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Abstract

Open-weight language models raise acute challenges for watermarking because
inference-time interventions cannot be enforced once model weights are pub-
lic. Existing methods, such as the recently proposed GAUSSMARK, typically
involve subtly modifying model weights. While such schemes demonstrate that
imperceptible perturbations can yield detectable signals, they require computa-
tionally intensive parameter searches and achieve only limited progress along the
quality-detectability frontier. We introduce MARKTUNE, a theoretically principled
on-policy fine-tuning framework that treats watermark detectability as a reward
signal while regularizing against degradation in text quality. We instantiate our
approach with GAUSSMARK as a base watermarking scheme and demonstrate
that MARKTUNE consistently improves the quality-detectability trade-off over
vanilla GAUSSMARK by adapting non-watermarked weights to maintain generation
quality. Empirically, we show that MARKTUNE consistently advances the quality-
detectability Pareto frontier: it improves true positive rates under fixed false positive
thresholds, restores perplexity and benchmark accuracy to near-unwatermarked
levels, and remains robust under paraphrasing and translation attacks. Together,
these results establish on-policy fine-tuning as a general strategy for embedding
robust, high-quality watermarks into open-weight LMs.

1 Introduction
Open-weight Language Models (LMs) are growing in prevalence due to their rapidly improving
capabilities [1, 2, 3]. As open-weight models continue to be deployed, they raise significant concerns
about potential misuse on top of the pre-existing societal impacts introduced by closed-weight models.
As such, it is critical to develop techniques to ensure appropriate usage that are effective on open-
weight models and are sufficiently practical so as to be widely adopted. In this work, we focus on
the specific task of watermarking LM output, i.e., introducing an almost imperceptible signal into
generated text that, when given access to a secret key, can be reliably detected in a statistically valid
manner. Watermarking is critical to establish trust that a given piece of text is or is not generated by
an LM, which is a necessary prerequisite in a number of societal applications, including academic
integrity [4, 5, 6], misinformation mitigation [7, 8, 9], and intellectual property protection [10, 11, 12].

Previous work has posed watermarking as a statistical hypothesis testing problem [13, 14, 15], where
a joint distribution is assumed over the text and some watermarking key: in the null hypothesis, the
key and text are independent (meaning the text is unwatermarked), while in the alternative hypothesis,
the key and text have some statistically detectable relation (meaning the text is watermarked). The
goal of a watermarking scheme, then, is to design a mechanism for generating text given a key such
that the null and alternative hypotheses can be reliably distinguished, subject to quality constraints
on the generated text itself. These quality constraints are often formalized as strict, information-
theoretic notions of non-distortion [16, 17, 18] (e.g., the marginal distributions of watermarked and
unwatermarked text should be close in total variation distance). In order to satisfy these stringent
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(a) Temperature=0.5, length=200 tokens.
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(b) Temperature=0.7, length=200 tokens.

Figure 1: Quality-detectability trade-off of GAUSSMARK and GAUSSMARK-MARKTUNE. See
Section 4 for detailed experimental settings.

guarantees while maintaining high detectability, many current approaches to watermarking LMs
involve interventions at inference time [16, 17, 19, 20, 21, 22], by subtly changing the sampling itself
to introduce a watermark signal. While this approach can be effective when the model is accessed
only through a generation API, in the case of open-weight models, the provider has no control over a
user’s generation pipeline and, as such, cannot guarantee that such a watermark will be present in
generated text. This problem motivates the need for watermarking techniques specifically designed for
open-weight models, where the watermark is embedded directly into the model weights themselves
and thus does not require a user to apply a specific decoding approach. Several distortionary
watermarking schemes for open-weight models have been proposed that maintain high text quality in
practice [13, 23, 24, 25], suggesting that information-theoretic notions of distortion can be overly
conservative measures of text quality.

One recently introduced watermarking scheme that intervenes at the level of weights instead of during
inference is GAUSSMARK [13], which adds a small amount of Gaussian noise to a subset of the
weight matrices, subtly shifting the distribution of generated text in a manner detectable when given
access to the added Gaussian noise. In [13], the authors demonstrated that if the variance of the added
noise is sufficiently small, and the parameters are carefully chosen, then the text distribution can be
modified so as to achieve nontrivial detectability with no loss of text quality. Moreover, [26] demon-
strated that GAUSSMARK is at least somewhat robust to a number of simple training-time attacks
that a user may apply in an attempt to remove the watermark from the weights of the model. Taken
together, these results suggest that GAUSSMARK is a promising approach, but it suffers from the fact
that the careful tradeoff between quality and detectability requires a computationally extensive search
over parameters and variances so as to find a good set of watermarking hyperparameters. Furthermore,
it is not at all clear how close to the Pareto frontier of quality and detectability GAUSSMARK is,
and whether or not it is possible to improve upon this tradeoff. We thus ask—Can we design a
watermarking scheme for open-weight LMs that preserves text quality while simultaneously being
highly detectable without requiring such a computationally intensive search over parameters?

Our Contribution. In this work, we answer the above question in the affirmative by proposing
MARKTUNE, a novel, theoretically principled, on-policy fine-tuning framework for embedding
weight-editing watermarks into open-weight LMs. The core idea is quite simple: turn the
watermarking detection into a reward to be optimized during fine-tuning, while simultaneously
regularizing the model to maintain high text quality. This procedure allows the model to adapt
to perturbations in the weights that would normally harm the quality of generations in a way that
preserves the watermark signal. Our framework has the benefit of preserving statistical validity
of detection, in the sense that a resulting watermark test maintains whatever statistically rigorous
guarantees on false positives the underlying scheme offers. We operationalize our framework with
GAUSSMARK as a base watermarking scheme and conduct a number of empirical evaluations and
ablations to demonstrate the superiority of our approach over vanilla GAUSSMARK.

