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ABSTRACT Graph neural network-based recommender systems are blossoming recently, and it can
explicitly express user-item high-order connectivity information, so it can significantly improve the recom-
mendation performance. However, the existing methods usually assume that the users’ interests are invariant,
but temporal relationships is left insufficient exploration to charactertize the user’s dynamic interest. In this
paper, we propose a Neural Graph Collaborative Filtering recommendation model fused with Item Temporal
Sequence relationships (NGCF-ITS), that is, a hybrid recommendation model that fuses with user-item
interactions information and item temporal sequence relationships. It divides the item temporal sequences
into several groups of subsequences through the sliding window strategy, then constructs the item temporal
sequence relationships graph and aggregates the characteristics of item temporal sequences information.
Atthe last, deeply depicts the dynamic changes of users’ interests, and uses the bipartite graph neural network
to map the high-dimensional information of user-item and item-item into the low-dimensional space. The
hybrid embedding of user-item historical interactions and item temporal sequence relationships are realized,
and the expression of user-item interactions is enhanced. In this way, the heterogeneous multi-relational
graphs are fused for the feature propagation, which largely refines the user and item representation for
model prediction. Extensive experiments demonstrate the our proposed model significantly improve the
recommendation performance compared to the state-of-the-art GNN-based models both in accuracy and
training efficiency.

INDEX TERMS Neural graph collaborative filtering, item temporal sequence, sequential recommendation.

I. INTRODUCTION (CF) [4], [5], [6] is a classic recommend method to dig users’

Recommender systems have been widely applied to daily life
such as online shopping, social networking, advertising rec-
ommendation and Web search. It can effectively avoid infor-
mation overload and provide users with accurate personalized
information recommendation services. For each user, the goal
of the recommender systems is to predict what goods he or
she may buy in the future [1], [2], [3]. Collaborative Filtering
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interests by users’ historical behaviors. The core idea of the
traditional CF is to recommend users’ favorite items with
the same preferences [7], [8], such as User-Based CF [9]
and Item-Based CF [10], [11]. However, efficient CF-based
methods largely depend on the richness degree of the user-
item interactions. Therefore, they have poor performance
in some scenarios where item information or interactive
records are sparse and insufficient, which often leads to the
cold start problems in practical marketing [12]. To address
the above problems, some researchers have proposed some
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hybrid recommendation models [13], [14], [15] to fuse with
multi-source heterogeneous auxiliary information, which
can alleviate the problems of cold start and data sparsity.
However, the auxiliary information is one of the main chal-
lenges building such hybrid recommender methods, such as
multimodal, heterogeneous, large-scale, sparse and uneven
distribution. On these basis, most CF-based recommender
methods mapped user-item interations into two low-
dimensional spaces, for example, Matrix Factorization (MF)
[16] and Neural Network [17]. To obtain high-quality embed-
ding representations, most researchs apply graph neural
networks (GNNSs) to embed user-item interactions, which
significantly improves the overall recommendation perfor-
mance. Tang et al. proposed the unsupervised network
embedding algorithm Line [18] and node2vec [19]. Ying et al.
[20] proposed a recommendation model PinSage based on
GNNs, by adopting methods such as random walk and graph
convolution to capture the features of graph structure and
nodes to generate embedded representations of nodes, which
greatly improves the quality of embedded representation.
Wang et al. [21] developed a graph neural collaborative
filtering recommender method NGCF, which embedded and
encoded the user-item historical interaction information into
a bipartite graph, and explicitly consided the high-order
connectivity between users-items to further improve the
embedded presentation ability. He et al. [22] proposed a
light weight graph convolutional network model, LightGCN,
for recommender systems, which abandoned the feature
transformation and nonlinear activation of traditional GNNSs,
through propagation to learn user and item embeddings, and
finally the weighted summation of the embeddings learned
by all layers is used as the final embedding representation.
Zhang et al. [23] argued a hybrid recommendation method
based on the combination of paragraph embedding and neural
network. This method uses neural network to collaborative
filter the user’s item score, and has high nonlinearity to
capture the complex structure of user interaction score.
Moreover, the problem of cold start is relieved by using
the content characteristics of item embedding to obtain
auxiliary information. Wang et al. proposed KGCN [24],
which combined knowledge graph and recommendation
with GNNs to dig the relationship of goods on knowledge
graph, and effectively capture the internal relationship of
goods and alleviate data sparsity. Sang et al. [25] proposed
a knowledge graph-enhanced neural collaborative filtering
model KGNCF-RRN, which utilized knowledge graphs and
long-term relationships of user-item interactions for rec-
ommendation, which effectively solved the sparsity prob-
lem of recommender systems. Tang et al. [26] proposed a
multi-graph collaborative filtering model (DMGCF) based on
a dynamic evolution mechanism, constructed user graph and
item graph through user-item bipartite graph and embedding,
simulated the edge information in the latent space, and pro-
posed a new dynamic evolution mechanism for collaborative
updating during learning and improved embedding and graph
structure for better embedded content.
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However, most researchs on GNNs only focus on the
user-item binary relationships, without considering internal
logic relationships between the user-item interactions and
the item temporal sequence relationships. The existing meth-
ods usually assume that the users’ interests are invariant,
but temporal relationships is left insufficient exploration to
charactertize the user’s dynamic interest. While intuitively
useful to integrate user-item interactions into the embedding
function, it is non-trivial to do it well. In particular, the scale
of interactions can easily reach millions or even larger in
real applications, making it difficult to distill the desired
collaborative signal. Also, most methods use the descriptive
characteristics of users or items to build embedded functions.
When the relationships between users and items becomes
greatly complex, these methods will lead to over-fitting, data
sparsity and lower recommendation performance. On the
other hand, the existing researches focused on users’ short-
term interests, ignored the impact of item temporal sequences
on users’ long-term interests or implicit interests. To solve
these problems, this paper proposes a hybrid recommendation
model, NGCF-ITS, which integrates user-item interactions
and item temporal sequence relationships. The illustration
of our recommendation model is shown in Figure 1. Our
contributions can be summarized as the following:

