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Abstract

Autoregressive models (ARMs) have become the
workhorse for sequence generation tasks, since
many problems can be modeled as next-token pre-
diction. While there appears to be a natural order-
ing for text (i.e., left-to-right), for many data types,
such as graphs, the canonical ordering is less ob-
vious. To address this problem, we introduce a
variant of ARM that generates high-dimensional
data using a probabilistic ordering that is sequen-
tially inferred from data. This model incorporates
a trainable probability distribution, referred to as
an order-policy, that dynamically decides the au-
toregressive order in a state-dependent manner.
To train the model, we introduce a variational
lower bound on the log-likelihood, which we op-
timize with stochastic gradient estimation. We
demonstrate experimentally that our method can
learn meaningful autoregressive orderings in im-
age and graph generation. On the challenging do-
main of molecular graph generation, we achieve
state-of-the-art results on the QM9 and ZINC250k
benchmarks, evaluated across key metrics for dis-
tribution similarity and drug-likeless.

1. Introduction
Artists draw paintings in their own styles stroke by stroke,
and chemists synthesize stable molecules step by step fol-
lowing the procedure of chemical reactions. What is com-
mon in both cases is that the next data component to be
generated is dynamically determined by the current state of
the creation process. In machine learning, autoregressive
models (ARMs) can encode such sequential dependencies
between data dimensions. In general, ARMs represent a
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high-dimensional data distribution using the product-rule
factorization of conditionals. They have become the stan-
dard approach for generating text (Brown et al., 2020).

A key limitation of traditional ARMs is their reliance on a
predefined, canonical ordering for factorizing the probability
distribution over data dimensions. While text data possesses
a natural left-to-right ordering, many other data types, such
as images and graphs, lack such an obvious or universally
applicable ordering. Indeed, the optimal ordering may vary
even between individual data points, and the best generation
order is often context-dependent. Therefore, it is desirable
to derive extensions of ARMs that do not treat the ordering
as fixed, but rather as a latent random variable that follows
a probability distribution that adapts to the evolving state of
the generation process.

One basic way to extend ARMs with probabilistic orderings
is any order ARMs (AO-ARMs, Uria et al., 2014), where the
ordering follows a uniform distribution over all possible per-
mutations of data dimensions. Such models can be thought
of as order-agnostic, and also connect with the masked or
absorbing discrete diffusion models (Austin et al., 2021;
Hoogeboom et al., 2022; Shi et al., 2024; Sahoo et al., 2024;
Ou et al., 2024). However, in practice such models are less
effective in terms of likelihood scores compared to ARMs
(Yang et al., 2019; Hoogeboom et al., 2022). A possible
reason is that these models try to solve an extremely chal-
lenging training problem, which requires fitting a neural
network to adequately match all possible conditional distri-
butions over all orderings of the data dimensions, without
learning any preference towards particular orderings.

To address the limitations of fixed order and any order
ARMs, we introduce an ARM variant which can flexibly
learn probabilistic orderings for generating the data dimen-
sions. Our main contributions and findings include:

• We introduce the Learning-Order Autoregressive Mod-
els (LO-ARMs), a novel generative model that learns
context-dependent generation orders from data. Specif-
ically, we extend AO-ARMs to incorporate a trainable
probability distribution that dynamically decides the
sampling order of the data dimensions. We derive a
variational lower bound on the exact log-likelihood for
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(a) Molecule at t-1 (b) Unmasked molecule at t (c) Policy over masked positions at t (d) Entropy at each masked dimension at t (e) Value distribution
at sampled dimension
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At Step 19, the RDKit visualizer rotates the right aromatic ring.

Figure 1. An example of molecule generation with our best LO-ARM model trained on ZINC250k. Our model generates molecules
step-by-step, commencing with all nodes and edges masked (in the figures masked nodes are labeled as x) and adding one node or
edge at a time. First, an order-policy selects which dimension (node or edge) to fill, and then a classifier determines its value. Each
step is illustrated in the provided figures: Columns (a) and (b) illustrate the (partially) generated molecular structures at two successive
generation steps. Columns (c), (d), and (e) provide detailed insights: (c) the order-policy’s probability distribution over dimensions,
(d) the classifier’s entropy for each dimension, and (e) the classifier’s prediction at the selected dimension. Note that, the order-policy
and classifier entropy are zeroed for unmasked dimensions. The generation proceeds through three phases: bond skeleton construction,
“no-edge” state population (representing “imaginery” bonds in the dense adjacency matrix), and atom type assignment. In particular, the
order-policy learns to favor dimensions with high classifier certainty, demonstrated by an inverse relationship between policy probability
and classifier entropy. For example, at Step 1, dimensions with higher probabilities in (c) correspond to lower entropies in (d). This trend
is especially evident during the “no-edge” infilling phase, where masked edge dimensions at Step 20 and 152 exhibit high order-policy
probabilities and near-zero classifier entropies, while masked node dimensions show the inverse. Importantly, the classifier assigns
probabilities to potential values, enabling valid molecular variations. For instance, at Step 171, as shown in (e), the final masked atom has
a near-equal chance of being Carbon, Nitrogen, or Sulfur, resulting in three different yet valid molecules. Step 19 also demonstrates this,
with each possible edge value offering a different, yet feasible, molecular structure. We provide the full generation path in Appendix B.2.

training the model using stochastic gradient estimation.

• We apply LO-ARMs to two molecule generation tasks
(i.e., QM9 and ZINC250k) and obtain state-of-the-

art results for both datasets, as measured by sample
quality metrics such as Frèchet ChemNet Distance
(FCD) (Preuer et al., 2018), Synthetic Accessibility
Score (SAS), Quantitative Estimate of Drug-likeness
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(QED), and sample diversity.

• We find that LO-ARMs can learn consistent order-
ings to generate new molecules with high validity and
uniqueness.

• We investigate a variety of architectural choices for LO-
ARMs and provide an ablation analysis in the context
of molecular graph generation.

2. Background
2.1. Problem Setup

We assume data vectors x = (x1, . . . , xL) where each di-
mension xi takes values from a set X , which could be real
or discrete. Without loss of generality, we assume x is a
vector of L categorical variables, so that X is a discrete
set of m = |X | categories. For example, for molecular
graphs, X = V

⋃
E , where V and E are the atom and bond

types respectively. An autoregressive model defines a joint
probability distribution over x that factorizes as

pθ(x) =

L∏
i=1

pθ(xi|x<i), (1)

where xi denotes the i-th dimension of x, x<i =
(x1, . . . , xi−1) denotes the first i− 1 elements of the vector
x and pθ(xi|x<i) is the conditional distribution with the
convention pθ(x1|x<1) = pθ(x1).

