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Abstract

Multimodal molecular models often suffer from 3D conformer unreliability and
modality collapse, limiting their robustness and generalization. We propose MuMo,
a structured multimodal fusion framework that addresses these challenges in
molecular representation through two key strategies. To reduce the instability
of conformer-dependent fusion, we design a Structured Fusion Pipeline (SFP) that
combines 2D topology and 3D geometry into a unified and stable structural prior.
To mitigate modality collapse caused by naive fusion, we introduce a Progressive
Injection (PI) mechanism that asymmetrically integrates this prior into the sequence
stream, preserving modality-specific modeling while enabling cross-modal enrich-
ment. Built on a state space backbone, MuMo supports long-range dependency
modeling and robust information propagation. Across 29 benchmark tasks from
Therapeutics Data Commons (TDC) and MoleculeNet, MuMo achieves an average
improvement of 2.7% over the best-performing baseline on each task, ranking first
on 22 of them, including a 27% improvement on the LD50 task. These results vali-
date its robustness to 3D conformer noise and the effectiveness of multimodal fusion
in molecular representation. The code is available at: github.com/selmiss/MuMo.

1 Introduction

Molecular property prediction is fundamental to computational chemistry and drug discovery, offering
a cost-effective alternative to experimental screening. According to the Tufts Center for the Study
of Drug Development, developing a new drug costs over $2.6 billion on average, with much of this
attributed to early-stage trial inefficiencies [Chatterjee, 2015].

Accurate silico prediction substantially reduces time and cost by early elimination of suboptimal
candidates [Graff et al., 2021]. To improve prediction, recent advances in molecular representation
learning have explored large-scale pretraining or multimodal architectures, typically combining
SMILES [Weininger, 1988], 2D graphs, and 3D geometries. Sequence-based models [Fabian et al.,
2020, Ross et al., 2022] leverage mature language modeling but often miss structural detail, while
3D-aware models [Stärk et al., 2022] capture geometric context at the cost of scalability and stability.
These limitations highlight the necessity for an efficient and structure-aware fusion framework.

Specifically, we identify two key challenges in molecular representation learning: (1) Conformer-
dependent fusion is unreliable. First, conformers generated by tools like RDKit often differ
significantly in local arrangement even with the same molecule. As shown in Figure 1(a), two RDKit-
generated conformers exhibit clear geometric differences in the rotation and orientation of terminal
groups, despite sharing identical 2D topology and SMILES string. These conformers may present
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different surface areas or spatial constraints, leading to changes in predicted properties [Adams
and Coley, 2025, Brethomé et al., 2019]. Second, some different molecules share nearly identical
embeddings, making them difficult to distinguish. Figure 1(b) illustrates this conformer sensitivity
using two drugs (Ibuprofen and Ketoprofen). Despite being chemically distinct, their conformer
embeddings from DimeNet [Gasteiger et al., 2020] exhibit considerable overlap in Principal Compo-
nent Analysis (PCA) space, indicating the risk that existing embedding methods fail to distinguish
between structurally similar yet functionally distinct molecules due to conformational noise.

(a)

(b) PCA of Embeddings

(b) Conformers reveals PCA embedding instability

(a) Two conformers show local 3D variation
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Figure 1: Illustration of Limitations in molecu-
lar representation learning.

(2) Modality collapse stems from naive fusion.
In many multimodal models, different modalities
are treated as equally important and are fused in
the same phase using simple operations such as
early concatenation or token-level attention. This
is based on an untenable assumption that all modal-
ities are clean and semantically aligned. However,
in molecular data, 3D inputs are often noisy, and
different modalities (e.g., geometry and SMILES)
operate at distinct levels of abstraction. These can
lead to modality collapse, where the 3D signal dom-
inates or distorts the information from other modal-
ities [Su et al., 2020, Li et al., 2020]. Prior stud-
ies in vision-language and chemistry [Rong et al.,
2020, Zeng et al., 2023] also observe that symmet-
ric fusion often leads to unstable optimization or
degraded generalization. These findings inspire a
shift toward asymmetric fusion, allowing for pre-
cise and properly timed information exchange be-
tween modalities.

To address these challenges, we propose MuMo, a multimodal fusion model for molecular repre-
sentation learning with two key components. To mitigate the unreliability of conformer-dependent
fusion, we introduce a Structured Fusion Pipeline (SFP) that combines 2D and 3D inputs, as well as
local and global information, into a unified and aligned graph representation. It serves as a stable
structural prior for the subsequent inference. To mitigate modality collapse from naive fusion, we
propose a Progressive Injection (PI) mechanism that asymmetrically integrates the fused structural
prior into the main sequence stream, while preserving the independent propagation and evolution
of the modality information throughout the model to grasp the long-range dependencies in complex
molecules. Together, these enable MuMo to model molecules into a consistent representation in a
robust and structure-aware manner. We summarize our key contributions as follows:

• We propose a Structured Fusion Pipeline that aligns and encodes 2D and 3D inputs into a unified
and stable structural prior, addressing the inconsistency of conformer-dependent modeling.

• We introduce a Progressive Injection mechanism that asymmetrically integrates structural prior
into the mainstream, mitigating modality collapse caused by inappropriate fused 3D signals.

• Our MuMo ranks top on 22 out of 29 molecular tasks across fusion baselines, 3D-heavy models,
and larger pretrained models, averagely outperforming previous methods by 2.7%, even up to 27%
on the LD50 dataset, showing the leading practical value in molecular property prediction.

2 Related Work

Single-modality molecular models. Sequence-based models such as MolBERT [Fabian et al., 2020],
MoLFormer [Ross et al., 2022], and ChemBERTa [Chithrananda et al., 2020] treat SMILES as
language and leverage Transformer pretraining, but lose structural fidelity due to serialization. Graph
neural networks like GCN [Kipf and Welling, 2016], HiGNN [Zhu et al., 2022], and FPGNN [Cai et al.,
2022] preserve 2D connectivity, capturing local atomic patterns but lacking geometric awareness.
3D models, including SchNet [Schütt et al., 2018], DimeNet [Gasteiger et al., 2020], and Uni-
Mol [Zhou et al., 2023], encode spatial coordinates and bond angles, but depend on force field-derived
conformers [Oliveira et al., 2020], being expensive and fragile for large and flexible molecules.
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Figure 2: Overview of the MuMo architecture. (a) Structural Unified Representation for 2D/3D
modalities encoding, (b) Substructure Partitioning for multiscale molecular feature, (c) Fusion
Pipeline (right) of 2D topology & 3D geometric priors, and Progressive Injection to integrate cross-
modal structural information into the main sequence (left).

Multimodal and pretrained models. Several models explore the fusion of multiple molecular
modalities. GraphMVP [Liu et al., 2022] and MolCLR [Wang et al., 2022] combine 2D graphs
with 3D conformers using contrastive pretraining, while Uni-Mol [Zhou et al., 2023] integrates
topological and geometric features via coordinate-aware graph encoders. These models typically
adopt symmetric fusion strategies, which can entangle noisy 3D signals and suffer from conformer
perturbation. Separately, large-scale pretrained models such as ChemBERTa [Chithrananda et al.,
2020], TranFoxMol [Gao et al., 2023], and MLM-FG [Peng et al., 2024] focus on SMILES-only inputs,
improving sequence modeling through masked prediction or fragment-aware encoding. However,
they lack explicit mechanisms for integrating structural priors, and their performance is often tied to
scale rather than architectural robustness. We also discussed the connection between reused modules
and our contributions in Appendix B.1 and B.2.

3 MuMo: Structured Fusion and Progressive Injection

We present MuMo, a molecular representation framework comprising two core components. Sec-
tion 3.1 provides an overview of the MuMo architecture. Section 3.2 and 3.3 introduce the Struc-
tured Fusion Pipeline and the Progressive Injection mechanism, which address the inconsistency of
conformer-dependent fusion and the modality collapse caused by naive integration.

3.1 Overview of MuMo Architecture

The fusion pipeline of MuMo consists of two key pathways, as illustrated in Figure 2(c). (1) Structural
modality fusion stream (Section 3.2): The 2D molecular graph (purple lines) and 3D geometric
information (green lines) are jointly fused to generate unified structural representations, which
evolve through independent propagation. (2) Semantic sequence stream (Section 3.3): The SMILES
sequence is first tokenized and embedded, being input into the stacked modeling blocks as the main
stream (blue line). And the structural modality information stream will be injected into the main
stream at later layers for subsequent inference, and generate the ultimate molecular representation.

During inference, MuMo introduces the progressive injection mechanism to selectively integrate the
structural priors from the modal fusion stream to the main sequence stream. Unlike symmetric fusion
strategies, the structural priors are treated as auxiliary guidance and are asymmetrically injected via
dedicated attention layers (purple dashed arrows). This allows the sequence to first establish its own
contextual semantics before receiving structural guidance, avoiding signal distortion while effectively
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Figure 3: Multimodal Fusion. It illustrates how structural modalities (2D and 3D) are fused via
the Structured Fusion Pipeline (SFP), then injected into the SMILES sequence stream through the
Injection Enhanced Attention (IEA, within PI) module.

enriching the multimodal structural information. The final molecular representation is derived from
the structurally enhanced sequence output.

3.2 Structured Fusion Pipeline for 2D and 3D Modalities Integration

To establish a unified molecular structure, we propose a graph-based representation that seamlessly
integrates both 2D typological, 3D geometric information at both local and global scales in the graph,
serving as a joint structural prior for guiding sequential semantic modeling.

3.2.1 Structural Unified Graph Representation for 2D and 3D Modalities

To jointly represent and process multimodal molecular data, MuMo introduces a Unified Graph
formulation, a two-step message passing mechanism, and a batch-aware graph aggregation scheme.

Unified Graph Structure: To better integrate molecular information in 2D and 3D modalities, we
define a Unified Graph structure T = (V,E,G), whereV denotes atoms (nodes), E chemical bonds
(edges), and G auxiliary geometric linkages. As illustrated in Figure 2(a), each atom vi ∈ V is
associated with a feature vector vi ∈ R

dV , and each bond ei j ∈ E with ei j ∈ R
dE . The geometric linkage

set G encodes spatial relations between edge pairs (ei j, e jk) sharing a central atom v j, represented as
a triplet gi j,k = (li j, l jk, θi j,k), where li j = ∥pi − p j∥2 is the Euclidean bond length and θi j,k the angle
between bond vectors. To guarantee geometric consistency across conformations, we formally prove
the rotational invariance of the proposed representation in Appendix A.1.

Algorithm 1 Unified Batching Scheme
Input: List of Unified Graphs {T1, . . . ,TN};
T (batch) ← new(T ), δv ← 0, δe ← 0

Output: T (batch)

1: for k = 1 to N do
2: /* (1) Merge Entity Features */
3: V(batch) ←V(batch) ∪ Tk.V
4: E(batch) ← E(batch) ∪ Tk.E
5: G(batch) ← G(batch) ∪ Tk.G
6: /* (2) Adjust Constraints */
7: C

(batch)
E

← C
(batch)
E

∪ {(i + δv, j + δv) | (i, j) ∈
Tk.CE}

8: C
(batch)
G

← C
(batch)
G

∪{(Idx(ei j)+δe, Idx(e jk)+
δe) | {Idx(ei j), Idx(e jk)} ∈ Tk.CG}

9: /* (3) Update Offsets */
10: δv ← δv + |Tk.V|, δe ← δe + |Tk.E|
11: end for
12: Batch Idx: T (batch).Idx←

[
k · 1|Tk .V|

]N
k=1

13: return T (batch)

Message Updating in the Unified Graphs: As
Figure 3 (left) shows, to jointly propagate 2D
and 3D geometric information, we perform a
two-step message updating throughout the graph.
At each iteration t, edge-centered and node-
centered updates are computed as follows, here
h(t)

ei j , h
(t)
vi , and hgi j,k denote the hidden states of

edges, nodes, and geometric descriptors, respec-
tively:

m(t+1)
ei j
=
∑

e jk∈NE(ei j)

Message(t)
E

(h(t)
ei j
,h(t)

e jk
,hgi j,k ), (1)

h(t+1)
ei j
= Update(t)

E
(h(t)

ei j
,m(t+1)

ei j
), (2)

m(t+1)
vi
=
∑

v j∈NV(vi)

Message(t)
V

(h(t)
vi
,h(t)

v j
,h(t)

ei j
), (3)

h(t+1)
vi
= Update(t)

V
(h(t)

vi
,m(t+1)

vi
), (4)

the final node embeddings hvi are subsequently
passed to the sequence stream via the PI (Pro-
gressive Injection) detailed in Section 3.3.1.

Unified Batching Scheme: To enable batch processing of Unified Graph, we adopt a unified batching
scheme that merges N Unified Graphs {T1, . . . ,TN} into a single batched graph T (batch), as outlined in
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Algorithm 1. This process proceeds in three stages: (1) merging entity features (e.g., node and edge
attributes) from individual graphs, (2) adjusting constraint sets, including topological and geometric
linkages, to ensure consistency across graphs, and (3) updating node and edge index offsets to preserve
intra-graph referential integrity. This process aggregates constraint sets into global representations.
The resulting batched graph supports vectorized message passing while maintaining the structural
integrity of each constituent molecule. Given a 6 Å distance graph, multi-layer message passing
allows implicit reconstruction of dihedral angles (Appendix A.3).

3.2.2 Geometry-Aware Substructure Partitioning for Multiscale Representation

Conventional molecular segmentation typically relies on 2D topology or SMILES sequences, often
neglecting the rich spatial information in 3D conformers. To address this, we adopt a geometry-aware
substructure partitioning strategy that incorporates 3D cues to refine molecular decomposition.

Graph Partitioning: We extend Breaking of Retrosynthetically Interesting Chemical Substructures
(BRICS) rules [Seo et al., 2023] (details in Appendix B.2) to spatial graphs by severing a subset of
topological edges Ecut ⊂ Eglobal identified from the fused Unified Graph Tglobal = (V,Eglobal,Gglobal).
We retain the remaining connectivity and angular constraints to construct a segmented graph Tsub
composed of a batch of N disconnected subgraphs.

Esub = Eglobal \ Ecut, Gsub = Gglobal \ Gcut, Batch({T n
sub}) = Tsub. (5)

Message Updating in Multiscale Graphs: To extract multiscale structural representations, we
perform message passing over both the global graph Tglobal and the segmented graph Tsub. The
resulting node embeddings hV from the global view and hV,sub from the substructures are then
combined via a gated fusion scheme. This fusion adaptively balances coarse-grained global semantics
and fine-grained local features:

β = σ
(
φ
(
concat[hV,hV,sub,hV − hV,sub]

))
, (6)

h′V = β · hV + (1 − β) · ϕ
(
concat[hV,hV,sub]

)
, (7)

where φ(·) and ϕ(·) are learnable transformations.

Aggregation of Unified Structural Prior: We combine multiscale structural signals into a unified
structural prior for subsequent injection. Specifically, the fused node representations h′

V
are aggre-

gated into a global structural prior representation, which encapsulates both global and local structural
features. This structural prior is subsequently used to enhance the semantic modeling stream via PI
(Progressive Injection) in Section 3.3.

3.3 Progressive Injection for Structural Prior and Sequence Fusion

Given the fused structural prior in Section 3.2, we then integrate it into the sequence stream without
disrupting the dominant modality-specific semantics. To this end, we introduce the Progressive
Injection (PI) to asymmetrically inject structural information into a designated token rather than
performing complete fusion. Next, the Structural Prior Evolution mechanism propagates the
structural information independently across layers to enable a high-level semantic awareness.

3.3.1 Injection Enhanced Attention for Structural Priors and Sequence Stream

As shown in Figure 3 (right), injection Enhanced Attention (IEA) performs as the core module in PI
in each fusion layer, which integrates structural priors into the SMILES sequence stream through
three sequential operations: priors extraction, sequence and structure alignment, and global semantic
injection. then

Step 1: Extract structural priors from the Unified Graph. As shown in Algorithm 2, we begin by
extracting node embeddings h(t)

V
from the batched graph T (batch), and unbatch them into per-graph

node features h(t)
F (line 1–2), which serve as structural priors. In parallel, the SMILES sequence is

represented as h(t)
S for subsequent semantic modeling.