Related Work. LM text watermarking schemes can be broadly categorized into two families:
inference-time watermarking and model-embedded watermarking. Distortionary inference-time
schemes modify the sampling process—for example, by biasing next-token sampling toward a
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partitioned “green list” [19, 27]. Although these methods provide statistical guarantees, they introduce
noticeable distortion in generated text and are vulnerable to paraphrasing attacks [28, 29]. In contrast,
nondistortionary inference-time schemes embed watermark signals by influencing the pseudorandom
number generator used in next-token sampling while preserving the original distribution. For instance,
[30] and [16] draw independent pseudorandom variables and generate tokens using deterministic
decoders based on the Gumbel-max trick and inverse transform sampling. Similarly, [22] and [21]
propose unbiased variants of the KGW watermark [19] by introducing decoding algorithms based on
maximal coupling and reweighting strategies, respectively. However, these approaches are not yet
ready for large-scale LM deployment due to their generation latency [13] and the fact that they can
affect text quality [31]. More recently, [20] introduced a tournament-based watermarking, which
achieves high detection power with minimal latency. Yet, maintaining text quality in this setting
requires storage that scales linearly with the number of generated tokens, making it impractical for
large production systems.

Model-embedded watermarking can be divided into two categories: training-based schemes [23,
24] and weight-editing schemes [13, 25]. These approaches embed the watermark signal directly
into model weights, making them naturally suitable for open-weight LMs while incurring neither
generation latency nor additional storage overhead. However, training-based schemes remain limited
in their ability to generalize across tasks [24] and lack rigorous guarantees on the statistical validity
of detection [23]. Weight-editing schemes, in contrast, either require modifications to standard
model architectures [25] or suffer from computationally intensive parameter searches and limited
advancement in balancing text quality with detection performance [13].

2 Preliminaries
A language model is any conditional distribution mapping a prompt x ∈ X (the space of prompts)
to a distribution over responses y ∈ Y (the space of responses), i.e. a function p : X → ∆(Y). As
is common in language modeling, we will generally consider autoregressive generation, where there
is some vocabulary set V and both X and Y are subsets of V∗. In this case, the model generates a
response one token at a time by sampling y1 ∼ p(·|x), then yt ∼ p(·|x, y1, . . . , yt−1) and concatenat-
ing the output tokens to form a response. As we are chiefly concerned with transformer instantiations
of language models, we generally parameterize the model by some set of weights Θ ⊂ Rd and write
pθ for the resulting model. Typically, in the case of transformers, θ ∈ Θ can be thought of as the
concatenation of a large number of high dimensional matrices, one for each layer of the transformer.

Hypothesis Testing. As in [13, 14, 15], we formalize the notion of watermarking as a statistical
hypothesis testing problem. Recall that a hypothesis testing problem consists of an observation
space Ξ × Y and two disjoint collections of distributions on the observation space, H0 and HA.
A test is a (possibly randomized) function ϕ : Ξ × Y → {0, 1}, where ϕ(ξ, y) = 1 indicates that
the observation (ξ, y) provides sufficient evidence to suggest that it was not sampled from any
distribution in H0. The test is said to have level α if the false positive rate, the probability that
ϕ = 1 even when (ξ, y) is sampled from an element of the null hypothesis, is at most α. The power
of the test, 1− β, is the probability that ϕ = 1 when (ξ, y) is truly sampled from an element of the
alternative hypothesis. Clearly we wish to have a test with both α and β as small as possible.

Weight-editing Watermarking. Watermarking occurs in two phases: generation and detection.
Formally, we suppose that there is a watermarking key space Ξ and distribution ρ. In the generation
process, the generator samples ξ ∼ ρ, chooses some θ(ξ) and samples y ∼ pθ(ξ)(·|x). Detection is
phrased as a hypothesis test, where H0 = {ρ⊗ q|q ∈ ∆(Y)} the set of distributions where the key ξ
and text y are independent, and HA is precisely the distribution induced by the generating process1.

GaussMark. We instantiate our framework with GAUSSMARK [13], a recently proposed weight-
editing watermarking scheme that we briefly review here. Given a language model pθ : X → ∆(Y),
GAUSSMARK partitions the parameter as θ = (θwm, θ0), where θwm (with dimension dr) is the subset
of model weights modified to embed the watermark, and θ0 the remaining weights. The base model pθ
is stored as a reference model qθ′ for later detection. To embed a watermark, GAUSSMARK samples
the key ξσ ∼ N (0, σ2Idr

) and obtains watermarked model pθ(ξσ) with θ(ξσ) = (θwm + ξσ, θ0),
i.e., it perturbs the selected weights with a small amount of Gaussian noise and leaves the others

1Observe that as stated, the detector has access to the prompt x used to generate y. In practice, this is of
course not the case and our empirical results do not rely on this access.
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unchanged. To detect the watermark, GAUSSMARK uses the following test statistic:

ψ(y, ξσ | x) =
⟨ξσ,∇θwm

log qθ′(y | x)⟩
σ∥∇θwm log qθ′(y | x)∥2

. (1)

Intuitively, this statistic measures the alignment between the secret key ξσ and the gradient of the
reference model with respect to the watermarked weights. Under H0, ξσ is independent of the text
y, so ψ(y, ξσ | x) follows a standard normal distribution and a test of level α can be constructed by
thresholding the statistic at the inverse Gaussian CDF (denoted by Φ−1) at 1− α.

3 Our Method
In this work, we aim to advance the quality-detectability Pareto frontier of weight-editing watermark-
ing, which modifies a subset of model weights to embed watermark signal. Unlike inference-time
watermarking, these approaches are applicable in open-weight settings but cannot satisfy information-
theoretic guarantees of distortion-freeness. Rather, they introduce a more opaque form of distortion,
the impact of which on generation quality remains difficult to quantify. The following proposition
characterizes an upper bound on the total variation (TV) distance induced by GAUSSMARK.
Proposition 1. Given a base language model pθ with θ = (θwm, θ0) and a sampled Gaussian noise
ξσ ∼ N (0, σ2Idr

), let θ(ξσ) = (θwm + ξσ, θ0) and pθ(ξσ) denotes the watermarked model with
selected subset of weights perturbed by ξσ. Then the induced total variation (TV) distance from the
base model can be bounded as Eξσ

[
supx∈X

∥∥∥pθ(ξσ)(· | x)− pθ(· | x)∥∥∥
TV

]
≲ σ
√
dr.