Sampling from the model generates the data dimensions
sequentially starting from x1 and ending at xL. As men-
tioned in the introduction, having a fixed or pre-specified
order can often be disadvantageous, since it may introduce
inappropriate inductive bias when modeling data without
a natural ordering. AO-ARMs (Uria et al., 2014; Hooge-
boom et al., 2022) address this problem by training a model
that can generate the data dimensions under any random
ordering drawn uniformly from L! permutations of the in-
dices {1, . . . , L}. Given a permutation σ the model joint
distribution factorizes as

pθ(x|σ) =
L∏

i=1

pθ(xσi
|xσ<i

), (2)

where σ<i denotes the indices of the i − 1 first elements
under the permutation σ. If p(σ) denotes the uniform distri-
bution over the L! permutations, the parameters θ are found
by maximizing the expected log-likelihood (per data point):

Ep(σ) [log pθ(x|σ)] . (3)

As noted by Hoogeboom et al. (2022), a way to interpret the
above objective is as a variational lower bound on the log-
likelihood of a probabilistic latent variable model. Specif-
ically, if σ is the latent variable corresponding to the data

point x (so at training for each example x(n) there is a
different σ(n)), the log-likelihood can be lower bounded
as log pθ(x) = log

∑
σ p(σ)p(x|σ) ≥ Ep(σ)[log p(x|σ)] ,

which yields the training objective in Equation (3). Note
that in practice this objective is optimized stochastically;
see Uria et al. (2014) for more details.

2.2. Autoregressive Generation as Unmasking Process

Here, we describe a convenient way to characterize the
sequential generation process for discrete data which we
will use for building our proposed method in Section 3.

Given that each discrete data dimension (or token) xi, i ∈
{1, . . . , L} takes m categorical values we further augment
the space with an extra auxiliary category or mask. Thus, we
represent each xi as an m+ 1-dimensional (rather than m-
dimensional) one-hot vector where the final m+ 1-th value
indicates that xi is masked. Then we can model the genera-
tion process with ARMs as an unmasking process. Specifi-
cally, starting with a fully masked state x̄ = (x̄1, . . . , x̄L),
where x̄i represents the mask, at each step, we choose a
dimension x̄i and “unmask it” which means to sample a
categorical value xi among the m categories. Then we re-
peat this process until all dimensions are unmasked, which
yields a final generated data point x. Under this representa-
tion our model also connects with recent masked discrete
diffusion models (see, e.g., Shi et al., 2024) as we further
discuss in Related Work. However, note that unlike discrete
diffusion models we do not specify a forward process in our
framework, but only the unmasking or backward process.

3. Learning Order ARM
We replace the uniform prior distribution p(σ) in AO-ARMs
by with a learnable distribution over orderings. We call this
distribution the order-policy since it dynamically decides the
next dimension to generate by conditioning on the already
generated data dimensions of x. Next, we focus on the gen-
eral description of our method and the key design choices,
and delay the technical details of specifying it to practical
tasks, including images (Appendix A) and molecular graphs
(Appendix E) generation. Specifically, this section unfolds
as follows. We introduce the order-policy in Section 3.1, de-
fine the learning objective in Section 3.2, and then describe
options for the model parametrizations and neural network
architectures in Section 3.3.

3.1. Model with Order-Policy

Sampling an ordering σ can be represented by a set of L
latent variables zi, i = 1, . . . , L, so that

p(z) =

L∏
i=1

p(zi|z<i), (4)
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where z1 ∼ p(z1) = p(z1|z<1) is a categorical variable
that takes L values from the set {1, . . . , L}, and each sub-
sequent zi ∼ p(zi|z<i) takes L− i+ 1 values from the set
z≥i = {1, . . . , L} \ z<i, where z<i = (z1, . . . , zi−1). The
probability distribution pθ(x) can be written as

pθ(x)=
∑
z

p(z)pθ(x|z)=
∑
z

L∏
i=1

p(zi|z<i)pθ(xzi |xz<i),

where the two conditionals p(zi|z<i) and pθ(xzi |xz<i
) fol-

low side-by-side an autoregressive structure that unfolds
from i = 1 to i = L. When each p(zi|z<i) is uniform then
p(z) is an autoregressive representation of the uniform dis-
tribution over the L! permutations. In this case, the model
reduces to standard AO-ARMs.

In our proposed method, named learning order ARM
(LO-ARM), we use the latent variables z but we replace
p(zi|z<i) with a more informed distribution. We call this
distribution order-policy and we define it as follows.
Definition 3.1. The order-policy is a distribution over z
that follows the factorization

pxθ (z) =

L∏
i=1

pθ(zi|z<i,xz<i), (5)

where each factor pθ(zi|z<i,xz<i
) is a parameterized cate-

gorical distribution over the index zi of the next data dimen-
sion in the autoregressive order that conditions not only on
the indices z<i but also on the corresponding data dimen-
sions xz<i

= (xz1 , . . . , xzi−1
).

The order-policy enables modeling of the sequential depen-
dence structure of data dimensions that can exist in the true
data distribution. Therefore, it is desirable to flexibly learn
this distribution from data. A full description of a specific
parametrization of the order-policy and an overall model
architecture are given in Section 3.3. Before proceeding to
this, we discuss a general training procedure in the next sec-
tion, based on variational inference and stochastic gradient
estimation.

3.2. Training with Variational Inference

To train the LO-ARM model from a set of training examples
D = {x(n)}Nn=1 we want to maximize the log-likelihood

N∑
n=1

log pθ(x
(n)) =

N∑
n=1

log
∑
z(n)

pθ(z
(n),x(n)).

For simplicity, we only consider one data point for now and
drop index n. The joint distribution pθ(z,x) can then be
factorized as

pθ(z,x) =

L∏
i=1

pθ(zi|z<i,xz<i
)pθ(xzi |xz<i

), (6)

where the factors pθ(zi|z<i,xz<i
) and pθ(xzi |xz<i

) de-
pend on parameters θ that we want to learn. Since the
exact likelihood is intractable, we will maximize an evi-
dence lower bound (ELBO) on the log-likelihood. We use
an amortized variational distribution over z that conditions
on the full data vector x, and has the general form

qθ(z|x) =
L∏

i=1

qθ(zi|z<i,x), (7)

where the specific parametrized form of qθ is given in Equa-
tion (12) and Section 3.3. Structurally, each variational
factor qθ(zi|z<i,x) has a similar form as the order-policy
factor pθ(zi|z<i,xz<i

), but the difference is that the former
is allowed to condition on the full x while the latter only
on xz<i

. This amortized factorization is one of our key
design considerations, and makes model training practically
feasible while still allowing us to efficiently compute an
unbiased estimate of the ELBO. We will discuss this point
at the end of the section.

