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Abstract

Classical methods in Digital Communication rely on mixing transmitted signals
with carrier frequencies to eliminate signal distortion through noisy channels.
Drawing inspiration from these techniques, we present an adapter network that en-
ables CLIPSeg, a text-conditioned semantic segmentation model, to communicate
point prompts to the Segment Anything Model (SAM) in the positional embedding
space. We showcase our technique on the complex task of Deformable Linear
Object (DLO) Instance Segmentation. Our method combines the strong zero-shot
generalization capability of SAM and user-friendliness of CLIPSeg to exceed the
SOTA performance in DLO Instance Segmentation in terms of DICE Score, while
training only 0.7% of the model parameters.

1 Introduction

Deformable Linear Objects (DLOs), encompassing cables, wires, ropes, and elastic tubes, are
commonly found in domestic and industrial settings Keipour et al. (2022); Sanchez et al. (2018).
Despite their widespread presence in these environments, DLOs present significant challenges to
automated robotic systems, especially in perception and manipulation, as discussed by Cop et al.
(2021). In terms of perception, the difficulty arises from the absence of distinct shapes, colors,
textures, and prominent features, which are essential factors for precise object recognition.

Over the past few years, there has been a notable emergence of approaches customized for DLOs.
State-Of-The-Art (SOTA) instance segmentation methods such as mBEST Choi et al. (2023) and
RT-DLO Caporali et al. (2023) use unique approaches influenced by bending energy or by classic
concepts from graph topology, to segment these challenging objects accurately. However, none of
these methods excel in handling real and complex scenarios, nor do they incorporate prompt-based
control functionality for segmentation, such as text prompts, which enhance user accessibility.

In the domain of purely computer vision-based approaches, the Segment Anything Model (SAM;
Kirillov et al. (2023)) is one of the most notable segmentation models in recent years. As a foundation
model, it showcases remarkable generalization capabilities across various downstream segmentation
tasks, using smart prompt engineering Bomasani and Others (2021). However, SAM’s utility is
limited to manual, counter-intuitive prompts in the form of points, masks, or bounding boxes, with
basic, proof-of-concept text prompting. On the other hand, in the domain of deep vision-language
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fusion, CLIPSeg Lüddecke and Ecker (2021) presents a text-promptable semantic segmentation
model. However, this model does not extend its capabilities to instance segmentation.

To address these challenges, we present a novel adapter model that harnesses the strengths of these
Foundation Models (FMs), as illustrated in Fig. 1. In this adapter we introduce a novel sampler
attention layer, that samples point prompt embeddings from the same 2D frequency space that SAM
is trained to process, conditioned on text-dependent attention heatmaps generated by CLIPSeg.

Figure 1: Overview of the full pipeline - blocks in red represent our additions

With our approach, users can achieve precise one-shot instance segmentation of DLOs by merely
supplying an image and a text prompt. The main contributions of our work can be summarized as
follows:

1. A novel prompt encoding network that translates semantic information from text prompts
into point prompt embeddings that SAM can interpret.

2. The implementation of a classifier network designed to eliminate redundant and low-quality
masks produced by SAM, ensuring the reliability of the segmentation output.

3. The creation of a comprehensive, CAD-generated dataset tailored to DLOs, featuring
approximately 30,000 high-resolution images of industrial cables. This dataset is a valuable
resource for training and validating our model.

Our model achieves an mIoU = 91.21% on our custom dataset, significantly outperforming RT-
DLO’s mIoU = 50.13%. Additionally, our model demonstrates exceptional zero-shot transfer
capabilities to datasets used in RT-DLO Caporali et al. (2023) and mBEST Choi et al. (2023),
exceeding the SOTA DICE score in DLO instance segmentation.

2 Related Work

2.1 DLOs Instance Segmentation and Manipulation

Several joint DLO segmentation and manipulation algorithms such as Viswanath et al. (2023), Chi and
Berenson (2019), Chi et al. (2022), Grannen et al. (2020) and Nair et al. (2017) perform manipulation
and segmentation simultaneously and on real robot systems. These novel techniques however do
not report comparable baselines scores such as mIoU or DICE score for independent comparison of
segmentation baselines.