Step 2: Align sequence and structure via cross-attention. We first apply self-attention over h(t)
S to

capture intra-sequence context (line 5), then perform bidirectional cross-attention: structure attends
to sequence (line 6), and sequence attends to structure (line 7). The updated structural representation
h(t+1)

F is rebatched into graph format h(t+1)
V

(line 8).
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Algorithm 2 Injection Enhanced Attention

Input: Sequence hiddens h(t)
S , graph T (batch).

Output: h(t+1)
S ,T ′(batch)

/* Step1: Prior Extraction */
1: h(t)

V
← T (batch).V

2: h(t)
F ← Unbatch(h(t)

V
, T (batch).batch)

3: QS ,KS ,VS ← Linear(h(t)
S )

4: QF ,KF ,VF ← Linear(h(t)
F )

/* Step2: Sequence and Structure Alignment */
5: h(t)

S ← SelfAttention(QS ,KS ,VS )
6: h(t+1)

F ← CrossAttention(QF ,KS ,VS )
7: h(t+1)

S ← CrossAttention(QS ,KF ,VF)
8: h(t+1)

V
← Batch(h(t+1)

F , T (batch).batch)
/* Step3: Prior Injection */

9: hpooled
V

← GlobalPool(h(t+1)
V

, T (batch).batch)
10: h(t+1)

S ,[GT K] ← Norm(h(t+1)
S ,[GT K] + αh

pooled
V

)
11: T ′(batch).V ← h(t+1)

V

12: return h(t+1)
S ,T ′(batch)

Step 3: Inject structural prior into the
global anchor token. To inject the fused
structure into the sequence stream, we aggre-
gate h(t+1)

V
into a pooled prior hpooled

V
(line 9),

which is added to the [GTK] (global token)
via a residual update (line 10). The updated
graph T ′(batch) is then passed forward (line 11)
for independent evolution for a higher-level
perception, which we discuss in Section 3.3.2.

We adopt a staged modeling strategy that sep-
arates initial sequence encoding from cross-
modal integration. In the early layers, the
Mamba backbone operates exclusively on
SMILES tokens, capturing intrinsic sequence-
level semantics without external interference.
In the latter part of the model, we progres-
sively inject the fused structural prior into the
sequence stream. This delayed injection al-
lows the model to establish stable token rep-
resentations before being modulated by struc-
tural information, preserving modality auton-
omy and improving convergence.

3.3.2 Structural Prior Evolution by State Space Propagation

To further enhance the global perception of structural representations, we propose an evolution
strategy based on state space modeling. Inspired by the well-known characteristic of neural networks
that shallow layers typically capture local textures while deeper layers learn higher-level semantics,
we allow the fused 2D and 3D modal signals to propagate independently across network layers.

We adopt Mamba blocks as the backbone for temporal consistency and continuous evolution of
structural priors through state-space dynamics. Unlike Transformers, which rely on layerwise
token-to-token attention, Mamba maintains a recurrent latent state that evolves across layers. This
architecture naturally accommodates injected priors g(t), regulating the state trajectories driven by
inputs without directly disrupting the interactions among local tokens. Consequently, structural priors
are seamlessly integrated throughout the semantic modeling stream. At each layer t, we maintain a
latent state z(t) the state-space update at each layer is:

z(t+1) = Az(t) +Bsh
(t)
s +Bgg

(t), h(t+1)
s = Cz(t+1) +Dh(t)

s , (8)

where h(t)
s is the sequence state, g(t) is the structural prior, and A,Bs,Bg,C,D are learnable

parameters. Our evolution scheme by latent recurrence allows structural priors to persist and influence
downstream layers in a controlled, interpretable manner. Therefore, it gradually increases the
receptive field and enables progressive abstraction of structural features.

4 Experiments & Downstream Analysis

In this section, we conduct comprehensive experiments to evaluate the performance, robustness, and
consistency of MuMo across diverse molecular tasks. We pretrained MuMo on the ChEMBL-1.6M
dataset [Gaulton et al., 2012] via masked language modeling (MLM), followed by task-specific
fine-tuning (see Appendix C.4). In addition, we present ablation studies and visualization analysis to
show the contribution of each component in enhancing the multimodal integration and improving the
overall quality of molecular prediction. Extended experiments and ablation studies can be found in
Appendix C and Appendix D, respectively.

4.1 Datasets and Baselines

Datasets. To evaluate performance and generalization ability, we benchmark MuMo on 29 tasks
from three widely used platforms: 14 from the TDC [Huang et al., 2021], which provides rigorous
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Table 1: Results on selected benchmark tasks from TDC and MoleculeNet. We report AUROC for
classification (↑) and MAE/RMSE for regression (↓) tasks. We provide the results of “meanstd” over 5
runs. The top 2 scores per task are highlighted in pink. “Tox-Avg” and “CYP-Avg” indicate average
AUROC over {DILI, hERG, Ames} and {CYP2C9-I, CYP2D6-I, CYP3A4-I}, respectively. Notably,
MolBERT does not natively support multi-objective tasks (SIDER, TOX21).

Models BBB HIA Pgp Bioav. Tox-Avg. CYP-Avg. Top2Cnt/10

TDC Datasets - Classification - AUROC ↑

AttentiveFP 0.8550.011 0.9740.007 0.8920.012 0.6320.039 0.8420.010 0.7490.008 0
FPGNN 0.8880.018 0.9580.012 0.9300.007 0.6660.035 0.8600.017 0.8660.004 4
DMPNN 0.8640.010 0.9760.004 0.8890.005 0.6170.050 0.8210.019 0.8190.004 2
AttrMasking 0.8920.012 0.9780.006 0.9290.006 0.5770.087 0.8460.021 0.8170.005 4
ContextPred 0.8970.004 0.9750.004 0.9230.005 0.6710.026 0.8180.017 0.8270.003 1
TranFoxMol 0.8680.019 0.9510.036 0.8750.011 0.6190.019 0.8370.017 0.8600.006 0
DeepMol 0.7740.023 0.8800.012 0.8210.007 0.5090.026 0.7350.015 0.7700.008 0
MuMo 0.8990.014 0.9790.013 0.9420.019 0.7140.021 0.8400.015 0.8800.017 7

Models BACE-R BACE-S BBBP-R BBBP-S CLINTOX SIDER TOX21

MoleculeNet - Classification - AUROC ↑

FPGNN 0.8310.011 0.8310.011 0.9040.020 0.8920.019 0.7320.068 0.6610.014 0.8330.004
TransFoxMol 0.7800.032 0.7800.032 0.9070.024 0.8810.015 0.8300.047 0.6360.022 0.8160.011
ChemBERTa-2 0.8480.037 0.8480.037 0.9320.037 0.8920.019 0.9330.054 0.7080.090 0.8090.029
MoLFormer 0.8730.009 0.8330.009 0.8890.028 0.8680.013 0.8880.044 0.6510.016 0.8040.013
MolBERT 0.8820.015 0.8320.015 0.9550.008 0.9490.013 0.8750.041 - -
GROVER 0.7790.059 0.7790.059 0.8490.008 0.8230.020 0.6850.066 0.6350.034 0.8080.014
Uni-Mol 0.8400.031 0.840.031 0.8890.025 0.8860.016 0.8180.065 0.6660.021 0.8120.007
MuMo 0.8780.046 0.8490.014 0.9620.007 0.9570.011 0.9850.011 0.6770.009 0.8340.009

Models LD50 Caco-2 PPBR LIPO Models ESOL Freesolv

TDC Datasets - Regression - MAE ↓ MoleculeNet - Regression - RMSE ↓

AttentiveFP 0.6780.012 0.4010.032 9.3730.335 0.5720.007 ChemBERTa-2 0.6330.132 1.2190.206
FPGNN 0.6380.024 0.3260.040 8.4651.709 0.5440.011 FPGNN 0.6580.006 1.1060.195
DMPNN 0.6070.022 0.3880.077 8.1580.314 0.4480.014 GROVER 0.6170.077 1.9010.459
AttrMasking 0.6850.025 0.5460.052 10.0750.202 0.5470.024 MoLFormer 0.6530.029 1.1900.046
ContextPred 0.6690.030 0.5020.036 9.4450.224 0.5350.012 MolBERT 0.6170.091 1.3110.257
TranFoxMol 0.6450.036 0.4870.068 9.0550.523 0.5250.024 TranFoxMol 0.9300.261 1.2250.155
DeepMol 0.5890.006 0.3270.012 9.5330.162 0.6600.004 Uni-Mol 0.7690.153 1.5980.153
MuMo 0.4260.031 0.3150.055 7.3240.323 0.4480.007 MuMo 0.5360.061 1.0820.088

Table 2: Evaluation on QM9 benchmarks from Uni-Mol-v2 [Ji et al., 2024]. Results are MAE (↓).
Standard errors are in gray subscript. The top and second top results are highlighted in pink.

Model HOMO/LUMO/GAP ↓ α ↓ Cv ↓ µ ↓ R2 ↓ ZPVE ↓

GROVER-base 0.00793e-04 2.3650.302 1.1030.339 0.6180.002 113.014.206 0.00353e-04

GROVER-large 0.00836e-04 2.2400.385 0.8530.186 0.6230.006 85.856.816 0.00385e-04

GEM 0.00674e-05 0.5890.0042 0.2370.0137 0.4440.0015 25.670.743 0.00112e-05

Uni-Mol 0.00432e-05 0.3630.009 0.1830.002 0.1550.0015 4.8050.055 0.00113e-05

Uni-Mol2 310M 0.00361e-05 0.3150.003 0.1430.002 0.0920.0013 4.6720.245 0.00051e-05

Uni-Mol2 570M 0.00362e-05 0.3150.004 0.1470.007 0.0890.0015 4.5230.080 0.00053e-05

Uni-Mol2 1.1B 0.00351e-05 0.3050.003 0.1440.002 0.0890.0004 4.2650.067 0.00058e-05

MuMo 505M 0.00301e-05 0.2830.003 0.1260.003 0.4000.0018 18.080.533 0.00051e-05

absorption, distribution, metabolism, excretion, and toxicity (ADMET) challenges and leaderboard
baselines, and 12 from MoleculeNet [Wu et al., 2018], along with 3 chemical tasks from Reaxtica [Lin
et al., 2022] which enables evaluation against strong unimodal and pretrained models. These tasks
cover a range of molecular properties, including bioactivity and ADMET-related endpoints, for both
classification and regression.

Baselines. We compare MuMo against various competitive baselines spanning diverse modalities
and pretrained algorithms. These include 3D-aware models like FPGNN [Cai et al., 2022] and
Uni-Mol [Zhou et al., 2023] that incorporate spatial geometry, 2D graph-based models such as
HiGNN [Li et al., 2021] and GCN [Kipf and Welling, 2016] that rely solely on molecular topology,
and pretrained models include GROVER [Rong et al., 2020], MoLFormer [Ross et al., 2022], and
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Table 3: Evaluation on catalytic activity and reaction yield benchmarks from Reaxtica Lin et al.
[2022]. MuMo achieves the best performance on three tasks. Standard deviations are shown in gray
subscript where available. The best result is highlighted.

BHC (R2 ↑, Reaction Yield) CPA (MAE ↓, Catalytic Activity) HTE (R2 ↑, Reaction Yield)

Models Value Models Value Models Value

Reaxtica 0.94 Reaxtica 0.144 Reaxtica 0.87
MFF 0.92 MFF 0.144 rxnfp 0.81
rxnfp 0.95 Denmark et al. 0.152 DRFP 0.85
MuMo 0.9520.002 MuMo 0.1440.000 MuMo 0.8730.002

Table 4: Ablation study on the effectiveness of Structural Fusion Pipeline. “2D” column refers to the
use of either 2D topological information or SMILES sequence alone. Mean and standard deviation
are reported for two classification tasks (AUROC) and two regression tasks (RMSE).

Classification Regression

2D SUG GSP BACE ↑ BBBP ↑ ESOL ↓ LIPO ↓ IMPACT
√ √ √

0.8490.014 0.9570.011 0.5360.061 0.5770.027 0.00%
√

×
√

0.8210.005 0.9560.003 0.6640.025 0.6150.018 -7.46%√ √
× 0.8490.003 0.9600.002 0.5850.030 0.6140.017 -3.00%√

× × 0.8410.004 0.9490.003 0.6540.027 0.6300.016 -7.29%
× × × 0.7660.006 0.9560.004 0.7190.022 0.6550.015 -13.11%

ChemBERTa-2 [Ahmad et al., 2022] that requires large-scale self-supervised learning before fine-
tuning on specific tasks. The comprehensive comparisons forcefully demonstrate the effectiveness of
our MuMo in molecule representation across architectures, input modalities, and learning paradigms.

Settings. We follow official protocols or recommendations for fair comparison in each bench-
mark. AUROC is used for classification; MAE (TDC) and RMSE (MoleculeNet) for regression.
MoleculeNet tasks use scaffold split for single-objective classification; otherwise, random. Each
task is run 5 times: we use the official leaderboard splits for TDC and generate 5 splits for Molecu-
leNet (Train:Valid:Test=8:1:1). Hyperparameters follow each baseline’s official setup or defaults if
unspecified. Additional details about datasets and settings are provided in Appendix C.5.

4.2 Main Performance and Analysis

Table 5: Evaluation on QM7/8 and QM9 (HO-
MO/LUMO/GAP) benchmarks from MoleculeNet.
Results are MAE (↓). Standard deviations are in
gray subscript. The top result is highlighted.

Model QM7 ↓ QM8 ↓ QM9 ↓

GROVER 92.00.9 0.02240.0003 0.00990.00025

DMPNN 103.58.6 0.01900.0001 0.00810.00001

AttentiveFP 72.02.7 0.01790.0010 0.00810.00001

UniMol 41.80.2 0.01560.0001 0.00470.00004

MuMo 42.80.6 0.01110.0001 0.00300.00001

As Table 1 shows, MuMo outperforms the best
baseline by an average of 2.7% across 21 bench-
mark tasks from TDC and MoleculeNet, rank-
ing first on 17 of them, and even improves up
to 27% on LD50 compared to DeepMol [Cor-
reia et al., 2024]. Compared to other fusion
models like Uni-Mol [Zhou et al., 2023] and
TranFoxMol [Gao et al., 2023], MuMo exhibits
more consistent performance across different
tasks, validating the benefit of progressive and
asymmetric integration of structural information.
On conformer-sensitive regression tasks such as
PPBR and LD50, MuMo maintains the lowest error, highlighting its robustness to geometric noise.
As shown in Table 2 and 5, MuMo consistently outperforms other baselines on QM7/8/9 datasets
(7 out of 10 tasks), which are known to be sensitive to conformer and molecular geometry, further
highlighting its robustness to conformer-sensitive and superior 3D molecular modeling capability.

4.3 Broader Chemical Benchmarks

Our original design focuses on single-molecule property prediction, which is why the baselines
and benchmarks were selected accordingly. However, we also investigate the model’s generaliza-
tion to broader chemical domains beyond individual molecules. To this end, we extend MuMo
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Figure 4: Pretraining loss curves under different modality configurations. Each part shows training
(left two figures) and validation (right two figures) loss for a pairwise modality comparison.

to accept reaction-level inputs and evaluate it on four datasets from Reaxtica Lin et al. [2022],
following their official data splits and reported baselines. These datasets cover two important do-
mains: catalytic activity and reaction yield. As shown in Table 3, MuMo achieves the best results on
three out of four tasks, surpassing prior methods such as Reaxtica, MFF, rxnfp, and DRFP.

4.4 Ablation Studies

Table 6: Impact of injection and its timing. Results
on BBBP (AUROC) and ESOL (RMSE). “@a–b”
denotes injection between layers a and b.

Variant BBBP ↑ ESOL ↓ Avg.Drop

MuMo@ 9–16 0.9570.011 0.5360.061 0.00%
Full-Inj@ 1–16 0.9540.002 0.5870.025 -1.85%
Early-Inj@ 1–8 0.9460.003 0.5970.022 -2.96%
Late-Inj@ 13–16 0.9610.002 0.6170.028 -4.40%
None-Inj (Seq) 0.9280.004 0.9390.030 -18.91%

Table 7: Impact of injection approaches (progres-
sive injection vs. fixed injection).

