuring diverse representation in the736

data sources is crucial for developing mod-737

els that reflect a wide range of perspectives738

and knowledge bases. Failure to address these739

disparities can perpetuate existing inequities740

within the scientific community.741

• Transparency and Accountability. While742

documenting dataset provenance and filtering743

criteria promotes transparency, ensuring ac-744

countability in the development and deploy-745

ment of domain-specific models requires on-746

going efforts. Establishing clear ethical guide-747

lines and engaging in community oversight748

are essential steps toward responsible AI de-749

velopment.750

FineWeb-Edu, our baseline dataset, explicitly751

addresses the removal of personally identifying752

and offensive content, as well as trying to address753

the mentioned issues above. By proactively ad- 754

dressing these ethical considerations, we aim to 755

promote responsible development and deployment 756

of domain-specific language models that support 757

equitable and transparent scientific advancement. 758
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A Appendix 866

A.1 Evaluation Prompt for Educational Value 867

of Astronomy Texts 868

The following prompt is utilized to assess the ed- 869

ucational value of astronomy-related texts. This 870

scoring system assigns a score from 0 to 5 based 871

on the depth, clarity, and relevance of the content. 872

The prompt guides evaluators in determining the 873

quality of information to ensure only high-value 874

educational material is selected for domain-specific 875

training. 876
877

1 prompt = f""" Please evaluate the 878
educational value of the following 879
astronomy -related text from a web 880
document. Use this 6-point scoring 881
system: 882

2 883
3 0 points: No astronomy content at all. 884
4 1 point: Minimal astronomy information , 885

or astronomy mixed with non - 886
astronomical content. 887

5 2 points: Covers basic astronomical 888
concepts but lacks depth or 889
comprehensive explanation. 890

6 3 points: Clear explanation of concepts 891
with relevant examples , educational 892
for a general audience. 893

7 4 points: In-depth knowledge , covers 894
advanced concepts or recent 895
discoveries , well -structured and 896
engaging. 897

8 5 points: Exceptionally high educational 898
value , expert -level insights , 899

connects multiple concepts , 900
addresses misconceptions , inspires 901
further learning. 902

9 903
10 Provide a brief justification (up to 100 904

words) and conclude with the score 905
in the format "Score: X". 906

11 907
12 Here ’s the text to evaluate: 908
13 909
14 {text }""" 910911

A.2 Domain-Relevant Astronomy Key Terms 912

The following list comprises astronomy-related 913

terms used to construct the domain-specific “as- 914

tronomy vector” within the embedding-based fil- 915

tering process. This selection encompasses key 916

concepts in astrophysics, observational astronomy, 917
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and cosmology, ensuring comprehensive coverage918