DLO detection algorithms employ various methodologies to address specific challenges. Zanella et al.
(2021) introduced the first CNN-based approach for DLO semantic segmentation. Yan et al. (2019)
and Keipour et al. (2022) pioneered data-driven techniques for DLO instance segmentation, using
neural networks to reconstruct DLO topology and fitting curvatures and distances for continuous
DLOs, respectively. These methods were limited to single DLO detection.

Ariadne De Gregorio et al. (2018) and Ariadne+ Caporali et al. (2022) segment DLOs into superpixels
Achanta et al., then use path traversal to generate instance masks. Ariadne+ uses DeepLabV3+
Chen et al. (2018) to extract a semantic mask before superpixel processing, overcoming Ariadne’s
limitations. Both methods struggle with numerous hyperparameters. FASTDLO Caporali et al. (2022)
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and RT-DLO Caporali et al. (2023) use skeletonization of semantic masks instead of superpixels,
enhancing speed. FASTDLO processes the skeletonized mask with path traversal and a neural network
for intersections, while RT-DLO uses graph node sampling from DLO centerlines, followed by
topological reasoning for edge selection and path determination. Despite near-real-time performance,
they are sensitive to noise from centerline sampling and require scene-dependent hyperparameter
tuning. mBEST Choi et al. (2023) fits a spline to minimize bending energy during skeleton traversal,
showing impressive results but limited to fewer than two intersections between DLOs and relies on a
manually tuned threshold.

All these approaches, including SOTA baselines RT-DLO Caporali et al. (2023) and mBEST Choi
et al. (2023), are sensitive to occlusions and cables near image edges, common in industrial settings.
They also struggle with dataset transfer and specific operating conditions. Our approach addresses
these issues using a diverse dataset and the generalization power of foundation models. To our
knowledge, this is the first end-to-end, computer vision-based method combining DLO instance
segmentation with text prompts for a user-friendly solution.

2.2 Text-conditioned Instance Segmentation

SAM Kirillov et al. (2023) is a powerful foundation model with remarkable performance on various
downstream tasks, available in three variants (ViT-B, ViT-L, ViT-H) with increasing size and per-
formance. SAM excels in segmenting DLOs, leveraging points, boxes, or masks for segmentation
prompts. It outperforms other promptable segmentation models Chen et al.; Ding et al.; Liu et al.
(2022a,b) in generalizability and quality. However, SAM’s text-based prompting still requires manual
point prompts for high-quality segmentation. Box prompts are ineffective for one-shot instance
segmentation as they can encompass multiple DLOs, and single-point prompts struggle in complex
scenarios, making manual input inefficient for industrial automation (Fig. 2).

Methods like Grounded-SAM Ren et al. (2024) and open-source repositories like Panoptic Segment
Anything Segments AI (2023) use frozen VLMs such as GroundingDINO Liu et al. (2023) for
prompting SAM, relying heavily on bounding boxes, which are unsuitable for DLO segmentation.

CLIPSeg Lüddecke and Ecker (2021) is a text-guided semantic segmentation model with an embed-
ding space representing spatial attention heatmaps from text prompts. We utilize SAM’s segmentation
and point prompt capabilities, introducing an alternate prompt encoder that converts text prompts into
point-prompt embeddings. Our model performs instance segmentation in one forward pass without
sequential mask refinement and includes a network to filter out duplicate and low-quality masks.

(a) An example of unsuc-
cessful segmentation with a
single point.

(b) An example of success-
ful segmentation with a sin-
gle point

(c) An example of box
prompt for DLO segmenta-
tion.