Variant BBBP ↑ ESOL ↓ Avg.Drop

Progressive-Inj 0.9570.011 0.5360.061 0.00%
Fixed-Inj 0.9460.008 0.5970.051 -6.28%

Contribution of components in Structural Fu-
sion Pipeline. We conduct ablation studies on
MoleculeNet tasks to assess the effect of core
components in SFP: “SUG” (structural unified
graph representation for multimodal signals),
and “GSP” (geometry-aware substructure par-
titioning). As shown in Table 4, using only se-
quence information results in the largest degra-
dation (-13.11%), which shows the importance
of leveraging both topological and geometric sig-
nals. Removing 3D geometry (no SUG) leads
to a significant drop (-7.46%), and removing
the GSP, which aggregates the local and global
structural features, results in -3.00%. These re-
sults demonstrate not only the effectiveness of
aligning 3D information into a unified represen-
tation and encapsulating multi-scale structural
signals, but also highlight that each component provides complementary benefits that are essential for
the robustness of SFP. In particular, the synergy between SUG and GSP allows the model to capture
richer chemical priors, yielding stronger generalization across diverse molecular benchmarks.

Effects of components in Progressive Injection. To evaluate the effectiveness of our injection
strategy and the independent propagation of the structural prior, we conduct two ablation studies in
Table 6 and 7. From Table 6, structural prior injection improves the performance by a wide margin
regardless of timing (14.51%, 15.95% and 17.06% for late-/early-/full injection). However, early-/full-
injection introduces modality collapse due to underdeveloped sequence semantics, while late-injection
provides inadequate structural information. Our MuMo injects from layer 9, yielding the best results
by balancing semantic establishment and structural guidance. As for propagation (Table 7), using the
fixed structural prior throughout the inference will hinder the progressive refinement of structural
representations. Fortunately, by propagating structural prior, MuMo improves 6.28%, demonstrating
the benefits of the independent evolution of structural information across layers.

Impact of input modalities on pretraining dynamics. Figure 4 illustrates the impact of structural
signals on pretraining loss curves. Compared to SMILES-only, adding 2D graph consistently
accelerates convergence and lowers both training and validation loss, indicating that topological
priors enhance early learning. Further incorporating geometry leads to the lowest loss across all steps,
suggesting that spatial information provides strong inductive signals for alignment. These trends
highlight the complementary role of each modality in guiding effective pertaining.
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4.5 Visualization Insights

Molecular Similarity Analysis. To assess the effectiveness of generated embeddings in distinguish-
ing distinct molecules, we analyze their Pearson correlation with established molecular dissimilarity
or similarity representations. Specifically, we randomly sample 20,000 molecules from the ZINC
dataset [Gómez-Bombarelli et al., 2018] to construct molecule pairs. We then generate their embed-
dings by MolFormer and MuMo, and compute the embedding distance for each pair. We measure
the Pearson correlation between the embedding distances and the distances from widely used struc-
tural metrics: Tanimoto distance and MCS substructure overlap. As shown in Figure 6, MuMo
exhibits stronger correlations than MoLFormer, demonstrating its ability to produce robust molecular
embeddings and reflect underlying structural relationships. See Appendix C.7 for details.
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Figure 6: Visualization of similarity analysis of
two models: MuMo and MoLFormer.

Representation Distribution with Structural
Prior. To investigate how structural priors af-
fect the evolution of molecular representations
across network layers, we perform a layer-wise
analysis of embeddings using Manifold Ap-
proximation and Projection (UMAP). As shown
in Figure 5, in the early layers before injec-
tion (Layers 1–8), scaffold separation gradually
emerges, indicating that the model is progres-
sively extracting semantic features from the se-
quence stream. In the later layers (Layers 9–12),
where structural priors are injected, the distri-
butions become more compact and form clear
scaffold-specific clusters. This indicates that
the structural prior reinforces global perception
without disrupting the semantic patterns learned
before. This validates our motivation for progressive injection: establishing sufficient modality-
specific encoding before introducing cross-modal guidance for discriminative representations.

5 Conclusion

We introduce MuMo, a structured multimodal framework designed to address the unreliability
of conformer-dependent fusion and the modality collapse caused by naive modality integration.
MuMo includes the Structured Fusion Pipeline, which combines 2D topological and 3D geometric
information into a stable structural prior, reducing sensitivity to noisy or inconsistent conformers.
Progressive Injection (PI) mechanism then asymmetrically injects the structural prior into the sequence
stream and evolves independently, enabling cross-modal enrichment while preserving semantic
autonomy. Extensive experiments on a wide range of tasks show that MuMo consistently performs
over various baselines and is robust on conformer-sensitive tasks. It highlights MuMo as a promising
multimodal approach for building robust, geometry-aware molecular models. While MuMo is
currently tailored to be a task-specific model, future work will focus on extending it into a general-
purpose multimodal backbone for molecular representation learning.

10



Acknowledgments and Disclosure of Funding

This work was supported in part by the Canada Research Chairs Tier II Program (CRC-2021-
00482), the Canadian Institutes of Health Research (PLL 185683, PJT 190272, PJT204042), the
Natural Sciences, Engineering Research Council of Canada (RGPIN-2021-04072) and The Canada
Foundation for Innovation (CFI) John R. Evans Leaders Fund (JELF) program (#43481).

References
Keir Adams and Connor W. Coley. The impact of conformer quality on learned representations of

molecular conformer ensembles. arXiv preprint arXiv:2502.13220, 2025.

Walid Ahmad, Elana Simon, Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar.
Chemberta-2: Towards chemical foundation models. arXiv preprint arXiv:2209.01712, 2022.

Simon Axelrod and Rafael Gomez-Bombarelli. Molecular machine learning with conformer ensem-
bles. Machine Learning: Science and Technology, 4(3):035025, 2023.

Andreas Bender and Robert C Glen. Molecular similarity: a key technique in molecular informatics.
Organic & biomolecular chemistry, 2(22):3204–3218, 2004.

Alexandre V. Brethomé, Stephen P. Fletcher, and Robert S. Paton. Conformational effects on physical-
organic descriptors: The case of sterimol steric parameters. ACS Catalysis, 9(3):2313–2323,
2019.

Hanxuan Cai, Huimin Zhang, Duancheng Zhao, Jingxing Wu, and Ling Wang. Fp-gnn: a versatile
deep learning architecture for enhanced molecular property prediction. Briefings in bioinformatics,
23(6):bbac408, 2022.

Lena Chatterjee. Tufts study on drug development costs: How our pharmaceutical company-funded
center can influence drug prices. TuftScope, page 29, 2015.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Joao Correia, Joao Capela, and Miguel Rocha. Deepmol: An automated machine and deep learning
framework for computational chemistry. biorxiv. bioRxiv, 2024.

Sopanant Datta and Taweetham Limpanuparb. Steric effects vs. electron delocalization: a new look
into the stability of diastereomers, conformers and constitutional isomers. RSC advances, 11(34):
20691–20700, 2021.

Benedek Fabian, Thomas Edlich, Héléna Gaspar, Marwin Segler, Joshua Meyers, Marco Fiscato, and
Mohamed Ahmed. Molecular representation learning with language models and domain-relevant
auxiliary tasks. arXiv preprint arXiv:2011.13230, 2020.

Jian Gao, Zheyuan Shen, Yufeng Xie, Jialiang Lu, Yang Lu, Sikang Chen, Qingyu Bian, Yue Guo,
Liteng Shen, Jian Wu, et al. Transfoxmol: predicting molecular property with focused attention.
Briefings in Bioinformatics, 24(5):bbad306, 2023.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

11



David E Graff, Eugene I Shakhnovich, and Connor W Coley. Accelerating high-throughput virtual
screening through molecular pool-based active learning. Chemical science, 12(22):7866–7881,
2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations (ICLR), 2020a.

Weihua Hu, Bowen Liu, et al. Strategies for pre-training graph neural networks. In ICLR, 2020b.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley,
Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
datasets and tasks for drug discovery and development. Proceedings of Neural Information
Processing Systems, NeurIPS Datasets and Benchmarks, 2021.

Xiaohong Ji, Zhen Wang, Zhifeng Gao, Hang Zheng, Linfeng Zhang, Guolin Ke, et al. Uni-mol2:
Exploring molecular pretraining model at scale. arXiv preprint arXiv:2406.14969, 2024.

Sunghwan Kim, Paul A Thiessen, Evan E Bolton, Jie Chen, Gang Fu, Asta Gindulyte, Lianyi Han,
Jane He, Siqian He, Benjamin A Shoemaker, et al. Pubchem substance and compound databases.
Nucleic acids research, 44(D1):D1202–D1213, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

James Law, Zsolt Zsoldos, Aniko Simon, Darryl Reid, Yang Liu, Sing Yoong Khew, A Peter Johnson,
Sarah Major, Robert A Wade, and Howard Y Ando. Route designer: a retrosynthetic analysis tool
utilizing automated retrosynthetic rule generation. Journal of chemical information and modeling,
49(3):593–602, 2009.

Xiaowei Li et al. Oscar: Object-semantics aligned pretraining for vision-language tasks. ECCV,
2020.

Yujia Li, Yue Li, et al. Hignn: A hierarchical graph neural network for learning molecular representa-
tions. arXiv preprint arXiv:2106.05408, 2021.

Kaixian Lin, Jian Li, Hao Lin, Jianfeng Pei, and Luhua Lai. Reaxtica: A knowledge-guided machine
learning platform for fast and accurate reaction selectivity and yield prediction. ChemRxiv, 2022.
doi: 10.26434/chemrxiv-2022-9k5m9.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. In International Conference on Learning
Representations (ICLR), 2022.

Simon C Lovell, J Michael Word, Jane S Richardson, and David C Richardson. The penultimate
rotamer library. Proteins: Structure, Function, and Bioinformatics, 40(3):389–408, 2000.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Kurt Mislow and Jay Siegel. Stereoisomerism and local chirality. Journal of the American Chemical
Society, 106(11):3319–3328, 1984.

Harry L Morgan. The generation of a unique machine description for chemical structures-a technique
developed at chemical abstracts service. Journal of chemical documentation, 5(2):107–113, 1965.

Marina P Oliveira, Maurice Andrey, Salome R Rieder, Leyla Kern, David F Hahn, Sereina Riniker,
Bruno AC Horta, and Philippe H Hunenberger. Systematic optimization of a fragment-based force
field against experimental pure-liquid properties considering large compound families: Application
to saturated haloalkanes. Journal of chemical theory and computation, 16(12):7525–7555, 2020.

12



Tianhao Peng, Yuchen Li, Xuhong Li, Jiang Bian, Zeke Xie, Ning Sui, Shahid Mumtaz, Yanwu Xu,
Linghe Kong, and Haoyi Xiong. Pre-trained molecular language models with random functional
group masking. arXiv preprint arXiv:2411.01401, 2024.

John W Raymond and Peter Willett. Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. Journal of computer-aided molecular design, 16:521–533, 2002.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information
and modeling, 50(5):742–754, 2010.

Yu Rong et al. Self-supervised graph transformer on large-scale molecular data. NeurIPS, 2020.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das.
Large-scale chemical language representations capture molecular structure and properties. Nature
Machine Intelligence, 4(12):1256–1264, 2022.

Ansgar Schuffenhauer, Peter Ertl, Silvio Roggo, Stefan Wetzel, Marcus A Koch, and Herbert
Waldmann. The scaffold tree- visualization of the scaffold universe by hierarchical scaffold
classification. Journal of chemical information and modeling, 47(1):47–58, 2007.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24), 2018.

Seonghwan Seo, Jaechang Lim, and Woo Youn Kim. Molecular generative model via retrosyntheti-
cally prepared chemical building block assembly. Advanced Science, 10(8):2206674, 2023.

Silas W Smith. Chiral toxicology: it’s the same thing. . . only different. Toxicological sciences, 110
(1):4–30, 2009.

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
Günnemann, and Pietro Liò. 3d infomax improves gnns for molecular property prediction. In
International Conference on Machine Learning, pages 20479–20502. PMLR, 2022.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, and Jiaya Wei. Vlbert: Pretraining of generic
visual-linguistic representations. ICLR, 2020.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4:279–287,
2022. doi: 10.1038/s42256-022-00447-x.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Peter Willett, John M Barnard, and Geoffrey M Downs. Chemical similarity searching. Journal of
chemical information and computer sciences, 38(6):983–996, 1998.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Zhaoping Xiong, Hongming Wang, et al. Pushing the boundaries of molecular representation for
drug discovery with the graph attention mechanism. J. Med. Chem., 2019.

Kevin Yang, Linus Swanson, Wengong Jin, et al. Analyzing learned molecular representations for
property prediction. JMLR, 2019.

Liang Zeng, Lanqing Li, and Jian Li. Molkd: Distilling cross-modal knowledge in chemical reactions
for molecular property prediction. arXiv preprint arXiv:2305.01912, 2023.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework. In
International Conference on Learning Representations (ICLR), 2023.

Weimin Zhu, Yi Zhang, Duancheng Zhao, Jianrong Xu, and Ling Wang. Hignn: A hierarchical
informative graph neural network for molecular property prediction equipped with feature-wise
attention. Journal of Chemical Information and Modeling, 63(1):43–55, 2022.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately summarize our two main contribu-
tions—SFP and PI—and their motivation. We verified consistency with the methods and
experimental results.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals

are not attained by the paper.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations and future direction in the Appendix B.3.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach.

For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by

reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have proved the geometric completeness of our Unified Graph representa-
tion in Appendix A, which meets the requirements.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have discussed the implementation and experiment details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.
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includes running instructions, anonymous datasets, and pertaining checkpoints download
links, as well as the training logs of each downstream dataset.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described details in both the Section 4 and the Appendix C. We also
provide all the reproducing scripts in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided the error bars for each experimental result in this paper. See
Section 4 and Appendix C

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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A Geometric Completeness Discussion

In this work, we introduced the MuMo model, which seamlessly integrates the topological and
geometric information of molecules. The accuracy and completeness of geometric representations are
crucial for capturing the underlying spatial properties. In the context of molecular representation, the
ability to distinguish between stereoisomers is essential, as it highlights the importance of capturing
fine-grained geometric detail, which is a key advantage of our geometric modeling.

A.1 Proof of Rotational Invariance in the Unified Graph Structure

In this section, we present a rigorous proof that the Unified Graph structure framework, as defined by

TEntity =
(
V,E,G

)
and TConstraint =

(
CE,CG

)
, (9)

exhibits invariance under arbitrary rotations in three-dimensional Euclidean space. We first restate the
core components of the Unified Graph in a concise manner, then formally define rotational invariance,
and finally offer a detailed proof, complete with references to fundamental geometric identities and
transformations.

Definitions. For clarity and convenience, previously defined terms in Section 3.2.1 are restated. In
the Unified Graph, V is the node set, where each node vi ∈ V is endowed with a feature vector
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vi ∈ R
dV and a spatial coordinate pi ∈ R

3. Edge set is E, where each edge ei j ∈ E connects the node
pair (vi, v j) and is described by an edge feature vector ei j ∈ R

dE . In addition to these standard graph
entities, Unified Graph introduces a geometric set G that provides essential spatial properties for each
edge and its adjacent edges. Specifically, for an edge ei j sharing a common vertex v j with another
edge e jk, the corresponding geometric representation gi j,k ∈ G is the triplet gi j,k =

(
li j, l jk, θi j,k

)
,

where

li j =
∥∥∥pi − p j

∥∥∥
2, l jk =

∥∥∥p j − pk

∥∥∥
2, cos

(
θi j,k
)
=
⟨pi − p j, pk − p j ⟩∥∥∥pi − p j

∥∥∥
2

∥∥∥pk − p j

∥∥∥
2

. (10)

Here, ∥ · ∥2 and ⟨·, ·⟩ represent the Euclidean norm and the dot product in R3, respectively. The
constraint group TConstraint =

(
CE,CG

)
codifies topological and geometric consistency via the edge

index set CE and the shared-vertex edge pair index set CG. Our focus is the invariance of (li j, l jk, θi j,k)
under arbitrary rotations.