of critical terms relevant to domain-specific filter-919

ing.920

A.3 Training Details921

The training of the Orbit-LLaMA model was con-922

ducted using the DeepSpeed framework, leverag-923

ing Zero-2 optimization for efficient memory man-924

agement and scaling. FlashAttention v2 was925

employed to enhance the efficiency of the self-926

attention mechanism, improving both memory us-927

age and computational speed.928

Training Configuration:929

• Epochs: 1930

• Block Size: 512 tokens931

• Effective Batch Size: 8932

• Learning Rate: 2× 10−5933

• Learning Rate Schedule: Linear warmup934

over 500 steps followed by cosine decay935

• Optimizer: AdamW with parameters β1 =936

0.9, β2 = 0.95, and weight decay of 0.01937

• Gradient Clipping: 1.0938

• Precision: Mixed precision training enabled939

with bf16 to reduce memory usage and accel-940

erate training941

Optimization Techniques:942

• DeepSpeed Zero-2 Optimization: Reduced943

memory footprint by partitioning optimizer944

states, gradients, and parameters across GPUs,945

enabling effective training of large models.946

• FlashAttention v2: Minimized memory us-947

age during self-attention computations, allow-948

ing for faster training without compromising949

accuracy.950

A.4 Qualitative Evaluation Methodology951

A.4.1 Test Questions and Development952

Process953

A set of 24 test questions was developed by three954

Ph.D.-track astronomy graduate students and a fac-955

ulty member from an anonymized university. These956

questions were designed to evaluate the models’ ca-957

pabilities across a broad range of topics, including:958

• Basic Definitions and Conceptual Knowl- 959

edge: For example, defining astronomical 960

terms. 961

• Problem-Solving in Complex or Ambigu- 962

ous Scenarios: For instance, addressing 963

under-explored areas of astronomy. 964

• Support for Research-Oriented Tasks: 965

Such as code generation for data analysis or 966

simulations. 967

Each question was carefully reviewed to ensure it 968

was appropriate for benchmarking a wide range of 969

tasks and model competencies. 970

A.4.2 Evaluation Framework 971

The responses from Orbit, AstroLLaMA, and Meta- 972

LLaMA were evaluated using the following crite- 973

ria: 974

• Accuracy of Content: How well the response 975

aligned with established scientific understand- 976

ing. 977

• Clarity of Explanation: The readability and 978

coherence of the generated response. 979

• Reasoning: The logical structure and han- 980

dling of complex, ambiguous topics. 981

The evaluation process consisted of two phases: 982

1. Preference Ratings: Four graduate students 983

were asked to select their preferred response 984

for each question, considering the aforemen- 985

tioned criteria. This approach allowed review- 986

ers to account for cases where correctness was 987

unclear or when responses were partially cor- 988

rect. 989

2. Detailed Feedback: Two astronomy gradu- 990

ate students with Teaching Assistant grading 991

experience analyzed the responses in-depth, 992

identifying strengths, weaknesses, and id- 993

iosyncrasies of each model. 994

A.4.3 Model-Specific Observations 995

Detailed grader comments highlighted the follow- 996

ing characteristics: 997

• Meta LLaMA-3: Generated verbose and 998

repetitive answers, occasionally diverging 999

from the original prompt. It was prone to cre- 1000

ating irrelevant subtopics and exhibited issues 1001

with coherence. 1002
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• Orbit LLaMA: Produced concise, relevant1003

responses that were easier to follow. It occa-1004

sionally adopted a teaching-style format, re-1005

sembling lecture notes or student-generated1006

answers.1007

• AstroLLaMA: Generated longer, more1008

research-like responses. While it included1009

citations, these were not always accurate or1010

relevant. Responses tended to drift off-topic1011

and lacked logical progression.1012

These qualitative observations, combined with1013

the preference ratings, helped identify Orbit1014

LLaMA as the most effective overall. Full re-1015

sponses from all models for each test question,1016

along with grader comments, are provided in the1017

supplementary material.1018

A.5 Model Generations Comparison1019

The following section presents a comparison of re-1020

sponses from three models—Meta LLaMA-3, Or-1021

bit LLaMA, and AstroLLaMA—to a sample ques-1022

tion. Each response is evaluated based on accuracy,1023

clarity, and reasoning.1024

A.5.1 Sample Question1025

What challenges do spacecraft face when1026

crossing the heliopause, and how do1027

these challenges impact the design of in-1028

terstellar missions?1029

A.5.2 Responses and Evaluations1030

• Meta LLaMA-3 Response:1031

Crossing the heliopause poses1032

several challenges for spacecraft.1033

Firstly, the heliopause region is a1034

highly dynamic environment, with1035

intense solar wind and interstel-1036

lar magnetic fields. These can1037

cause significant disturbances in the1038

spacecraft’s trajectory and naviga-1039

tion, making it difficult to accu-1040

rately predict the spacecraft’s po-1041

sition and velocity. Additionally,1042

the solar wind can cause ioniza-1043

tion and plasma flow, which can af-1044

fect the spacecraft’s communication1045

and power systems. The interstellar1046

magnetic field can also induce cur-1047

rents in the spacecraft’s structure,1048

which can lead to heating and po-1049

tential damage. To address these1050

challenges, interstellar missions typ- 1051

ically use advanced navigation and 1052

control systems, as well as sophisti- 1053

cated shielding and power systems. 1054

The shielding is used to protect 1055

the spacecraft from ionization and 1056

plasma flow, while the power sys- 1057

tems are used to generate and dis- 1058

tribute electricity to the spacecraft’s 1059

systems and instruments. Overall, 1060

crossing the heliopause is a com- 1061

plex task that requires careful plan- 1062

ning and design to ensure the safety 1063

and success of the spacecraft. 1064

Evaluation: Score: 3. Meta LLaMA-3 pro- 1065

vides a reasonable overview of the challenges 1066

spacecraft face when crossing the heliopause, 1067

mentioning solar wind disturbances, ioniza- 1068

tion, and the need for advanced systems to 1069

mitigate these challenges. However, the re- 1070

sponse could have provided more specificity 1071

about the unique nature of the heliopause and 1072

its implications for spacecraft design. There 1073

was an emphasis on general navigational and 1074

shielding challenges that, while relevant, did 1075

not delve deeply into the unique aspects of the 1076

heliopause. 1077

• Orbit LLaMA Response: 1078

The heliopause, the boundary be- 1079

tween the solar wind and interstellar 1080

space, presents unique challenges 1081

for spacecraft crossing it. One of 1082

the primary challenges is naviga- 1083

tion. Without the solar wind to pro- 1084

vide a reference point, spacecraft 1085

must rely on other methods such 1086

as star-tracking or pulsar naviga- 1087

tion to determine their position and 1088

trajectory. This requires complex 1089

navigation systems that can oper- 1090

ate in the absence of the familiar 1091

solar wind. Another challenge is 1092

the radiation environment. The he- 1093

liopause is surrounded by a region 1094

of intense radiation, including cos- 1095

mic rays and solar wind particles. 1096

This radiation can damage space- 1097

craft electronics and pose a threat 1098

to the health of the crew. To mit- 1099

igate these risks, spacecraft must 1100
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be equipped with advanced radia-1101