Figure 2: Issues with using SAM out-of-the-box

2.3 Adapters

Adapters are methods that incorporate additional trainable parameters into a frozen pretrained model,
enhancing its ability to learn and perform downstream tasks. They are part of the (Parameter-Efficient
Fine-Tuning) PEFT family Xu et al. (2023); Yu et al. (2023) and can interact with FMs as trainable
blocks inserted into the FM architecture Houlsby et al. (2019); Lin et al. (2020) or come as an
additional component to an FM Pfeiffer et al. (2021). This approach was initially introduced in the
Natural Language Processing (NLP) domain Houlsby et al. (2019) as a way to facilitate Parameter-

3



Efficient Transfer Learning (PETL)Yu et al. (2023). Due to its exceptional efficacy, this technique
has also found successful application in the field of computer vision (CV) Xin et al. (2024).

2.4 Positional Encoding

SAM uses positional encodings that are derived from Fourier features, inspired by Tancik et al. (2020),
to encode the point prompts. These Fourier features are calculated based on a randomly initialized
frequency matrix. This can be viewed as transmitting 2D point vectors in the 2D Fourier domain,
where each element of the embedding vector denotes the amplitude of a particular frequency from
this frequency matrix. This allows us to apply classical techniques from Digital Communication such
as carrier frequency synchronization Ling (2017), to communicate point prompts using the same
carrier frequencies. In this method we enforce this carrier synchronization by embedding our point
prompts using the same frequency matrix used by SAM.

2.5 Latent Space Communication

Recently, there has been growing agreement that good networks learn similar representations across a
variety of architectures, tasks and domains Morcos et al. (2018); Barannikov et al. (2022). In authors
Lenc and Vedaldi (2015), introduce trainable stitching layers that allow swapping parts of different
networks. This line of research induced a new field of research called Latent Space Communication
(LSC), a term coined by Moschella et al. (2023), where the authors studied how relative latent
representations can be transferred across model architectures, tasks, datasets and modalities, to
allow zero-shot model stitching. Other works such as Lähner and Moeller (2024) prove that linear
transformations can be used to perform LSC without access to prior knowledge. Cannistraci et al.
(2023) propose a versatile method to infuse latent space invariance without prior knowledge about its
optimality. Our method draws inspiration from these prior works to perform LSC, using a trainable
adapter network to perform model stitching. We assume that we have access to a small amount of
prior knowledge, such as the frequency matrix of SAM’s positional encoding.

3 Methods

In this section, we describe the core method behind our approach.

3.1 The Model Components

The adapter model we propose consists of 2 main networks (as depicted in Fig. 1):

1. Prompt encoder network - This network samples batches of point prompt embeddings
in the same frequency space that SAM is trained to process, using CLIPSeg’s embedding
space. It can be controlled using 2 hyperparameters: N (the number of prompt batches) and
Np (the number of points in each batch).

2. Classifier network - A binary classifier network that labels whether a particular mask from
the generated N masks should appear in the final instance segmentation.

Based on the discussion of adapters in Sec. 2.3, we freeze both FMs, to achieve high performance at
a lower computational cost.

Figure 3: The Adapter: top - the prompt encoder network is outlined (indicated by the green box);
bottom - the classifier network architecture is detailed (represented by the yellow box).
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3.1.1 Prompt encoder network

We propose the prompt encoder network as the trainable module to bridge the gap between a frozen
CLIPSeg and frozen SAM. It extracts a fixed number of point prompt embedding vectors from
CLIPSeg’s embedding space that SAM’s mask decoder can accurately decipher. As outlined in Fig. 3,
the prompt encoder network takes as an input the upsampled attention embedding obtained from
CLIPSeg, that embeds a semantic mask that spatially aligns with the input image and is conditioned
on text. This embedding is enhanced with Dense Positional Encoding (DPE) to ensure that the
self-attention layer can access crucial geometric information. To generate our DPE, we use an
identical frequency matrix as the SAM. This ensures that every component within each DPE vector
conveys consistent information aligned with what SAM’s decoder has been trained to interpret. These
enhanced patch embeddings undergo a single self attention operation to learn inter-patch correlations.

The following MLP filters out viable query patches N × Np. These queries are used to score the
space of the DPE, in the sampler attention. The output of this block is N ×Np point embeddings
that SAM’s decoder is trained to process. A single linear layer is applied to this output to categorize
each chosen point as foreground/background/no-point. This layer aims to mimic the SAM labeling
protocol, which employs a standard affine transformation, where a learned embedding is added to
each point embedding corresponding to its category. Finally, this output is reshaped to the size
(N,Np, 256) as a batch of N prompts, each containing Np points, where 256 is the embedding
dimension for point prompts, in SAM.