Because TV distance characterizes the difficulty of hypothesis testing, GAUSSMARK’s detection
power scales approximately with this TV distance. In other words, if TV distance from the base model
measures the watermark distortion on generated text quality, it seems that the quality-detectability
trade-off cannot be improved: increasing power (via larger σ or a higher-dimensional perturbation
subspace dr) inflates an upper bound on the TV distance-based distributional distortion.

Nevertheless, we argue that such pessimism is overstated for two reasons. First, the base model
pθ should not be regarded as an oracle that perfectly characterizes high-quality text. Consequently,
closeness in TV distance is not a necessary condition for achieving high-quality generation. TV
distance is an especially stringent metric, as it upper-bounds worst-case deviations across all possible
events, which is far stricter than what is required for human-perceived quality. Second, modern LMs
are heavily over-parameterized and exhibit wide, flat optimization basins. For fixed watermarked
weights θ⋆wm (e.g., θ⋆wm = θwm + ξσ in GAUSSMARK) within a small subspace, there may exist
alternative configurations of the remaining weights θ⋆0 that preserve a significant watermark signal
while retaining generation quality by exploiting the large “null space” orthogonal to the watermark.
Our framework, MARKTUNE, is designed to exploit both of these observations.

Initial Idea: Supervised Fine-Tuning (SFT). A natural strategy to recover the generation quality
is fine-tuning the watermarked model on a labeled dataset. To enhance out-of-distribution (OOD)
generalization, we freeze the watermarked weights θwm and only update the remaining weights θ0.
Without freezing, a strong watermark signal may arise merely from memorization of prompts in
the training corpus and fail to generalize to unseen prompt distributions. However, we observe that
watermark signal decays rapidly during training. The underlying mechanism behind this phenomenon
is co-adaptation: since the supervised cross-entropy (CE) loss imposes no constraint on preserving
the watermark signal, the unfrozen weights may adapt in directions that anti-correlate with the
fixed watermark perturbation in representation space, thereby accelerating loss minimization but
potentially weakening the watermark signal—even though the watermarked weights themselves
remain unchanged. See ablation study in Appendix E.3 for an empirical justification.

Refinement: On-Policy Fine-Tuning with Dual Objectives (MARKTUNE). Inspired by the
reinforcement learning with verifiable reward (RLVR), we treat the watermark signal as a reward
function while incorporating supervised CE loss as a regularization term. Specifically, given a labeled
corpus D = {(x(i), y(i))}Ni=1, which may be constructed for instruction following or causal language
modeling (CLM) objective, and a watermarked model p(θ⋆

wm,θ0) obtained by embedding watermark
using a key ξ, we optimize the objective:

max
θ0

E(x,y⋆)∼D, y∼p(θ⋆wm,θ0)(·|x)
[
Rwm(x, y; ξ)

]
− λLce(θ

⋆
wm, θ0; x, y

⋆), (2)

whereRwm denotes the watermark signal reward and Lce is cross-entropy loss. We let λ > 0 be a
hyperparameter that balances watermark reward against fidelity to ground-truth labels. By rewarding
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generated samples y ∼ p(θ⋆
wm,θ0)(· | x) that exhibit stronger watermark signals, while simultaneously

penalizing deviations from the labeled response via CE loss, this dual-objective, on-policy fine-tuning
framework advances the Pareto frontier without sacrificing statistical rigor.

Application to GaussMark. We apply our proposed framework to GAUSSMARK. A natural
approach would be to replace the watermark rewardRwm in Eq.(2) with the test statistic in Eq.(1).
However, in practice, a model provider or third-party auditor attempting to verify whether a suspect
text y is watermarked typically has white-box access to the base model qθ′ , but not to the prompt x
that was originally used to generate y. This motivates a more practical formulation of the watermark
reward and test statistic for GAUSSMARK:

Rwm(y; ξσ) = ψ(y; ξσ) =
⟨ξσ,∇θwm

log qθ′(y)⟩
σ∥∇θwm log qθ′(y)∥2

. (3)

By substituting (3) into the objective in (2), we adapt GAUSSMARK to our on-policy fine-tuning
framework and obtain GAUSSMARK-MARKTUNE. All algorithm implementation details are
provided in Appendix A. For watermark detection, we inherit the procedure in GAUSSMARK. Since
the generated text y remains independent of ξσ under H0, Proposition 2 provides rigorous statistical
guarantees on the controllability of the false positive rate.

Proposition 2. Let α ∈ (0, 1), and τα := Φ−1(1− α) where Φ is the CDF of the standard normal

distribution. Then, for any y ∈ Y , the test I
{

⟨ξσ,∇θwm log qθ′ (y)⟩
σ∥∇θwm log qθ′ (y)∥2

≥ τα
}

has level α.

Informal Analysis. Intuition behind the success of MARKTUNE over GAUSSMARK can be found
in the simple setting, where the last layer of a model is watermarked. In this case, the earlier
layers “featurize” text so the model predicts pθ(y | x) ∝ exp

{
⟨θwm, ϕθ0(x, y)⟩

}
, where ϕθ0(x, y)

are features produced by the non-watermarked layers. GAUSSMARK replaces this distribution
by pθ(y | x) ∝ exp

{
⟨θwm + ξσ, ϕθ0(x, y)⟩

}
, yielding a detectable but potentially misaligned

output. The core mechanism of MARKTUNE is to only adjust θ0 so as to reshape the features and
recover high-quality generation under the frozen watermarked weights θwm + ξσ. As illustrated in
Appendix C, MARKTUNE searches for a new θ⋆0 such that the distribution p(θwm+ξσ, θ⋆

0 )
(y | x) ∝

exp
{
⟨θwm + ξσ, ϕθ⋆

0
(x, y)⟩

}
moves closer (in cross-entropy or KL divergence) to a high-quality

target distribution p⋆(y | x), while remaining far from the original unwatermarked model pθ(y | x)
along the watermark-sensitive direction. Intuitively, the non-watermarked layers learn to absorb the
bias introduced by ξσ, thereby restoring generation quality, while detectability is retained, ensuring
that the model remains statistically distinguishable from the unwatermarked base model. This leads
to a uniformly improved quality-detectability Pareto frontier.