tion shielding and backup systems.1102

Additionally, the distance and com-1103

munication lag between Earth and1104

the spacecraft make real-time con-1105

trol of the mission impossible. This1106

requires spacecraft to be fully au-1107

tonomous, capable of making com-1108

plex decisions and adjustments on1109

their own. Overall, these challenges1110

highlight the need for advanced1111

technology and innovative solutions1112

to enable successful interstellar mis-1113

sions.1114

Evaluation: Score: 4. Orbit LLaMA pro-1115

vides a concise and relevant description of the1116

challenges at the heliopause, such as naviga-1117

tion difficulties due to the lack of solar wind1118

and the increased radiation environment. It1119

clearly explains the need for radiation shield-1120

ing, autonomy, and advanced navigation sys-1121

tems, directly correlating these challenges1122

with the design implications for interstellar1123

missions. This response was clear, accurate,1124

and focused on the question.1125

• AstroLLaMA Response:1126

Crossing the heliopause presents1127

several challenges for interstellar1128

missions, including the interaction1129

of the spacecraft with the solar wind1130

and its magnetic field, as well as1131

the presence of interstellar material1132

such as interstellar dust and the in-1133

terstellar magnetic field. The he-1134

liopause acts as a barrier, preventing1135

the spacecraft from directly inter-1136

acting with the interstellar medium.1137

However, a boundary layer where1138

interactions between the solar wind1139

and the interstellar medium occur is1140

expected to form at the heliopause.1141

The spacecraft may encounter sev-1142

eral layers of plasma and magnetic1143

fields across the boundary layer,1144

which can affect its trajectory and1145

instruments. The spacecraft may1146

also be exposed to interstellar dust,1147

which can be a potential risk to the1148

spacecraft and instruments. The1149

spacecraft designers must consider1150

these challenges and design the 1151

spacecraft accordingly, including 1152

protective measures and additional 1153

instruments to study the interstellar 1154

medium. 1155

Evaluation: Score: 3. AstroLLaMA offers 1156

an extensive explanation of the heliopause and 1157

discusses various physical phenomena asso- 1158

ciated with it. However, while it provides a 1159

broad scientific context, it is overly detailed 1160

in parts not directly pertinent to the question, 1161

which could overwhelm or confuse readers 1162

seeking a direct answer. The response lacks 1163

specific mention of direct spacecraft design 1164

implications, which are crucial for answering 1165

the question on interstellar mission design. 1166

B Supplementary Figures and Tables 1167

B.1 Residual Components Distribution 1168

The distribution of residual components for the 1169

domain-specific embeddings (m = 100) is visu- 1170

alized below. The residuals exhibit a normal dis- 1171

tribution centered near zero, validating that noise 1172

diminishes with an increasing number of domain- 1173

relevant terms. This result supports the robustness 1174

of our astronomy vector in representing domain 1175

relevance while minimizing noise. 1176

B.2 Sample Qualitative Evaluation 1177

B.3 Instructions to Reviewers and Annotator 1178

Details 1179

To evaluate the quality of the model outputs, we 1180

recruited four graduate students in astronomy who 1181

volunteered to participate in the evaluation pro- 1182

cess. The primary goal was to compare responses 1183

generated by three models—Orbit LLaMA, As- 1184

troLLaMA, and Meta LLaMA-3—on a set of 1185

astronomy-related questions, focusing on accuracy, 1186

clarity, and reasoning. 1187

B.3.1 Instructions to Annotators 1188

Annotators were provided with a detailed set of 1189

instructions that outlined the evaluation criteria and 1190

process. They were asked to: 1191

1. Read and Assess: Carefully review the re- 1192

sponses generated by the three models for 1193

each test question. 1194

2. Evaluate Against Criteria: 1195
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• Accuracy: Determine if the content of1196