Using qθ we can lower bound the log likelihood as follows:

log pθ(x) ≥
∑
z

qθ(z|x) log
pθ(z,x)

qθ(z|x)
=

∑
z

qθ(z|x)
L∑

i=1

log
pθ(zi|z<i,xz<i)pθ(xzi |xz<i)

qθ(zi|z<i,x)
=

L∑
i=1

Eqθ(z<i|x)

[
Eqθ(zi|z<i,x)

[
log

pθ(zi|z<i,xz<i)pθ(xzi |xz<i)

qθ(zi|z<i,x)

]]

=

L∑
i=1

Eqθ(z<i|x) [Fθ(z<i,x)] . (8)

To obtain the final expression, we performed the exact expec-
tation over zi ∈ z≥i = {1, . . . , L} \ z<i (i.e., taking values
over the set of all currently masked dimensions) and defined
the function Fθ(z<i,x) as shorthand for the long expecta-
tion highlighted in blue. We also analytically marginalized
out all future latent variables z>i = {1, . . . , L} \ z≤i since
the function Fθ(z<i,x) does not depend on these. Comput-
ing the full ELBO is too expensive, and thus in practice we
construct an unbiased estimate by sampling one term in the
sum

∑L
i=1 together with one z<i ∼ qθ(z<i|x). Thus we

obtain the stochastic estimate of our loss as

L(θ) = −LFθ(z<i,x), z<i ∼ qθ(z<i|x). (9)

For the special case where each variational factor
qθ(zi|z<i,x) and pθ(zi|z<i,xz<i

) are non-learnable and
set to uniform distributions, the stochastic negative ELBO
in Equation (9) reduces to

L(θ) = − L

L− i+ 1

∑
zi∈z≥i

log pθ(xzi |xz<i
), (10)
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Algorithm 1 Training with LO-ARM

Given a dataset D, pθ(·|xz<i
), pθ(·|z<i,xz<i

), qθ(·|x)
while training do

Uniformly sample x = (x1, . . . , xL) from D
Sample z1 ∼ qθ(·|x) and z2 ∼ qθ(·|x)
Sample i ∼ Uniform[1, . . . , L]
Set z1

<i = (z11 , . . . , z
1
i−1) and z2

<i = (z11 , . . . , z
2
i−1)

Get xz1
<i
,xz2

<i
by masking dimensions at z1

≥i, z
2
≥i

Compute RLOO unbiased gradient from (11) and up-
date θ via SGD

end while

Algorithm 2 Unconditional sampling from LO-ARM

Initialize a fully masked state x̄ = (x̄1, . . . , x̄L)
Initialize z̄ = {1, . . . , L} as the indices to be sampled
for step i = 1, 2, . . . , L do

Sample data index zi ∼ pθ(·|z<i,xz<i)
Sample data dimension value x̂zi ∼ pθ(·|xz<i)
Unmask x̄zi with x̂zi : x̄← x̄ \ x̄zi ∪ {x̂zi}
Remove zi from z̄: z̄ ← z̄ \ zi

end for
Return x̄

which is precisely the stochastic objective used for training
AO-ARMs; see Equation (12) in Uria et al. (2014). In
other words, the objective in Equation (9) generalizes these
previous objectives.

Unlike AO-ARMs, however, the stochastic objective in
Equation (9) is more complex, which therefore would have
higher variance, In order to propagate gradients through the
sampling step from the discrete distribution qθ and reduce
variance, we also need REINFORCE gradient estimation
(see, e.g., Shi et al., 2022). To keep it simple, we use the
REINFORCE leave-one-out (RLOO) estimator (Salimans &
Knowles, 2014; Kool et al., 2019a) with two samples. First
we select a single random index i ∈ {1, . . . , L}. Then given
this fixed i we draw two sample paths of previous indices
z1
<i and z2

<i, by sampling from qθ(z<i|x). The unbiased
gradient over θ is then written as

L

2
{
(
∇θ log qθ(z

1
<i|x)−∇θ log qθ(z

2
<i|x)

)
∆F

+∇θFθ(z
1
<i,x) +∇θFθ(z

2
<i,x)}, (11)

where ∆F = Fθ(z
1
<i,x)− Fθ(z

2
<i,x).

Algorithm 1 outlines the whole training procedure. In partic-
ular, z = (z1, . . . , zL) is a full permutation of {1, . . . , L}
and fast sampling of z, e.g., by requiring only a single NN
forward pass, is critical to obtain scalable training. To en-
able this, we construct the full qθ as an amortized (by data
vector x) Plackett-Luce model (Plackett, 1975). More pre-
cisely, we assume the vector of logits gθ(x) ∈ RL, which

is a non-linear function that receives as input the data x.
Based on these logits each variational factor has the form

qθ(zi = k|z<i,x) =
egθ,k(x)∑

k′∈z≥i
egθ,k′ (x)

. (12)

The logits are combined in an autoregressive way based on
the factorization in Equation (7). Computing and sampling
from the variational distribution is very fast, since it requires
a single evaluation to obtain and store the vector of logits
gθ(x), and sampling from qθ in (7), with factors given by
(12), has negligible additional cost. In fact a full path z can
be sampled at once in parallel using the Gumbel-top-k trick
(Kool et al., 2019b), as we do in our implementation. The
exact parametrization of gθ(x) using the neural architecture
is discussed next in Section 3.3.

Once training is completed, we can generate new samples
from the model using Algorithm 2. Specifically, we can
generate a new sample x̂ = (x̂1, . . . , x̂L) autoregressively
starting from a fully masked state x̄ = (x̄1, . . . , x̄L). To do
this, at step i ∈ {1, . . . , L}, we unmask x̄zi to x̂zi , which is
sampled with the categorical distribution. Note that we only
need the model order-policy over zi ∼ pθ(·|z<i,xz<i) and
the categorical distribution x̂zi ∼ pθ(·|xz<i

) for inference.

3.3. Parametrization of the Distributions

Here, we discuss specific parametric forms for the model
and variational distributions. Since xzi is discrete, we
parameterize the model conditionals pθ(xzi=k|xz<i

) for
k = 1, . . . , L as L classifiers with a Neural Network (NN)
having L heads,

pθ(xzi=k|xz<i) = softmax(fθ,k(x̄z<i)), (13)

where x̄z<i
is the state with the z<i dimensions being un-

masked and the rest masked, while fθ,k(x̄z<i) ∈ Rm are
the logits of the k-th softmax head over m classes. The spe-
cific architecture of these classifiers could be task dependent.
For instance, we employ UNet (Ronneberger et al., 2015) for
image generation (Appendix A) and Graph Transformer (Vi-
gnac et al., 2023) for graph generation (see Appendix E).

Next, we parameterize the model order-policy factors
pθ(zi = k|z<i,xz<i

) using L functions hθ,k(·) ∈ R, k =
1, . . . , L so that

pθ(zi = k|z<i,xz<i
) =

ehθ,k(x̄z<i
)∑

k′∈z≥i
ehθ,k′ (x̄z<i

)
. (14)

We explore two options to define hθ,k(·): i) An entropy-
based parametrization, where these functions are scaled
entropies of pθ(xk|xz<i

) (computed from logits fθ,k dis-
cussed above). This can favor sampling dimensions zi with
higher certainty (about the value of xzi) early on. ii) A
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shared-torso parametrization, where we add an extra final
linear layer to the fθ outputting L scalars providing the
hθ,k(·) values.

Finally, we have already described the general form of the
variational factors qθ(zi = k|z<i,x) in Equation (12), so
what remains is to specify the vector of logits gθ(x). We
explore two parametrizations: 1) A shared-torso param-
eterization where we add another final linear layer to fθ
(similarly to (ii) above) outputting L values for gθ(x). 2) A
separate NN with L outputs to model gθ(x). The motiva-
tion of this latter option is to more freely capture the form
of the variational distribution.

We provide further details on the above options in Ap-
pendix F. In the experiments we present an ablation for
these options in the context of molecule graph generation.