4 Experiments
Experimental Setup. Unless otherwise noted, we use GPT-2 with 124M parameters [32] to generate
responses of 200 tokens at a temperature of 0.7. In line with prior watermarking work [13, 16, 19], we
evaluate watermark performance using 1K prompts from the realnewslike split of the C4 dataset [33].
For all experiments, watermark detection is conducted using only the generated responses,
aligning with practical deployment scenarios. For fine-tuning, we use OpenWebText [34] as the
training and validation corpus, following the implementation of nanoGPT.2 To evaluate watermark
detectability, we report the true positive rate (TPR) for a fixed false positive rate (FPR) of 1% as well
as ROC curves and the area thereunder (AUC). To measure text quality, we examine (1) perplexity
(PPL) of generations using OPT-2.7B [35] as a larger oracle language model, (2) validation loss on
OpenWebText, and (3) the LAMBADA benchmark [36] preprocessed by OpenAI, which is designed
to evaluate GPT-2’s ability to perform long-range text understanding. The evaluation metrics for
LAMBADA benchmark include accuracy (ACC) and perplexity (PPL). For evaluation on robustness
against paraphrasing, we use the T5_Paraphrase_Paws model [37] and control its strength by
adjusting the sampling temperature. Implementation details are provided in Appendix D.

Quality-Detectability Trade-off. Figure 1 presents the detection performance and the text quality
of distortionary vanilla GAUSSMARK and GAUSSMARK-MARKTUNE under different generation
temperatures. We plot quality-detectability trade-off curves by adjusting the hyperparameters σ and
λ. Compared with vanilla GAUSSMARK, GAUSSMARK-MARKTUNE achieves a more favorable
trade-off, yielding substantially higher detection rates for the same distortion on text quality.

2https://github.com/karpathy/nanoGPT.
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Table 1: Generated text quality across different metrics. Models highlighted in blue exhibit
comparable generation quality to the unwatermarked model and are thus selected for later experiments.

Model PPL↓ Val. Loss↓ LAMBADA (ACC)↑ LAMBADA (PPL)↓
Unwatermarked 13.57± 5.58 3.121 .3093± .0064 38.43± 1.414
GAUSSMARK (σ = 0.04) 13.63± 5.41 3.124 .3008± .0064 39.33± 1.503
GAUSSMARK (σ = 0.1) 18.28± 7.48 3.305 .2474± .0060 70.46± 2.817
GAUSSMARK-MARKTUNE (σ = 0.04) 12.69± 5.01 3.086 .3305± .0066 35.82± 1.386
GAUSSMARK-MARKTUNE (σ = 0.1) 13.59± 5.29 3.118 .3059± .0064 37.97± 1.423
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Figure 2: Watermark detectability and robustness against paraphrasing under minimal distortion.

Generation Performance and Robustness. Table 1 shows the generation quality of models under
different watermarking regimes, evaluated using four metrics. We observe that GAUSSMARK-
MARKTUNE consistently outperforms vanilla GAUSSMARK under the same hyperparameter σ across
all text quality metrics, demonstrating its effectiveness in restoring generation quality. To ensure a
fair detectability comparison under minimal distortion, We select σ for each watermarking regime
by maximizing detectability while ensuring that the text quality metrics remain comparable to those
of the unwatermarked counterpart. Based on the empirical results, we set σ = 0.04 for vanilla
GAUSSMARK and σ = 0.1 for GAUSSMARK-MARKTUNE in later experiments.

Figure 2 demonstrates that applying our on-policy fine-tuning framework to GAUSSMARK sub-
stantially improves detectability and robustness to paraphrasing attacks while preserving generation
quality. Specifically, Figure 2a shows that the TPR@FPR=1% of GAUSSMARK-MARKTUNE is
uniformly higher than those of vanilla GAUSSMARK, with the largest gains for short sequences
(50–200 tokens). This trend is attributed to watermark signal saturation, as evidenced by the flattening
of ∥∇θwm

log qθ′(y)∥2 reported in [13]. Figure 2b also exhibits holistic improvement. In particular,
GAUSSMARK-MARKTUNE remains stable under mild paraphrasing temperatures, indicating strong
resilience to lexical variation. Additional empirical results on watermark detectability and robustness,
along with a comprehensive ablation study demonstrating the effect different parameter choices have
on detectability and quality (cf. Table 2), are provided in Appendix E.

5 Conclusion
We introduced MARKTUNE, a practical and theoretically grounded on-policy fine-tuning framework
for weight-editing watermarks. By optimizing a dual objective that combines a watermark signal
reward with supervised cross-entropy regularization, MARKTUNE adapts non-watermarked parame-
ters to accommodate fixed watermark edits. Extensive empirical evaluations demonstrate that our
approach advances the quality-detectability Pareto frontier of vanilla GAUSSMARK and improves
robustness against diverse attacks, while maintaining statistical guarantees and incurring neither
generation nor storage overhead. While some empirical work [26] has demonstrated some degree
of robustness of GAUSSMARK to finetuning attacks, further investigation is warranted to assess the
resilience of MARKTUNE against more sophisticated adaptive adversaries.
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A Practical Implementation of MARKTUNE

To optimize the objective in Eq.(2), we introduce a GRPO-style [38] policy optimization algorithm.
This choice is motivated by the fact that Eq.(2) cannot be directly optimized due to its dependence on
sampled outputs y ∼ p(θ⋆

wm,θ0). GRPO is a critic-free, on-policy policy-gradient method that replaces
the learned value baseline in PPO with a group-relative baseline computed from multiple samples per
prompt, which makes it well-suited for optimizing our objective.