A representation in R3 is said to be rotationally invariant if, for any rotation matrix R ∈ R3×3 that
is orthonormal (i.e., R⊤R = I) and any translation vector b ∈ R3, the core geometric descriptors
remain unchanged. Concretely, if one transforms the node coordinates via p′i = Rpi + b, then the
resulting triplets g′i j,k =

(
l′i j, l′jk, θ

′
i j,k

)
must satisfy

l′i j = li j, l′jk = l jk, θ′i j,k = θi j,k. (11)

We next show that Unified Graph’s definitions inherently guarantee this property.

Proof of Rotational Invariance. For any pair of nodes (vi, v j), consider the original coordinate
difference pi − p j and its length

∥∥∥pi − p j

∥∥∥
2. Under the transformation p′i = Rpi + b, we have

p′i − p′j =
(
Rpi + b

)
−
(
Rp j + b

)
= R
(
pi − p j

)
. (12)

Hence the new length is

l′i j =
∥∥∥p′i − p′j∥∥∥2 = ∥∥∥R (pi − p j

)∥∥∥
2 =

√(
pi − p j

)⊤
R⊤R

(
pi − p j

)
=

√(
pi − p j

)⊤
I
(
pi − p j

)
=
∥∥∥pi − p j

∥∥∥
2 = li j.

Since the same argument applies for (v j, vk), we obtain l′jk = l jk.

Then, the invariance of angles should be proved. We should show that θ′i j,k = θi j,k under the same
transformation. Observe that

cos
(
θ′i j,k
)
=
⟨p′i − p

′
j, p

′
k − p

′
j⟩∥∥∥p′i − p′j∥∥∥2 ∥∥∥p′k − p′j∥∥∥2 =

⟨R (pi − p j), R (pk − p j)⟩∥∥∥R (pi − p j)
∥∥∥

2

∥∥∥R (pk − p j)
∥∥∥

2

. (13)

The numerator of this fraction can be expanded using the invariance of the dot product under
orthonormal transformations:

⟨R (pi−p j), R (pk−p j)⟩ =
(
pi−p j

)⊤R⊤R (pk−p j
)
=
(
pi−p j

)⊤(pk−p j
)
= ⟨pi−p j, pk−p j⟩. (14)

Meanwhile, the denominator reduces precisely to
∥∥∥pi − p j

∥∥∥
2

∥∥∥pk − p j

∥∥∥
2 by the argument in the proof

of invariance of edge length. Consequently, we have

cos
(
θ′i j,k
)
=
⟨R (pi − p j), R (pk − p j)⟩∥∥∥R (pi − p j)

∥∥∥
2

∥∥∥R (pk − p j)
∥∥∥

2

=
⟨ (pi − p j), (pk − p j)⟩∥∥∥ (pi − p j)

∥∥∥
2

∥∥∥ (pk − p j)
∥∥∥

2

= cos
(
θi j,k
)
, (15)

θi j,k, θ
′
i j,k ∈ [0, π]⇒ θ′i j,k = θi j,k. (16)

By combining the above two results, we conclude that for every edge ei j and its adjacent edge e jk,
the geometric triplet g′i j,k =

(
l′i j, l′jk, θ

′
i j,k
)

remains identical to gi j,k under any spatial rotation (and
translation). Hence, the Unified Graph structure fully preserves lengths and angles, guaranteeing
invariance of its geometric descriptors with respect to orthonormal transformations in R3. Formally,
for all rotation matrices R with R⊤R = I and translation vectors b, the Unified Graph definitions
ensure g′i j,k = gi j,k,∀ ei j, e jk ∈ E, which completes the proof of rotational invariance in the Unified
data structure framework.
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A.2 Capability of the Unified Graph in Distinguishing Molecular Isomerism

The Unified Graph T proposed in this work combines topological and geometric features to represent
molecules. It includes the topology of nodes and edges as well as geometric descriptors G, which
encode edge lengths and angles at shared vertices. This subsection evaluates the capability of
the proposed representation in distinguishing different types of molecular isomerism [Axelrod and
Gomez-Bombarelli, 2023].

• Constitutional Isomers (Structural Isomers). These isomers differ in the connectivity of atoms,
i.e., their topological structures are distinct. Since the Unified Graph explicitly encodes edge
connectivity relationships in CE, structural differences in connectivity are directly reflected in the
graph, allowing effective differentiation between constitutional isomers [Datta and Limpanuparb,
2021].
• Cis/Trans Isomers (Geometric Isomers, E/Z Isomers). Geometric isomers share the same

connectivity but differ in the spatial arrangement of substituents due to constraints such as double
bonds or ring structures. These differences manifest as variations in certain interatomic distances
or bond angles. The geometric descriptors li j and θi j,k in the Unified Graph can capture these
variations, enabling differentiation between cis/trans or E/Z isomers [Smith, 2009].
• Diastereomers. Diastereomers, especially those with multiple chiral centers, are not mirror images

and often exhibit measurable differences in local geometric features such as bond lengths, bond
angles, or interatomic distances. These differences are encoded in the geometric descriptors G,
allowing the Unified Graph to distinguish most diastereomers effectively.
• Enantiomers (Optical Isomers). Enantiomers are non-superimposable mirror images that are

identical in connectivity, bond lengths, and bond angles but differ in their handedness. Since the
Unified Graph only uses unsigned lengths and angles without encoding chirality or orientation
explicitly, it cannot distinguish between enantiomers, as their representation in T would be
identical [Mislow and Siegel, 1984].
• Conformers (Conformational Isomers). Conformational isomers arise from rotations around

single bonds, typically resulting in different spatial arrangements of atoms. If these conformational
changes do not significantly alter equilibrium bond lengths or angles, and if only one specific
conformer is represented in the graph, such differences may not be captured. Hence, rapid
interconversion between conformers is usually ignored in the Unified Graph representation [Lovell
et al., 2000].

In summary, the Unified Graph T effectively distinguishes most isomer types, including constitutional
isomers, geometric isomers, and many diastereomers. However, it has limitations in identifying
enantiomers due to the absence of chirality-specific descriptors. Future extensions could incorpo-
rate chirality-sensitive features, such as signed dihedral angles or higher-dimensional orientation
information, to enhance its capability to distinguish optical isomers.

A.3 Are Explicit Torsion Angles Necessary?

Step 1. Are torsion angles missing? A torsion (dihedral) angle ϕi jkl is fully determined by the six
inter-atomic distances of a four-atom chain (i, j, k, l):

ϕi jkl = atan2
(
(r ji×r jk) · rkl, (r ji×r jk) · (r jk×rkl)

)
,

where rab = xb − xa, xa = (xa, ya, za). Since our molecular graph already provides all pairwise
distances within a 6 Å cutoff, and message passing runs for at least three layers, an i→ l path that
closes the i− j−k−l quadrangle always exists. Thus, the network can implicitly reconstruct torsion
angles without requiring explicit torsion features.

Step 2. Why not add explicit torsion anyway? To test the benefit of explicit torsion encoding, we
added [sin ϕi jkl, cos ϕi jkl] on every rotatable bond while keeping all other hyperparameters unchanged.
As shown in Table 8, the performance difference on QM9 property benchmarks is minimal: only
Cv shows a moderate gain (+10.3%), while HOMO/LUMO/GAP performance even drops slightly
(-6.67%). However, Table 9 shows that adding torsions sharply increases GPU memory and runtime
(up to 2.6× slower), indicating that the marginal accuracy benefits do not justify the computational
overhead.
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Table 8: Explicit torsion ablation on QM9. Results are MAE (↓) with standard errors in gray subscript.

Task (MAE) w/o Torsion w/ Torsion ∆ (%)

α (↓) 0.2830.003 0.2810.003 +0.71
Cv (↓) 0.1260.003 0.1130.003 +10.3
ZPVE (↓) 0.00056e-05 0.00056e-05 0.0
HOMO/LUMO/GAP (↓) 0.00301e-05 0.00321e-05 -6.67
Average – – +1.00

Table 9: Efficiency comparison. GPU memory usage and step time are reported in Pretrain/SFT(QM8)
format with global batch size 128/64.

Model variant GPU Mem (GB) ↓ Step time (ms) ↓

Ours (implicit) 44.4/14.4 987/731
+Explicit torsion 64.6/29.4 2623/1316

Step 3. Robustness to conformer sensitivity. Beyond efficiency, we further validated robustness
on QM7/8/9 conformer sensitivity benchmarks (see Section 4). MuMo consistently outperforms
UniMol under perturbations, confirming that implicit torsion modeling is sufficient and our injection-
enhanced design maintains strong robustness to 3D geometric noise.

B Relationship with Previous Methods

Understanding the relationship between our proposed method and prior approaches is crucial for
situating our contributions within the broader research landscape. This section aims to highlight
the key distinctions and improvements introduced by our model while also acknowledging the
foundational principles laid by existing methodologies.

B.1 Mamba State Space Model

The Mamba Model. State Space Models (SSMs) are a class of mathematical frameworks widely
used for modeling temporal or sequential data by describing latent dynamics and observations [Gu
and Dao, 2023]. An SSM typically consists of two components: a latent state evolution equation and
an observation equation. Formally, let ht ∈ R

d represent the latent state at time t, and let yt ∈ R
o be

the corresponding observation. The SSM is defined as:
ht+1 = Aht +But + ηt, yt = Cht + ϵt, (17)

where ut is an input sequence, ηt and ϵt are process and observation noise, respectively, and
A,B,C are model parameters that govern the latent dynamics and the observation process. Mamba
builds on the SSM framework and introduces significant advancements to enhance its efficiency
and applicability to long-sequence modeling. By leveraging the SSM’s inherent ability to capture
long-range dependencies, Mamba employs a selective scanning mechanism that optimizes the
representation of sequences across diverse time scales. Specifically, Mamba avoids the pitfalls of
full dense computation by introducing a structured representation of state transitions that achieves
logarithmic scaling in time complexity.

There are several core innovations of Mamba, and that is why we use Mamba as a core stacked
module for fusion modeling. a) Logarithmic Scaling in Time Complexity. Mamba reformulates the
SSM’s computation by leveraging selective updates to the state vector ht, reducing computational
overhead from O(T 2) (where T is the sequence length) to O(T log T ). This efficiency makes it suitable
for applications involving very long sequences, such as large molecular data or genomic data.

b) Hardware-Aware Optimizations. Mamba introduces approximations to matrix exponentials that
are hardware-friendly, enabling efficient computation on modern accelerators like GPUs and TPUs
without sacrificing modeling accuracy.

c) General Applicability. The model supports diverse data modalities, such as text sequence, and time
series, by adapting the SSM framework to handle modality-specific structures, making it a versatile
tool for various sequence modeling tasks.
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In Mamba, the continuous-time state evolution is modeled as:

dh(t)
dt
= Ah(t) +Bu(t), (18)

where A is parameterized to ensure stability. This differential equation is solved efficiently using
approximations of matrix exponentials:

h(t + ∆t) ≈ eA∆th(t) +
∫ ∆t

0
eAsBu(t + s) ds. (19)

By discretizing the system with high precision and leveraging sparsity in A, Mamba achieves efficient
state transitions and improved memory usage. Mamba’s selective state-space design enables it to
handle sequences spanning thousands to millions of time steps while maintaining accuracy and
efficiency. These features make it particularly suitable for tasks such as protein structure prediction,
time-series forecasting, and for sure molecular representation learning.

Discussion of Relationship. Mamba serves as the sequence encoder in our multimodal molecular
framework, offering efficient and scalable modeling of SMILES sequences via state-space dynamics.
Its recurrent architecture not only improves computational efficiency but also aligns well with our
Injection-Enhanced Attention (IEA, basic module of PI) design. By maintaining an evolving latent
state, Mamba naturally accommodates injected structural priors without disrupting local token
interactions.

However, Mamba is not central to the methodological contributions of this work. Our core innovations,
the Structured Fusion Pipeline and asymmetric cross-modal injection, define the model’s effectiveness
in robust multimodal fusion. These techniques are model-agnostic and can be applied to other
sequence encoders (e.g., Transformers). Mamba’s role is to enhance the stability and propagation of
injected priors with sequence stream, but it does not influence the fundamental novelty or adaptability
of our approach.

B.2 Breaking of Retrosynthetically Interesting Chemical Substructures

Retrosynthetic analysis is a systematic approach in organic synthesis that involves deconstructing
a target molecule into simpler precursor structures by breaking bonds in a logical and chemically
feasible manner [Law et al., 2009]. This process is guided by the identification of strategic bonds,
which, when retrosynthetically cleaved simplify the molecule while preserving its essential functional
groups. The ultimate goal is to map out potential synthetic routes, starting from readily available
building blocks.

In retrosynthesis, disconnection is the conceptual reversal of a bond-forming reaction, often sym-
bolized by a double-headed arrow (⇒). For instance, consider the retrosynthesis of benzyl alcohol
(C6H5−CH2OH):

C6H5−CH2OH⇒ C6H5−CH2X + X−OH (20)

In this example, a disconnection of the hydroxymethyl group (−CH2OH) from the benzyl group
(C6H5−) suggests two plausible precursors: benzyl halide (C6H5−CH2X) and a nucleophile such as
water (H2O) or hydroxide ion (OH−).

Another classic example is the retrosynthetic analysis of aspirin (acetylsalicylic acid, C9H8O4):

C9H8O4 ⇒ C7H6O3 + CH3COCl (21)

Here, the ester bond (−COO−) in aspirin is retrosynthetically cleaved to yield salicylic acid (C7H6O3)
and acetyl chloride (CH3COCl) as precursors. These intermediates suggest a forward synthesis
involving esterification:

C7H6O3 + CH3COCl
Base
−−−→ C9H8O4 + HCl (22)

The disconnection approach is not arbitrary but relies on retrosynthetic transformations that correlate
to known reaction types in synthetic chemistry, such as nucleophilic substitution, electrophilic
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addition, or condensation reactions. By iteratively applying these transformations, a chemist can
work backward from a complex molecule to identify feasible synthetic routes.

This method is particularly powerful when applied to complex natural products or pharmaceuticals,
where the identification of key disconnections can dramatically simplify synthesis planning. For
example, in the retrosynthesis of penicillin derivatives, the β-lactam ring is often identified as a core
structural unit to preserve, while strategic disconnections focus on assembling the side chains and
core step by step.

The BRICS (Breaking of Retrosynthetically Interesting Chemical Substructures) fragmentation
method deconstructs complex molecules into chemically meaningful substructures by leveraging
retrosynthetic principles. Through rule-based disconnection strategies, BRICS identifies synthetically
accessible bond cleavages while preserving chemically stable moieties, such as aromatic rings, and
targeting bonds like carbon-carbon single bonds or carbon-heteroatom bonds near functional groups.
Each fragment is annotated with a placeholder atom (e.g., “*") to mark cleavage sites, enabling recom-
bination in synthetic processes. For example, benzoic acid (SMILES: CC1=CC=CC=C1C(=O)O) is
fragmented into [*]C1=CC=CC=C1 and [*]C(=O)O, retaining the functional features of the parent
molecule.

The integration of BRICS into cheminformatics tools like RDKit has streamlined its application
across large molecular datasets. With automated fragmentation processes, BRICS enables the
efficient generation of annotated substructures for drug discovery, combinatorial library design, and
virtual screening. In fragment-based drug discovery, BRICS facilitates the identification of minimal
structural units critical for biological activity, supporting structure-activity relationship studies and
lead optimization.

Discussion of Relationship. The BRICS fragmentation method plays a limited yet practical role
in the molecular modeling framework presented in this work, serving primarily as a preprocessing
module for extracting meaningful substructures from molecules. Its function is to provide a consistent
and logical segmentation of molecular structures, supporting our geometry partitioning by instructing
bond pruning. We use the instructions that describe which bond should be cut provided by BRICS to
lead our geometry substructure partitioning, which is a part of our innovations.

Furthermore, it is crucial to emphasize that BRICS serves as an interchangeable, modular component
within our workflow. While we have selected BRICS as a representative example for fragment
generation, the framework is designed to accommodate alternative or more advanced fragmentation
techniques. This flexibility ensures that researchers can integrate methods better suited to their
specific molecular systems or scientific objectives. For instance, as new chemical structures and
synthesis pathways are discovered, fragmentation rules may evolve to reflect these advancements,
providing an avenue for continual improvement. However, the refinement of BRICS or its alternatives
is not the focus of this work. Rather, our interest lies in demonstrating the versatility of our framework,
allowing for the seamless substitution of fragmentation methods without affecting the validity or
applicability of the overall system.