1) We propose a top-N hybrid recommendation model that
integrates user-item interaction information and item tem-
poral sequence relationships. We adopt the sliding window
strategy to divide the item temporal sequences into several
groups of subsequences, build the item temporal sequence
relationships graph, and aggregate the information features of
the item sequence to describe deeply the dynamic interests.

2) Apply the bipartite graph neural network to embed the
user-item historical interactions and item temporal sequence
relationships, and map the user-item and item-item high-
order information into the low-dimensional space to enhance
the user-item interactions and improve the recommendation
performance.

3) Construct a neural graph collaborative filtering recom-
mendation model, the model mainly includes four layers. The
four layers refer to the embeddding layer, aggregation layer,
propagation layer and prediction layer.

4) We conduct empirical studies on three standard million-
size datasets, LastFM, Ciao and Douban. Extensive results
demonstrate the state-of-the-art performance of NGCF-ITS.

Il. PRELIMINARIES

This section introduces the problem definition and flowchar
of the NGCF-ITS. To facilitate discussion, some symbols are
introduced with specific definition as shown in Table 1. The
flowchart of the NGCF-ITS is illustrated in Figure 2.

A. PROBLEM DEFINITION

Some symbols are introduced with specific defini-
tion as shown in Table 1. Similar to other recom-
mendation algorithms, let P = [p1,p2,p3,...,pu] and
0 =1[qg1,92, 93, - - -, qn] be user embedding matrix and item
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FIGURE 1. Illustration of the proposed NGCF-ITS model.
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FIGURE 2. The flow chart of NGCF-ITS.

embedding matrix respectively, with p, € R?, (¢; € RY) is
embedding vector of user u (item i), d is the dimension in
NGCEF-ITS, P € R*M 0 e RI*N

In addition, most existing neural graph network recom-
mendation algorithms describe the user-item interactions by
establishing the bipartite graph, and capture the embedding
of users and items by utilizing the graph structure meth-
ods. The traditional aggregation methods play a crucial role
in the message transmission mechanism. However, previ-
ous studies only aggregated adjacent information from the
perspective of spatial structure information. These methods
usually assumed that users’ interests are static, and less con-
sidered users’ dynamic interests changing through the item
temporal sequences. Therefore, we construct item-item tem-
poral sequence relationships graph to capture users’ dynamic
interests changing. Here, we define the item-item directed
graph G < V, E >, where V is item set, E shows edge set
of items. < V,, Vy, > represents an edge between item x
and item y. Finally, we create user-item interaction graph
G < u, r,i >, where u represents user set, i denotes item set,
r denotes user-item interaction sitution, Where » = 1 means
this interaction is considered to be a success, or otherwise that
is a failure.
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TABLE 1. Symbol description.