the response is factually correct and rele-1197

vant to the question.1198

• Clarity: Assess whether the response is1199

well-structured, easy to read, and free of1200

ambiguity.1201

• Reasoning: Evaluate the logical struc-1202

ture and whether the response adequately1203

addresses complex or ambiguous aspects1204

of the question.1205

3. Rank the Responses: Rank the responses1206

from the three models in order of preference1207

for each question, with justifications for their1208

rankings.1209

4. Provide Feedback: Offer detailed comments1210

on strengths and weaknesses for each re-1211

sponse, particularly highlighting areas where1212

models excelled or failed.1213

B.3.2 Recruitment and Voluntary1214

Participation1215

All annotators were graduate students specializ-1216

ing in astronomy. They volunteered for the task,1217

and their contributions were limited to evaluating a1218

manageable set of 24 test questions, ensuring the1219

workload was minimal. No monetary or material1220

compensation was provided as they were willing1221

participants.1222

B.3.3 Consent1223

All participants were informed about the purpose1224

of the evaluation and the intended use of their feed-1225

back for research and publication. Consent was1226

obtained prior to their participation, ensuring ethi-1227

cal compliance.1228

B.3.4 Anonymity1229

To protect the privacy of the annotators, we do1230

not report individual demographic or geographic1231

characteristics. This decision aligns with their pref-1232

erence for anonymity while contributing to the re-1233

search.1234

This structured process ensured high-quality, ex-1235

pert feedback for evaluating model performance1236

while adhering to ethical standards and respecting1237

the privacy of participants.1238

B.3.5 Sample Question1239

What challenges do spacecraft face when1240

crossing the heliopause, and how do1241

these challenges impact the design of in-1242

terstellar missions?1243

B.3.6 Responses and Evaluations 1244

• Meta LLaMA-3 Response: 1245

Crossing the heliopause poses 1246

several challenges for spacecraft. 1247

Firstly, the heliopause region is a 1248

highly dynamic environment, with 1249

intense solar wind and interstel- 1250

lar magnetic fields. These can 1251

cause significant disturbances in the 1252

spacecraft’s trajectory and naviga- 1253

tion, making it difficult to accu- 1254

rately predict the spacecraft’s po- 1255

sition and velocity. Additionally, 1256

the solar wind can cause ioniza- 1257

tion and plasma flow, which can af- 1258

fect the spacecraft’s communication 1259

and power systems. The interstellar 1260

magnetic field can also induce cur- 1261

rents in the spacecraft’s structure, 1262

which can lead to heating and po- 1263

tential damage. To address these 1264

challenges, interstellar missions typ- 1265

ically use advanced navigation and 1266

control systems, as well as sophisti- 1267

cated shielding and power systems. 1268

The shielding is used to protect 1269

the spacecraft from ionization and 1270

plasma flow, while the power sys- 1271

tems are used to generate and dis- 1272

tribute electricity to the spacecraft’s 1273

systems and instruments. Overall, 1274

crossing the heliopause is a com- 1275

plex task that requires careful plan- 1276

ning and design to ensure the safety 1277

and success of the spacecraft. 1278

Evaluation: Score: 3. Meta LLaMA-3 pro- 1279

vides a reasonable overview of the challenges 1280

spacecraft face when crossing the heliopause, 1281

mentioning solar wind disturbances, ioniza- 1282

tion, and the need for advanced systems to 1283

mitigate these challenges. However, the re- 1284

sponse could have provided more specificity 1285

about the unique nature of the heliopause and 1286

its implications for spacecraft design. There 1287

was an emphasis on general navigational and 1288

shielding challenges that, while relevant, did 1289

not delve deeply into the unique aspects of the 1290

heliopause. 1291

• Orbit LLaMA Response: 1292
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The heliopause, the boundary be-1293

