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Abstract

Vision-Language Navigation (VLN) policies trained on offline datasets often ex-
hibit degraded task performance when deployed in unfamiliar navigation environ-
ments at test time, where agents are typically evaluated without access to external
interaction or feedback. Entropy minimization has emerged as a practical solution
for reducing prediction uncertainty at test time; however, it can suffer from accu-
mulated errors, as agents may become overconfident in incorrect actions without
sufficient contextual grounding. To tackle these challenges, we introduce ATENA
(Active TEst-time Navigation Agent), a test-time active learning framework that
enables a practical human-robot interaction via episodic feedback on uncertain
navigation outcomes. In particular, ATENA learns to increase certainty in suc-
cessful episodes and decrease it in failed ones, improving uncertainty calibration.
Here, we propose mixture entropy optimization, where entropy is obtained from
a combination of the action and pseudo-expert distributions—a hypothetical ac-
tion distribution assuming the agent’s selected action to be optimal—controlling
both prediction confidence and action preference. In addition, we propose a self-
active learning strategy that enables an agent to evaluate its navigation outcomes
based on confident predictions. As a result, the agent stays actively engaged
throughout all iterations, leading to well-grounded and adaptive decision-making.
Extensive evaluations on challenging VLN benchmarks—REVERIE, R2R, and
R2R-CE—demonstrate that ATENA successfully overcomes distributional shifts
at test time, outperforming the compared baseline methods across various settings.

1 Introduction

Vision-Language Navigation (VLN) is a fundamental multimodal task in embodied AI systems, which
requires an agent to interpret natural language instructions and navigate through complex visual
environments [1]. Despite recent advancements in VLN, distributional shifts between offline training
and online testing environments remain a critical challenge for robust and reliable deployment [2,
3]. To address this issue, many prior works focus on enhancing generalizability during offline
training to better handle potential domain shifts [4, 5, 6]. However, these approaches are limited in
addressing real-world variability, as collecting diverse expert demonstrations across environments is
often impractical. Therefore, test-time adaptation (TTA)—the ability to directly adapt to test-time
environments—is crucial for real-world robotic navigation.

Test-Time Adaptation (TTA) refines a pre-trained model during inference using unsupervised sig-
nals—such as prediction entropy [7], consistency [8], or pseudo-labels [9]—offering a practical
yet challenging approach to improving robustness at test time. Entropy minimization is one of the
widely accepted TTA strategies, based on the assumption that greater model certainty correlates with
improved accuracy during inference [7, 10, 11]. However, applying entropy minimization uniformly

∗Corresponding author: spk7@korea.ac.kr

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



across all decision points in sequential tasks such as VLN may cause the policy to overfit to failure
patterns, thereby increasing the likelihood of incorrect actions. Consequently, the policy accumulates
errors throughout iterations and loses resilience on failure cases. Thus, blindly increasing prediction
certainty without considering the navigation status leads to suboptimal behaviors.

How, then, can we provide the contextual cues necessary for a VLN agent to properly leverage entropy
as a meaningful signal at test time? To answer this, we propose an active learning (AL) [12, 13]
strategy, enabling the agent to query a human oracle for necessary contextual labels. Here, we must
consider practical constraints in the online test-time navigation setting for utilizing human feedback:
(1) Latency—human involvement should not introduce delays during navigation rollout; and (2)
Accessibility—human input must be intuitive, requiring minimal expertise and effort. Therefore, it is
unrealistic to expect human feedback at the same level of detail as stepwise expert demonstrations in
VLN at test time.

To address these practical concerns, we define the active label as an episodic, binary evaluation
indicating navigation success or failure, rather than requiring detailed stepwise supervision. Inspired
by the uncertainty sampling paradigm in AL [14, 15, 16], we design the agents to inquire feedback
whenever the average action uncertainty throughout each navigation task exceeds a predefined
threshold. Given the sparsity of the feedback, we introduce a novel technique called mixture entropy
optimization (MEO) to effectively leverage it. Specifically, based on the binary outcome, we guide
entropy optimization by minimizing entropy for successful navigation and maximizing it for failed
ones. Here, entropy is derived from a mixture of two distributions: an action distribution, representing
the likelihood assigned to each possible action, and a pseudo-expert distribution, a one-hot probability
distribution centered on the agent’s chosen action, assuming this action as optimal. By combining
these two distributions, MEO not only controls the certainty of the decisions but also explicitly
suppresses incorrect actions and encourages actions that led to successful navigation.