4. Related Work
Orders of autogressive graph generation. Unlike image
and text domains, the generation order of ARMs has been a
central focus in the graph domain. Early work on graph gen-
erative models (Li et al., 2018) mentioned the difficulty of
learning the ordering and eventually settled on using either
uniform or fixed ordering. You et al. (2018) introduced a
fixed BFS ordering scheme. Chen et al. (2021); Kong et al.
(2023) extended AO-ARMs to enable a partially learnable
ordering over nodes, where the edges connecting a newly
added node to existing nodes are generated immediately
following the new node. Bu et al. (2023) reformulated the
node ordering problem as a dimensionality reduction. These
existing works mostly follow a paradigm of incrementally
adding new nodes and connecting them to existing nodes.
By contrast, our work provides a general order learning
framework for ARMs, which enables more flexible ordering
relationships between nodes and edges.

Discrete diffusion and application to graph generation.
Our method also relates to discrete diffusion models based
on absorbing or masked diffusion (Austin et al., 2021; Lou
et al., 2024; Shi et al., 2024; Sahoo et al., 2024; Ou et al.,
2024). Similar to masked diffusion formulations, our spe-
cific neural architecture for discrete data assumes that all
not-yet-generated data dimensions are assigned the mask
category. One important difference with masked diffusion is
that we learn a non-uniform and data-dependent order of the
data dimensions in a flexible way, using a NN parametrized
order-policy or a confidence-based (using entropic uncertain-
ties) policy. In contrast, masked diffusion methods operate
similarly to AO-ARMs (Hoogeboom et al., 2022), i.e. they
generate discrete tokens using a completely random order.
Further, unlike diffusion-based methods, our approach does
not explicitly specify a forward noising process. Instead, we
only define a backward generative model which generates

samples from a fully masked state. The variational order
distribution, which is introduced in the backward generative
model, encodes the unmasking order of tokens and is learned
from the true data distribution. From this viewpoint our
approach connects with variational autoencoders (VAEs),
where training is achieved by optimizing an amortized vari-
ational distribution jointly with the generative model (while
in diffusion models the variational distribution is replaced
by the known forward process). Indeed, similarly to discrete
latent variable VAEs, our method requires a REINFORCE
type of stochastic gradient estimation in order to optimize
the variational distribution qθ. Relatedly, DiGress (Vignac
et al., 2023) combined discrete diffusion methods with graph
transformer to achieve strong performance on graph genera-
tion.

5. Evaluation and Analysis
We are interested in two questions: 1) whether LO-ARM
can learn meaningful orderings to generate data, and 2)
whether the learned orderings can yield better generation
performance. To answer these, we apply LO-ARMs to two
tasks: 1) a toy image generation task on the MNIST dataset
to showcase the ordering the model learns, and 2) molecular
graph generation on the QM9 and ZINC250K datasets (Xu
et al., 2019; Dwivedi et al., 2023). In both tasks, the data
does not exhibit a “canonical” ordering. For the MNIST
task, we provide a qualitative illustration that LO-ARM
prefers to sample first the border pixel values and then the
“digit” pixels in the centered foreground. Presumably, the
reason is that the model learns to prefer an order where
the “easier” border pixels are generated first, which would
be of higher certainty. We provide an illustrative figure
together with a more detailed description in Appendix A. In
the present section, we focus on the quantitative evaluation
of LO-ARM on molecular graph generation tasks.

We evaluate LO-ARM on two widely-adopted molecular
graph generation benchmasks: QM9 and ZINC250K (Xu
et al., 2019; Dwivedi et al., 2023). We follow the standard
setup - e.g., in Eichelsbacher & Reinert (2008); Vignac
et al. (2023); Jo et al. (2022), including data preprocess-
ing, network parametrization, and evaluation metrics. We
represent molecules as graphs with dense adjacency ma-
trices (see Appendix E). For each model variant, we gen-
erate 16384 samples and evaluate them according to two
aspects: 1) validity and uniqueness of individual molecules
and 2) Frèchet ChemNet Distance (FCD), which evaluates
the distance between the distributions of true and gener-
ated molecules using the activations of ChemNet (Preuer
et al., 2018). Note that, these two classes of metrics are
not explicitly correlated, since invalid molecules may have
latent activations close to valid ones. As we can see in Ta-
ble 2, the validity of methods with similar FCDs may vary
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Table 1. Molecule generation on QM9. We directly cite the results of other methods. The negative loglikelihoods (NLLs) of our methods
are evaluated against the test set, and other metrics are calculated with the generated samples with the corresponding methods.

Method NLL↓ Validity%↑ Uniqueness%↑ FCD↓
Ground truth (test data) - 99.3 100 0.005

GDSS - 95.7 98.50 2.900
DiGress 69.6 99.00 96.20 -
GraphARM - 90.25 95.62 1.22
CatFlow - 99.81 99.95 0.441

Our Results pθ qθ

AO-ARM ≤ 24.66 98.88 99.11 0.671
LO-ARM-st-st shared torso shared torso ≤ 22.38 99.05 98.59 0.437
LO-ARM-st-sep shared torso separate ≤ 21.42 99.85 98.85 0.240

in a big range (e.g., GraphAF, GraphARM, EDP-GNN and
SPECTRE). On the other hand, if the true dataset has high
quality, we could still expect molecule validity to be im-
proved when just optimizing FCD-related objectives, e.g.,
the lower bound of log-likelihoods. In this study, we focus
more on the evaluation with FCD to show the generative
capability of LO-ARM, and we will show how our validity
and uniqueness correlate with FCD.

To see the effect of the order policy, we introduce two base-
lines, i.e., 1) AO-ARM in which both the variational (qθ)
and model (pθ) order policies are set to uniform, 2) Biased-
AO-ARM (in Table 2), in which the order policies always
uniformly samples edges first and then uniformly samples
nodes after all edges are unmasked. In addition, we fix the
parameterization of the classifier fθ,zi to be the same as
two recent state-of-the-arts DiGress (Vignac et al., 2023)
and CatFlow (Eijkelboom et al., 2024), and ablate different
combinations of the parametrizations of model hθ,k and
variational policy distributions. These parameterizations
are described in Section 3.3 and in Appendix F with more
details. The training configurations, including network ar-
chitectures, are described in Appendix E. The results are
summarised in Table 1 and Table 2, and samples generated
with our best models are shown in Appendix B.1.

First, on QM9 (Table 1), we can see that all variants of
LO-ARM consistently outperform AO-ARM. With simi-
lar model capacity, LO-ARM-st-st (both pθ and qθ share
torso with the classifier) achieves similar performance as the
previous best method CatFlow. Moreover, with increased
capacity for the variational order policy, LO-ARM-st-sep
(shared torso for pθ and separate NN for qθ) achieves new
state-of-the-art results in FCD, as well as competitive va-
lidity and uniqueness. Note that the cost of inference with
LO-ARM-st-sep remains close to other Graph Transformer-
based methods, because only the posterior model order pol-
icy (pθ) and the classifier are used during inference.

Next, we evaluate LO-ARM with ZINC250k (Table 2),

which is a much more challenging dataset made of larger
drug-like molecules, as data dimensions increase in O(n2)
when representing n-atom molecules as graphs. Compar-
ing LO-ARM with our own baselines (i.e., AO-ARM and
Biased-AO-ARM), we see that introducing order policies
improves the performance with a large margin of gain on
all metrics (especially validity). Furthermore, our model
demonstrates substantial FCD improvement, indicating
higher sample quality than previous molecule generative
models in terms of resembling the true data distribution.