tween the solar wind and interstellar1294

space, presents unique challenges1295

for spacecraft crossing it. One of1296

the primary challenges is naviga-1297

tion. Without the solar wind to pro-1298

vide a reference point, spacecraft1299

must rely on other methods such1300

as star-tracking or pulsar naviga-1301

tion to determine their position and1302

trajectory. This requires complex1303

navigation systems that can oper-1304

ate in the absence of the familiar1305

solar wind. Another challenge is1306

the radiation environment. The he-1307

liopause is surrounded by a region1308

of intense radiation, including cos-1309

mic rays and solar wind particles.1310

This radiation can damage space-1311

craft electronics and pose a threat1312

to the health of the crew. To mit-1313

igate these risks, spacecraft must1314

be equipped with advanced radia-1315

tion shielding and backup systems.1316

Additionally, the distance and com-1317

munication lag between Earth and1318

the spacecraft make real-time con-1319

trol of the mission impossible. This1320

requires spacecraft to be fully au-1321

tonomous, capable of making com-1322

plex decisions and adjustments on1323

their own. Overall, these challenges1324

highlight the need for advanced1325

technology and innovative solutions1326

to enable successful interstellar mis-1327

sions.1328

Evaluation: Score: 4. Orbit LLaMA pro-1329

vides a concise and relevant description of the1330

challenges at the heliopause, such as naviga-1331

tion difficulties due to the lack of solar wind1332

and the increased radiation environment. It1333

clearly explains the need for radiation shield-1334

ing, autonomy, and advanced navigation sys-1335

tems, directly correlating these challenges1336

with the design implications for interstellar1337

missions. This response was clear, accurate,1338

and focused on the question.1339

• AstroLLaMA Response:1340

Crossing the heliopause presents1341

several challenges for interstellar1342

missions, including the interaction 1343

of the spacecraft with the solar wind 1344

and its magnetic field, as well as 1345

the presence of interstellar material 1346

such as interstellar dust and the in- 1347

terstellar magnetic field. The he- 1348

liopause acts as a barrier, preventing 1349

the spacecraft from directly inter- 1350

acting with the interstellar medium. 1351

However, a boundary layer where 1352

interactions between the solar wind 1353

and the interstellar medium occur is 1354

expected to form at the heliopause. 1355

The spacecraft may encounter sev- 1356

eral layers of plasma and magnetic 1357

fields across the boundary layer, 1358

which can affect its trajectory and 1359

instruments. The spacecraft may 1360

also be exposed to interstellar dust, 1361

which can be a potential risk to the 1362

spacecraft and instruments. The 1363

spacecraft designers must consider 1364

these challenges and design the 1365

spacecraft accordingly, including 1366

protective measures and additional 1367

instruments to study the interstellar 1368

medium. 1369

Evaluation: Score: 3. AstroLLaMA offers 1370

an extensive explanation of the heliopause and 1371

discusses various physical phenomena asso- 1372

ciated with it. However, while it provides a 1373

broad scientific context, it is overly detailed 1374

in parts not directly pertinent to the question, 1375

which could overwhelm or confuse readers 1376

seeking a direct answer. The response lacks 1377

specific mention of direct spacecraft design 1378

implications, which are crucial for answering 1379

the question on interstellar mission design. 1380

C Additional Mathematical Foundations 1381

C.1 Efficient Domain-Specific Dataset 1382

Curation 1383

The core objective of language models is to esti- 1384

mate the probability distribution over sequences 1385

of words by predicting each token based on pre- 1386

ceding ones. This is achieved through training 1387

on large datasets, where the model minimizes the 1388

negative log-likelihood (cross-entropy loss) across 1389

the corpus. Model performance tends to improve 1390

predictably with the number of parameters, as 1391

greater capacity enables capturing more complex 1392
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patterns—up to a limit governed by dataset quality1393