Additionally, we introduce a novel paradigm of self-active learning (SAL), enabling the navigation
agent to remain actively engaged throughout all iterations for continuous feedback. Traditional AL
methods typically request human feedback only when the model prediction is uncertain, potentially
overlooking the subtle errors that are hidden beneath high confidence in certain predictions. In
contrast, our method allows the agent to determine the navigation outcome by itself in relatively certain
predictions. This is achieved through a self-prediction head, initialized at test time and trained during
streaming test episodes using both human-provided labels and the agent’s own predicted outcomes.
As a result, the agent receives continuous guidance for the direction of entropy optimization, which
is crucial for precise adaptation. Ultimately, SAL reduces reliance on human intervention, thereby
improving the agent’s autonomy and robustness in online test-time environments.

We name our overall framework as ATENA (Active TEst-time Navigation Agent), and validate its
effectiveness through comprehensive evaluation on challenging VLN benchmarks: REVERIE [17],
R2R [1], and R2R-CE [18]. ATENA achieves significant gains over the underlying target policies
and outperforms strong TTA baselines. Our empirical results and in-depth analysis indicate that
ATENA effectively addresses test-time distribution shifts and provides a strong foundation for future
research on active human-robot interaction in vision-and-language navigation.

The contributions of this work are summarized as follows:

• We introduce ATENA, the first active learning framework for online VLN that leverages human
input to guide entropy-based optimization.

• Mixture entropy optimization enhances confidence calibration by explicitly suppressing incorrect
actions and encouraging desired actions.

• The self-active learning phase provides a strategic solution to provide continuous active labels, with
reduced burden of human labeling in online environment.

2 Related Work

2.1 Vision-Language Navigation

Vision-Language Navigation (VLN) is a pivotal task of bridging human communications with
embodied AI system [19, 20, 21]. The sequential natures of the decision making process in VLN led
early research to adopt recurrent neural network-based architectures [1, 22, 23]. Following works
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utilized the Transformer network [24] to capture complex multimodal dependencies and achieved
substantial performance gains [5, 4, 25, 26, 27, 28, 29]. However, these offline training methods
merely anticipate domain shifts and suffer a performance degradation when the online navigation
environment deviates from the training distribution. To overcome the discrepancy, large-language
models came into play as zero-shot navigation agents, but their reasoning capabilities without fine-
tuning have yet to yield reliable performances [30, 31, 32, 33, 34, 35, 36]. Recently, another
line of research has focused on online test-time adaptation of offline-trained policies, using either
unsupervised entropy minimization [37] or feedback-based reinforcement learning [38]. In this work,
we explore how the core principle of VLN—human-robot interaction—can be effectively leveraged
to facilitate online test-time adaptation.

2.2 Entropy-based Test-time Adaptation

Entropy minimization is a widely adopted learning objective in domain adaptation [39, 40, 41] and
semi-supervised learning [42, 43, 44]. Recently, entropy minimization has emerged as a foundational
technique in test-time adaptation (TTA) due to its simplicity and effectiveness in the absence of
labeled target data. [45, 46]. The core idea is to encourage the model to make confident predictions by
minimizing the entropy of output distributions at test time, assuming that well-adapted models should
be confident on in-distribution samples. Tent [7] introduced a lightweight yet effective approach
that minimizes prediction entropy by updating only batch normalization parameters during test time.
Building upon this, numerous studies across various fields began integrating entropy minimization
into their TTA strategies [47, 48, 10, 11]. In VLN, FSTTA [37] extends entropy minimization by
accounting for the sequential and episodic nature of the task. Although effective in many settings,
blindly minimizing the entropy can lead to the propagation of overconfident mistakes, making it
particularly problematic in sequential tasks like VLN where early errors can cascade [49, 50]. This
work addresses the problem by enabling agents to actively query oracles for feedback on uncertain
navigation outcomes, providing crucial guidance for entropy-based test-time adaptation.