B.3 Limitations and Broader Impact

Broader Impact MuMo explores a robust and asymmetric approach to multimodal molecular fusion,
aiming to improve the reliability of structure-informed representation learning. Beyond its immediate
performance gains, the design principles behind MuMo—such as late-stage modality injection and
stable structural priors—may inspire future research in multimodal learning, especially in settings
where modality-specific semantics must be preserved (e.g., vision-language tasks, protein-compound
modeling, or biomedical imaging). We hope our work contributes to a broader understanding of how
to design more interpretable and flexible fusion strategies in deep learning.

Limitations Like most molecular learning frameworks, MuMo requires fine-tuning for each down-
stream task, which can be resource-intensive in settings with limited data or computing power. In
future work, we aim to develop a more generalizable multitask framework based on MuMo, enabling
cross-task transfer and applicability to a broader range of real-world applications in drug discovery,
including candidate prioritization, toxicity screening, and multi-objective molecular optimization.

We emphasize that MuMo is a research tool and does not provide direct clinical or regulatory advice.
Responsible use of the model requires expert oversight, especially when applied to sensitive applica-
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Algorithm 3 Unified Graph Batching (Detailed)
Input: List of Unified Graphs {T1, . . . ,TN}

Output: Batched Unified Graph T (batch) = (V(batch),E(batch),G(batch),C(batch)
E
,C(batch)
G
, batch)

1: Initialize T (batch) ← new T (), δv ← 0, δe ← 0 ▷ Initialize offsets of nodes and edges
2: for k ← 1 to N do
3: Step 1: Merge Entity Features
4: V(batch) ←V(batch) ∪ Tk.V ▷ Merge nodes (atoms)
5: E(batch) ← E(batch) ∪ Tk.E ▷ Merge edges (bonds)
6: G(batch) ← G(batch) ∪ Tk.G ▷ Merge geometry features
7: Step 2: Adjust Constraints
8: C

(batch)
E

← C
(batch)
E

∪ {(i + δv, j + δv) | (i, j) ∈ Tk.CE} ▷ Update edge index offset
9: C

(batch)
G

← C
(batch)
G

∪ {(Idx(ei j) + δe, Idx(e jk) + δe) | {Idx(ei j), Idx(e jk)} ∈ Tk.CG} ▷ For geometry
10: Step 3: Update Offsets
11: δv ← δv + |Tk.V| ▷ Update node offsets
12: δe ← δe + |Tk.E| ▷ Update edge offsets
13: end for
14: batch←

[
k · 1|Tk .V|

]N
k=1

▷ Record batch index
15: return T (batch)

tions such as toxicity prediction or candidate drug selection. Future work may explore integrating
uncertainty quantification or domain adaptation techniques to further align model predictions with
safety and ethical considerations.

C Implementation & Experiment Details

C.1 Unified Graph Batching

In the Unified Graph T , the entity group TEntity = (V,E,G) includes the node setV, edge set E, and
the geometric descriptors G. Meanwhile, the constraint group TConstraint = (CE,CG) specifies topo-
logical connectivity through CE and shared-vertex edge-pair relationships through CG. Algorithm 3
provides a procedure for merging multiple Unified Graphs {T1, . . . ,TN} into a single batched graph
T (batch). By appropriately offsetting the node and edge indices and unifying the constraint sets, it
ensures that each graph’s internal structures and relationships remain consistent. Adopting such a
Unified batching approach is essential when handling large-scale graph data, as it facilitates parallel
processing and significantly improves both training and inference efficiency.

C.2 Injection Enhanced Attention (IEA) within PI Implementation

A key challenge in multimodal learning with Unified Graphs is to effectively combine topological
and geometric features with sequential embeddings. In this work, we propose an injection-enhanced
attention (IEA) approach to address this challenge. As shown in Algorithm 4, after performing
cross-attention between the sequence representation and the Unified Graph node embeddings, we
further inject the globally aggregated features from the Unified graph into the global token [GT K]
via a residual connection. This injection, modulated by a learnable scalar α, enriches the [GT K]
token with structural insights while preserving its original contextual content. As a result, the model
acquires a more holistic understanding of both semantic and geometric aspects, thereby enabling
more robust information fusion for tasks that require a unified representation of topology, geometry,
and sequence semantics.

C.3 Substructure-Level Tokenizer

A critical challenge when encoding molecular structures is capturing chemical nuances within the
SMILES representation. To address this, we design a substructure-level tokenizer that segments
SMILES strings based on chemically meaningful units (see Table 11). Rather than splitting strictly
at character boundaries, we group tokens at natural substructures such as ring closures, chirality
annotations, charged atoms, multi-letter elements, and specific isotopes. This ensures that each
token remains a valid chemical entity, preserving the minimal functional meaning of each fragment.
Consequently, our tokenizer aligns more closely with fundamental chemical principles, reduces the
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Algorithm 4 Injection Enhanced Attention (Detailed)
Input: Sequence hiddens h(t)

S , batched Unified graph T (batch)

Output: Updated sequence hiddens h(t+1)
S , updated Unified batch T ′(batch)

1: h(t)
V
← T (batch).V ▷ Extract Unified graph node hiddens

2: Step 1: Compute Queries, Keys, and Values for Cross-Attention
3: h(t)

F ← graph2batch_sequence
(
h(t)
V
,T (batch).batch

)
▷ Graph→ sequence format

4: QS ,KS ,VS ← Linear(h(t)
S ) ▷ Sequence QKV

5: QF ,KF ,VF ← Linear(h(t)
F ) ▷ Integrated feature QKV

6: Step 2: Perform Symmetrized Cross-Attention
7: h(t+1)

F ← CrossAttention(QF ,KS ,VS ) ▷ Learn from sequence hiddens
8: h(t+1)

S ← CrossAttention(QS ,KF ,VF) ▷ Learn from fusion hiddens
9: Step 3: Injection-Enhanced Feature Representation

10: h(t+1)
V
← sequence2graph_batch

(
h(t+1)

F ,T (batch).batch
)

▷ Sequence→ graph format
11: hpooled

V
← GlobalAddPooling

(
h(t+1)
V
,T (batch).batch

)
▷ Global graph pooling

12: h(t+1)
S [GTK]← Norm

(
h(t+1)

S [GTK] + αhpooled
V

)
▷ Inject pooled vector into [GTK]

13: T ′(batch).V ← h(t+1)
V

▷ Update graph hiddens
14: return h(t+1)

S ,T ′(batch)

Table 10: Pretraining hyperparameters for MuMo.

Hyperparameter Value
Hidden size 768
Number of layers 16 (Attention-Mamba)
Number of attention heads 12
Activation function SILU
Normalization LayerNorm
Dropout rate 0.1 (attention)
Batch size 512
Learning rate 1 × 10−4

Learning rate scheduler Cosine with 2000 warmup steps
Epochs 2
Gradient accumulation Enabled
Precision Mixed precision (bf16)
Training time ∼5 hours on 4×A100-80GB GPUs

loss of pertinent information, and handles elaborate notations (e.g., [C@H], [12C], and %10) in a
chemically consistent manner. By retaining critical structural features within tokens, this approach
not only enhances the interpretability of token sequences but also leads to improved performance
across a wide range of molecular modeling tasks.

C.4 MuMo Pretraining

Pretraining Settings and Resources. The basic model setup was configured with a hidden size of
768, 16 attention-mamba layers, and 12 attention heads, ensuring robust model capacity. The training
batch size was set to 512, with a learning rate of 1e-4 and a cosine learning rate scheduler featuring
2000 warmup steps. We used SILU activation inside the Mamba module, layer normalization,
and dropout rates of 0.1 for both attention layers. The training spanned 2 epochs with gradient
accumulation and utilized mixed precision with bf16, optimizing computational efficiency. A single
pretraining process will take around only 5 hours on 4xA100-80G GPUs.

Pretraining Dataset. We adopt the ChEMBL-1.6M dataset [Gaulton et al., 2012] for pretraining,
which contains a curated set of bioactive molecules with experimentally validated properties. Com-
pared to large-scale yet noisy corpora like ZINC (mostly synthetically accessible fragments) and
PubChem (an extremely broad and noisy collection), ChEMBL provides high-quality, biologically
relevant molecules that better reflect the structure-function distributions seen in real-world tasks.
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Table 11: Token categorization in the substructure-level SMILES tokenizer. Tokens are grouped by
structural or semantic function, including atomic symbols, ring closures, bond types, and model-
reserved tokens. Examples and definitions are provided for clarity.

Category Examples Explanation

Basic atomic symbols C, N, O, F, S, P, B,
I, c, n, o, p, b, ...

Single-letter atomic symbols, including
lowercase aromatic forms. For example,
c typically denotes an aromatic carbon.

Halogens, multi letter ele-
ments

Cl, Br, Si, Na, Ca,
Mg, Fe, Zn, Al, K,
Li, Ag, Sn, ...

Two-letter symbols for halogens (e.g., Cl,
Br) and multi-letter element symbols (e.g.,
Na, Fe), often representing metals or met-
alloids.

Chiral / charged / isotopic
atoms

[C@H], [C@@H], [N+],
[O-], [13C], [nH],
[B-], [Na+], [S@],
[Si@@], [NH2+],
[14C], ...

Bracketed notations incorporating chi-
rality (@, @@), charges (+, -), isotopes
(e.g., [13C], [14C]), and specific hydrogen
counts (e.g., [nH]).

Ring closures, branching 1, 2, 3, 4, 5, 6, 7,
8, 9, %10, %11, (, ),
...

Numeric labels (1–9, %10, %11, etc.) repre-
sent ring closures, while parentheses indi-
cate branching in molecular structures.

Bond types, special symbols -, =, #, /, \, :, ~,
@, ?, >, *, $, %

Various SMILES bond notations: single (-),
double (=), triple (#), and stereochemical
(/, \). Special symbols like :, ~, and punc-
tuation ($, >) are also included.

Extended atomic forms [C-], [NH+], [CH2-],
[S-], [n+], [I-],
[Na], [C@], [C@@],
[SiH], [Sn+2], [O+],
[B-], ...

Variations combining charge states ([C-],
[N+]), specific hydrogen counts ([CH2-],
[nH]), or heavy atoms represented in brack-
eted form.

More exotic isotopes/ra-
dionuclides

[2H], [3H], [11C],
[13C], [15N], [18F],
[64Cu], [99Tc],
[197Au], [238U], ...

Tokens representing specific isotopes and
radionuclides in bracket notation. These
often appear in specialized datasets, such as
radiotracers.

Special model tokens [GTK], [SEP], [MASK],
[UNK], [PAD], [BOS],
[EOS], ...

Reserved tokens used in machine learning
models for sequence processing, including
classification markers, masks, unknown
placeholders, and padding symbols.

This choice allows our model to learn from pharmacologically meaningful signals while avoiding
excessive noise or chemical redundancy.

Importantly, we deliberately pretrain on a relatively small molecular corpus (1.6 million molecules)
and still observe fast convergence within just 2 epochs. As demonstrated in later ablation studies
(Section D.2), further scaling up pretraining data to larger datasets such as full PubChem (>10M
molecules) does not yield consistent downstream improvement. This finding leads to a claim: effective
representation learning for molecules does not require massive-scale pretraining, especially
when the pretraining set is chemically diverse and task-relevant. The MuMo model, with its efficient
IEA design and structural fusion pipeline, enables strong generalization from limited-scale pertaining.

Pretraining Effectiveness. We have also done pretraining ablation studies to see how the pretraining
process contributes to the downstream performance. Please see Appendix D.2 for details.

C.5 Molecular Properties Predction

C.5.1 Baselines

We compare MuMo against a wide range of strong baselines, categorized into three primary groups:
sequence-based models, graph-based networks, and 3D geometry-aware architectures.
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Table 12: Overview of datasets from MoleculeNet for molecular properties prediction experiments.

Dataset Category Task Type Tasks Molecules Split Metric

BACE Biophysics Classification 1 1513 Scaffold AUROC
BBBP Physiology Classification 1 2039 Scaffold AUROC
Tox21 Physiology Classification 12 7831 Random AUROC
SIDER Physiology Classification 27 1427 Random AUROC
ClinTox Physiology Classification 2 1478 Random AUROC
ESOL Physical Chemistry Regression 1 1128 Random RMSE
Lipophilicity Physical Chemistry Regression 1 4200 Random RMSE
FreeSolv Physical Chemistry Regression 1 642 Random RMSE

Sequence-based models operate on SMILES strings and typically leverage Transformer-style en-
coders trained with masked language modeling. These include ChemBERTa-2 [Ahmad et al., 2022],
a RoBERTa-style model pretrained on large-scale SMILES data, and MolBERT [Fabian et al., 2020],
which incorporates chemically-informed masking strategies during pretraining. We also include
MolFormer [Ross et al., 2022], a long-range Transformer architecture designed to capture global
context in molecular sequences, as well as TranFoxMol [Gao et al., 2023], a SMILES Transformer
that uses fine-grained tokenization schemes.

Graph-based models treat molecules as undirected graphs, where atoms are nodes and bonds are
edges. Our evaluation includes FPGNN [Cai et al., 2022] (a fingerprint-enhanced GNN variant), D-
MPNN [Yang et al., 2019], which propagates information along directed bonds, and GROVER [Rong
et al., 2020], a graph Transformer pretrained with both contrastive and contextual prediction objec-
tives. We also consider AttentiveFP [Xiong et al., 2019], which employs gated attention over atom
neighborhoods, as well as two popular pretraining strategies from: AttrMasking [Hu et al., 2020b]
(attribute prediction) and ContextPred [Hu et al., 2020a] (subgraph context prediction). Additionally,
we include an AutoML-tuned GNN pipeline (DeepMol) [Correia et al., 2024] for automated base-
line selection and optimization. For 3D geometry-aware baselines, we compare to Uni-Mol [Zhou
et al., 2023], a SE(3)-equivariant molecular model that explicitly encodes atomic coordinates and
interatomic distances using conformer input. It achieves strong performance on structure-sensitive
tasks but is known to be susceptible to conformer variability.

All baselines are implemented using their original codebases or official checkpoints when available,
with training and evaluation protocols aligned to ensure fair comparison.

C.5.2 Datasets & Settings

MoleculeNet [Wu et al., 2018]. To evaluate the performance of our method, we utilized benchmark
datasets from MoleculeNet, a widely recognized and authoritative resource for molecular property
prediction tasks. As Table 12 shows, the selected datasets encompass a diverse range of molecular
properties, covering both classification and regression tasks, as well as single-task and multi-task
learning scenarios. Specifically, the classification datasets include biophysical and physiological
properties, such as drug permeability across the blood-brain barrier (BBBP) and toxicity prediction
(Tox21, SIDER, ClinTox), while the regression datasets focus on physical chemistry properties, such
as solubility (ESOL) and lipophilicity.

Consistent with the official recommendation, for single-task classification problems, we adopt
the scaffold split strategy, which ensures that structurally similar molecules are grouped into the
same subsets. This approach enhances the robustness of model evaluation by simulating realistic
generalization scenarios where models must predict molecular properties for novel scaffolds. In
contrast, for multi-task classification and regression problems, we use a random split strategy. This is
because multi-task models benefit from shared representations across tasks, and regression tasks often
have fewer data points, making scaffold splitting too restrictive and leading to insufficient training
samples, which is also not fair for the benchmarks.

To assess model performance on classification tasks, we use the area under the receiver operating
characteristic curve (AUROC). This metric is preferred because it is insensitive to class imbalance,
which is common in molecular datasets. Unlike accuracy, which can be misleading when dealing with
imbalanced datasets, AUROC evaluates a model’s ability to distinguish between positive and negative
classes across different decision thresholds. For regression tasks, we use the root mean square error
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(RMSE), which quantifies the magnitude of prediction errors and is well-suited for evaluating the
continuous property predictions required in physical chemistry applications.