Symbol Description

User embedding matrix

Item embedding matrix

User u embedding vector

Item ¢ embedding vectort

Embedding dimension

Item-item temporal sequences matrix
Item-item temporal sequences unit matrix
Item-item temporal sequences normalization
matrix

Activate function

Weight matrix

eakyRelu()

>0 "I II6IL mmEASTOT

) Normalization function
L Embedding propagation from item % to user «
L_)u Embedding propagation from user « to item v
N User self-connection
layer number
) Sigmoid activate function
Predicted value
All trainable parameters
Control the regular intensity Lo to prevent
over-fitting
B. NGCF-ITS

We now present the proposed NGCF-ITS model, the
flowchart of which is illustrated in Figure 2. There are four
layers in the flowchart. The detailed working mechanism of
each layer is presented as follows.

1) Embedding layer: An embedding layer that offers and
initialization of user embeddings and item embeddings. After
being initialized in the embedding layer, the user-item poten-
tial collaborative signals will be capured in the subsequential
training process of the recommendation model Moreover, the
node feature in graph will be mapped into low-dimensional
space, the embeddings will be iteratively optimized.
(step 1)

2) Aggregation layer: To describe users’ dynamically inter-
ests changing, we design a sliding window strategy which
to split the item sequence into fine-grained sub-sequences.
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Then, building the item temporal sequence relationships
graph, we aggregate the characteristics of item temporal
sequences in the graph. Aggregation layers that refine the
embeddings by injecting high-order connectivity relations,
the aggregation method can find latent features for both users
and items similarly. (step2, 3)

3) Propagation layer: We devise an embedding propagation
layer, which refines a user’s (or an item’s) embedding by
aggregating the embeddings of the interacted items (or users).
By stacking user-item interaction graph and the item-item
temporal sequence relationships graph, we can enforce the
embeddings to capture the collaborative signal in high-order
connectivities. (step 4, 5)

4) Prediction layer: The prediction layer that aggregates
the refined embeddings from different propagation layers
and outputs the affinity score of a user-item pair, and output
prediction results of recommendation. (step 6)

lll. METHODS

In this section, We will describe our proposed model research
on neural graph collaborative filtering recommendation mod-
el fused with item temporal sequence relationships (NGCG-
ITS). As shown in figure 2, there are four layers: Embedding
layer, Aggregation layer, Propagation layer, Prediction layer.

A. EMBEDDING LAYER

In particular, the scale of user-item interactions can easily
reach millions or even larger in real application, it is diffi-
cult to distill the desired collaborative signal. In this work,
we tackle the change by employing embedding methods
based on graph neural network, P and X can be initiated ran-
domly, the user embedding matrix P = [p1, p2, p3, ..., Pml,
where M is the number of users and the item embedding
matrix Q = [q1,92,93,...,qn] With N is the number of
items, P € RM QO € RN where d is embedding dimen-
sion, we describe a user u (an item i) with an embedding
vector p, € R? (g; € RY).

We apply the bipartite graph neural network to embed the
user-item historical interactions and item temporal sequence
relationships, and map the user-item and item-item high-
order information into the low-dimensional space to enhance
the user-item interactions and improve the recommendation
performance.

B. AGGREGATION LAYER

Prior works of GNN-based recommendation only focus on
static information of user’s interest but ignore the item tempo-
ral sequence information. Thus, We describe users’ dynamic
interests by aggregated embed user-item history interactions
and the item temporal sequence relationships to relieve gra-
dient extinction. On the one hand, users’ short-term interests
and long-term interests shouled be considered, which can
help better reflect a user’s interest and alleviate the sparsity
issue of user-item interactions. On the other hand, to relieve
the computing pressure from users’ historical interations
and item temporal sequence relationships, we adopt sliding
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window strategy to construct temporal sequence relationships
graph. Firstly, we conduct a sliding window strategy to split
the item sequence into fine-grained sub-sequences. Then,
design a item-item temporal sequence relationships graph for
learning the sub-sequences of the same item. At the last,
we describe users’ interest changing by aggregating historical
interactions and temporal sequence relationships. The main
description is as follows:

1) CONSTRUCT ITEM-ITEM TEMPORAL SEQUENCE
RELATIONSHIPS GRAPH
We incorporate the item-item sequence relationships graph to
better indicate the user’s interests and alleviate the user-item
sparsity issue. Hence, we define the item-item directed graph
G < V,E >, where V = {V1, V,, V3,..., Viy} denotes the
sequence set of items interactived by users. By splitting V
into sub-sequences T' = {T1, T2, T3, ..., Ty }. Then, we con-
struct item-item temporal sequence relationships graph for
learning the sub-sequences of the same items. To overcome
the sampling simply, which will lose some important features
of user’s interest and diversity of item, we use § to denote
the length of a subsequence. In the section, to demonstrate
the effectiveness of 8, we conduct comparative examples
with different kinds of parameters setting, including g = 2
and B = 3, the detailed process is shown in Figure 3. For
example, in Figure 3(a), while 8 = 3, the sequence set of
user-item historic interactions is V = {Vq, V», V3, V4, Vs},
the set of sub-sequence is T = {Ty, Tz, T3, T4}. Where
T, = {V1, V2, V3} represents the 1-th sub-sequence. Mean-
while, T = {V2, V3, Vu}, T3 = {V3, V4, Vs}, Ty = {V4, Vs).
Next, Figure 3(b) illustrates the connection process of
item-item temporal sequence relationships graph. where N
means the number of connected edges, and N, represents the
number of unconnected edges. As shown in the Figure 3,
to analyze the benefits of sliding window method, we vary
the number of § in the range of 2, 3, the obvious observation
is that the performance tends to better during the increase of
B. Forexample, 8 =2, N1 =4, N, =6,and 8 =3,N; =17,
N = 3. The detailed analysis process will be discussed in the
experiment section.

2) AGGREGATE ITEM-ITEM TEMPORAL SEQUENCE
RELATIONSHIPS

With the item temporal sequence relationships explosion,
the proposed model has become important for embedding
user-item interactions. Graph Convolutional Network (GCN)
can not only process topological graph structure data, but
also iteratively aggregate feature information from neighbor
nodes and excavate deeper potential features and internal
laws. Therefore, we utilize GCN to aggregate item temporal
sequence relationships and capture the higher-order relation-
ships of items by multiple aggregation embedding. The /-th
item embedding vector of aggregation layer is:

a=ra@" > m—w (1)

V'inN,
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where ¢ is item v embedding vector, when [ = 0, ¢, is item v
initialization embedding vector. m,— s is the propagation of
temporal sequence relationships from neighbor item v/, v/ €
N,,, where N, is the set of item v neighbor item, f() is coding
function. In this way, we implement m,— s as:

my—s, = LeakyReLU(Wéf]lv_lAv,v’) @

LeakyReLU () represents activate function. The normalized
matrix A = ¢(A + E), where A and E are item connection
matrix and unit matrix, respectively. ¢() is normalized func-
tions. A, ,» denotes the normalized node weight value of item
v regarding item V. Item embedding vector of aggregation
layer is:

Gl = LeakyReLU((W§ >~ G 'Ay )+ Wigl Ay, + b)
Vv EN,

3)

Wé and d(l) represent the trainable weight matrices. We con-
sider not only the temporal sequence relationships of items
from neighbor node, but also the characteristics of items.

C. PROPAGATION LAYER

In recommender systems, the user-item historical interac-
tions are dominant in model prediction. Hence, we define
the user-item interaction graph as G < u, r,i >, where u
and i denote the user and item set respectively, r denotes
the situation of user-item inter-action, Where » = 1 means
success interaction, otherwise that is a failure. Therefore, We
apply user-item connection to capture cooperative Sig-
nals and obtain high order similarity. The user embedding
vector of [-th is:

pf‘ = LeakyReLU(mL<_u + Z m[u(—v) “)

VEN,,
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where plu represents embedding vector of user u during [/-th
propagation. Note that in addition to the messages propagated
from neighbors U,, we take the self-connection of « into con-
sideration: m, _, = WLII’ P71, which retains the information
of original features. m!, ., and m! _ denote weight matrix.
LeakyReLU () is activate function, which allows messages to

encode both positive and negative signals. mlu<_v is:
I 1
My«
VN[N

W.ﬁ,lqlv_l + W:ﬁ,z(gl\lz_l ep, ™

(&)
1

We define graplll LaplamaFl norm as —ee, .where
Ny, N, denote the first-hop neighbors of user u and item v,
respectively. From the view point of representation learning,
it reflects how much contributes of the historical item to
the user preference. From the view point of message pass-
ing, it can be interpreted as a discount factor, considering
the messages being propagated should decay with the path
length. To increase the expressiveness of the model, we utilize
embedding information E]{,‘l and use-item interactive infor-
mation g/~ @ p~!. In addition, Wnﬁ,l’ W,iz € R4*d is the
weigh matrix.