and complexity (Kaplan et al., 2020).1394

Domain-specific models, such as the astronomy-1395

focused variant presented here, face unique chal-1396

lenges in obtaining sufficient, high-quality data, as1397

general-purpose datasets often include noise or ir-1398

relevant content. A refined dataset requires filtering1399

methods that prioritize domain relevance without1400

extensive computational costs.1401

To address this, we developed a method that1402

leverages cosine similarity between token embed-1403

dings and a representative aggregated word embed-1404

ding derived from a predefined list of astronomy-1405

related terms. This approach enables efficient fil-1406

tering by identifying documents based on their se-1407

mantic similarity to the target domain.1408

C.1.1 Decomposition of Embeddings1409

We assume that each astronomy-related term’s em-1410

bedding can be decomposed into two components:1411

eti = a+ ri, (1)1412

where:1413

• eti ∈ Rd is the normalized embedding vector1414

of the i-th astronomy-related term.1415

• a ∈ Rd is the domain-specific astronomy1416

component common to all astronomy-related1417

terms.1418

• ri ∈ Rd is the random noise component1419

unique to each term, with E[ri] = 0.1420

The astronomy aggregated embedding vector A1421

is defined as the average of the embeddings of all1422

astronomy-related terms:1423

A =
1

m

m∑
i=1

eti = a+
1

m

m∑
i=1

ri. (2)1424

By the Law of Large Numbers, as the number of1425

astronomy-related terms m increases, the average1426

of the random components converges to zero:1427

lim
m→∞

1

m

m∑
i=1

ri = 0. (3)1428

Therefore, for sufficiently large m, the as-1429

tronomy aggregated vector A approximates the1430

domain-specific component a:1431

A ≈ a. (4)1432

The mean vector A also serves as the mathe- 1433

matical minimum point for minimizing the sum of 1434

squared Euclidean distances between A and each 1435

individual astronomy-related embedding eti . For- 1436

mally, A minimizes the following objective: 1437

A = arg min
x∈Rd

m∑
i=1

∥eti − x∥2. (5) 1438

This property ensures that A is the most repre- 1439

sentative point in the embedding space for the set 1440

of astronomy-related terms. 1441

C.1.2 Error Analysis 1442

The error introduced by the random components 1443

ri can be quantified by analyzing the difference 1444

between the astronomy aggregated vector A and 1445

the true domain-specific component a: 1446

E = A− a =
1

m

m∑
i=1

ri. 1447

We aim to analyze the expected and actual error 1448

rates to ensure that our theoretical results are sound. 1449

Specifically, we verify that the random vectors ri ∈ 1450

Rd are independently and identically distributed 1451

(i.i.d.) with mean zero. 1452

To validate the properties of the residual com- 1453

ponents ri, we conducted experiments using the 1454

GloVe word embeddings (Pennington et al., 2014). 1455

We assessed whether the residual components for 1456

a significant number of astronomy-related terms 1457

have an expected value around zero and how the 1458

error ∥E∥ behaves as a function of m. 1459

We selected a list of 101 astronomy-related terms 1460

(see Section A.2) and extracted their corresponding 1461

embeddings from the pre-trained GloVe model. We 1462

computed the astronomy aggregated vector A as 1463

the average of m randomly selected term embed- 1464

dings and calculated the error vector E = A− a, 1465

where a is the true average embedding computed 1466

using all available astronomy-related terms. 1467

C.1.3 Computational Efficiency 1468

To filter a large corpus efficiently, we employ a 1469

combination of embedding-based similarity filter- 1470

ing and BERT-based classification. The pipeline’s 1471

goal is to reduce the dataset to the most relevant 1472

documents before applying more computationally 1473

expensive processes. 1474

Given a document D with s tokens 1475

{w1, w2, . . . , ws}, each token has a corre- 1476

sponding normalized embedding ewj ∈ Rd. 1477
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The document vector B is the average of these1478