2.3 Active Learning

Active Learning (AL) is a machine learning strategy designed to efficiently reduce labeling costs
by selectively querying labels for the most uncertain or informative data points [12, 51, 52, 13].
Traditional AL methods primarily utilize uncertainty sampling, prioritizing data points when the
model’s predictive confidence is low; typical metrics for quantifying uncertainty include entropy,
margin sampling, and least-confidence measures [14, 15, 16]. Initially focused on relatively simple
classification tasks, AL techniques have progressively evolved to tackle increasingly complex, real-
world scenarios [53, 54, 55, 56]. Recent advancements further extend AL concepts into TTA,
enabling models to dynamically adapt during inference by utilizing uncertainty estimates, thus
reducing the reliance on extensive retraining or large amounts of labeled data [57, 58]. Inspired by
these developments, our research pioneers the integration of Active Test-Time Adaptation into VLN,
effectively overcoming practical constraints in real-world navigation.

3 Method

3.1 Task Description

Vision-Language Navigation (VLN) tasks an agent with interpreting natural language instructions
I to navigate through a visual environment. Starting from an initial visual observation o0, at each
timestep t, the agent perceives a visual observation ot, selects an action at according to its policy πθ,
and transitions into the next state. Repeating this process until the agent selects a stopping action
produces a trajectory τ = {(ot, at)}T−1

t=0 , where T is the total number of steps taken. In this work,
we specifically consider an online VLN scenario where the navigation policy encounters a stream of
test instructions and environments during deployment.

3.2 Overview

Our proposed framework, ATENA (Active TEst-time Navigation Agent), enables active learning in
online VLN by integrating human guidance into entropy-based optimization. ATENA consists of
two core components:
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Figure 1: Overview of the ATENA adaptation framework. At each navigation step, the agent
stores state and entropy information in its memory. Once the episode ends, the stored entropy is used
to determine the feedback source: human oracle for uncertain episodes, and self oracle for certain
episodes. Self oracle utilizes a self-prediction head, trained during online test-time, enabling the
agent to autonomously predict navigation success or failure by itself.

• Mixture Entropy Optimization (MEO): A method that refines the agent’s policy using outcome-
conditioned entropy signals, leveraging a pseudo-expert-guided action distribution to more effec-
tively amplify correct behavior and penalize failure.

• Self-Active Learning (SAL): A strategy that enables the agent to autonomously request or replace
feedback based on internal uncertainty and self-assessment, allowing robust adaptation even when
explicit feedback is sparse or unavailable.

Together, these solutions allow the agent to adapt online by jointly leveraging episodic outcomes and
self-predicted performance, without relying on ground-truth trajectories or dense human supervision.

3.3 Mixture Entropy Optimization (MEO)

A traditional entropy minimization method in VLN [37] aim to reduce uncertainty by decreasing
the entropy of the predicted action distribution. However, indiscriminately minimizing entropy can
reinforce confidence even in incorrect actions, leading to compounding errors during navigation.
To address this, we optimize the entropy based on success or failure of the navigation episode.
Specifically, we minimize it for successful episodes to reinforce the selected action, and maximize
it for failed episodes to penalize incorrect decisions. Furthermore, this entropy-based test-time
adaptation is facilitated by our novel mixture entropy optimization.

3.3.1 Mixture Action Distribution

First, we define the Mixture Action Distribution as a convex combination of the predicted action
distribution πθ and a pseudo-expert distribution qpseudo. The pseudo-expert distribution is a one-hot
probability distribution that assigns full probability (i.e. 1.0) to the selected action asel

t , which refers to
the action with the highest predicted probability under the current policy, i.e., asel

t = argmaxa πθ(a |
ot, I). In other words, the pseudo-expert distribution treats as if asel

t is the optimal expert action. The
mixture action distribution is formalized as:

qmix(a | ot, I) = λqpseudo(a | asel
t ) + (1− λ)πθ(a | ot, I), 0 ≤ λ ≤ 1. (1)

This mixture formulation sharpens the distribution around the selected action, with the combination
weight λ controlling how strongly the pseudo-expert guides the distribution. Accordingly, the entropy
of the mixture action distribution at timestep t is defined as:

H(qmix(· | ot, I)) = −
∑
a∈At

qmix(a | ot, I) log qmix(a | ot, I), (2)
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Figure 2: llustration of Mixture Entropy Optimization (MEO). (a) The Mixture Action Distribu-
tion is constructed by combining the action distribution (yellow) with a pseudo-expert distribution
(red). (b) Mixture entropy is minimized for successful episodes to encourage the correct actions, and
maximized for failures to penalize incorrect ones.

where At is the set of all possible actions at step t. We average the entropy over all steps and obtain
H′(qmix) as the optimization signal of the episode. Then, the mixture entropy loss function can be
formulated as:

Lmix = Isuccess · H′(qmix)− (1− Isuccess) · H′(qmix), (3)
where Isuccess is a binary indicator that is 1 if the navigation was successful, 0 otherwise.

3.3.2 Effect on Policy Adaptation

Since the mixture action distribution inherently sharpens the original predicted action distribution,
this strategy amplifies the feedback signal—further boosting correct actions when successful, and
more strongly suppressing incorrect ones when failed (see Figure 2). This is quantitatively evident
from the selected action’s probability:

qmix(a
sel
t | ot, I) = λ+ (1− λ)πθ(a

sel
t | ot, I), (4)

which is strictly greater than πθ(a
sel
t | ot, I) when λ > 0. As a result, entropy-based optimization

applied to qmix exerts stronger influence on the selected action compared to directly using πθ.
Specifically, when minimizing this entropy in successful episodes, the gradient increases qmix(a

sel
t )

more sharply than optimizing πθ alone would. Conversely, maximizing entropy in failed episodes
suppresses qmix(a

sel
t ) more aggressively, allowing MEO to drive stronger and more directional updates

to the policy, improving sample efficiency and reducing the reliance on active learning during test
time as demonstrated in Table 4.

3.4 Self-Active Learning (SAL)

Mixture Entropy Optimization enables policy refinement based on navigation outcomes, requiring
episodic feedback during test-time adaptation. In practice, however, acquiring feedback—especially
from human annotators—can be costly or delayed. Moreover, uncertainty alone may fail to capture
subtle but critical navigation errors in seemingly confident predictions. To address these challenges,
we propose Self-Active Learning (SAL), where the agent selectively queries human feedback or
uses its own predictions on navigation outcomes to self-supervise, allowing for more robust and
autonomous adaptation.

3.4.1 Uncertainty-Guided Query Strategy

At each timestep, the agent computes the entropy of its action distribution,H(πθ(· | ot, I)), and stores
it in the entropy memory. At the end of an episode, the agent determines the source of supervision
O—either Human (human-provided feedback) or Agent (self-generated feedback)—based on the
average entropy. Technically, we consider O as a function of τ to predict Isuccess:

O =

{
Human, if 1

T

∑T
t=1H(πθ(· | ot, I)) > δ

Agent, otherwise,
(5)

where δ is a pre-defined uncertainty threshold. In other words, the agent requests supervision from
human in uncertain navigation and self-supervise in relatively certain navigation.
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Algorithm 1 Self-Active Learning for Online Adaptation
Require: Pre-trained policy πθ, entropy threshold δ, learning rate η, loss weight γ

1: Initialize parameters θ, ϕ
2: for each episode do
3: Follow instruction I and collect trajectory τ = {(ot, at)}T−1

t=0

4: Compute average entropy H̄ = 1
T

∑T−1
t=0 H(πθ(· | ot, I)) (Eq. 5)

5: if H̄ > δ then
6: Receive human feedback: Isuccess ← OHuman(τ)
7: else
8: Receive agent feedback: Isuccess ← OAgent(τ) (Eq. 6)
9: Compute mixture entropy loss Lmix (Eq. 3)

10: Compute self-prediction loss Lself (Eq. 7)
11: L = Lmix + γLself (Eq. 8)
12: Update: (θ, ϕ)← (θ, ϕ)− η∇θ,ϕL

return Adapted policy parameters (θ∗, ϕ∗)

3.4.2 Self-Prediction Head

Predicting Navigation Outcome. To enable autonomous self-supervision, we incorporate a self-
prediction head fϕ into the pre-trained policy πθ, trained online to predict the episodic outcome (i.e.,
success or failure) from its internal states. Specifically, at step t, the D-dimensional hidden state
vector st ∈ RD is stored in the state memory and averaged over the episode as savg. This is then fed
into the self-prediction head to determine the navigation outcome Isuccess:

Isuccess =

{
1, if σ(fϕ(savg)) > 0.5

0, otherwise,
(6)

where σ is the sigmoid activation function.