Similar to user embedding vector, the embedding vector of
the item can be written as:

1
VINu|INy]

1
1 [ Al—1 [ I-1
p, = LeakyReLU(W )2 + E ———=W, p
v v, 1Fv = /|Nu||NV| v, 1Fv

1

+ WW\E,ZP{/_I ® qi,_l) (6)
ullfVy

D. PREDICTION LAYER
When the aggregation layer and propagation layer are aggre-
gated and propagated for many times, we will find that
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multiple operations can not only learn the dependence of item
temporal sequence relationships, but also explore the higher-
order connectivity. We observe how the learning results are
influenced in experiment, since the representations obtained
in different layers emphasize the messages passed over
different connections, they have different contributions in
reflecting user preference. So, we connect p,ld, pﬁ, pf’“ R pi{,

q‘l,, q%, qg, ey qlv and get final vector of user embedding p,
and vector of item embedding ¢,:
R AVAVA RSV
w=alalel... ld @)

where || is concatenation operation, and we define a /-th
vector of the user or item embedding. The range of / can
not only effectively obtain the embedding vectors of users
and items, but also avoid insufficient information extraction.
A larger value indicates that the space and time complexity
are higher, while a smaller value indicate the opposite. The
final precision result is:

)A’u,v :pZCIV ®)

We regard the observed user-item interactions as posi-
tive samples. otherwise, it is regarded as negative samples.
The proposed model will be optimized by minimizing the
Bayesian Personalized Ranking (BPR) loss. The BPR loss is
based on the assumption that a user-item interaction that has
already existed in the datasets should be assigned a higher
ranking score than an interaction that does not exist in the
datasets. The objective function is as follows.

Loss = Z —In(o Qu.»

(u,v,z) inO

S NHANOI5 (9

where (u,v,7) in O, (v, z) represents the training sample
sets, which indicates item v interactive with user u, (u, z) is
the unobserved interaction. o () is the sigmoid function, and
I ||% denotes the L, regularization term, which is to prevent
over-fitting and ® represents model training parameters.

IV. EXPERIMENTS

We perform experiments on three real-world datasets to eval-
uate our proposed model, especially the aggregation layer.
We aim to answer the following research questions:

1) How does different embedding dimension d affect
NGCF-ITS?

2) How do the layer number / of the aggregation layer and
the sliding window parameter § affect the recommendation
performance?

3) How does NGCF-ITS perform as compared with state-
of-the-art models?

A. EXPERIMENTAL SETTINGS

1) DATASETS

To verify the unbiasedness of the model, we conduct exper-
iments on three real-world datasets: LastFM, Douban, and
Ciao. These datasets are all publicly accessible, independent
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TABLE 2. Specification of the datasets.

Datasets Users Items Interaction | Sparsity
LastFM 1892 17632 92834 0.27%
Douban 2848 39586 894887 0.794%
Ciao 7375 105114 284086 0.0365%

TABLE 3. Analysis of different d on datasets in HR@10.

Datasets 8 16 32 64

LastFM 0.67857 0.76546 0.77346 0.79104
Douban 0.64061 0.66300 0.66148 0.67666
Ciao 0.13823 0.14284 0.14107 0.14243

of each other, and vary in application domain, data size, and
data sparsity.

The attributes of the three datasets are shown in Table 2,
Ciao datasets obtiains higher data sparsity. The obvious
observation is that the recommendation performance of the
model under different sparsity levels. The details of the
datasets are as follows:

1) LastFM: LastFM is an online radio and music commu-
nity set in the UK. It provides developers with a wealth of
APIs which including data of various sizes. We apply the
datasets of user listening sequence with implicit feedback of
context information released at the 2nd international seminar
of the 5th ACM recommendation system conference.

2) Douban: Douban is a well-known theme social net-
working site in China. The topics include movies, books,
music, etc. Users can conduct social discussions on topics
of interest, and the content of the discussions can gener-
ate cross-information feedback for other users. We conduct
experiments on a subset of movie ratings.

3) Ciao: Ciao is a DVD category datasets crawled from
http://dvd.ciao.co.uk website in December 2013, which cov-
ering user ratings for various items and their personal reviews.
The scoring mechanism is the scoring interval of [1], [5],
and the average of the effective scores of the comprehensive
user shows that the score and evaluation will affect the user’s
willingness to purchase the item.