Following the original implementation of transformers Vaswani et al. (2023), queries are reintroduced
to the attention outputs and layer normalization Ba et al. (2016) is applied after each attention layer.
Additionally, DPE is added to each attention output to ensure that crucial spatial information of the
image is propagated throughout the network.

It is important to note that our DPE, like SAM, takes inspiration from Fourier features Tancik et al.
(2020) alongside classical techniques from digital communication Ling (2017), using the same
frequency matrix as SAM instead of a randomly generated one. All the attention blocks shown in the
diagram are single layers of attention.

3.1.2 Mask classification network

In previous works, such as DETR Carion et al. (2020) and MaskFormer Cheng et al. (2021), the
authors train a classifier network along with the box regression model to classify which object is
contained within the box. In later works such as Deformable DETR Zhu et al. (2020) and DETR3D
Wang et al. (2021), the authors show the advantages of using anchor point-based queries rather than
randomly initialized ones. We compare the impact of randomly initialized object queries and anchor
point-based object queries in Appendix C. All of these works introduced an additional no-object class
to filter out duplicate or erroneous boxes/masks during prediction. Inspired by them, we developed a
binary classifier network for this purpose.

This binary classifier model comprises a projection MLP, one cross-attention block, one self-attention
block, and a classifier MLP, as illustrated in Fig. 3. A detailed motivation for the network architecture
is discussed in Appendix C.

First, the sampled point embeddings (from our prompt encoder) are transformed using an MLP.
Second, a cross-attention block operates on these transformed embeddings generated by our model,
which encodes text-conditioned information, and on the mask tokens produced by SAM, which
encapsulate submask-related details. This interaction results in an embedding that fuses both types of
information for each generated submask. Subsequently, the queries are combined with the output
to reintroduce textual information to these classifier tokens. These classifier tokens then undergo a
self-attention layer followed by the MLP to produce binary classifications.

3.2 Training protocol

The full architectural framework of our model, illustrated in Fig. 1, accepts a single RGB image and
a text prompt as input, delivering an instance segmentation mask for each DLO in the image. In our
setup, we keep a constant text-prompt "cables" for the whole training session. Inspired by the work of
Cheng et al. (2021), we employ a bipartite matching algorithm Kuhn (1955) to establish the optimal
correspondence between the generated masks and ground-truth submasks to train the prompt encoder.
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We use a combination of the focal loss Lin et al. (2017) and the DICE loss Milletari et al. (2016) in
the ratio of 20 : 1, as recommended by Kirillov et al. (2023).

The binary classification labels are extracted from the output of the bipartite matching algorithm.
If a mask successfully matches, then it is labeled as 1; else, it is labeled as 0. We use the binary
cross-entropy loss to train this network. To balance the distribution of 0s and 1s in the dataset, we
introduce a weight for positive labels that we set to 3.

The most time-intensive step within the SAM workflow involves generating the image embedding.
However, once this image embedding is created, it can be used repeatedly to produce multiple
submasks as needed. This approach significantly speeds up the process and can be executed in a
single step. To enhance training efficiency using this method, we set the training batch size to just 1.
This configuration enables us to form batches of prompts, with each DLO in the scene associated
with an individual prompt. We place a cap of N = 11 prompts for each image and limit the number
of points within each prompt to Np = 3. Specific details about the training process can be found in
Appendix A.

4 Experiments

4.1 The cables dataset

The dataset used for training, testing and validation was generated using Blender2, a 3D rendering
software. It comprises images showing various cables of various thicknesses, shapes, sizes, and
colors within an industrial context, exemplified in Figure 10. The dataset consists of 22k training
images, along with 3k images, each designated for validation and testing. Each image has a resolution
of 1920x1080, and each DLO within an image is accompanied by a separate mask, referred to as
a submask in this work. This pioneering DLO-specific dataset encompasses an extensive range of
unique scenarios and cable variations. We anticipate that granting access to this comprehensive dataset
will significantly advance numerous applications in the field of DLO perception within industrial
environments. For more details and sample images from the dataset, refer to the Appendix B. This
dataset is available on Zenodo3, with the title "DLO Instance Segmentation dataset generated by
Blender" (Joglekar et al. (2023)).