Training Self-Prediction Head. To train the self-prediction head, we use a binary cross-entropy
between fϕ(savg) and the binary episodic outcome Isuccess ∈ {0, 1}:

Lself = −
[
Isuccess log(σ(fϕ(savg)) + (1− Isuccess) log(1− σ(fϕ(savg)))

]
(7)

This loss is used during test-time adaptation regardless of the label source. If the feedback oracle
is human, we assume that Isuccess is mostly accurate. Alternatively, if the feedback oracle is the
agent itself, this can be interpreted as a self-training paradigm with pseudo label derived from the
agent’s own assessment of task completion, enabling continual self-improvement without external
supervision as shown in Table 5. Algorithm 1 summarizes the full adaptation process of SAL.

Total Adaptation Objective of ATENA. We combine the mixture entropy loss from Eq. 3 and the
self-prediction loss into a unified test-time adaptation objective:

L = Lmix + γLself, (8)

where γ balances the influence of self-assessment. This joint objective reinforces correct decisions,
penalizes errors, and improves the agent’s ability to assess its own performance during deployment.

4 Experiments

4.1 Datasets & Metrics

We conduct experiments on three challenging VLN benchmarks—REVERIE [17], R2R [1], and
R2R-CE [18]. REVERIE evaluates agents’ ability to follow high-level, goal-oriented instructions
to locate remote objects in indoor environments; a navigation episode is considered successful if
the agent stops within 3 meters of the target. For REVERIE, the performance is measured with
Success Rate (SR), Oracle Success Rate (OSR), Success penalize by Path Length (SPL) and Remote
Grounding SPL (RGSPL). R2R, in contrast, emphasizes fine-grained instruction following, providing
detailed step-by-step guidance and using the same 3-meter success criterion. R2R-CE extends R2R by
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Table 1: Experimental results on the REVERIE dataset. † implies that the results are obtained from
our re-implementation (same for Table 2 and Table 3).

Methods Val Seen Val Unseen Test Unseen
OSR ↑ SR ↑ SPL ↑ RGSPL ↑ OSR ↑ SR ↑ SPL ↑ RGSPL ↑ OSR ↑ SR ↑ SPL ↑ RGSPL ↑

HAMT [5] 47.65 43.29 40.19 25.18 36.84 32.95 30.20 17.28 33.41 30.40 26.67 13.08
w/ TENT† [7] 46.03 43.43 40.78 25.81 32.60 30.56 28.23 14.48 25.06 23.73 21.78 10.82
w/ FSTTA† [37] 48.21 42.87 39.56 24.58 36.78 32.89 30.51 17.20 33.39 30.39 26.65 13.61
w/ ATENA (Ours) 52.92 57.34 48.08 29.60 38.85 34.00 30.96 17.51 38.19 32.55 28.38 14.32

DUET [4] 73.86 71.75 63.94 51.14 51.07 46.98 33.73 23.03 56.91 52.51 36.06 22.06
w/ TENT 73.72 71.89 64.06 50.41 51.43 47.55 33.99 23.32 57.12 52.61 36.17 22.16
w/ FSTTA 75.59 75.48 65.84 52.23 56.26 54.15 36.41 23.56 58.44 53.40 36.43 22.40
w/ ATENA (Ours) 85.52 84.33 74.31 59.99 71.88 68.11 45.82 31.26 57.74 54.28 40.70 25.01

GOAT† [60] 82.36 80.74 73.44 58.82 57.97 53.82 37.52 27.00 61.44 57.72 40.53 26.70
w/ TENT† 82.43 80.74 73.47 58.75 57.68 53.51 37.49 26.99 62.00 57.28 39.82 26.97
w/ FSTTA† 82.36 80.74 73.42 58.82 57.94 53.79 37.50 26.95 62.35 57.52 39.49 26.82
w/ ATENA (Ours) 85.03 83.35 76.45 61.60 70.29 67.66 53.15 39.80 64.26 62.03 46.82 31.54

Table 2: Experimental results on the R2R dataset.