2) EVALUATION PROTOCOLS

In this section, we take all-ranking protocol and adopt four
evaluation metrics: Precision@N, Recall@N, NDCG@N.
The detailed introduction is shown as follow:

1 R, N1
Precision@N = — Z IRy O 1] (10)
N
uelU
R,N1,
Recall@N = — Z | | (a1
ueU u
N 2rel, -1
DCG@N = — Z . (12)
U “ P log,(i + 1)
1 DCG@N
NDCG@N = — Z (13)
U “~ IDCG@N
116977
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FIGURE 4. Different sliding window sizes were analyzed in three datasets (LastFM, doublan, ciao) Precision@5 as well as NDCG@5.

In our experiments, the length of the recommendation N is
in 5, 10, 20, 40. U represents all users of test set. R, denotes
all item sets which were recommended by user u. I, means
item sets which have interacted with user u. The precision,
recall rate and NDCG under N recommended items, respec-
tively denoted as Precision@N, Recall@N, NDCG@N .

3) PARAMETER SETTING

The experiment was conducted on tensorflow platform. In the
initialization phase, the embedding dimension of the model
is set to d = 64, and the batch processing is set to 1024.
We initialize the parameters in the model with Xavier, set
the learning rate and L, regularization to 0.0001 and 10°,
respectively, and use the Adam optimizer for model optimiza-
tion training. If the value of Recall @20 does not continue to
increase for 50 consecutive epochs, the model stops training.

4) BASELINES

In order to test the performance improvement of the NGCF-
ITS model, we conduct comparative experiments with some
current advanced recommendation models. The models are
introduced as follows:

1) APR [27]: Considering that when BPR [28] optimizes
MEF, the model parameters are susceptible to adversarial
disturbances, APR combines BPR with adversarial training
methods to make the recommendation model more robust,
thus improving the accuracy of model recommendation.

2) CFGAN [29]: A novel CF model based on GAN,
which can achieve higher recommendation system accuracy.
By adjusting the score vector of the generated user of the
G network in the adversarial network, the value range is
0 to 1, which solves the problem of discrete generation in
the traditional IRGAN, and also optimizes for collaborative
filtering.

3) CUNE_BPR [30]: The CUNE_BPR model extracts
implicit social information from user feedback on items, and
identifies top-N semantic meta-information for each user,
incorporating top-N semantic metainformation into the BPR
framework to solve the problem of project sequencing.

4) NeuMF [31]: The NeuMF model combines the linear
features of MF and the nonlinear features of DNNS [32],
[34], [35] to build latent structures between users and items,
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through multiple hidden layers on the element level and the
embedded connections between users and items.

5) NGCEF [21]: The NGCF model explicitly models the
interaction information between users and items, constructs
a user-item interaction graph, and on this basis, effectively
embeds the collaboration signal into the user-item interaction
graph propagation process to achieve high-order connectivity,
which improves the embedded representation of users and
items.

6) LightGCN [22]: LightGCN model simplifies NGCF
model. It eliminates feature transformation and nonlinear
activation in NGCF, because these designs have no positive
impact on collaborative filtering, and reduces part of the noise
of NGCF embedding. Compared with NGCF, LightGCN not
only improves the operation efficiency, but also significantly
improves the recommendation performance.

B. PERFORMANCE
1) IMPACT OF SLIDING WINDOW SIZE OF g8
To investigate whether NGCF-ITS can benefit from sliding
window size, we vary the 8. In particular, we search the 8 in
therange of 1, 3, 5, 7, 9. Figure 4 summarizes the experiment
results, where indicates that the item-item sequence relation-
ships and the users’ dynamic interests are affected by sliding
window B. We have the following observations in Figure 4:
1) Different sliding window size of NGCT-ITS influences
the recommendation cases. NGCF-ITS generally achieves
better performace in Douban (8 =5), Ciao (8 =5), and
LastFM 8 =17.
2) It can be observed that the optimal g is highly dependent
on the average length of the neighbors of the datasets, so the
optimal B can be set through the properties of the datasets.

2) IMPACT OF THE NUMBER OF LAYERS /

Parameter / controls the intensity of learning, and during the
increase of /, the obvious observation is that the recommen-
dation can caputre users’ dynamic interests accurately.