embeddings:1479

B =

∑s
j=1 ewj

m
.1480

The relevance to the astronomy domain is as-1481

sessed using cosine similarity between B and the1482

astronomy vector A:1483

Similarity(D) =
A ·B

|A| ∗ |B|
.1484

A document is retained if this similarity exceeds1485

a threshold τ .1486

C.1.4 Formalized Pipeline1487

1. Embedding Lookup: For each token wj in1488

document D, retrieve its embedding ewj from1489

a hashmap. Runtime: O(1)1490

2. Document Vector Computation: Calculate1491

B =
∑s

j=1 ewj . Runtime: O(s · d)1492

3. Similarity Calculation: Compute cosine sim-1493

ilarity between A and B. Runtime:1494

O(d)1495

4. Thresholding: Retain the document if the1496

similarity exceeds τ . Runtime: O(1)1497

Total Complexity per Document: O(s · d)1498

Given N documents, each with s tokens on av-1499

erage, the overall complexity for the filtering step1500

is:1501

O(N · s · d)1502

Optimizations Implemented:1503

• Precomputation of Normalized A: Elimi-1504

nates repeated division during similarity com-1505

putation.1506

• Vectorized Operations: Speeds up vector cal-1507

culations using optimized libraries.1508

• Parallel Processing: Distributes the workload1509

across multiple cores.1510

D Mathematical Foundations1511

D.1 Efficient Domain-Specific Dataset1512

Curation1513

The core objective of language models is to esti-1514

mate the probability distribution over sequences1515

of words by predicting each token based on pre-1516

ceding ones. This is achieved through training1517

on large datasets, where the model minimizes the 1518

negative log-likelihood (cross-entropy loss) across 1519

the corpus. Model performance tends to improve 1520

predictably with the number of parameters, as 1521

greater capacity enables capturing more complex 1522

patterns—up to a limit governed by dataset quality 1523

and complexity (Kaplan et al., 2020). 1524

Domain-specific models, such as the astronomy- 1525

focused variant presented here, face unique chal- 1526

lenges in obtaining sufficient, high-quality data, as 1527

general-purpose datasets often include noise or ir- 1528

relevant content. A refined dataset requires filtering 1529

methods that prioritize domain relevance without 1530

extensive computational costs. 1531

To address this, we developed a method that 1532

leverages cosine similarity between token embed- 1533

dings and a representative aggregated word embed- 1534

ding derived from a predefined list of astronomy- 1535

related terms. This approach enables efficient fil- 1536

tering by identifying documents based on their se- 1537

mantic similarity to the target domain. 1538

D.1.1 Decomposition of Embeddings 1539

We assume that each astronomy-related term’s em- 1540

bedding can be decomposed into two components: 1541

eti = a+ ri, (6) 1542

where: 1543

• eti ∈ Rd is the normalized embedding vector 1544

of the i-th astronomy-related term. 1545

• a ∈ Rd is the domain-specific astronomy 1546

component common to all astronomy-related 1547

terms. 1548

• ri ∈ Rd is the random noise component 1549

unique to each term, with E[ri] = 0. 1550

The astronomy aggregated embedding vector A 1551

is defined as the average of the embeddings of all 1552

astronomy-related terms: 1553

A =
1

m

m∑
i=1

eti = a+
1

m

m∑
i=1

ri. (7) 1554

By the Law of Large Numbers, as the number of 1555

astronomy-related terms m increases, the average 1556

of the random components converges to zero: 1557

lim
m→∞

1

m

m∑
i=1

ri = 0. (8) 1558
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Therefore, for sufficiently large m, the as-1559

tronomy aggregated vector A approximates the1560

domain-specific component a:1561

A ≈ a. (9)1562

The mean vector A also serves as the mathe-1563

matical minimum point for minimizing the sum of1564

squared Euclidean distances between A and each1565

individual astronomy-related embedding eti . For-1566

mally, A minimizes the following objective:1567

A = arg min
x∈Rd

m∑
i=1

∥eti − x∥2. (10)1568

This property ensures that A is the most repre-1569

sentative point in the embedding space for the set1570

of astronomy-related terms.1571

D.1.2 Error Analysis1572

The error introduced by the random components1573

ri can be quantified by analyzing the difference1574

between the astronomy aggregated vector A and1575

the true domain-specific component a:1576

E = A− a =
1

m

m∑
i=1

ri.1577

We aim to analyze the expected and actual error1578

rates to ensure that our theoretical results are sound.1579

Specifically, we verify that the random vectors ri ∈1580

Rd are independently and identically distributed1581

(i.i.d.) with mean zero.1582

To validate the properties of the residual com-1583

ponents ri, we conducted experiments using the1584

GloVe word embeddings (Pennington et al., 2014).1585

We assessed whether the residual components for1586

a significant number of astronomy-related terms1587

have an expected value around zero and how the1588

error ∥E∥ behaves as a function of m.1589

We selected a list of 101 astronomy-related terms1590

(see Section A.2) and extracted their corresponding1591

embeddings from the pre-trained GloVe model. We1592

computed the astronomy aggregated vector A as1593

the average of m randomly selected term embed-1594

dings and calculated the error vector E = A− a,1595

where a is the true average embedding computed1596

using all available astronomy-related terms.1597

D.1.3 Computational Efficiency1598

To filter a large corpus efficiently, we employ a1599

combination of embedding-based similarity filter-1600

ing and BERT-based classification. The pipeline’s1601

goal is to reduce the dataset to the most relevant1602

Figure 5: Distribution of residual components for the
domain-specific embeddings (m = 100). The residuals
exhibit a normal distribution centered near zero, validat-
ing that noise diminishes with an increasing number of
domain-relevant terms. This result supports the robust-
ness of our astronomy vector in representing domain
relevance while minimizing noise.

documents before applying more computationally 1603

expensive processes. 1604

Given a document D with s tokens 1605

{w1, w2, . . . , ws}, each token has a corre- 1606

sponding normalized embedding ewj ∈ Rd. 1607

The document vector B is the average of these 1608

embeddings: 1609

B =

∑s
j=1 ewj

m
. 1610

The relevance to the astronomy domain is as- 1611

sessed using cosine similarity between B and the 1612

astronomy vector A: 1613

Similarity(D) =
A ·B
|A| · |B|

. 1614

A document is retained if this similarity exceeds 1615

a threshold τ . 1616

D.1.4 Formalized Pipeline 1617

1. Embedding Lookup: For each token wj in 1618

document D, retrieve its embedding ewj from 1619

a hashmap. Runtime: O(1) 1620

2. Document Vector Computation: Calculate 1621

B =
∑s

j=1 ewj . Runtime: O(s · d) 1622

3. Similarity Calculation: Compute cosine sim- 1623

ilarity between A and B. Runtime: 1624

O(d) 1625

4. Thresholding: Retain the document if the 1626

similarity exceeds τ . Runtime: O(1) 1627

Total Complexity per Document: O(s · d) 1628
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Given N documents, each with s tokens on av-1629