4.2 Baseline experiments

While designing the model and configuring the best hyperparameters, we conducted multiple experi-
ments. The initial experiment involved selecting the number of points per prompt, denoted as Np.
In the SAM framework, each point can be labeled as either foreground or background. The SAM
paper Kirillov et al. (2023) explored various values for Np and documented the resulting increase in
Intersection over Union (IoU), observing diminishing returns after 3 points. For one-shot applications,
we reevaluated this parameter using Np = 2, 3, 4 and concluded that Np = 3 is optimal, adopting
this value for subsequent experiments.

The second experiment focused on SAM’s capacity to generate three masks per prompt to handle
ambiguous prompts. We compared this multi-mask output with the single-mask output in terms of
mean IoU (mIoU). Our findings indicated that multi-mask output led to only minor improvements
but significantly higher memory utilization. Consequently, we disabled the multi-mask functionality
for all subsequent experiments involving SAM.

4.3 Quantitative experiments

In these experiments, our primary objective is to compare our model’s DLO instance segmentation
results with SOTA baselines and assess the model’s limitations using the Oracle method Kirillov
et al. (2023). This method involves removing the classifier network during testing and using bipartite
matching to filter out duplicate and low-quality masks, allowing independent evaluation of our
prompt encoder and classifier networks. During Oracle tests, our model has access to ground-truth
annotations.

2https://www.blender.org/
3Zenodo
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We test the overall quality of generated instance masks, zero-shot generalization capabilities, and
the effect of image augmentation on generalization. In Tab. 2, demonstrating our models’ zero-shot
transfer capabilities to the testing datasets discussed in mBEST Choi et al. (2023).

5 Results

5.1 Quantitative results

We summarize the comparison of the results of different configurations of our model in our test
dataset in Tab. 1. As a reference, we tested the RT-DLO algorithm Caporali et al. (2023) on our test
dataset. It achieved mIoU = 50.13%. Oracle tests show the upper bound of the performance that
our method can achieve. These limitations are discussed in depth in the appendix D.

Test data performance
Model Configuration mIoU [%] DICE [%] Augmentation Oracle

A (Aug only) 90.64 99.78 Y N

A+O (Aug+Oracle) 92.10 99.80 Y Y

B+O (Base+Oracle) 92.51 99.82 N Y

B (Base) 91.21 99.77 N N
Table 1: Comparison of our model configurations (values in bold signify the best performance).

Table 2 shows the DICE scores of our model compared to current SOTA baselines: Ariadne+ Caporali
et al. (2022), FASTDLO Caporali et al. (2022), RT-DLO Caporali et al. (2023) and mBEST Choi
et al. (2023). The datasets C1, C2, C3 are published by Caporali et al. (2023), while the datasets S1,
S2, S3 are published by Choi et al. (2023).

In the no Oracle setting, we observe that the model generalizes better if it is trained using augmenta-
tions in the dataset, as expected. Our model exhibits strong zero-shot generalization to all the datasets.
Specifically for C1, C2, and C3, our model exceeds SOTA performance even in the base configuration.
Furthermore, in the case of Oracle configuration, we see that our proposed method outperforms all
SOTA baselines on all datasets, showing that the mask classifier network is a bottleneck in our full
model.