To verify the performance of / on recommendation model,
we set/ inrange of 0, 1, 2, 3, 4. Figure 5 shows that the exper-
iment results on Recall @20, Precision@20, NDCG@?20.
NGCF-ITS obtains the worst performance on three datasets
with / =0, in other words, the item temporal sequence
relationships is not considered. In contrast, the temporal
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sequence relationships can indeed improve recommendation
performance.

Compared with LastFM and Douban, due to Ciao is very
sparse, the influence of that is relatively modest, which will
quickly speed up the convergence of the underlying model
and offer better performance.

In addition, during the increase of /, the experiment results
is relatively stable at the same time. For example, the result
of LastFM and Douban is better with / = 3, Ciao is better
with / = 2. Then, the experiment results declined, the reason
might be that the value of [ is higher, the feature learning of
graph convolution networks on graph structure is too smooth.
The learning of item temporal sequence relationships reaches
the state of over-fitting, leading to a poor performance.

3) IMPACT OF EMBEDDING DIMENSION d

To analyze the importance of embedding dimension d on
three datasets, The dimension d is a multiple of 8, such
as d =[8, 16,32, 64]. The experiment data are shown in
Table 3, the experiment performance is worst on three
datasets with d = 8. During the increase of d, the experiment
data on LastFM and Douban tend to better, the effect of rising
is especially obvious in d = 8 to d = 16, then the changing
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is slowly in d = 64, the experiment results reach the best
performence.

Different from LastFM and Douban, the experiment results
reach the best in Ciao with d = 16. the reason for this
phenomenon is that Ciao is relatively sparse. In this case,
compared with high-latitude embedding, better results can
be obtained by training low-dimension embedding, while
high-latitude embedding will lead to over-fitting of data and
lower recommendation performance, which is also explained
in the paper [19].

4) COMPARION WITH REPRESENTATIVE MODELS
To evaluate our proposed model, the experiments are car-
ried out on three real-world datasets, and to the accuracy
performance of the propose model, we compare with other
recommendation models, such as the improved CUNE_BPR
and APR based on traditional BPRMF, NeuMF based on
neural networks, CFGAN based on generative adversarial
network, NGCF based on GNN and LightGCN model simpli-
fies NGCF. The above model is described in BASELINES.
1) Table 4 shows the experimental results on LastFM,
Douban and Ciao with N = 5, 10, 20, 40. we have the follow-
ing observations: our proposed model NGCF-ITS typically
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TABLE 4. Performance compared methods.