We observe that there is generally a gap between the valid-
ity of ARMs and that of the best method on this task. We
hypothesize that this is caused by the errors accumulated
during autoregressive sampling, as we unmask a new di-
mension at a time without refining the previously unmasked.
Still, as demonstrated by the gain in validity compared to
AO-ARM and GraphARM, LO-ARM has largely fixed this
problem by training an order-policy that maximizes the
ELBO. Moreover, this accumulated error can be further re-
duced by employing Top-p sampling (Holtzman et al.), a
popular method used in autoregressive language models to
address similar problems. Specifically, the Top-p sampler
only draws from dimensions with high probability, and p
corresponds to the cumulative probability of the top dimen-
sions ranked with respect to their probabilities. Specifically,
p = 1.0 regresses to sampling the entire distribution, and
the lower the p, the greedier the sampler. We tested this
approach by sharpening the distribution of the classifier fθ
after the policy has sampled a dimension. After incorpo-
rating the Top-p sampler, we can see that both the validity
of Biased-AO-ARM-topp (Top-p = 0.9) and LO-ARM-st-
st-topp (Top-p = 0.9) increase by a large margin, while
at a cost of downgraded FCDs. As expected, the Top-p
sampling introduces a small bias, shifting the model’s dis-
tribution away from the true data distribution. We provide
further ablation studies on this effect in Appendix D.

Through incorporating Top-p sampling at test time, LO-
ARM-st-st-topp achieves similar performance as LO-ARM-
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Table 2. Molecule generation on ZINC250K. In particular, the NLLs of the LO-ARMs with the Top-p sampling are omitted as the sampler
is only used in inference time and does not change the training-time metrics.

Method NLL↓ Validity%↑ Uniqueness%↑ FCD↓
Ground truth (test data) - 100.00 99.88 0.005

GraphDF - 90.61 99.63 33.55
MoFlow - 63.11 99.99 20.93
SPECTRE - 90.20 67.05 18.44
EDP-GNN - 82.97 99.79 16.74
GraphARM - 88.23 99.46 16.26
GraphAF - 68.47 98.64 16.02
GDSS - 97.01 99.64 14.66
CatFlow - 99.21 100.00 13.21

Our Results pθ qθ Top-p

AO-ARM 1.0 ≤ 80.24 32.93 100.00 6.541
Biased-AO-ARM 1.0 ≤ 77.94 34.16 100.00 5.026
LO-ARM-st-st shared torso shared torso 1.0 ≤ 70.03 90.84 100.00 4.087
LO-ARM-st-st-topp shared torso shared torso 0.9 - 96.02 100.00 9.237
LO-ARM-st-sep shared torso separate 1.0 ≤ 68.26 96.26 100.00 3.229
LO-ARM-st-sep-topp shared torso separate 0.3 - 96.70 100.00 3.859

Table 3. LO-ARM’s perforamance on chemistry-specific metrics
on ZINC250k. Specifically, lower similarity indicates higher diver-
sity for molecules in the dataset. On all these metrics, LO-ARM
exceeds or matches the performance of the state-of-the-art results
of the models. The results of other methods are cited from (Mazuz
et al., 2023). V. is short for Validity.

Method QED↑ SAS↓ Sim.↓ V.%↑
Ground truth (test data) 0.75 2.76 0.35 100.0

JT-VAE 0.64 4.69 - 100.00
GCPN 0.65 4.53 - 99.00
Taiga 0.75 2.89 - 88.00
LO-ARM-st-sep (ours) 0.75 3.08 0.34 96.26

st-sep on validity and uniqueness. While LO-ARM-st-sep
is a more performant generative model in terms of FCD,
LO-ARM-st-st-topp is more computationally efficient for
training without using a separate network. As for inference,
their cost would be close as the variational order policy
is not needed. Both options could be useful in practice,
depending on actual needs.

Interestingly, we find that LO-ARM-st-sep is more robust
to Top-p sampling. Even if we set p = 0.3, the downgrade
of its FCD is marginal (from 3.229 to 3.859, staying the
SOTA). This suggests that the dimensions sampled with the
model order policy have highly concentrated probability
mass, which therefore implies that the order policy favours
dimensions with higher certainty. This aligns with our ob-
servation presented in Figure 1.

Thirdly, on the front of practical usefulness, the ultimate
goal of the generative model is is to sample from the same

chemical space that the training data comes from. On the
other hand, the validity and uniqueness metrics are fairly
saturated by existing methods, and the FCD on its own is
not a strong enough predictor of molecule quality. To ad-
dress this issue, we further evaluate LO-ARM-st-sep on the
chemistry-specific metrics, including 1) Synthetic Accessi-
bility Score (SAS), which measures the ease of synthesizing
a chemical compound (i.e., the lower the score, the easier
the compound to be synthesized), 2) Quantitative Estimate
of Drug-likeness (QED) which evaluates how well a com-
pound’s physicochemical properties align with those of suc-
cessful administered drugs (the higher the score, the more
aligned), and 3) pairwise similarity measures the diversity in
samples (lower score corresponds to higher diversity). We
visualize the distributions on these three metrics in Figure 2.
On both datasets the distributions of these metrics calculated
on the LO-ARM samples closely match the corresponding
ground-truth (GT) data, a finding consistent with their fa-
vorable FCD scores. We also compare LO-ARM with other
methods in the literature on these metrics. As shown in Ta-
ble 3, LO-ARM exceeds or matches the previous best results
in all three metrics.

Finally, we visualize the generation ordering learned by
LO-ARM on ZINC250k in Figure 1 and Appendix B.2.
Without imposing any inductive bias on orderings, LO-
ARM learns to favour an edge-first ordering, i.e, 1) building
skeleton of a molecule with chemical bonds, 2) infilling
the rest of the adjacency matrix “no-edge” states or the
“imaginery” bonds, and finally 3) infilling atoms (See Ap-
pendix B.2). This is different from the node-first ordering
proposed in Kong et al. (2023). To analyze the consistency
of this learned ordering, we sample 30, 000 molecules with
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Figure 2. Evaluating LO-ARM on (a) ZINC250k and (b) QM9) on the chemistry-specific metrics , i.e, Synthetic Accessibility Score
(SAS), Quantitative Estimate of Drug-likeness (QED), and pairwise similarity between samples. On both datasets, the distributions of the
samples generated with LO-ARM on these metrics are well-matched with the corresponding ground-truth (GT) data, which is well-aligned
with their performance on FCD scores.

three LO-ARM-st-sep models trained with different random
seeds, and find that 99.9% of the molecules are generated
with the edge-first ordering (See Appendix C). Note that
learning a context-dependent ordering (that varies across dif-
ferent data/molecules) within the edge or node dimensions
is still critical to performance, as we can see by compar-
ing LO-ARM with Biased-AO-ARM which just uniformly
samples within edge or node dimensions.