Methods Val Seen Val Unseen
TL ↓ NE ↓ SR ↑ SPL ↑ TL ↓ NE ↓ SR ↑ SPL ↑

DUET [4] 12.33 2.28 79 73 13.94 3.31 72 60
w/ FSTTA [37] 13.39 2.25 79 73 14.64 3.03 75 62
w/ ATENA (Ours) 11.27 2.18 80 75 12.31 2.90 75 66

BEVBert [59] 13.56 2.17 81 74 14.55 2.81 75 64
w/ FSTTA† 12.28 2.31 80 75 13.96 2.89 74 63
w/ ATENA (Ours) 10.79 2.26 82 78 12.22 2.78 76 68

GOAT† [60] 11.87 1.70 84.52 79.60 13.43 2.33 77.91 67.34
w/ FSTTA† 11.67 1.65 84.92 80.08 13.26 2.32 77.99 67.48
w/ ATENA (Ours) 11.66 1.64 85.01 80.13 12.52 2.27 79.01 69.30

Table 3: Experimental results on the R2R-CE
dataset.

Methods
Val Seen Val Unseen

TL ↓ NE ↓ OSR ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OSR ↑ SR ↑ SPL ↑

ETPNav [6] 11.78 3.95 72 66 59 11.99 4.71 65 57 49

w/ FSTTA† [37] 11.35 3.93 72 66 59 11.57 4.77 64 57 49

w/ ATENA (Ours) 10.81 3.86 72 67 61 12.89 4.53 66 58 49

BEVBert [59] 13.98 3.77 73 68 60 13.27 4.57 67 59 50

w/ FSTTA 14.07 4.11 74 69 60 13.11 4.39 65 60 51

w/ ATENA (Ours) 11.31 3.24 75 71 64 13.48 4.50 67 60 51

replacing the discrete action space with a continuous one, increasing the difficulty of low-level control
and decision-making. For R2R variants, we use Trajectory Length (TL), Navigation Error (NE), SR
and SPL as evaluation metrics.

4.2 Baselines

For experiments, we apply our ATENA on pre-trained HAMT [5], DUET [4] BEVBert [59], ETP-
Nav [6] and GOAT [60]. HAMT is an end-to-end transformer-based VLN network trained via
reinforcement learning. DUET exploits both global topology and local visual information for
decision-making. BEVBert enhances spatial understanding by encoding the environment into Bird’s-
Eye-View representation. EPTNav emphasizes long-range planning for agents operating in continuous
environments. Lastly, GOAT is a unified structural causal model for VLN. We compare our method
against Tent [7] and FSTTA [37]. Tent is a TTA method that minimizes entropy to adjust normaliza-
tion statistics. FSTTA further applies the concept of entropy minimization to the sequential VLN task.
However, due to a reported issue in the official codebase 2, we re-implement the method to ensure
accurate evaluation. Throughout our experiments, a † indicates results obtained from our version.

4.3 Main Navigation Results

REVERIE. Table 1 reports the comparisons of the navigation results on the REVERIE dataset,
where the TTA methods including ATENA is applied to HAMT [5], DUET [4] and GOAT [19].
Unlike previous methods that utilize entropy minimization as a test-time adaptation signal, we notice
a substantial performance increase from ATENA. Specifically, TENT and FSTTA brings minimal
performance gains, or rather hinders the navigation performances in several metrics when applied to
HAMT and GOAT. However, ATENA improves the SR metric in the validation unseen split up to
3.19%, 44.98% and 25.72% in HAMT, DUET and GOAT, respectively. Furthermore, ATENA also
excels in the test unseen split, improving GOAT by 4.59%, 7.47%, 15.52% and 18.13% in OSR, SR,
SPL and RGSPL respectively.