We freeze the watermarked weights θ⋆wm and conduct the optimization algorithm. For each prompt
from a batch x ∼ Db, we sample a group of responses {yj}Gj=1 ∼ p(θ⋆

wm,θ0)(· | x) and compute their
watermark signal rewards r = {rj}Gj=1. The advantage for sample j is normalized within the group:

Âj =
(
rj −mean(r)

)/
std(r) (4)

The policy update follows a clipped objective based on the importance ratio ρj =
p(θ⋆wm,θ0)(yj |x)
p
(θ⋆wm,θold0 )

(yj |x) ,

maximizing E
[
min

(
ρjÂj , clip(ρj , 1− ϵ, 1 + ϵ)Âj

)]
together with a supervised cross-entropy regu-

larization term. Denote θ = (θ⋆wm, θ0), the overall GRPO-style objective is give by

J (θ) = E(x,y⋆)∼D,{yj}G
j=1∼pθ(·|x)

1

G

G∑
j=1

min

[
pθ(yj | x)
pθold(yj | x)

Âj , clip

(
pθ(yj | x)
pθold(yj | x)

, 1− ε, 1 + ε

)
Âj

]
− λLce(θ;x, y

⋆).

(5)

See Algorithm 1 for a high-level implementation of MARKTUNE framework. See Algorithm 2 and
Algorithm 3 for the detailed implementation of GRPO-style policy optimization and application of
MARKTUNE to GAUSSMARK.

Algorithm 1 MARKTUNE Meta-Algorithm

1: Input: Language model pθ with θ = (θwm, θ0), watermark key ξ, weight-editing watermark
algorithm A(·, ξ), labeled corpus D = {(x(i), y(i))}Ni=1, CE coefficient λ.

2: Conduct weight-editing watermarking: θ⋆wm ← A(θwm, ξ).
3: Freeze θ⋆wm and finetune θ0 to optimize Eq. (2) with Algorithm 2 to obtain θ⋆0 .
4: Output: Watermarked weights (θ⋆wm, θ

⋆
0).

Algorithm 2 GRPO-style Policy Optimization for MARKTUNE

1: Input: initial policy model p(θ⋆
wm,θ0); watermark signal rewardRwm(·, ·; ξσ); labeled corpus D;

hyperparameters ε, λ, T1, T2.
2: Initialize: Freeze θ⋆wm and set pθ ← p(θ⋆

wm,θ0).
3: for step = 1, . . . , T1 do
4: Sample a batch Db ⊂ D.
5: pθold ← pθ.
6: for each prompt x ∈ Db do
7: Sample G outputs {yj}Gj=1 ∼ pθold(· | x).
8: Compute rewards {rj}Gj=1 usingRwm.
9: Compute Âj for response yj via group-relative advantage Eq.(4).

10: end for
11: for iteration = 1, . . . , T2 do
12: Update pθ by maximizing the GRPO-style objective Eq.(5).
13: end for
14: end for
15: Output: pθ.
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Algorithm 3 Working Pipeline of GAUSSMARK-MARKTUNE

1: Input: Language model pθ with θ = (θwm, θ0), fixed base model qθ′ = pθ, strength σ > 0,
labeled corpus D = {(x(i), y(i))}Ni=1, CE coefficient λ.

2: Sample watermark key ξσ ∼ N (0, σ2Idr
).

3: Inject GaussMark perturbation θ⋆wm ← θwm + ξσ .
4: Freeze θ⋆wm and conduct GRPO-style policy update Algorithm 2 for θ0 to obtain θ⋆0 via optimizing

the objective

max
θ0

E(x,y⋆)∼D,y∼p(θ⋆wm,θ0)(·|x)

[
⟨ξσ, ∇θwm log qθ′(y)⟩
σ∥∇θwm log qθ′(y)∥

]
− λLce(θ

⋆
wm, θ0; x, y

⋆),

5: Output: Watermarked parameters (θ⋆wm, θ
⋆
0).

B Theorems and Proofs

B.1 Proof of Proposition 1

Proof. Given a prompt x, we denote pθ(· | x) by pθ for simplicity. By Pinsker’s inequality,∥∥∥pθ(ξσ) − pθ∥∥∥
TV
≤

√
1

2
KL

(
pθ(ξσ)

∥∥∥ pθ), (6)

where ξσ ∼ N (0, σ2Idr
). Let D(ξσ) := KL

(
pθ(ξσ)

∥∥∥ pθ) ≥ 0. Since D(0) = 0 and its gradient

vanishes at the global minimum
(
∇ξσD(ξσ)

∣∣
ξσ=0

= 0
)

, its Taylor expansion around ξσ = 0 begins
at second order:

D(ξσ) =
1

2
ξ⊤σI(θwm) ξσ + o

(
∥ξσ∥2

)
, I(θwm) := ∇2

ξσD(ξσ)
∣∣
ξσ=0

,

where I(θwm) ∈ Rdr×dr is the Fisher information matrix. Each diagonal entry Ijj(θwm) of I(θwm)

represents the Fisher information of j-th component θ(j)wm of θwm and measures how much information
a single model response y provides about the specific parameter component θ(j)wm:

Ijj(θwm) = Ey∼pθ(·|x)

[(
∂ log pθ(y | x)

∂θ
(j)
wm

)2
]
.

Then we take the expectation of this approximation with respect to the distribution of ξσ:

E[D(ξσ)] = E
[
1

2
ξ⊤σI(θwm) ξσ + o

(
∥ξσ∥2

)]
=

1

2
E
[
tr(I(θwm)ξσξ

⊤
σ )

]
+ o(σ2dr)

=
1

2
tr
{
I(θwm)E

[
ξσξ

⊤
σ

]}
+ o(σ2dr)

=
σ2

2
tr(I(θwm)) + o(σ2dr).

For a well-defined model, there exists a model-dependent constant capturing the local Lipschitz
sensitivity of the map θwm 7→ p(θwm,θ0)(· | x). In the worst case this constant can scale with a
network Lipschitz factor (e.g., products of layer operator norms), which may grow exponentially
in depth. In practice this is milder: restricting watermarking to later layers reduces the effective
sensitivity, and empirical results from [13] demonstrate that the scaling can be much more moderate.
Therefore, it is natural to make an assumption that there exists a model-dependent constantC(pθ) > 0
such that

Ijj(θwm) ≤ C(pθ).