Therapeutics Data Commons (TDC) [Huang et al., 2021]. To further evaluate the robustness and
generalizability of MuMo, we include benchmark datasets from the Therapeutics Data Commons
(TDC), a comprehensive collection of machine learning-ready datasets for drug discovery and
development. The selected datasets span various therapeutic tasks, including drug–target interaction
(DTI), ADMET property prediction, and drug response estimation, reflecting the complexity and
diversity of real-world pharmaceutical applications.

TDC provides standardized data splits and evaluation protocols, enabling reproducible benchmarking.
For all included tasks, we adopt the official 5-fold scaffold splits provided by TDC to ensure fair
comparison across models. This split strategy partitions molecules based on their core scaffolds,
ensuring that test sets contain chemically distinct compounds not seen during training. Such a split
is particularly challenging yet more realistic, as it simulates the practical scenario of predicting on
structurally novel molecules.

For classification tasks in TDC (e.g., BBB, HIA), we report the area under the ROC curve (AUROC),
consistent with MoleculeNet [Wu et al., 2018]. For regression tasks (e.g., LD50, Pgp), we use the
mean absolute error (MAE), which is consistent with the metric on the leaderboard. All metrics are
reported as the mean and standard deviation across five folds to ensure statistical robustness.

Datasets Selection. We selected 14 datasets from TDC because they are part of a well-curated
benchmark suite with standardized leaderboards, allowing for direct comparison with state-of-the-
art models. These datasets focus on ADMET-related tasks, which are critical for drug development,
and have been widely adopted in recent multimodal and pretrained molecular modeling studies.
Where available, we include leaderboard results for competitive baselines to ensure fairness and
transparency in our evaluation.

From MoleculeNet, we selected commonly used datasets for both classification and regression
tasks, ensuring broad coverage of molecular properties and compatibility with prior literature. We
deliberately exclude datasets such as QM9, which provide precise atomic coordinates for small
molecules, as our method treats 3D geometry as auxiliary information rather than a primary input.
Moreover, QM9 conformers are computed via energy optimization and are known to be sensitive to
conformer noise—an issue we aim to address rather than depend on. Our dataset choices thus prioritize
both benchmarking relevance and alignment with the assumptions and goals of our framework.

Computing Resources. MuMo requires a minimum of 24 GB GPU memory for fine-tuning and can
be trained on a single NVIDIA RTX 4090. The actual training time varies by task depending on the
number and size of molecules. Empirically, training on a dataset with 1000 molecules typically takes
10–20 minutes. Larger GPUs or multi-GPU setups can further accelerate training.

Hyperparameter Settings. While the overall architecture and training strategy remain consistent,
some hyperparameters may vary slightly across different downstream tasks depending on dataset size
and task type. We do not enumerate all task-specific configurations here; please refer to our released
code for full hyperparameter details and per-task settings.

C.6 Insight of Representation Learning in Pretraining

To illustrate the layer-wise feature extraction capability of our model, we present a Uniform Manifold
Approximation and Projection (UMAP) visualization of the hidden representations across all 16
layers, as shown in Figure 7. This visualization was generated by pooling the high-dimensional
hidden states of molecular representations from a set of molecules and projecting them into two
dimensions using UMAP [McInnes et al., 2018]. For this analysis, we selected ten distinct molecular
scaffolds [Schuffenhauer et al., 2007], each represented by a unique color in the plot to facilitate
differentiation.

Scaffold [Schuffenhauer et al., 2007], in cheminformatics, refers to the core chemical structure
shared by molecules, typically including the central ring system and key functional groups. Scaffolds
are widely used to group structurally similar molecules, as they often correlate with biological or
chemical properties. Using scaffolds in this experiment allows us to evaluate the model’s ability to
capture and separate key structural features, aligning with their importance in drug discovery and
molecular design.
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Figure 7: UMAP visualization of the model’s sequence hidden representations, where each point
represents a molecular scaffold and colors denote 10 distinct scaffold types. The projection illustrates
the progression of feature separability and discriminative power across the model’s 16 layers.

In our experiment, the first 8 layers of the model are dedicated to SMILES sequence modeling, while
layers 9-16 progressively incorporate multimodal fusion through IEA. From the visualization, we
observe that in the early layers (1-4), molecules from different scaffolds are mixed together, showing
minimal differentiation. As the layers deepen, particularly in layers 5-8, clear boundaries begin to
emerge, and molecules from the same scaffold are well-separated, indicating that the model has
effectively captured the features of SMILES sequences. Starting from layer 9, as topological and
geometric information is gradually integrated, the scaffold separability remains stable. This analysis
highlights the rationale behind introducing multimodal fusion in the latter half of the model: by
first independently modeling SMILES sequences and the unified representations of topology and
geometry, we leverage the strengths of each modality without early-stage interference, ensuring
optimal feature extraction for each data structure.

C.7 Molecular Similarity Analysis

Molecular similarity analysis evaluates the effectiveness of pre-trained embeddings (dissimilarity)
by assessing their correlation with molecular dissimilarity and similarity representations, serving
as a benchmark for the embeddings’ scientific validity and consistency [Ross et al., 2022]. For the
experiments, we randomly sampled 20,000 molecules from the ZINC-250k dataset and generated
10,000 random molecule pairs. Each molecule was passed through the pre-trained model to infer
its embeddings. For each molecule pair, the Euclidean distance between their embeddings was
calculated and then correlated with four molecular dissimilarity and similarity representations:
Tanimoto distance, the number of atoms in the Maximum Common Substructure (MCS), Dice
similarity, and Cosine similarity. The representations were calculated based on the Morgan fingerprint
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(radius=2) of molecules, a widely-used molecular descriptor that encodes structural features into
fixed-length binary vectors [Morgan, 1965].

To ensure the reliability of the results, we randomly divided the dataset into five groups and ran
each model on these splits, reporting the mean and standard error across the five runs. We selected
the ZINC-250k dataset [Gómez-Bombarelli et al., 2018] for this experiment because neither our
model nor the baselines were extensively pre-trained on this dataset, ensuring a fair comparison.
Additionally, we chose three baseline models that are strong pre-trained models with demonstrated
representation capability and robust performance on downstream molecular tasks. These baselines
are well-suited for providing molecular embeddings, making them appropriate for evaluating the
effectiveness of our approach. Pearson correlation was used to measure the relationship between
the Euclidean embedding distance (dissimilarity) and each molecular dissimilarity or similarity
representation. A strong correlation (larger absolute value of the correlation coefficient) indicates that
the model’s embeddings better capture the chemical similarity between molecules.

The four representations used in this analysis provide comprehensive and scientifically validated
measures of molecular dissimilarity or similarity:

(1) Tanimoto distance (dissimilarity). Widely used in cheminformatics for virtual screening and
chemical similarity searches, Tanimoto distance derives from the Tanimoto similarity, a fingerprint-
based measure of overlap between two molecular representations. Let fA and fB be binary or
real-valued fingerprint vectors for two molecules. The Tanimoto similarity T is given by:

T (fA,fB) =
fA · fB

∥fA∥
2 + ∥fB∥

2 − fA · fB
. (23)

We define the Tanimoto distance D as

D(fA,fB) = 1 − T (fA,fB). (24)

A larger D(fA,fB) (closer to 1) indicates greater dissimilarity, whereas smaller values (close to 0)
signify higher similarity [Rogers and Hahn, 2010].

(2) Number of atoms in Maximum Common Substructure (similarity). Given two molecules
Mol1 and Mol2, the MCS identifies the largest subgraph that is isomorphic in both. We record the
number of atoms in this common subgraph as:

MCS(Mol1,Mol2) =
∣∣∣MaxSub(Mol1,Mol2)

∣∣∣, (25)

where MaxSub(Mol1,Mol2) is the maximum common substructure (in terms of atomic count). This
metric provides an interpretable measure of the structural overlap (i.e., backbone or scaffold similarity)
between two molecules [Raymond and Willett, 2002].

(3) Dice Similarity (similarity). Similar to the Tanimoto measure, Dice similarity emphasizes
shared fingerprint features. For two fingerprint vectors fA and fB, it is defined as:

Dice(fA,fB) =
2 (fA · fB)
∥fA∥

2 + ∥fB∥
2 . (26)

The Dice similarity often accentuates intersecting bits more strongly than Tanimoto, making it
sensitive to certain molecular distributions [Willett et al., 1998].

(4) Cosine Similarity (similarity). Another vector-based metric is cosine similarity, which captures
the cosine of the angle between two fingerprint vectors:

Cosine(fA,fB) =
fA · fB

∥fA∥∥fB∥
. (27)

This measure remains robust to scaling, focusing on the orientation of the vectors rather than their
magnitude. A higher cosine similarity indicates a greater proportion of shared features between the
two molecules [Bender and Glen, 2004].
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Figure 8: Visualization of molecular similarity results of MuMo (first row) and MoLFormer (second
row). The plots show the relationship between embedding Euclidean distance and four molecular
dissimilarity and similarity representations: (a) Tanimoto distance; (b) number of atoms in maximum
common substructure (MCS); (c) Dice similarity; (d) cosine similarity for our model (first row) and
MoLFormer (second row). Each plot includes scatter points, and a linear regression trend line (green).

Euclidean Distance (dissimilarity). To assess the performance of the model-generated embeddings,
we compute the Euclidean distance between the learned molecular representations (inferences from
pretrained model). Given two embeddings zA, zB ∈ R

d, the Euclidean distance is defined as:

dE(zA, zB) = ∥zA − zB∥. (28)

Since Euclidean distance measures the separation between embeddings in the latent space, a larger
dE value indicates greater dissimilarity, while a smaller dE suggests higher molecular similarity.

Correlation with Molecular Similarity Representations. To evaluate how well the embedding
space aligns with established molecular similarity measures, we compute the Pearson correlation
coefficient between Euclidean distance dE and four molecular similarity/dissimilarity representations:

• Tanimoto Distance D (dissimilarity): Positively correlated with dE , as molecules with greater
Tanimoto distance should have larger Euclidean distances in the embedding space.
• Maximum Common Substructure (MCS) Size (similarity): Negatively correlated with dE , as

molecules sharing larger common substructures should be mapped closer together.
• Dice Similarity (similarity): Negatively correlated with dE , since a higher Dice similarity implies

molecular resemblance.
• Cosine Similarity (similarity): Negatively correlated with dE , as similar molecules should have

embeddings with smaller Euclidean distances.

To quantify model performance, we compute the Pearson absolute correlation coefficient between
dE and these four representations. A higher absolute correlation indicates that the learned embedding
space is more aligned with traditional molecular dissimilarity or similarity representations, suggesting
better representation learning.

Based on the results presented in Table 13, our model demonstrates competitive performance across
the selected pre-trained models, achieving the highest correlation among 3/4 representations, with
values approaching 0.5. This indicates a moderate correlation between the embedding Euclidean dis-
tance and molecular dissimilarity and similarity representations. The absence of a strong correlation
suggests that our embeddings capture a broader range of molecular features beyond the structural
similarities reflected in the selected representations.

Notably, MoLFormer proves to be a strong competitor, as evidenced by its comparable performance.
It is important to highlight that in their paper [Ross et al., 2022], significantly higher correlation values,
approaching 0.7, were reported. However, this can be attributed to their use of the same dataset,
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Table 13: Experiemnt results of molecular similarity analysis. The Absolute Pearson correlation
coefficient (between Euclidean distance and the four dissimilarity/similarity representations) is
reported as the metric. Values represent the mean and standard deviation over five runs.

Model Tanimoto Distance MCS Num Atoms Dice Similarity Cosine Similarity

MoLFormer 0.451(0.012) 0.363(0.013) 0.453(0.007) 0.445(0.013)
ChemBERTa-2 0.338(0.008) 0.272(0.009) 0.339(0.013) 0.334(0.013)
MolBERT 0.431(0.006) 0.275(0.010) 0.437(0.006) 0.414(0.006)
MuMo 0.490(0.006) 0.290(0.010) 0.498(0.008) 0.487(0.006)

Figure 9: Attention visualization of MuMo for two molecules.
(a) O=C1N(CCO)C2=CC=CC=C2N1CCO and (b) O=C(CCCO)NC1=CC=C(F)C=C1.
Each molecule is analyzed across all 16 layers, with attention scores plotted every two layers. The
MuMo model starts interacting with GGFN information from layer 9.

10M-PubChem [Kim et al., 2016], for both pre-training and evaluation, which likely introduces
dataset overlap and inflates the results.

For a better comparison between MoLFormer and our model, we visualize results from both models
in Figure 8. The first row of the figure represents the visualization for our model, while the second row
corresponds to MoLFormer. Each subplot shows the relationship between the Euclidean embedding
distance and a molecular dissimilarity or similarity representation. For our model, the distributions
appear more elongated and flattened along the diagonal, indicating a stronger correlation. In contrast,
the plots for MoLFormer exhibit more rounded distributions, reflecting weaker correlations. This
difference suggests that our model’s embeddings are more effective, as evidenced by the stronger
alignment with the molecular dissimilarity and similarity representations.
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Table 14: Computing cost comparison in the pretraining stage. We compare model scale, dataset size,
and estimated pretraining time across different molecular foundation models.

Model Scale Pretrain Dataset Size Pretrain Time

MoLFormer-Base 44.28M 1.1B 16×V100-32G, Est. 104h
MoLFormer-XL 86.75M 1.1B 16×V100-32G, 208h
UniMol 47.61M 19M 4×V100-32G, 20h
UniMol-v2 1.1B 884M 64×A100-80G, Est. 2 weeks
MuMo 505M 1.6M 4×A100-80G, 5h

Table 15: Computing efficiency comparison with Uni-Mol-v2. MuMo achieves comparable perfor-
mance with substantially fewer parameters, less pretraining data, and drastically reduced compute
time.

Model Model Size Pretrain Data Size Computing Resources

Uni-Mol-v2 1.1B 884M from ZINC20 64×A100-80G, Est. 1–3 Weeks
MuMo 505M 1.6M from ChEMBL 4×A100-80G, 5 Hours

C.8 Attention Analysis for Fusion Effectiveness

To evaluate the effectiveness of core stream fusion in our model, we visualized the self-attention
scores across the 16 main layers of the MuMo model (comprising 8 Attention-Mamba layers and
8 multimodal fusion layers) when inferring two molecules randomly selected from the ZINC-250k
dataset [Gómez-Bombarelli et al., 2018], as shown in Figure 9. Attention scores were plotted every
two layers, providing a detailed view of how the model evolves through its hierarchical feature
extraction process. This visualization enables us to track the progression of contextual relationships
captured by the sequence flow along with its interaction with the structural fusion module using the
Progressive Injection (PI) method.

In the first eight layers, the model primarily focuses on self-modeling within the sequence flow
without incorporating topology or geometry information. During this stage, attention scores exhibit a
relatively uniform distribution, indicating limited contextual understanding and a lack of meaningful
interatomic relationships. Starting from layer 9, the model begins interacting with the outputs of the
structural fusion module, starting the hierarchical injection with other structural modalities. This
interaction enables the model to capture more localized information, as evidenced by the increased
attention weights near the diagonal in the fifth subfigure for both molecules in Figure 9(a) and 9(b).
These highlights correspond to strong pairwise dependencies within local regions of the molecular
structure. In subsequent layers, the sequence flow continues to interact with topology and geometry
flows while independently refining its representations. By the final layer, the model demonstrates the
ability to capture long-range contextual relationships, as seen in the attention scores for distant atom
pairs. Additionally, the attention score of the [GLK] token (the first token) becomes significantly
stronger through the last 8 layers, showing it has captured rich representation in the molecular
by the Progressive Injection (PI) method, which enhances the model’s capacity for robust global
representations. This progression underscores the model’s ability to integrate multimodal information
effectively.

C.9 Training Cost Analysis

High efficiency in pretraining. As shown in Table 14, MuMo is highly efficient in the pretraining
stage, requiring only 5 hours on a 1.6M-scale dataset using 4×A100 GPUs, significantly less than
prior models that consume days or weeks but got better performance. In Table 15, we compare
the pretraining cost to the UniMol-v2 [Ji et al., 2024] model, showing our significant efficiency in
pretraining stage.