6. Conclusions and Discussion
We have introduced LO-ARM, a novel autoregressive
method that can learn the ordering for generating data with-
out canonical ordering. We derive a simple variational lower
bound which can be optimized with unbiased stochastic gra-
dients. In addition, we design a scalable training algorithm
which makes LO-ARM easily adaptable to real-world tasks.
Moreover, we evaluate LO-ARM on two popular molecu-
lar generation tasks, and achieve state-of-the-art results in
terms of FCD and QED, and competitive results on molecule
validity, uniqueness and SAS. In particular, we show that
LO-ARM can learn a consistent ordering for generating
new molecules without requiring inductive bias on gener-
ation orderings, which in turn contributes to a significant
performance gain for generative modeling.

On the task of molecule generation specifically, although
LO-ARM yields a more performant generative model in
terms of FCD, there is still room to improve the validity
of individual molecules compared to diffusion-based meth-
ods. We hypothesize that these models may have learned
to denoise fragment-like sub-graphs. With LO-ARM, one
way to do this is to incorporate more complex molecular
constraints into the ordering policies. Another improvement
could be to use a more memory efficient representation of
graphs, such that we do not need to store the full adjacency

matrix. On a general note, we are also interested in scaling
up LO-ARM to other domains of higher data dimensions,
e.g., high-resolution image generation and protein design.
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A. A Toy Example of Generating MNIST with LO-ARM

Figure 3. An example of data generation in MNIST using LO-ARM with shared torso parametrization of the order-policy distribution.
Each column visualizes a step of the sampling process (steps shown are i = 1, 10, 20, 100, 300, 600, 760). The panels in the first row
show the order-policy values pθ(zi|z<i,xz<i) at step i depicted as an 28× 28 image where dark colour indicates small probability value
and light colour higher value. The plot in the second row shows all sampled pixel locations (immediately after having determined the
current value for zi) depicted as binary masks. Third row shows the progression of generating the actual digit. The figure highlights that
the learned order-policy prioritizes unmasking pixels with higher certainty. The boundary-to-center infilling strategy, shown in both the
prioritization via the order-policy (first row) and the unmasking sequence (second row), illustrates this. The rough generation order —
borders, background, then digit — indicates a clear preference for areas of increasing certainty. Initially, the model confidently fills in the
black boundaries and background (third row), leading to the gradual, confident clarification of the digit into “5”.

In addition to our main quantitative evaluation with molecular graph data, we also provide an illustrative example of
generating a new MNIST sample (Figure 3). Firstly, to cast image generation as generative modelling with discrete tokens,
we treat the 256 gray-scale values as discrete categories and augment the token space with one additional mask token.
Then generating a new MNIST sample autogressively (one token at a time) would be similar to generating with masked
diffusion models ((Austin et al., 2021; Hoogeboom et al., 2022; Shi et al., 2024; Sahoo et al., 2024)), and the main difference
is LO-ARM only generates one token at a time, while masked diffusion models could generate multiple tokens at one
denoising step. As a result, the total number of sampling steps equals to the total number of pixels in one MINST image.

Next, we train the model with Algorithm 1. Specifically, we parameterize the categorical classifier with a UNet (Ronneberger
et al., 2015), parametrize the both the variational and order-policy with shared-torso (see Section 3.3 and Appendix F).

Finally, we illustrate the learning order ARM (LO-ARM) algorithm in MNIST and we visualize probabilistic orders when
sampling from the model, using the optimized model we apply Algorithm 2 to generate new digits, where we inspect also
the autoregressive order the pixels are generated. Figure 3 illustrates different steps of the sampling process; see figure
caption for details. We can observe that LO-ARM, which parametrizes the posterior order-policy with shared-torso, prefers
to sample first the border pixel values and then the “digit” pixels in the centered foreground. Presumably, the reason is that
the model learns (through ELBO maximization) to prefer an order where “easier” border pixel locations tend to be specified
first. Note that there is no inductive bias towards orders that prioritise first more confident data dimensions.

B. Gallery of Generated Molecules
B.1. Individual Molecules

We show the QM9 (Figure 4) and ZINC250K (Figure 5) samples generated with our best LO-ARM models presented in
Table 1 and 2.
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Figure 4. Generated QM9 samples.

Figure 5. Generated ZINC250K samples.

B.2. How LO-ARM Generates A Molecule

We provide the full generation path for the molecule presented in Figure 1. In particular, we only show the full path of
building skeleton (Stage 1 in Figure 6) and infilling atoms (Stage 3 in Figure 7), as Stage 2 only contains repetitive visible
molecules.

C. Consistency Analysis of Learned Ordering for Molecular Graph Generation
As we can see in the case study in Figure 1 and Appendix B.1, LO-ARM prefers a simple and specific ordering to generate
new samples, which unfolds into three stages: 1) building the skeleton of molecules, 2) infilling the “imaginery” bonds in
the adjacency matrix, and 3) infilling atoms. With this observation, we can actually simplify analyzing its consistency to a
problem of template matching. Specifically, the template matching unfolds into the following steps:

• Firstly, when generating a sample, we label the token generated at each step as one of the three states, i.e., N for
node/atom, E for edge/bond and N for no edge or imaginary bond, and output the token state sequences.

• Secondly, for each state sequence, we compress it to only keep the transitions between different states. For example, a
state sequence EEEANNNAAA will be compressed to EANA, and the expected ordering sequence is compressed to
ENA.

• Finally, we count the exact matchings between the compressed state sequences and the template of expected ordering
sequence, i.e., ENA.

To test the consistency statistically, firstly, we run the experiments to train LO-ARM with three different seeds. Secondly,
with each of the three models, we generate 10000 molecules and store their corresponding token state sequences. Note that,
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Figure 6. The full sample path of building the skeleton of the molecule presented in Figure 1. Masked nodes/atoms are labelled with x,
and the bonds in the adjacency are unmasked one by one.

we do not filter invalid molecules in this analysis. Finally, for these 30000 state sequences, we count the matchings with the
expected ordering through the algorithm described above. We find that 99.9% (29973 out of 30000) of the orderings match
the ordering pattern that we have observed.

D. Detailed Results
We provide a detailed ablation analysis for the architecture options described in Section 3.3 and Appendix F for both
QM9 Table 4 and Table 5. In addition, for the experiments with ZINC250k we also provide the results of varying the
threshold p in the Top-p (Shi et al., 2024) sampler aforementioned in Section 5.

E. Experiment Details for Molecular Graph Generation
We provide the details of our experimentation with the QM9 and ZINC250K datasets. The statistics of these two datasets
are summarized in Table 6.
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Figure 7. The full sample path of infilling atoms of the molecule presented in Figure 1. We also include the last two steps of Stage 2, i.e.,
infilling the no edge states at the beginning of this figure. During the generation process, atoms are unmasked one by one.

E.1. Data Representation

We follow the standard setup (Vignac et al., 2023; Eijkelboom et al., 2024) to transform raw data represented as SMILES
strings to dense graphs, G = (Hn,He,Hm), where Hn is the node vector, He is the edge adjacency matrix and Hm

is the node mask. In particular, the node masks pad molecules with variable sizes to a static size, such that they can be
processed with mini-batches. Moreover, same as DiGress, to represent the edge connections with a dense adjacency matrix,
an “imaginery” bond is introduced, which we also call no edge. This imaginary bond has no chemical effect when building
molecules but helps us distinguish from the entries masked different masks. Now we introduce the masks used in our
implementation.