DICE[%]

Our Model
Dataset Ariadne+ FASTDLO RT-DLO mBEST A A+O B+O B

C1 88.30 89.82 90.31 91.08 97.03 98.85 98.86 94.55
C2 91.03 91.45 91.10 92.17 96.91 98.69 98.70 96.12
C3 86.13 86.55 87.27 89.69 97.13 98.81 98.90 90.26
S1 97.24 87.91 96.72 98.21 97.36 98.43 98.60 93.08
S2 96.81 88.92 94.91 97.10 97.71 98.54 98.42 97.01
S3 96.28 90.24 94.12 96.98 96.69 98.79 98.58 95.83

Table 2: DICE score comparison for out-of-dataset, zero-shot transfer. Values in bold signify the best
performance

To assess generalizability across various text prompts, we tested our model on prompts like "wires"
and "cords," in addition to our training prompt, "cables," which specifically refers to DLOs. Table 3
showcases the performance of these prompts when assessed on the same model using Oracle.
Remarkably, our model demonstrates the ability to effectively generalize across different prompts
zero-shot, producing results comparable to the base prompt, "cables."

5.2 Qualitative results

This section presents the actual instance masks generated by our model. We used the configuration
trained on augmentations (A) to generate all these results (without Oracle).
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Text Prompt mIoU [%] DICE [%]

cables (baseline) 92.51 99.82

wires 89.6 99.77

cords 89.3 99.64
Table 3: Generalizability across text prompts: Demonstrates results comparable to the base prompt
"cables" through zero-shot transfer.

Fig. 4 presents the instance masks generated by our model in various complex scenarios, along with
the results of RT-DLO on the same image set for comparison. These scenarios encompass occlusions,
DLOs with identical colors, varying thicknesses, small DLOs in the corners, a high density of cables
in a single image, and real-world scenarios. Our model shows impressive performance across all of
these scenarios.

Figure 4: Qualitative comparison in specific scenarios. Each scenario demonstrates the following: (a)
and (b) real images, (c) identical colors, (d) a high density of cables in a single image, and (e) and (f)
small DLOs at the edge of the image with varying thicknesses.

In Fig. 5, we compare the generation of instance masks between our model and the current SOTA
baselines on an external dataset. Our model demonstrates remarkable zero-shot transfer capabilities
when applied to data distributions different from training data.

Figure 5: A qualitative comparison of our model vs. the SOTA baselines

Finally, we test our model on real images taken in our lab using a smartphone camera. The final
output masks are shown in Fig. 6. We see that our model generalizes to real-world, complex scenarios
of zero-shot. However, because of an imperfect classifier, it misses some submasks in certain complex
situations. We report more generated instance masks in Appendix E.
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Figure 6: Qualitative results on real-world, complex scenarios zero-shot

6 Limitations

Our approach merges the capabilities of two significant foundational models (FMs): SAM and
CLIPSeg, which are built on computationally heavy architectures of ViT-LDosovitskiy et al. (2020)
and CLIPRadford et al. (2021), respectively. This integration leads to a computational time of
approximately 330[ms] on a single NVIDIA 2080Ti GPU. Furthermore, challenges remain in
segmenting cables with multiple self-loops, particularly in the S2 and S3 datasets, where our current
setup does not utilize Oracle. We hypothesize that this can be attributed to the lack of similar
images in our training dataset. However, this issue can potentially be mitigated through a few-shot
fine-tuning on these specific datasets. Other limitations associated with the FMs used are discussed
in Appendix D.

7 Conclusions and future work

In this paper, we introduce a lightweight adapter model to enhance the robust segmentation capabilities
of SAM by leveraging the text-conditioned semantic segmentation of CLIPSeg. This method
performs embedding space alignment by drawing inspiration from classical techniques in digital
communication. We also present an innovative method for automatically filtering out duplicate and
low-quality instance masks produced by SAM, addressing its primary limitations. These advances
provide a more accessible approach for users to perform one-shot instance segmentation tasks with
simple prompts.

Future work will extend our adapter model to one-shot instance segmentation of conventional rigid
objects. Currently, our model’s performance is limited by our classifier network. Enhancing the
classifier network is a critical avenue for ongoing research to fully unlock the model’s potential for
broader segmentation tasks.