High efficiency in finetuning. In the finetuning stage (Table 16), even on our largest benchmark
dataset QM9 (133k samples), MuMo completes training in just 3.3 hours with modest GPU memory
(14 GB per card). For smaller datasets (few thousand samples), training typically finishes in under
30 minutes. These results demonstrate that MuMo offers strong performance without prohibitive
resource demands, making it practical for real-world use.
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Table 16: Computing cost on QM9 in the finetuning stage. We report the hardware configuration,
dataset statistics, and training runtime for fine-tuning MuMo (505M) on QM9.

Item Value

Dataset QM9
Sample Count 133,855
CPU Cores 32
CPU Intel(R) Xeon(R) Platinum 8480+
GPU Count 2
GPU Type NVIDIA A100-SXM4-80GB
Model Parameters 505M
Total FLOPs 65,218,081 GF
Epochs 10
Global Batch Size 64
Max GPU Memory Usage 14G per GPU
Data Preprocess Time 5 min
Training Time 3h 21m 51s

D Extended Experiments and Ablation Studies

To comprehensively evaluate the effectiveness of our proposed method and share our training expe-
rience with other researchers, particularly the innovations in the structural fusion pipeline and PI
(Progressive Injection), we conducted an extensive series of ablation studies. These experiments
not only validate the contributions of our approach but also provide valuable insights into training
strategies and model development. Our analysis systematically investigates the impact of various
components and innovations, including pretraining strategies, multimodal interaction mechanisms,
sequence data types, pretraining datasets, model capacity, and some hyperparameter configurations.

To ensure the rigor and scientific validity of our experiments, we began by focusing on multimodal
fusion. Specifically, starting from the best-performing model, we progressively removed one modality
at a time to establish three baseline models: the complete model (our proposed method), a model
fusing sequences and 2D graphs, and a sequence-only model. Based on comparisons of these three
baselines, we further conducted ablation studies by reducing or modifying individual modules within
each model to highlight the contributions of different components to the final performance. In this
section, we primarily use five medium-sized datasets from MoleculeNet, applying the recommended
split methods: scaffold split for BACE and BBBP, and random split for the others.

D.1 Contribution of Multimodal Combinations

In this section, we demonstrate the effectiveness of the proposed MuMo model and use the best model
as a baseline for ablation experiments. The full MuMo model represents our unaltered approach. To
investigate the impact of different modalities, we conducted the following variations: (1) removing
geometric information and the fusion of geometric and 2D topological flow, and (2) utilizing only
SMILES sequences for modeling without using any fusion methods. These two models are labeled
as Ablation Baseline 1 and 2 (AB1 and AB2) for other ablation experiments, with MuMo itself
designated as Ablation Baseline 3 (AB3). All other conditions were kept identical. After the same
pretraining process, the models were evaluated on five datasets, comprising three classification tasks
and two regression tasks from MoleculeNet, to ensure a comprehensive assessment.

From the results presented in Table 17, it is evident that the model without geometric information
experiences varying degrees of performance degradation across datasets, with a particularly significant
drop observed on the BACE dataset. This indicates that geometric information plays a critical role in
capturing subtle molecular properties for certain classification tasks. Comparing the SMILES-only
model with the sequence+2D graph fusion model reveals minimal differences in performance on
classification tasks but a substantial decline in regression tasks. This suggests that accurate numerical
predictions in regression heavily depend on the model’s ability to capture the full 2D topological
structure of molecules. These findings underscore the indispensable roles of both 2D topology and
3D modeling in molecular representation learning.
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Table 17: Ablation results on multimodal combinations. BACE, BBBP, and Clintox are classification
tasks (AUROC, higher is better), while ESOL and LIPO are regression tasks (RMSE, lower is better).
The three methods include AB1: SMILES Only (sequence-based), AB2: SMILES + Graph (sequence
and topology), and MuMo (sequence, topology, geometry).

Classification Regression

Method BACE BBBP Clintox ESOL LIPO

AB1 - SMILES Only 0.798(0.015) 0.931(0.005) 0.958(0.021) 1.793(0.055) 0.844(0.033)
AB2 - SMILES + Graph 0.780(0.022) 0.946(0.008) 0.971(0.015) 0.597(0.051) 0.596(0.035)
AB3 - MuMo 0.849(0.014) 0.957(0.011) 0.985(0.011) 0.536(0.061) 0.577(0.027)

Table 18: Ablation results of pretraining contribution. Results are presented with AUROC for
classification tasks (BACE, BBBP, CLINTOX) and RMSE for regression tasks (ESOL, LIPO).
Standard deviations are reported over three runs.

Classification Regression

Pretraining FineTuning BACE BBBP CLINTOX ESOL LIPO
√ √

0.849(0.014) 0.957(0.011) 0.985(0.011) 0.536(0.061) 0.577(0.027)
×

√
0.807(0.003) 0.930(0.002) 0.928(0.015) 2.568(0.030) 0.887(0.017)

D.2 Pretraining Ablation Studies

Recent works, such as MolBERT [Fabian et al., 2020] and MoLFormer [Ross et al., 2022], have
shown that the effectiveness of large-scale molecular pretraining relies heavily on massive datasets,
often exceeding 1 billion molecules. In contrast, our proposed method, MuMo, achieves superior
performance on downstream tasks with significantly less pretraining data. By leveraging only 1.6M
molecules from the ChEMBL dataset [Gaulton et al., 2012], MuMo demonstrates that pretraining
on a much smaller scale can be both efficient and highly effective. Furthermore, ablation studies on
our pretraining approach validate the robustness and efficiency of MuMo, highlighting its ability to
extract meaningful representations even with limited data.

D.2.1 Pretraining Effectiveness

To evaluate the necessity of pretraining, we compared two models: one fully pretrained on the 1.6M
ChEMBL dataset and the other directly fine-tuned on downstream tasks without any pretraining
(zero-shot fine-tuning). This comparison isolates the impact of pretraining by examining its influence
on downstream performance and training dynamics. Both models share identical architectures,
hyperparameters, and training configurations during fine-tuning to ensure a fair and controlled
evaluation.

The results in Table 18 demonstrate the critical role of pretraining in enhancing molecular property
prediction, with particularly significant effects on regression tasks. For classification tasks such as
BACE and BBBP, pretraining yields consistent but modest improvements, increasing AUROC scores
by 5.9% and 3.5%, respectively. These gains suggest that pretraining effectively captures foundational
molecular patterns and functional group features, which improve generalization. However, its impact
is most pronounced in regression tasks like ESOL and LIPO, where RMSE reductions from 2.568 to
0.536 and 0.887 to 0.577. This reflects the importance of pretraining in encoding high-resolution
spatial and geometric molecular features, essential for accurately modeling continuous properties
such as solubility and lipophilicity.

The differential impact of pretraining stems from the varying nature of the tasks. Classification
tasks rely on discrete structural patterns, which fine-tuning alone can partially capture, whereas
regression tasks demand precise geometric and spatial modeling, making pretraining indispensable.
By leveraging the Unified Graph and molecular segmentation, pretraining enables the model to
encode both local interactions and global molecular topology effectively. These findings underscore
the necessity of pretraining for complex molecular representations, particularly in tasks requiring
high-resolution structural information.
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Table 19: Ablation results on pretrain datasets. Downstream task performance comparison of models
using different pretraining datasets. The metrics for BACE, BBBP, and Clintox are AUROC (higher
is better), while ESOL and LIPO use RMSE (lower is better). The models include SMILES-Only
(AB1, sequence-based), and MuMo (sequence, topology, and geometry).

Classification Regression

Size of Pretrain Datasets BACE BBBP Clintox ESOL LIPO

10M Pubchem - Sequence Only 0.849(0.036) 0.856(0.037) 0.677(0.122) 2.543(0.849) 0.797(0.125)
1.6M ChEMBL - Sequence Only 0.798(0.015) 0.931(0.005) 0.958(0.021) 1.793(0.055) 0.844(0.033)
MixDatasets - MuMo 0.853(0.035) 0.956(0.038) 0.972(0.110) 0.607(1.058) 0.604(0.150)
10M Pubchem - MuMo 0.784(0.038) 0.946(0.038) 0.979(0.134) 0.635(0.930) 0.611(0.104)
1.6M ChEMBL - MuMo 0.849(0.014) 0.957(0.011) 0.985(0.011) 0.536(0.061) 0.577(0.027)

D.2.2 Scale and Source of Pretrain Datasets

To evaluate the influence of the scale and type of pretraining datasets on downstream molecular
property prediction tasks, we conducted experiments using models pretrained on datasets of varying
sizes and sources. Specifically, we compared two model architectures: SMILES-Only (AB1), which
relies solely on sequence representations, and MuMo, which is our best model. Pretraining datasets
included PubChem (10M molecules) [Kim et al., 2016], ChEMBL (1.6M molecules) [Gaulton et al.,
2012], and a curated “MixDatasets", which integrates these three datasets. We assessed model
performance on five benchmark datasets (BACE, BBBP, Clintox, ESOL, and LIPO), covering both
classification and regression tasks. This experiment is necessary to investigate how pretraining
data characteristics—such as scale, diversity, and feature richness—affect the generalization and
robustness of models in molecular property prediction, which is critical for advancing drug discovery
and materials science applications.

The results in Table 19 highlight the significant impact of pretraining dataset scale and type on
downstream task performance. Models relying solely on SMILES sequences perform reasonably
well on certain tasks, such as the AB1 (sequence only) model trained on the 10M PubChem dataset
achieving an AUROC of 0.849 on BACE. However, their performance on other tasks is relatively
limited. This suggests that sequence-only representations may lack the expressiveness needed for
diverse property predictions. In contrast, the introduction of the multimodal fusion strategy in the
MuMo models substantially improves performance across tasks. For instance, the MuMo model
trained on the 1.6M ChEMBL dataset achieves leading results on Clintox and ESOL, indicating
superior capability in toxicity and solubility predictions.

Interestingly, while the performance differences between models pre-trained on different datasets are
not particularly large, the 1.6M ChEMBL dataset consistently outperforms others, especially when
used with the MuMo model. This can be attributed to ChEMBL’s curated nature, as it specifically
focuses on bioactive molecules with experimentally validated activity against biological targets.
This high-quality, domain-relevant data likely provides more meaningful molecular patterns and
task-specific signals for the model to learn. In contrast, larger datasets like the 10M PubChem, which
contain more diverse and potentially noisy molecular structures, may introduce heterogeneity that
dilutes the relevance of features for downstream tasks. The ChEMBL dataset, combined with our
multimodal representation learning approach, allows the model to effectively generalize and achieve
strong performance across various tasks. This highlights the importance of data quality and relevance
over sheer size in molecular pretraining.

D.2.3 Pretraining Strategy

This experiment explores the impact of different pretraining tasks and pooling methods on the
performance of the sequence-based ablation baseline model (AB1). Two pretraining tasks are
considered: Masked Language Modeling (MLM), which involves masking a portion of the input
sequence and training the model to predict the masked tokens based on the context, and Next Token
Prediction (NTP), where the model predicts the next token in the sequence to learn sequential
dependencies. For MLM, two pooling methods are tested during the fine-tuning phase: mean pooling,
which averages all token embeddings in the sequence to form the final representation, and GTK token
pooling, which uses the embedding of the first special token (GTK) as the final representation. The
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Figure 10: Ablation results on pretraining Epochs, pooling methods, model size, and pretraining
strategies. (a) The impact of pretraining epochs on model performance. (b) The effect of pooling
methods during fine-tuning. GTK (first token), SEP (last token), mean pooling, max pooling, and
combined methods (GTK + Mean + Max + SEP) are compared. (c) Influence of model size.
Compared to the larger model using 32 layers and the smaller model using 8 layers. (d) The effect
of pretraining strategies - Masked Language Modeling (MLM) and Next Token Prediction (NTP)
with pooling methods. Metrics: AUROC (higher is better) for classification datasets (BACE, BBBP,
Clintox) and RMSE (lower is better) for regression datasets (ESOL, LIPO).

performance of these variations is evaluated across five datasets, with classification tasks (BBBP,
Clintox, and ESOL) using AUROC and regression tasks (LIPO) using RMSE. This setup aims to
assess how pretraining tasks and pooling strategies influence downstream performance.

The results for Figure 10 (a) show that the NTP pretraining task generally underperforms compared to
MLM, achieving the lowest overall performance across the evaluated datasets. This can be attributed
to the nature of the task itself. NTP focuses on predicting the next token in the sequence, which
emphasizes sequential dependencies but lacks the capacity to capture broader structural information
about the molecule. In contrast, MLM allows the model to learn richer contextual relationships
by considering both preceding and following tokens, which is crucial for representing the complex
structural and chemical properties of molecules. By masking random tokens, MLM forces the
model to integrate information across the entire sequence, enabling a more holistic understanding of
molecular features.

Among the pooling methods, GTK token pooling consistently outperforms mean pooling. This
difference can be explained by the way each method aggregates information. GTK token pooling
uses a dedicated GTK token trained explicitly to encode a global representation of the input sequence,
allowing it to serve as a focused summary of the molecule’s overall properties. In contrast, mean
pooling averages the embeddings of all tokens, which can dilute critical information and make
it harder for the model to distinguish important structural or functional features. The superior
performance of GTK pooling suggests that the specialized GTK representation is better suited for
tasks requiring a compact yet informative molecular encoding.

D.2.4 Pretraining Epoches

Results from Figure 10(b) show that the difference between 2 and 5 epochs of pretraining is negligible
across all tasks, suggesting that the model converges quickly. However, extending pretraining to 10
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epochs negatively impacts regression tasks, particularly ESOL, where performance drops significantly.
This trend aligns with the loss curves from Figure 4, which demonstrate that the model converges
rapidly and maintains stable loss values with minimal fluctuation. Prolonged pretraining provides
diminishing returns and can even degrade performance on certain tasks, likely due to overfitting or
excessive adaptation to the pretraining data. This behavior highlights a key advantage of our model:
its ability to achieve strong performance with minimal pretraining epochs, making it computationally
efficient and robust.

D.3 Impact of Model Size

Results from Figure 10(c) demonstrate that model size has a significant but nuanced impact on per-
formance. Smaller models, such as the 85M parameter model with 8 layers, generally underperform
due to limited capacity to capture the complexity of molecular representations. However, excessively
large models, like the 790M parameter model with 32 layers, also fail to consistently outperform the
370M parameter model with 16 layers, particularly on tasks like Clintox and LIPO. This suggests
that overly large models may suffer from overfitting or diminishing returns when scaling parameters.
The 370M model strikes a balance between capacity and generalization, achieving competitive
performance across both classification (e.g., BBBP) and regression (e.g., ESOL) tasks. This indicates
that there is an optimal model size for capturing molecular structure and properties without incurring
computational inefficiency or overfitting risks.

D.4 Impact of Pooler Methods in Finetuning

This experiment shown in Figure 10(d) evaluates the impact of different pooling strategies during
the fine-tuning phase on downstream task performance. For regression tasks the addition of the SEP
token increases the values, indicating a negative effect on regression accuracy. Similarly, the inclusion
of mean and max pooling does not outperform the simpler GTK-only (global token) approach, as the
performance remains worse when combining multiple pooling strategies. This outcome underscores
the importance of the GTK token for providing a compact and enriched global representation, which is
particularly critical for regression tasks. Regression tasks are more sensitive to the accuracy of global
representations and demand higher precision in capturing geometric and topological information.
The MuMo model’s multimodal fusion process explicitly strengthens the GTK token through injected
information during pretraining, making the GTK token crucial for achieving accurate global molecular
property predictions in regression tasks.

For classification tasks, the performance differences across pooling methods are relatively minor.
This is because the Injection-Enhanced mechanism during pretraining plays a dominant role in
strengthening the GTK token with rich multimodal information, surpassing the contribution of the
symmetric cross-attention interaction. As a result, the GTK token alone provides a sufficiently strong
and compact representation for coarse-grained classification tasks. The addition of other pooling
methods, such as SEP, mean, and max pooling, adds minimal benefit, as the GTK token already
captures the essential sequence-level features needed for classification.

D.5 Impact of Sequence Data Type

This experiment evaluates the performance of a sequence-only model (AB1) using three different
molecular sequence representations: SMILES, SELFISH, and Morgan fingerprint while keeping all
other conditions identical. The goal is to understand how different sequence data types influence the
performance of molecular representation learning.