As discussed in Section 2, we model autoregressive generation as unmasking process. To do this, we augment the token
vocabulary with one special token to represent the mask, which we call sampling mask. Specifically, for molecular graph
generation, we augment vocabularies of both nodes and edges with one zero-valued token respectively. Note that, although
both these tokens are zeros in inputs, they may have different latent embeddings as the graph transformer processes nodes
and edges differently, as introduced in the next section. Notation-wise, in this paper, we call the node mask Hm attention
mask to distinguish from the sampling mask.
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Table 4. Detailed results on on QM9. The negative loglikelihoods (NLLs) of our methods are evaluated against the test set, and other
metrics are calculated with the generated samples with the corresponding methods.

Method NLL↓ Validity%↑ Uniqueness%↑ FCD↓
Uniform-ARM ≤ 24.56± 0.12 98.81± 0.09 99.08± 0.03 0.691± 0.018
LO-ARM-ent-st entropy shared torso ≤ 24.05± 0.29 99.04± 0.15 99.13± 0.17 0.645± 0.036
LO-ARM-ent-sep entropy separate ≤ 23.70± 0.11 98.93± 0.14 99.03± 0.15 0.444± 0.013
LO-ARM-st-st shared torso shared torso ≤ 22.23± 0.01 99.03± 0.08 98.49± 0.17 0.465± 0.027
LO-ARM-st-sep shared torso separate ≤ 21.22± 0.47 99.77± 0.08 98.71± 0.10 0.264± 0.031

Table 5. Molecule generation on ZINC250K. In particular, the NLLs of the LO-ARMs with the top-p sampling are omitted as the sampler
is only used in inference time and does not change the training-time metrics.

Method top-p NLL↓ Validity%↑ Uniqueness%↑ FCD↓
Uniform-ARM 1.0 ≤ 80.08± 0.44 31.40± 1.19 100.00± 0.00 6.587± 0.070
Biased-Uniform-ARM 1.0 ≤ 78.16± 0.27 33.68± 0.35 100.00± 0.00 5.075± 0.051
Biased-Uniform-ARM-topp 0.9 - 79.41± 1.03 100.00± 0.00 22.492± 0.227
LO-ARM-ent-st entropy shared torso 1.0 ≤ 77.92± 0.11 41.36± 0.42 100.00± 0.00 4.776± 0.090
LO-ARM-ent-sep entropy separate 1.0 ≤ 77.04± 0.22 41.50± 0.99 100.00± 0.00 4.770± 0.104
LO-ARM-st-st shared torso shared torso 1.0 ≤ 69.92± 0.67 90.58± 0.35 100.00± 0.00 4.122± 0.039
LO-ARM-st-st-topp shared torso shared torso 0.9 - 96.36± 0.45 100.00± 0.00 9.388± 0.100
LO-ARM-st-st-topp shared torso shared torso 0.75 - 97.44± 0.45 99.99± 0.02 16.416± 0.070
LO-ARM-st-sep shared torso separate 1.0 ≤ 68.91± 0.45 95.97± 0.27 99.99± 0.01 3.33± 0.130
LO-ARM-st-sep-topp shared torso separate 0.9 - 96.16± 0.48 100.00± 0.00 3.586± 0.118
LO-ARM-st-sep-topp shared torso separate 0.3 - 96.56± 0.13 100.00± 0.00 3.852± 0.035

E.2. Parameterizing Classifier, Posterior and Variational Order Policies

To ensure a fair comparison with the baselines, we employ the same graph transformer network which is used in (Vignac
et al., 2023; Eijkelboom et al., 2024). Just as done in DiGress and CatFlow, our graph transformer takes as a masked graph
Ḡ = (H̄n, H̄e,Hm) and predicts a distribution over the clean graphs, represented as Ĝ = (Ĥn, Ĥe). Again, the attention
mask Hm stays constant during whole computation. For our classifier, we implement the shared-torso parameterization for
the posterior order policy pθ(·|xz<i

) through augmenting the output layers of node and edge logits with one extra dimension
respectively, the output of which are used the logits of the posterior order policy, and each logit corresponds to the position
of a node or edge. Then during sampling, we obtain the logits of the posterior order policy through concatenating the extra
node logits and the flattened extra edge logits.

For the variational order-policy , its shared-torso parameterization is the same as the posterior order-policy . Moreover,
when implementing it with a separate neural network, we employ a smaller graph transformer with the same architecture.
This is because the variational order-policy also takes graphs as inputs, i.e., qθ(·|x = G), and we want to leverage the nice
equivariance properties (Vignac et al., 2023) brought by the graph transformer to improve sample efficiency. Moreover,
intuitively, in addition to homogeneous inputs, the architectural homogeneity would also help optimize the KL term between
the variational and posterior order policies. Finally, the output dimension the qθ network is only one for both node and edge
logits. Same as the pθ network, we obtain the output logits after flattening and concatenating them. Moreover, to enforce
symmetry of the adjacency matrix,

Note that, there may just be our design considerations specific to the task molecular graph generation. In principle, we pose
no constraints on designing the three components. There could be more efficient parameterization choices, and we will
explore as part of the follow-up work.

E.3. Enforcing Symmetry in Masking and Unmasking

Recall that during training 1, after sampling an latent ordering z = (z<i, z≥i), where z<i is a partial ordering, and z≥i

is the unordered set, and we need to mask the tokens at dimensions z≥i. To enforce symmetry of the adjacency matrix
Ĥe, for edges, we only process the dimensions in the order-policy corresponding to the upper half of Hm, with the lower
half being masked out according to the attention mask. After zeroing out z≥i, we flip the upper half to the lower half. We
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Table 6. Statistics of QM9 and ZINK250k datasets used in our molecule generation tasks.

Dataset Number of molecules Number of nodes Number of node types Number of edge types

QM9 133, 885 1 ≤ |V| ≤ 9 4 4
ZINC250k 249, 455 6 ≤ |V| ≤ 38 9 4

Figure 8. Illustration of the process of masking molecular graphs. A graph is represented as a node vector and an dense adjacency matrix
which is symmetric with respect to the diagonal. The upper row indicates the active dimensions (green blocks) in the order-policy , and
the lower row shows the corresponding masked graph. When an edge dimension is sampled (yellow block), to ensure symmetry, we mask
both the corresponding data dimensions (blue blocks) in the graph and its symmetric dimension. Note that sampling an ordering from the
order-policy is a sampling-without-replacement problem, and once a dimension is sampled in the order-policy , we mask it out with the
sampling mask (red blocks).

always perform this operation regardless whether an edge is sampled or not. Note that, except for the transformer outputting
nodes and edges separately, we provide no inductive bias about edge and node positions to the order-policy . We provide an
illustration of the masking process in Figure 8.

We apply similar process during sampling Algorithm 2 as shown in Figure 9. In particular, instead of starting with a fully
masked graph with a full adjacency matrix, we only consider the upper half of the adjacency matrix, and flipping the upper
half after one sampling step. In this way, we will always obtain a symmetric adjacency matrix regardless whether an edge is
unmasked.