11



Then we have E[D(ξσ)] ≤ C(pθ)σ
2dr

2 , plugging it into (6) and taking the supremum over x ∈ X
yields

Eξσ

[
sup
x∈X

∥∥∥pθ(ξσ)(· | x)− pθ(· | x)∥∥∥
TV

]
≲ σ

√
dr.

B.2 Proof of Proposition 2

Proof. Under the null hypothesis H0, for any y ∈ Y , the key and the generated text y are independent
of each other, i.e., (ξσ, y) ∼ N (0, σ2Idr

)⊗ q for some q ∈ ∆(Y). Therefore, the level of the test is
given by

Pr
H0

(
ψ(y; ξσ) = 1

)
= Eξσ∼N (0,σ2Idr ), y∼q

[
I
{
⟨ξσ,∇θwm

log qθ′(y)⟩
σ∥∇θwm

log qθ′(y)∥2
≥ τα

}]
= Ey∼q

[
Pr
ξσ

(
⟨ξσ,∇θwm

log qθ′(y)⟩
σ∥∇θwm log qθ′(y)∥2

≥ τα
)]

= Ey∼q

[
Pr
ξσ

(
ψ(y; ξσ) ≥ τα

)]
= 1− Φ(τα) = α,

where the last line is based on

ψ(y; ξσ) =
⟨ξσ,∇θwm log qθ′(y)⟩
σ∥∇θwm

log qθ′(y)∥2
∼ N (0, 1)

for any vector ∇θwm
log qθ′(y). The last equality is derived by plugging in τα = Φ−1(1− α).

C A Stylized Linear-Softmax Analysis of MARKTUNE

Model and Notation. Let θ = (θwm, θ0) with last-layer (watermarked) parameter θwm and remain-
ing parameter θ0. For prompts x and responses y, we consider a similar linear-softmax model as
in [13]:

pθ(y | x) ∝ exp
{
⟨θwm, ϕθ0(x, y)⟩

}
. (7)

A weight-editing watermark like GAUSSMARK fixes a key ξ and freezes the watermarked weights at
θwm + ξ. We write θ(ξ) := (θwm + ξ, θ0). Let p⋆(· | x) denote a high-quality target distribution
realized by some (not necessarily unique) weights (θ⋆wm, θ

⋆
0) in the same class, i.e.,

p⋆(y | x) ∝ exp
{
⟨θ⋆wm, ϕθ⋆

0
(x, y)⟩

}
.

We analyze the population cross-entropy risk
L(θ0) := Ex Ey∼p⋆(·|x)

[
− log pθ(ξ)(y | x)

]
, (8)

and the watermark reward used by GAUSSMARK-MARKTUNE (unnormalized and conditioned on x
for analysis)

R(θ0) := Ex Ey∼pθ(ξ)(·|x)[⟨ξ, ∇θwm
log qθ′(y | x)⟩] , (9)

where qθ′ is the fixed white-box reference used for detection (as in the main text). Note that
∇θwm

log qθ′(y | x) = ϕθ′
0
(x, y) − µ′(x) in the linear-softmax case of q, with µ′(x) :=

Ey∼qθ′ (·|x)[ϕθ′
0
(x, y)]. The dependence ofR on θ0 is via its on-policy expectation under pθ(ξ).

Goal. We show that, for small κ > 0, there exists a perturbation of features δϕ (realizable by
moving θ0) such that the adjusted model GAUSSMARK-MARKTUNE

p(θwm+ξ, θMT
0 )(· | x), ϕθMT

0
(x, y) := ϕθ⋆

0
(x, y) + δϕ(x, y),

(i) approaches p⋆(· | x) in cross-entropy with L(θMT
0 ) − L(θ⋆0) = O(κ2), while (ii) achieves a

first-order increase in the watermark reward R (hence a constant-variance mean shift in the test
statistic), guaranteeing separability from the unwatermarked baseline.

Note that we will use the abbreviation δϕx := δϕ(x, ·), so inner products such as ⟨bx, δϕx⟩ denote
Ey∼p⋆(·|x)[ b(x, y)

⊤δϕ(x, y) ]; that is, the y-dependence is absorbed into the Hilbert space notation.
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Assumptions.

(A1) Realizability & smoothness. The target p⋆ is realized by (θ⋆wm, θ
⋆
0) and the feature map ϕθ0

is Fréchet-differentiable in θ0. The parameterization is sufficiently expressive to realize the
small feature perturbations δϕ constructed below.

(A2) Local quadratic expansion of L. Around θ⋆0 , the cross-entropy admits the second-order
expansion L(θ⋆0 + δ) = L(θ⋆0) + 1

2 Ex

[
⟨δϕx, Σx δϕx⟩

]
+ o(∥δϕ∥2), where δϕx(·) :=

δϕ(x, ·) is centered under p⋆(· | x), and Σx := Covy∼p⋆(·|x)
[
ϕθ⋆

0
(x, y)

]
is a positive-

definite covariance operator (the Fisher operator) associated with p⋆.

(A3) Local first-order expansion ofR. For small distributional perturbations induced by δϕ, the
reward changes as R(θ⋆0 + δ) = R(θ⋆0) + Ex

[
⟨bx, δϕx⟩

]
+ o(∥δϕ∥), for some bx as

derived in Lemma 2.

(A4) Centering constraint. We restrict admissible δϕ to satisfy Ey∼p⋆(·|x)δϕ(x, y) = 0 for each
x, so logits are perturbed only in identifiable directions.

Dual Optimization Problem. MARKTUNE balances reward and cross-entropy via a dual objective.
Under (A2)–(A4), the local problem over centered δϕ becomes

max
δϕ centered

Ex

[
⟨bx, δϕx⟩

]
− λ

2
Ex

[
⟨δϕx, Σx δϕx⟩

]
. (10)

This is a strictly concave quadratic program (in function space) with unique optimizer.