Our adapter significantly improves SAM’s performance on the challenging task of DLO instance
segmentation, achieving SOTA DICE scores (Sec. 5.1) with zero-shot transfer capabilities. Addition-
ally, we contribute a comprehensive dataset, detailed in Sec. 4.1, to foster further research within this
domain.
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A Training details

In our method, we chose the ViT-L/16-based model of SAM (Kirillov et al., 2023) to attempt to
balance the speed-accuracy trade-off. We observed that this model gave high-quality segmentation
masks while being ∼ 2× smaller compared to ViT-H/16 in terms of the number of parameters. On
the other hand, for the CLIPSeg (Lüddecke and Ecker, 2021) model, we used the ViT-B/16 based
model, with reduce_dim = 64. Throughout our training process, we freeze the weights and biases
of both foundational models, SAM and CLIPSeg.

Throughout the training phase, our text prompt remains "cables," with the aim of obtaining instance
segmentation for all the cables within the image. During training, we conduct augmentations applied
to the input images. These augmentations encompass random grayscale conversion, color jitter, and
patch-based and global Gaussian blurring and noise. In terms of computing, our model is trained
using 2 NVIDIA A5000 GPUs, each equipped with 32 GB of memory. All testing is carried out on a
single NVIDIA RTX 2080 GPU with 16 GB of memory.

Our training procedure employs a learning rate warm-up spanning 5 epochs, followed by a cosine
decay. The peak learning rate is set to lr = 0.0008, in line with recommendations from Kirillov et al.
(2023). We employ the default AdamW optimizer from Paszke et al. (2019) with a weight decay of
0.01. The convergence graphs and learning rate profile of all the models can be seen in Figure 7.
Figure 8 displays the binary classification accuracy and mIoU computed on the validation dataset
during training. No smoothing was applied in creating the plots.

In the training process, we apply augmentations such as blurring, color jitter and random grayscale,
to enhance generalizability across various DLO colors.

(a) Learning rate profile (b) Convergence graphs

Figure 7: Learning rate profile and convergence graphs

(a) mIoU[%] (b) Binary classifier accuracy[%]

Figure 8: Binary classification accuracy and mIoU

A brief summary of all the hyperparameters can be seen the Table 4
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Hyperparameter Value

Number of epochs 50
Max learning rate 8× 10−4

Learning rate warmup 5 (epochs)
Optimizer AdamW

Optimizer weight decay 0.01
Batch size 1

Attention dropout 0.5

Number of prompts per batch (N ) 11
Number of points per prompt (Np) 3

Number of attention heads (for all models) 8
Embedding dimension 256

SAM model type ViT-L/16 (frozen)
CLIPSeg model type ViT-B/16 (frozen)

Focal loss weight 20
DICE loss weight 1

Positive label weight (binary cross-entropy) 3
Classifier MLP activation ReLU

Prompt encoder MLP activation GELU

Train dataset size 20038
Validation dataset size 3220

Test dataset size 3233
Image size (1920× 1080)

Total number of parameters (including foundation models) 466M
Trainable parameters 3.3M

Table 4: Hyperparameters

B Generated dataset

The dataset we presented contains 20038 train images, 3220 validation images, and 3233 test images.
Each image we provide is accompanied by its corresponding semantic mask and binary submasks
for each DLO in the image. The images are located in {train,test,val}/RGB, and named as
train/RGB/00000_0001.png, train/RGB/00001_0001.png, and so on. In the {train, test,
val}/Masks folder, we have a sub-folder containing the binary submasks for each correspond-
ing RGB image. For example, train/Masks/00000 contains all the submasks corresponding to
train/RGB/00000_0001.png. Additionally, the semantic mask for train/RGB/00000_0001.png
is called train/Masks/00000_mask.png. The folder structure can be seen in Figure 9.

Each image and its corresponding masks are 1920× 1080 in resolution. The number of cables, their
thickness, color, and bending profile are randomly generated for each image. There are 4 possible
colors for the cables - cyan, white, yellow, black. The number of cables in each image is randomly
sampled from 1 to 10. A sample image from the dataset, along with its corresponding submasks and
semantic mask, are portrayed in Figure 10.

C Ablation study

The structure of our system is defined by two principal components: the prompt encoder network and
the classifier network, each distinguished by their unique functions and designs. The prompt encoder
network incorporates a self-attention layer, a sampler attention (cross-attention) layer, a filtering
multi-layer perceptron (MLP), and a linear layer for prompt labeling, all critical to its functionality
and in their minimal form.