SMILES is a widely used linear notation that encodes molecular structures as text strings, capturing
atom connectivity and bond information. SELFISH is a sequence representation derived from
SMILES, optimized for specific tasks by restructuring the sequence to enhance information extraction.
Morgan fingerprint, in contrast, is a fixed-length vector representation generated from molecular
graphs, capturing substructural patterns but lacking the sequential structure of SMILES.

Table 20 shows that SMILES achieves the best overall performance, particularly excelling in classifi-
cation tasks. While SMILES demonstrates some limitations in regression tasks, such as ESOL, its
performance remains competitive, showcasing its versatility as a molecular representation. SELFISH
also performs well but slightly trails SMILES, particularly in classification tasks, while Morgan
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Table 20: Ablation results on different sequence data types. Performance comparison of models using
SMILES, SELFISH, and Morgan fingerprint. The metrics for dataset BBBP and Clintox are AUROC
(higher is better), while ESOL and LIPO use RMSE (lower is better).

Classification Regression

Sequence Data Type BBBP Clintox ESOL LIPO

SMILES (AB1) 0.931(0.005) 0.958(0.021) 1.793(0.055) 0.844(0.033)
SELFISH 0.914(0.020) 0.910(0.151) 1.793(0.436) 0.844(0.018)
Morgan fingerprint 0.903(0.016) 0.707(0.135) 0.939(0.480) 0.880(0.019)

Table 21: Ablation results on data type combinations for multimodal modeling. Full MuMo is our
best model, which combines SMILES, 2D graph, and 3D Geometry information. The metrics for
BACE, BBBP, and Clintox are AUROC (higher is better), while ESOL and LIPO use RMSE (lower
is better).

Classification Regression

MultiModal Choice BACE BBBP Clintox ESOL LIPO

SMILES+Graph 0.780(0.022) 0.946(0.008) 0.971(0.015) 0.597(0.051) 0.596(0.035)
SMILES+Fingerprint+Graph 0.745(0.026) 0.919(0.007) 0.969(0.012) 0.646(0.055) 0.633(0.033)
Fingerprint+Graph+Geometry 0.824(0.031) 0.908(0.007) 0.996(0.012) 1.030(0.055) 0.845(0.034)
FullMuMo 0.849(0.014) 0.957(0.011) 0.985(0.011) 0.536(0.061) 0.577(0.027)

fingerprint struggles in classification tasks and shows inconsistent results in regression tasks. This
suggests that the sequential information in SMILES provides a more robust foundation for general
molecular property prediction across both task types.

Results from Table 21 demonstrate that incorporating Morgan fingerprint into the multimodal combi-
nations does not significantly improve performance and, in some cases, leads to a slight degradation.
For instance, the combination of SMILES + Fingerprint +Graph underperforms compared to SMILES
+ Graph alone, particularly on regression tasks. This suggests that the Morgan fingerprint, being a
fixed-length vector representation, may not effectively complement other modalities like 2D topology
graphs and 3D geometry, which provide richer structural and spatial information. The best results are
achieved by the MuMo model, which combines SMILES, 2D graph, and 3D geometry, highlighting
the importance of these complementary modalities in capturing molecular features comprehensively.

D.6 Impact of Key Modules

In this section, we present five modules that have been shown to enhance the representational
effectiveness of the model during training. To demonstrate the impact of these modules and share our
insights with peers, we conducted a series of experiments. Under identical conditions, we modified
only one module of the model at a time and evaluated its performance on the corresponding datasets.

Table 22: Ablation results of three small modules. The effect of the substructure-level tokenizer,
bi-attention, and different graph processing modules (MPNN and GCN). The metrics for BACE,
BBBP, and Clintox are AUROC (higher is better), while ESOL and LIPO use RMSE (lower is better).

Module Detail Avg. Drop - Classification Avg. Drop - Regression

Attention Self-Attention 0.00% 0.00%
Bi-Attention 0.88% -18.68%

Graph Process MPNN 0.00% 0.00%
GCN -4.08% -11.37%

Tokenizer Substructure-Level 0.00% 0.00%
Character-level -4.28% -9.05%
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Figure 11: Impact of (a) molecular segmentation and (b) graph learning strategy. The metrics for
BACE, BBBP, and Clintox are AUROC (higher is better), while ESOL and LIPO use RMSE (lower
is better).

Substructure Partitioning. In this study, we proposed the Geometry Substructure Partitioning
method to capture molecular features at the geometric substructure level. To evaluate its importance,
we conducted an ablation study where the MuMo model served as the baseline, and the experimental
group removed the fusion of 2D graph and geometry substructure modeling, retaining only the inter-
action of their global information with sequence information. The results illustrated in Figure 11(a)
showed performance drops across all five datasets, highlighting the critical role of this module,
particularly for regression tasks that demand precise and fine-grained modeling.

Graph Learning Strategy. This strategy enhances the model’s ability to dynamically learn graph
representations across layers by updating the Unified node features after the symmetric Cross-
Attention fusion at each layer, rather than relying on static processing (fixed encoder). The updated
node features are further refined in subsequent layers, allowing the model to better capture intricate
and continuous relationships within molecular graphs. As shown in Figure 11(b), this strategy leads to
performance gains across all datasets, particularly in regression tasks, by leveraging the progressively
enriched node features for more precise and detailed molecular representation.

Bi-Attention. This method extends standard self-attention by introducing a bidirectional mechanism,
where sequence features are processed with normal self-attention and then passed through a reversed
sequence self-attention layer, followed by fusion of the two outputs. While this approach adds cross-
directional context, our experiments show that it slightly improves classification tasks but negatively
impacts regression tasks, which is illustrated in Table 22. This suggests that the added bidirectional
processing may introduce noise or unnecessary complexity, particularly for tasks requiring precise
global property predictions. Consequently, this method was not adopted in our model.

Graph Processing Module (MPNN vs. GCN). In the Unified module, we evaluated the choice
of Message Passing Neural Networks (MPNN) versus Graph Convolutional Networks (GCN) for
message passing. MPNN consistently demonstrated superior performance across all tasks due to its
ability to effectively capture intricate node relationships and propagate richer information through
the graph. In contrast, GCN introduced significant performance degradations, which are shown in
Table 22, particularly in regression tasks, where precise modeling of molecular structures is critical.
This highlights the importance of using MPNN for robust and detailed feature extraction in the
Unified module.

Substructure-Level Tokenizer. The substructure-level tokenizer for the SMILES sequence outper-
forms the character-level tokenizer, which struggles with both classification and regression tasks,
as Table 22 shows. Unlike the character-level approach, which splits SMILES into individual char-
acters and loses critical structural context, the substructure-level tokenizer treats special ions and
atoms as individual tokens, preserving their unique chemical and structural properties. This results
in significantly better performance by capturing meaningful substructure information essential for
downstream tasks.
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Table 23: Impact of the ratio of hierarchical fusion layers. The metrics for BACE, BBBP, and Clintox
are AUROC (higher is better), while ESOL and LIPO use RMSE (lower is better).

Classification Regression

Layer Num Fusion: Sequence BACE BBBP Clintox ESOL LIPO

0.75 0.818(0.032) 0.954(0.006) 0.992(0.010) 0.587(0.017) 0.588(0.038)
0.25 0.841(0.032) 0.961(0.008) 0.994(0.012) 0.617(0.016) 0.602(0.022)

0.5 (MuMo) 0.849(0.014) 0.957(0.011) 0.985(0.011) 0.536(0.061) 0.577(0.027)

Table 24: Overlapping evaluation on MoleculeNet datasets (classification). “Overlap Rate” denotes
the proportion of molecules overlapping with the pretraining corpus. Results are AUROC (↑) with
standard errors in gray subscript.

Model: MuMo BACE ↑ BBBP ↑ CLINTOX ↑ Sider ↑ Tox21 ↑

Overlap Rate 0.00% 4.61% 1.42% 1.60% 67.54%
Original Performance 0.8490.014 0.9570.011 0.9850.011 0.6770.009 0.8340.009

Clean Performance 0.8490.014 0.9600.009 0.9960.011 0.6750.011 0.8390.009

Performance Change 0.00% +0.31% +1.12% -0.30% +0.60%

Table 25: Overlapping evaluation on MoleculeNet datasets (regression). “Overlap Rate” denotes
the proportion of molecules overlapping with the pretraining corpus. Results are RMSE (↓) with
standard errors in gray subscript.

Model: MuMo ESOL ↓ Freesolv ↓ LIPO ↓ QM7 ↓ QM8 ↓ QM9 ↓

Overlap Rate 37.67% 29.28% 6.90% 4.61% 2.09% 0.58%
Original Performance 0.5360.061 1.0820.088 0.4480.007 42.800.6 0.01110.0001 0.00300.00001

Clean Performance 0.3420.031 0.7960.056 0.4390.006 45.670.5 0.01120.0001 0.00300.00001

Performance Change +36.2% +26.4% +2.01% +6.70% +0.90% 0.00%

Table 26: Ablation on Backbone Generalizability. Results on BBB (AUROC ↑), PGP (AUROC ↑),
Caco2 (RMSE ↓), and PPBR (RMSE ↓). Standard errors are shown in gray subscript.

Model BBB ↑ PGP ↑ Caco2 ↓ PPBR ↓ Avg. Drop

MuMo (Attn_Mamba, ours) 0.8990.014 0.9420.019 0.3150.055 7.3240.323 0.00%
MuMo (Transformer) 0.8670.051 0.8990.049 0.3170.095 8.4890.591 6.66%
MuMo (VanillaMamba) 0.8690.011 0.9080.020 0.3960.045 7.4650.333 8.65%
Mamba-Only (w/o fusion) 0.8130.019 0.8760.023 0.8320.075 11.540.788 59.55%
MuMo (Transformer, w/o fusion) 0.8430.021 0.8890.013 0.6440.077 9.8920.701 37.84%

D.7 Impact of Number of Fusion Layers

This experiment evaluates the impact of the number of fusion layers in the model on its performance
across various molecular property prediction tasks. The results from Table 23 indicate that the optimal
number of fusion layers is crucial for achieving the best performance, as neither too few nor too many
layers consistently yield superior results. The model demonstrates a clear peak in performance with a
balanced fusion layer configuration, highlighting the importance of effective feature integration for
multimodal molecular representations.

D.8 Backbone Generalizability

Ablation on the backbone. As shown in Table 26, MuMo with Transformer and Vanilla Mamba
backbones both achieve competitive results, confirming that our fusion design is indeed model-
agnostic.

Ablation on fusion. In contrast, when the fusion module is removed, both Mamba-only and
Transformer-only baselines suffer large performance drops, which are up to 59.55% and 37.84%,
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Table 27: Ablation on asymmetrical vs. symmetrical fusion approaches. Results are reported on BBB
(AUROC ↑), PGP (AUROC ↑), Caco2 (RMSE ↓), and PPBR (RMSE ↓). Standard deviations are
shown in gray subscript. The best result is highlighted.

Model Type BBB ↑ PGP ↑ Caco2 ↓ PPBR ↓ Avg. Drop

MuMo Asymmetric 0.8990.014 0.9420.019 0.3150.055 7.3240.323 0.00%
MuMo-FG Asymmetric 0.8780.014 0.9010.011 0.4120.051 7.9350.297 11.96%
MuMo-CE Symmetric 0.8890.019 0.9170.016 0.4750.059 8.2730.312 16.88%
MuMo-CB Symmetric 0.8490.011 0.8910.023 0.6010.066 9.1320.359 31.60%

Table 28: Evaluation on ESOL and BBBP datasets using different conformer optimization tools.
Results are reported with standard errors in gray subscript. Std. Dev denotes the standard deviation
across conformer settings, and Max ∆ is the largest difference observed.

Task Model MMFF94 UFF No-Optimize Std. Dev ↓ Max ∆ ↓

ESOL (↓) UniMol 0.7690.153 0.7900.113 0.9390.191 0.0927 0.170
ESOL (↓) MuMo 0.5360.061 0.5500.072 0.5850.065 0.0252 0.049
BBBP (↑) UniMol 0.8890.025 0.8310.021 0.7330.006 0.0789 0.156
BBBP (↑) MuMo 0.9620.007 0.9520.009 0.9410.009 0.0105 0.021

Table 29: Robustness to 3D conformer noise. Performance under increasing levels of Gaussian noise
(in Å) added to atom coordinates. Results are reported with standard deviation in gray subscript.

Model - Dataset 0Å 0.05Å 0.1Å 0.2Å Std. Dev ↓ Max ∆ ↓

UniMol - ESOL (↓) 0.7690.153 0.7650.144 0.7600.141 0.8310.220 0.0334 0.071
MuMo - ESOL (↓) 0.5360.061 0.5300.069 0.5400.040 0.5440.071 0.006 0.014
UniMol - BBBP (↑) 0.8890.025 0.8780.032 0.8900.031 0.7870.039 0.0496 0.103
MuMo - BBBP (↑) 0.9620.007 0.9600.007 0.9610.008 0.9540.010 0.0036 0.008

respectively (Table 26). This highlights that the key performance gains come from our structured
fusion strategy, not from the choice of backbone alone.

Overall, while our hybrid Attn-Mamba design yields the strongest results, our ablations demon-
strate that the proposed fusion scheme can generalize across architectures, validating its standalone
effectiveness.

D.9 Impact of Asymmetric Fusion

To investigate the role of fusion strategy, we compare our asymmetric injection-enhanced design
against symmetric concatenation-based alternatives. As shown in Table 27, the full MuMo with
asymmetric fusion consistently achieves the best performance across all benchmarks. By contrast,
symmetric strategies that concatenate modalities either at the beginning (MuMo-CB) or the end
(MuMo-CE) lead to large performance drops, especially on regression tasks such as Caco2 and
PPBR. The fixed-graph variant (MuMo-FG) also underperforms due to its inability to jointly adapt
representations. These results confirm that asymmetric injection not only preserves modality-specific
information but also enables more effective cross-modal enrichment, leading to superior generaliz-
ability.

D.10 Potential Data Overlap Analysis

Experiment Results. We analyzed all MoleculeNet datasets for potential overlap with our
ChEMBL-1.6M pretraining corpus, and re-ran experiments after removing overlapping molecules.
Surprisingly, the average performance increased by 6.81% across datasets rather than dropping
(Tables 24 and 25).

Explanation. This confirms that our pretraining task (masked language modeling) does not leak
label information even under worst-case overlap scenarios (e.g., Tox21, where the overlap reached
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67.5%). Since no downstream supervision is involved during pretraining, the model cannot memorize
labels from ChEMBL. Moreover, given the scale of ChEMBL and our relatively short training
schedule (2 epochs), it is unlikely that the model memorized specific molecular structures.

Observation. Notably, the largest gains appeared in datasets with the highest overlap, such as
ESOL (+36.2%) and Freesolv (+26.4%). We hypothesize that overlapping molecules may have
been harder examples, and their removal led to cleaner evaluation splits. This highlights both the
robustness of MuMo and the soundness of our pretraining corpus design.

D.11 Ablation on Conformer Settings and Robustness to Geometric Perturbations

Effect of Conformer Generation Tools. We evaluated MuMo and UniMol under three common
conformer settings: (1) MMFF94-minimized, (2) UFF-minimized, and (3) ETKDG without optimiza-
tion. As shown in Table 28, MuMo maintains stable performance across all conformer sources and
exhibits notably smaller fluctuations compared to UniMol. For example, on ESOL, MuMo’s standard
deviation across conformer sources is only 0.0252, much lower than UniMol’s 0.0927. This indicates
that our injection-enhanced design provides robustness against geometric inconsistencies, ensuring
reliable predictions even when different conformer generation pipelines are used.

Impact of Conformer Noise. We further test sensitivity to conformer noise by perturbing atom
positions with Gaussian noise of varying magnitudes. As summarized in Table 29, UniMol suffers
significant degradation as noise increases (e.g., ESOL from 0.769 to 0.831 RMSE), while MuMo’s
performance remains nearly unchanged (Std. Dev = 0.006, Max ∆ = 0.014). Similar trends are
observed on BBBP. These results confirm that MuMo is more robust to 3D geometry noise, making it
better suited for real-world scenarios where generated conformers may be approximate.
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