Lemma 1 (Closed-form optimizer). For each x, the unique maximizer of (10) is

δϕ†x =
1

λ
Σ−1

x bx,

and the optimal objective value equals 1
2λ Ex

[
⟨bx, Σ−1

x bx⟩
]
.

Proof. Fix x. The objective w.r.t. δϕx is Jx(δϕx) = ⟨bx, δϕx⟩ − λ
2 ⟨δϕx,Σxδϕx⟩. Differentiating in

the (Hilbert) inner product and setting the first-order condition to zero gives bx − λΣx δϕx = 0⇒
δϕ†x = 1

λ Σ−1
x bx. Strict concavity follows from positive-definiteness of Σx. Substituting δϕ†x back

yields Jx(δϕ†x) =
1
2λ ⟨bx,Σ

−1
x bx⟩. Averaging over x proves the claim.

Lemma 2 (Reward gradient). LetR(θ0) = Ex Ey∼pθ(ξ)(·|x)
[
⟨ξ, ϕθ′

0
(x, y)− µ′(x)⟩

]
, where qθ′ (and

thus θ′0) is fixed. Consider a path θ0(t) = θ⋆0 + t δθ0 inducing features ϕθ0(t) and distributions
pt(· | x) := p(θwm+ξ, θ0(t))(· | x). Let δϕ(x, y) := d

dtϕθ0(t)(x, y)
∣∣
t=0

and impose the centering
constraint Ey∼p⋆(·|x)δϕ(x, y) = 0 for each x. Then the Gâteaux derivative ofR at t = 0 is

d

dt

∣∣∣
t=0
R(θ0(t)) = Ex

〈
bx, δϕx

〉
, bx(y) = (θwm + ξ)

(
h(x, y)− Ey∼p⋆(·|x)h(x, y)

)
,

where h(x, y) := ⟨ξ, ϕθ′
0
(x, y)−µ′(x)⟩, and ⟨·, ·⟩ denotes the Hilbert-space inner product ⟨fx, gx⟩ :=

Ey∼p⋆(·|x)[f(x, y)
⊤g(x, y)].

Proof. By definition, R(θ0) = Ex Ey∼pθ(ξ)(·|x)[h(x, y)], with h independent of θ0 because qθ′ is
fixed. Along the path t 7→ θ0(t), for each fixed x the on-policy derivative is

d

dt

∣∣∣
t=0

Ey∼pt(·|x)[h(x, y)] = Ey∼p0(·|x)
[
h(x, y) s(x, y)

]
,

where s(x, y) := d
dt log pt(y | x)

∣∣
t=0

. In the linear-softmax model with frozen readout θwm + ξ we
have

log pt(y | x) = ⟨θwm + ξ, ϕθ0(t)(x, y)⟩ − log
∑
ỹ

exp
{
⟨θwm + ξ, ϕθ0(t)(x, ỹ)⟩

}
,

hence
s(x, y) =

〈
θwm + ξ, δϕ(x, y)

〉
− Eỹ∼p0(·|x)

〈
θwm + ξ, δϕ(x, ỹ)

〉
.
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Evaluating at p0 = p⋆ and using the centering constraint gives s(x, y) = ⟨θwm + ξ, δϕ(x, y)⟩.
Therefore

d

dt

∣∣∣
t=0
R(θ0(t)) = Ex Ey∼p⋆(·|x)

[
h(x, y) ⟨θwm + ξ, δϕ(x, y)⟩

]
.

Viewing δϕx as the vector-valued function y 7→ δϕ(x, y) and recalling the inner product definition,
this equals

Ex

〈
(θwm + ξ)

(
h(x, ·)− Ey∼p⋆(·|x)h(x, y)

)
, δϕx

〉
,

which proves the claim.

Proposition 3 (Second-order CE cost and first-order reward gain). Let δϕ†x = λ−1Σ−1
x bx be the

optimizer of the local problem

max
δϕ centered

Ex

[
⟨bx, δϕx⟩

]
− λ

2
Ex

[
⟨δϕx, Σx δϕx⟩

]
,

with bx as in Lemma 2. Assume θMT
0 realizes δϕ†. Let κ := λ−1. Then, as κ→ 0,

L(θMT
0 )− L(θ⋆0) =

κ2

2
Ex

[
⟨bx, Σ−1

x bx⟩
]
+ o(κ2),

and
R(θMT

0 )−R(θ⋆0) = κEx

[
⟨bx, Σ−1

x bx⟩
]
+ o(κ).

Consequently the (normalized) detection statistic exhibits a mean shift linear in κ at essentially
unchanged variance (maintaining level-α calibration), while the cross-entropy deviation from p⋆

grows only quadratically in κ.

Proof. By the quadratic CE expansion (A2),

L(θ⋆0 + δ)− L(θ⋆0) =
1

2
Ex

[
⟨δϕx, Σx δϕx⟩

]
+ o(∥δϕ∥2).

Plugging δϕ†x = λ−1Σ−1
x bx yields

1

2
Ex

[
⟨λ−1Σ−1

x bx, Σx λ
−1Σ−1

x bx⟩
]
=

1

2λ2
Ex

[
⟨bx, Σ−1

x bx⟩
]
=
κ2

2
Ex

[
⟨bx, Σ−1

x bx⟩
]
,

plus o(κ2). For the reward, the first-order expansion from Lemma 2 (assumption (A3) made explicit)
gives

R(θ⋆0+δ)−R(θ⋆0) = Ex

[
⟨bx, δϕx⟩

]
+o(∥δϕ∥) = λ−1 Ex

[
⟨bx, Σ−1

x bx⟩
]
+o(λ−1) = κEx

[
⟨bx, Σ−1

x bx⟩
]
+o(κ).

This proves the claim.