In contrast, the classifier network’s architecture is more complex and requires detailed exploration
through ablation studies. Our modular approach allows for the independent evaluation of both
the classifier and prompt encoder networks. We experimented with multiple configurations of the
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Figure 9: Dataset directory tree

Figure 10: Dataset Example

classifier network to determine the best setup based on classification accuracy on a test dataset. This
section will outline the various configurations tested for the classifier network and the resulting
labeling accuracies, with a detailed summary provided in Tab. 5.

The classifier network is tasked with processing two particular kinds of information: duplication of
instance masks and detecting incorrect or low-quality instance masks. These instance masks must
undergo a self-attention operation to extract relative information before classification. Initially, we
attempted to route these mask tokens through a self-attention layer followed by an MLP classifier.
This approach, however, did not converge, as indicated in A1 in Tab. 5.

Inspired by DETR Carion et al. (2020) and further developed in implementations such as MaskFormer
Cheng et al. (2021), we examined the application of learnable token embeddings for classification.
Adopting DETR’s framework, we initialized N trainable classifier tokens. We passed them through
a self-attention layer, a cross-attention layer for merging with the mask tokens, and an MLP for
classification, achieving a binary classification accuracy of 76.37%, documented in A2 in Tab. 5. A
slight modification in this setup, specifically the reordering of the self and cross-attention layers,
resulted in an improved accuracy of 81.18%, as documented in A3 in Tab. 5.

Deformable-DETR Zhu et al. (2020) introduced the concept of utilizing localized object queries
instead of randomly initialized ones. In A4, we substituted the randomly initialized tokens with
point prompt embedding directly selected by the prompt encoder without applying any intermediate
transformations, leading to an accuracy of 80.26%. Furthermore, by applying an MLP transformation
to these queries before their integration into the cross-attention layer, as demonstrated in A5, we
achieved our highest accuracy of 84.83%. Consequently, A5 was selected for all further experiments,
showcasing its effectiveness in classification accuracy.
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Config Queries Attention Order Binary Accuracy[%]

A1 Mask Tokens Only SA NA(diverged)
A2 Trainable Tokens SA-CA 76.37
A3 Trainable Tokens CA-SA 81.18
A4 Point Prompt Tokens CA-SA 80.26
A5 Point Prompt Tokens (MLP) CA-SA 84.83

Table 5: Ablations of the classifier network (values in bold signify best performance). SA and CA
stand for self-attention and cross-attention respectively. The Keys and Values in the CA are always
the mask tokens

D Limitations of Foundation Models

The original SAM framework offered three variants based on ViT-B, ViT-L, and ViT-H. We opted the
ViT-L model to achieve a balance between computational speed and model performance. Nevertheless,
incorporating the ViT-H variant could further enhance our model’s performance.

CLIPSeg, designed to effectively manage point prompt embedding, sometimes fails to generate precise
heatmap embeddings for specific text prompts, as evidenced in Fig. 11. This issue occasionally
impacts the model’s performance and its ability to generalize across different scenarios. Looking
ahead, we intend to explore the inherent limitations of the backbone models on our setup.

In addition, in the absence of ground truth masks, our model’s performance is contingent on the
accuracy of the classifier network. In Appendix C, we note that the classifier network currently
achieves a peak binary accuracy of 84.83%. Future iterations of our model or similar research
endeavors will need to focus on enhancing the classifier network to improve the overall model
performance..

Figure 11: CLIPSeg generated heatmaps when using the prompt "cables." Example (a) shows
unsuccessful detection of the white cable by CLIPSeg. Example (b) demonstrates a successful
detection of all the cables in the frame.

E More qualitative results

Figures 12 and 13 show more instance segmentation masks generated by ISCUTE, on datasets from
RT-DLO and mBEST as well as on our generated test dataset, respectively. All the images are
examples of masks generated without oracle.
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Figure 12: Qualitative results on RT-DLO and mBEST images

Figure 13: Qualitative results on our test images
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