R2R & R2R-CE. In Table 2, we present the experimental results on the R2R dataset. Consistent
with the findings from the REVERIE dataset, ATENA demonstrates superior effectiveness compared
to FSTTA. While FSTTA improves the SPL metric of GOAT by 0.21% on the validation unseen split,
ATENA achieves a 2.91% improvement. Moreover, for the SR metric on the validation unseen split
of DUET, although the success rate is the same as FSTTA, ATENA achieves this with an 11.69%

2https://github.com/Feliciaxyao/ICML2024-FSTTA/issues/1
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Table 4: Comparison of Test-Time Adaptation (TTA) methods with Active Learning (AL). Aster-
isks (∗) indicate methods integrated with Active Learning (AL), meaning they receive episodic
feedback (success or failure) at uncertain navigation to guide entropy minimization or maximization.
Active (%) denotes the ratio of navigation steps where feedback is requested.

Methods Val Seen Val Unseen

SR↑ SPL↑ RGSPL↑ Active (%) SR↑ SPL↑ RGSPL↑ Active (%)

DUET + TENT∗ 75.69 67.20 54.67 65.92 55.69 38.76 26.16 90.34
DUET + FSTTA∗ 71.47 64.19 51.28 89.39 46.95 33.75 23.03 85.25

DUET + MEO∗ (Ours) 80.53 72.84 58.78 25.44 63.70 42.49 27.83 55.52

reduction in trajectory length, highlighting its high navigation efficiency. We observe similar results
in the R2R-CE dataset, which is reported in Table 3. Specifically, ATENA increases 6.7% of SPL
for BEVBert in the validation seen split. Lastly, we observe that given that the R2R variants rely
on dense, step-wise guidance during training, the episodic feedback is relatively sparse to drive
significant performance enhancements compared to that of the REVERIE’s.

4.4 Comparison of TTA Methods with Active Learning

Since the compared baseline methods do not employ active learning (AL) in their framework, we
integrate AL into the baselines to highlight the impact of MEO. Specifically, we apply TENT and
FSTTA to the pre-trained DUET policy, and allow the agent to update the parameters based on the
human evaluation of navigation success or failure at uncertain episodes. Similar to ATENA, these
baselines also minimize entropy for successful navigation, and maximize for failed ones. Furthermore,
we evaluate a variant of ATENA without Self-Active Learning to assess the individual contribution
of MEO with AL. For this experiment, the entropy threshold is equally set as δ = 0.1 and we evaluate
on the REVERIE dataset. The results are reported in Table 4, from which we draw the following
observations. First, compared to the result in Table 1, TENT shows substantial performance increase
when guided by human interactions. However, AL provides minimal benefit to FSTTA, which we
attribute to its internal mechanism for modifying gradient directions—potentially conflicting with
the human-provided guidance on entropy optimization. MEO demonstrates strong synergy with AL,
leading to superior navigation performance across SR, SPL, and RGSPL metrics. Moreover, MEO
achieves these improvements with significantly fewer human interventions, suggesting that the model
progressively gains confidence as navigation proceeds.

4.5 Effect of Self-Active Learning

Table 5: Comparison of performance on the
REVERIE dataset demonstrating the effec-
tiveness of Self-Active Learning (SAL).

Methods Val Seen Val Unseen

SR↑ SPL↑ RGSPL↑ SR↑ SPL↑ RGSPL↑

w/o SAL 80.53 72.84 58.78 63.70 42.49 27.83
w/ SAL 84.33 74.31 59.99 68.11 45.82 31.26

Table 5 demonstrates the effectiveness of our pro-
pose Self-Active Learning (SAL). We compare the
performance of ATENA with and without SAL, ap-
plied to the DUET navigation policy. The evaluation
is done using the REVERIE dataset. Even without
SAL, as previously observed in Table 4, ATENA
shows a solid performance increase from the base
policy. However, enabling the agents to train online
from episodic labels and autonomously evaluate its
navigation outcome brings notable improvements. Specifically, we observe in the validation unseen
split 6.92%, 7.84% and 12.32% enhancements in SR, SPL, and RGSPL, respectively. This clearly
demonstrates the effectiveness of remaining continuously active throughout the adaptation process.