Datasets | N Metrics APR | CUNE_BPR | CFGAN | NeuMF | NGCF | LightGCN | NGCG-ITS
Recall@N | 0.1064 0.0380 0.0969 | 0.0839 | 0.1094 | 0.1098 0.1132
5 | Precision@N | 0.2061 0.0724 0.1928 | 0.1653 | 0.2158 | 0.2207 0.2253
NDGC@N |0.2506 0.0762 0.2474 | 0.2179 | 0.2638 | 0.2628 0.2720
Recall@N |0.1621 0.0552 0.1495 | 0.1293 | 0.1665 | 0.1786 0.1766
10 | Precision@N | 0.1576 0.0527 0.1475 | 0.1270 | 0.1644 | 0.1751 0.1725
LastEM NDGC@N |0.2080 0.0677 0.2020 | 0.1786 | 0.2167 | 0.2262 0.2320
Recall@N | 0.2346 0.0890 0.2204 | 0.1909 | 0.2468 | 0.2582 0.2558
20 | Precision@N | 0.1146 0.0427 0.1089 | 0.0941 | 0.1217 | 0.1225 0.1263
NDGC@N |0.2514 0.0869 0.2449 | 0.2157 | 0.2639 | 0.2645 0.2752
Recall@N |0.3222 0.3222 0.3052 | 0.2748 | 0.3420 | 0.3517 0.3501
40 | Precision@N | 0.0788 0.0318 0.0753 | 0.0676 | 0.0843 | 0.0824 0.0863
NDGC@N |0.2936 0.1061 0.2854 | 0.2559 [ 0.3101 | 0.3209 0.3275
Recall@N |0.0232 0.0204 0.0079 | 0.0203 | 0.0239 | 0.0265 0.0254
5 | Precision@N | 0.1000 0.2103 0.0757 | 0.1503 | 0.1776 | 0.2177 0.2255
NDGC@N |0.1154 0.0801 0.0849 | 0.1698 | 0.2001 | 0.2103 0.2143
Recall@N |0.0389 0.0425 0.0143 | 0.0346 | 0.0403 | 0.0426 0.0436
10 | Precision@N | 0.0928 0.1917 0.0634 | 0.1413 | 0.1617 | 0.1851 0.2049
Douban NDGC@N |0.1141 0.0796 0.0765 | 0.1661 | 0.1913 | 0.2039 0.2045
Recall@N | 0.0652 0.0689 0.0252 | 0.0605 | 0.0689 | 0.0712 0.0709
20 | Precision@N | 0.0865 0.1682 0.0555 | 0.1298 | 0.1449 | 0.1825 0.1896
NDGC@N |0.1169 0.0818 0.0715 | 0.1634 | 0.1842 | 0.2008 0.1944
Recall@N |0.1116 0.1102 0.0438 | 0.1062 | 0.1148 | 0.1181 0.1211
40 | Precision@N | 0.0780 0.1409 0.0517 | 0.1165 | 0.1268 | 0.1444 0.1510
NDGC@N |0.1260 0.0945 0.0731 | 0.1651 | 0.1820 | 0.2043 0.1924
Recall@N |0.0143 0.0168 0.0190 | 0.0180 | 0.0175| 0.0198 0.0201
5 | Precision@N | 0.0161 0.0138 0.0201 | 0.0210 | 0.0209 | 0.0208 0.0221
NDGC@N |0.0197 0.0190 0.0212 | 0.0257 | 0.0252 | 0.0284 0.0266
Recall@N | 0.0255 0.0251 0.0284 | 0.0292 | 0.0299 | 0.0333 0.0322
10 | Precision@N | 0.0141 0.0109 0.0174 | 0.0174 | 0.0180 | 0.0185 0.0194
Ciao NDGC@N |0.0225 0.0210 0.0246 | 0.0279 | 0.0280 | 0.0291 0.0297
Recall@N | 0.0416 0.0381 0.0494 | 0.0455 | 0.0495| 0.0510 0.0526
20 | Precision@N | 0.0113 0.0084 0.0139 | 0.0146 | 0.0150 | 0.0167 0.0161
NDGC@N |0.0271 0.0251 0.0281 | 0.0326 | 0.0336 | 0.0343 0.0351
Recall@N | 0.0630 0.0575 0.0732 | 0.0658 | 0.0759 | 0.0801 0.0812
40 | Precision@N | 0.0085 0.0063 0.0097 | 0.0103 | 0.0115| 0.0118 0.0121
NDGC@N |0.0333 0.0306 0.0364 | 0.0387 | 0.0409 | 0.0428 0.0439

outperformed approaches, which reflects the accuracy and
effectiveness. In addition, based GCN model use graph
structures for message propagation to achieve performance
improvements.

2) NGCF-ITS aggregates item temporal sequence rela-
tionships, this not only increases the model representation
ability, but also boosts the performance for recommendation,
and NGCF-ITS generally achieves better performance than
LightGCN in most cases.

3) NGCF-ITS consistently yields the best performance
on all the datasets. In particular, NGCF-ITS improves over
LightGCN is 4.0% on LastFM, over CUNE_BPR is 6.8%
on Douban and over NeuMF is 5.2% on Ciao in Table 4.
This phenomenon indicates that aggregation of item temporal
sequence relationships into GNN-based recommendations
has sufficient development prospects.

V. CONCLUSION

In this paper, we proposed a neural graph collaborative
filtering recommendation model fused with item temporal
sequence relationships (NGCF-ITS). Specifically, we utilized
the sliding window strategy to divide the item temporal
sequence relationships into several groups of sub-sequences,
and constructed the item temporal sequence relationships
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graph to aggregate the item-item temporal sequence relation-
ships and dig users’ dynamic interests. We use bipartite graph
neural network to map high-dimensional information of user-
item and item-item into low-dimensional space to realize the
hybrid embedding of user-item historical interaction informa-
tion and item-item temporal sequence relationships informa-
tion, expression of information can be enhanced by user-item
interaction sequence. Moreover, make use of the user-item
interaction graph and item temporal sequence relationships
graph to construct a four-layer neural graph collaborative
filtering recommendation model framework, including the
embedding layer, the aggregation layer, the propagation layer
and the prediction layer. The results of comparative experi-
ments on the three real-world datasets of LastFM, Ciao and
Douban, which shows that NGCF-ITS model has brought sig-
nificant improvements compared with other models, meaning
that the item temporal sequence relationships is valuable in
providing more accurate recommendations.
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