erage, the overall complexity for the filtering step1630

is:1631

O(N · s · d)1632

Optimizations Implemented:1633

• Precomputation of Normalized A: Elimi-1634

nates repeated division during similarity com-1635

putation.1636

• Vectorized Operations: Speeds up vector cal-1637

culations using optimized libraries.1638

• Parallel Processing: Distributes the workload1639

across multiple cores.1640

Terms Terms Terms
Albedo Aphelion Apogee

Asteroid Astronomy Aurora

Axion Azimuth Barycenter

Baryon Blackbody Bolide

Brilliance Cepheid Comet

Constellation Corona Cosmic

Cosmology DESC Dyne

Eclipse Ecliptic Emission

Erg Exoplanet Extinction

Fluence Frequency Galaxy

Geocentric Gibbous Gravity

Heliocentric Interferometry Isotropic

JWST kpc Light-Year

LSST Luminosity Magnetar

Magnetosphere Metallicity Meteor

Meteorite Microlensing Moon

Morphology Multiverse Nebula

Neutrino Noctilucent Nova

Nucleosynthesis Orbit Parallax

Parsec Perihelion Phase

Photometry Photosphere Planck

Planetesimal Pulsar Quasar

Quiescence Recombination Reddening

Redshift Reionization Satellite

Seyfert Simulation Singularity

Spectroscopy SPT Sublimation

Sunspot Supercomputer Supermassive

Supernova Telescope Transit

Universe Voids Wavelength

Waxing Wormhole X-ray

Zenith Zodiac Optical

Infrared Ultraviolet Microwave

Proton Neutron Electron

Flux Intensity Companion

Outflow QSO Pulse

Progenitor

Table 5: Domain-Relevant Astronomy Key Terms
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Terms Terms Terms
Anatomy Pathology Physiology

Oncology Cardiology Neurology

Radiology Pharmacology Surgery

Pediatrics Dermatology Gastroenterology

Endocrinology Hematology Immunology

Nephrology Pulmonology Psychiatry

Rheumatology Urology Obstetrics

Gynecology Orthopedics Ophthalmology

Otolaryngology Infectious Microbiology

Epidemiology Toxicology Genetics

Biochemistry Histology Embryology

Virology Bacteriology Parasitology

Cytology Prognosis Diagnosis

Treatment Therapy Vaccination

Antibiotic Antiviral Pathogen

Tumor Cancer Leukemia

Diabetes Hypertension Cardiomyopathy

Stroke Sepsis Inflammation

Autoimmune Fibrosis Circulation

Respiration Homeostasis Anesthesia

Trauma Fracture Hemorrhage

Venous Arterial Renal

Hepatic Liver Kidney

Lung Heart Brain

Spinal Nerve Bone

Muscle Skin Blood

Plasma Lymph Hormone

Enzyme Protein Gene

DNA RNA Chromosome

Cell Tissue Organ

Organism Metabolism Nutrition

Obesity Malnutrition Infection

Immunity Allergy Vaccine

Mutation Carcinogen Biopsy

MRI CT X-ray

Ultrasound PET Radiotherapy

Chemotherapy Surgical Endoscopy

Laparoscopy Thermography Pharmacokinetics

PharmacodynamicsClinical Hospital

Ambulance ICU Ward

Therapist Psychologist Psychiatrist

Physician Surgeon Nurse

Paramedic Dentist Optometrist

Audiologist Dietitian Nutritionist

Emergency CPR Defibrillator

Vaccination Inoculation Antibody

Antigen Biomarker Cytokine

Pathogenesis Therapeutics Rehabilitation

Prosthesis Implant Transplant

Donor Recipient ClinicalTrial

Placebo DoubleBlind Epidemic

Pandemic Outbreak Quarantine

Contagion Immunotherapy PrecisionMedicine

RegenerativeMedicineTelemedicine Bioinformatics

Genomics Proteomics Metabolomics

Transcriptomics PersonalizedMedicinePalliativeCare

Hospice Prenatal Postnatal

Neonatal Geriatrics Reproductive

Contraception Fertility Menopause

Puberty Hormonal Chronic

Acute Degenerative Congenital

Hereditary Idiopathic Nosocomial

Iatrogenic Symptom Sign

Prognosis Complication Remission

Relapse Recurrence SurvivalRate

LifeExpectancy RiskFactor Comorbidity

QualityOfLife Ethics Consent

Bioethics Healthcare Wellness

Preventive Morbidity Mortality

Anomaly Deformity Lesion

Ulcer Necrosis Abscess

Edema Cyst Nodule

Polyp Scar Adhesion

Prolapse Hernia Perforation

Obstruction Atrophy Hypertrophy

Hyperplasia Hypoplasia Dysplasia

Neoplasia Metastasis Differentiation

Invasion Proliferation Aneurysm

Thrombosis Embolism Ischemia

Infraction Arrhythmia Bradycardia

Tachycardia Fibrillation Shock

Syncope Coma

Table 6: Domain-Relevant Medical Key Terms
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