4.6 Combination Weight of Mixture Entropy Optimization

We vary the combination weight λ in Eq. 1 within λ ∈ {0.0, 0.1, 0.2, . . . , 1.0} and evaluate its
effect on adaptation performance. λ = 0.0 implies that the agent relies solely on its original action
distribution, serving as the baseline in Figure 3. We omit λ = 1.0 from our results because, in this case,
the policy relies exclusively on the entropy of the pseudo-expert distribution, which is identically
zero and thus provides no informative signal. As the weight of the pseudo-expert distribution
increases, we observe consistent improvements across SR, SPL, and RGSPL, demonstrating the
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Figure 3: Effect of the combination weight λ. Performance comparison with different combination
weight λ in Mixture Entropy Optimization. λ = 0 corresponds to vanilla entropy without distribution
mix. The results are averaged across three experiments with different seeds.

benefit of distribution sharpening. The performance peaks at λ = 0.4, where the balance between
the predicted distribution and the pseudo-expert distribution appears to be optimal. As λ increases
further, we observe decrease in SR and SPL, yet the benefits compared to vanilla entropy remains
solid. These results collectively suggest that while the optimal performance depends on a careful
balance between the predicted and pseudo-expert distributions, incorporating the mixture itself is
consistently beneficial for adaptation.

4.7 Sampling Strategies for Feedback Episodes

SR RGSPLSPL

Random Episodes Consecutive Episodes Uncertain Episodes Full Episodes (100%)

Figure 4: Different Episode Sampling Strategies. Our
uncertainty-based sampling outperforms baselines and
remains competitive against full-feedback settings.

We compare the uncertainty-based active
learning strategy with two different sam-
pling baselines: (1) Random Episodes,
where episodes that receive feedback are
selected randomly; and (2) Consecutive
Episodes, where feedback is provided on a
contiguous block of episodes starting from
the beginning of the dataset. The number
of samples of the baselines are equally set
to match that of our method’s—60% in this
experiment—as the portion of uncertainty-
based selection cannot be approximated
heuristically. In Figure 4, our uncertainty-based sampling outperforms the baselines, indicating
that optimization guided by informative uncertainty signals is more effective than relying on simple
rule-based selection. Furthermore, when compared to the setting where feedback is provided for
all episodes, our method achieves higher performance in SR and RGSPL, while maintaining com-
petitive results in SPL. These results suggest that our uncertainty-based strategy achieves superior
performance with reduced supervision by selectively focusing on the most informative episodes,
outperforming both heuristic baselines and full feedback in terms of efficiency and effectiveness.

5 Conclusion
We introduce ATENA, a novel TTA framework that leverages active human-robot interaction to
enhance online vision-language navigation. Specifically, we propose Mixture Entropy Optimization,
explicitly reinforcing correct actions and penalizing incorrect ones based on episodic outcomes.
Additionally, through Self-Active Learning, we enable the agent to autonomously predict navigation
outcomes during episodes where it has relatively high confidence. Extensive experiments demonstrate
that ATENA substantially outperforms baseline approaches, effectively addressing distribution
shifts between training and testing environments. By integrating human-guided and self-guided
active learning mechanisms, ATENA allows the agent to handle uncertainty through continuous
adaptation and self-refinement. Ultimately, our approach opens promising avenues for future research
by integrating human-robot interaction with automated self-assessment to support robust and efficient
online adaptation across diverse interactive embodied AI tasks.
Limitations and Future Work. A limitation of ATENA is that the policy is updated only after
the episode ends, rather than during navigation. This design minimizes external interaction latency
but prevents the agent from receiving fine-grained, step-level feedback during execution. As a
result, the agent cannot immediately adapt its behavior or identify which specific steps contributed
to performance degradation. Future work could explore lightweight mechanisms for incorporating
intermediate, segment- or step-level signals to enable more timely and precise adaptation while
maintaining low-latency operation.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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cations and hyperparameters, are provided in the appendix.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
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be necessary to either make it possible for others to replicate the model with the same
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The source code will be publicly released upon acceptance of the paper.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed descriptions of the experimental conditions can be found in both the
main manuscript and the appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our paper does not report error bars or statistical significance information.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided in the appendix a discussion of both potential positive and
negative societal impacts of our research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks are expected in our paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided the licenses and credits for the benchmark dataset and the
baseline models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not involve LLMs as important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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