E.4. Experimental Setup

We report the hyperparameters in Table 7. Moreover, the hidden dimensions for the classifier network are kept the same
as (Vignac et al., 2023) and all data is kept the same as in (Jo et al., 2022). All experiments were run until convergence.

F. Options of Model Parameterization and further details about REINFORCE LOO
We provide the details of different choices of parametrizing the distributions needed in Algorithm 1 and Algorithm 2.

As mentioned in the main paper, we assume that data are discrete and each dimension (token) xi takes m categorical values.
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Figure 9. Illustration of the generation process as unmasking for molecular graphs. Generating a new molecular graph reserves the
masking process. The only difference is that for the molecule graph, we start with the upper half of the adjacency matrix, and each time an
edge dimension is sampled with the order-policy , we unmask the corresponding data dimension in the adjacency matrix and its symmetric
dimension.

Table 7. Hyperparameter setup.

Hyperparameter QM9 ZINC250k

Optimizer AdamW AdamW
Scheduler Cosine Annealing Cosine Annealing
Learning Rate 1 · 10−5 1.5 · 10−5

Weight Decay 1 · 1012 1 · 1012
EMA 0.9999 0.9999

We represent each xi as an m+1-dimensional (rather than m-dimensional) one-hot vector where the final m+1-th value is
a special one since it indicates that the category of xi is currently masked or unspecified.

We assume a Neural Network (NN) that takes L inputs, i.e., L m+ 1-dimensional one-hot vectors of the discrete tokens,
and gives in the output L vectors of classifier logits, each corresponding to the m categorical values (excluding the m+ 1-th
masked value) for each token xi. More precisely, we denote the NN output logit vectors by

fθ,zi=k(x̄z<i
) ∈ Rm, k = 1, . . . , L,

so that each fθ,zi=k consists of the logits of the zi-th output classifier for zi = k. The NN takes as input a L × (m + 1)
matrix x̄z<i

which in all indices z<i contains the corresponding observed (or generated) data values xz<i
, that precede

token zi, and in the remaining indices z≥i is filled in with the mask token value, i.e., with the one-hot vector that has the
value 1 in the final m+ 1-th dimension. Another way to view this is that x̄z<i

is a modification of x that has all z<i tokens
of x unmasked and the remaining z≥i tokens of x masked. Then, based on these NN outputs the probability distribution
that specifies the value for xzi is a categorical distribution or classifier of the form

pθ(xzi |xz<i) = softmax(fθ,zi(x̄z<i)),

where the logits are passed through softmax to provide a probability vector. The other quantities needed to be specified are
the model order-policy factors pθ(zi = k|z<i,xz<i) and the corresponding variational posterior-order distribution factor
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qθ(zi = k|z<i,x). As mentioned in the main text, the difference between these two distributions is that the first can exploit
information only from the previous specified dimensions xz<i , while the second can condition on the full x. We specify
these distributions as described below.

F.1. Form of Order-Policy Distribution

We explore two choices for parametrizing each order-policy factor pθ(zi|z<i,xz<i
). In the first option we re-use the NN

classifiers pθ(xzi |xz<i
), as defined above, and we form pθ(zi = k|z<i,xz<i

) using entropy-based uncertainties. In the
second option we model pθ(zi|z<i,xz<i) by adding an extra final linear layer to the NN feature representation. This latter
approach requires no modification or extension of the NN architecture. We detail both cases below.

Entropy-based parametrization. In the first option we incorporate some inductive bias towards more confident or less
confident tokens under the model. More precisely, we use entropy-based uncertainty logits so that each factor is written as

pθ(zi = k|z<i,xz<i) =
e−βH(pθ(xk|xz<i

))∑
k′∈z≥i

e−βH(pθ(xk′ |xz<i
))

=
e
−βH(softmax(fθ,k(x̄z<i,z≥i

)))∑
k′∈z≥i

e
−βH(softmax(fθ,k′ (x̄z<i,z≥i

)))

whereH is the entropy of a distribution and β ∈ R is a scalar parameter. For β = 0 this becomes the uniform distribution
over the L − i + 1 values in z≥i. For β > 0 the distribution favors the selection of zi values for which the model data
conditionals pθ(xzi |xz<i

) are more certain about the actual categorical value xzi should assign, while similarly for β < 0
the preference is reversed towards more uncertain tokens. β is treated as an additional model parameter that is optimized
jointly with θ using the variational inference method described in Section 3.2.

Shared-torso parametrization. For second option of the order-policy, referred to as shared-torso, we add an extra final
linear layer to the NN with L scalars hθ,k(·) ∈ R, k = 1, . . . , L. Then, each order-policy factor is obtained by

pθ(zi = k|z<i,xz<i
) =

ehθ,k(x̄z<i
)∑

k′∈z≥i
ehθ,k′ (x̄z<i

)
,

where the extra model parameters needed to define these L scalar outputs are optimized jointly with the remaining parameters
of the NN architecture.

F.2. Variational Distribution

As explained in the main text, we model each variational factor qθ(zi = k|z<i,xz<i) as

qθ(zi = k|z<i,x) =
egθ,k(x)∑

k′∈z≥i
egθ,k′ (x)

(15)

so that we only need to parametrize the vector function

gθ(x) ∈ RL.

The first option we consider is adding an extra final layer with L outputs as another head to the main neural architecture
(this is the shared-torso option). In the second option, and somehow more flexible, we construct a separate NN where in the
final layer it outputs L real values to model the vector gθ(x).

Computing and sampling from the variational distribution is very fast since it requires a single forward pass with input x
from the NN (either the shared architecture or the separate network) to obtain and store the vector of logits gθ(x). Then
sampling a full path z can be done at once in parallel using the Gumbel-top-k trick (Kool et al., 2019b). Note that sampling
two paths z1

<i, z
2
<i, from the variational distribution is needed in order to compute the objective in Equation (16); see next.

19



Learning-Order Autoregressive Models

F.3. Objective to use with Automatic Differentiation

As discussed in the main text, training is done using an unbiased REINFORCE leave-one-out (RLOO) gradient computed
separately for each data point in the minibatch (then all these gradients are averaged over the minibatch). For a single data
point this unbiased gradient is given by Equation (11) in Section 3.2.

For implementation convenience there is a way to obtain the unbiased gradient by programming a certain objective function
and then apply automatic differentiation to it. Specifically, what is required is to implement the following objective (to be
maximized):

L

2

{(
log qθ(z

1
<i|x)− log qθ(z

2
<i|x)

)
stopgrad[∆F ] + Fθ(z

1
<i,x) + Fθ(z

2
<i,x)

}
, (16)

where stopgrad[∆F ] stops the gradient computation in the ∆F . However, note that this objective is just a trick to easily
obtain the gradient, while the actual objective that we maximize is the ELBO. This means that monitoring convergence is
done by computing the following stochastic ELBO (per data point):

L(θ) = L

2

(
Fθ(z

1
<i,x) + Fθ(z

2
<i,x)

)
, (17)

which is just the two-sample version of the one-sample stochastic ELBO from Equation (9). Given a training minibatch
these stochastic ELBOs are further averaged over the minibatch.
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