Implications for Detectability and Separation from the Unwatermarked Model. Let ψ(y; ξ)
denote the (normalized) GAUSSMARK test statistic computed with qθ′ . Under H0 (unwatermarked
text), E[ψ] = 0. Under p(θwm+ξ, θMT

0 ), Proposition 3 implies a mean shift of order κC with C =

Ex

[
⟨bx, Σ−1

x bx⟩
]
> 0, at essentially unchanged variance (level-α test is preserved by the detection

procedure). Therefore, for any fixed false-positive rate, the true-positive rate increases at first
order in κ, while the cross-entropy distance to p⋆ grows only at second order. Since the final
watermarked weights remains θwm + ξ ̸= θwm, the fine-tuned model is statistically separated from
the original unwatermarked (θwm, θ0) in the watermark-sensitive direction, i.e., it stays “far” from
the unwatermarked baseline while being “near” p⋆.

Remarks on Realizability. The derivation requires that the feature shift δϕ† be realizable by a small
change in θ0. In over-parameterized transformers, local expressivity (wide, flat optimization basins)
often suffices for such realizability. More generally, one may view δϕ† as the Riesz representer of the
linear functional bx under the Fisher metric Σx; any parameterization that is locally surjective onto
the centered feature subspace realizes δϕ†.
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D Implementation Details

For the implementation of vanilla GAUSSMARK and GAUSSMARK-MARKTUNE, we select θwm to be
the up-projection matrix of MLP in the layer 8. For the GRPO-style policy optimization Algorithm 2,
we set the learning rate of the policy model as 1e-5 and the CE coefficient in MARKTUNE objective 2
to be λ = 0.5. We fine-tune the model for a total steps of 100 (3 GRPO iters per step) with a sampling
batch size of 16 and temperature of 1.0, SFT batch size of 12 and group size of 4. AdamW optimizer
is adopted with β1 = 0.9, β2 = 0.95, and weight_decay = 0.1. We run the experiments on a 40GB
NVIDIA A100 GPU.

E Supplemental Results

E.1 Empirical Results on Detectability

Figure 3 shows consistent trends as Figure 2a: GAUSSMARK-MARKTUNE achieves higher AUC
and TPR across all FPR thresholds. Overall, these results demonstrate that MARKTUNE alleviates
the distortion introduced by larger σ without compromising the watermark signal, and is particularly
effective in short-sequence settings.
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Figure 3: Watermark detectability under minimal distortion: ROC curves and the corresponding area
under the curve (AUC) at different generated text lengths. The solid line denotes GAUSSMARK-
MARKTUNE, while the dashed line denotes vanilla GAUSSMARK.

E.2 Empirical Results on Robustness

To comprehensively evaluate the robustness of our approach, we further consider a token-level attack
(random token substitution) and a more challenging semantic-level attack (round-trip translation),
which have been widely studied in prior work [16, 19, 23, 39, 40]. For the token-level attack, we
randomly substitute a specific portion of tokens. Figure 4a and Figure 4b show that the detection
performance decreases as the ratio of substituted tokens increases. However, We argue that such
token-level perturbations are relatively crude and fall short of realistic threat models, since they
noticeably degrade text quality. Therefore, following [16], we consider a more realistic yet challeng-
ing semantic-level attack. Specifically, we employ Helsinki-NLP/opus-mt-tc-big-en-fr and
Helsinki-NLP/opus-mt-tc-big-fr-en [41] to translate watermarked text into French and back
into English. Figure 5b presents the ROC curves and corresponding AUC values for each approach.
Despite the higher difficulty of this attack, both methods maintain nontrivial detection power, demon-
strating robustness under more realistic corruption scenarios. In particular, MARKTUNE improves
the TPR across all FPR thresholds, demonstrating its strong potential to enhance the robustness
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(b) TPR@FPR=1% as a function of substitution ratio.

Figure 4: Detection performance under random token substitution attack. All metrics are reported at
an initial generation length of 200 tokens.
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(a) TPR@FPR=1% as a function of paraphrasing tem-
perature.
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(b) ROC curves and corresponding AUC under
roundtrip translation attack.

Figure 5: Detection performance under T5 model paraphrasing attack and roundtrip translation attack.
All metrics are reported at an initial generation length of 200 tokens.

of weight-editing watermarking against roundtrip translation. For T5 model paraphrasing attack,
Figure 5a also exhibits similar trend as Figure 2b.

E.3 Ablation Study

Table 2 compares SFT with our proposed on-policy fine-tuning framework MARKTUNE and evaluates
the contribution of five components of GAUSSMARK-MARKTUNE: freezing θwm, the choice of θwm

module, the choice of θwm layer, the key standard deviation σ, and the CE coefficient λ. The first
three metrics are reported at sequence length 200. In the θwm module column, Up Proj. and Down
Proj. refer to the up- and down-projection matrices of the MLP, each with 2.35M parameters. Atten.
denotes the QKV projection matrices, with 1.77M parameters.

First of all, replacing on-policy, reward-conditioned policy updates (MARKTUNE) with plain SFT
sharply weakens detectability (TPR from 0.895 to 0.627 at 1% FPR), even though text quality
improves slightly. This suggests that the unfrozen weights undergo co-adaptation dynamics in the ab-
sence of watermark awareness during SFT. Additionally, freezing θwm yields a modest yet consistent
improvement in both detectability and text quality, leading to more robust OOD generalization.
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Table 2: Ablation study on components of GAUSSMARK-MARKTUNE. Each color block includes
different choices of components. Best results are highlighted in bold.

MARKTUNE/SFT Freeze θwm θwm Module θwm Layer σ λ TPR@FPR=1%↑ AUC↑ PPL↓ Val. Loss↓ LAM.ACC↑ LAM.PPL↓
MARKTUNE Yes Up Proj. 8 0.1 0.5 0.895 0.990 13.59 3.118 0.306 37.97

SFT Yes Up Proj. 8 0.1 0.5 0.627 0.966 12.03 3.088 0.310 37.21

MARKTUNE Yes Up Proj. 8 0.1 0.5 0.895 0.990 13.59 3.118 0.306 37.97

MARKTUNE No Up Proj. 8 0.1 0.5 0.858 0.989 13.69 3.122 0.304 37.97

MARKTUNE Yes Up Proj. 8 0.1 0.5 0.895 0.990 13.59 3.118 0.306 37.97

MARKTUNE Yes Down Proj. 8 0.1 0.5 0.744 0.970 13.49 3.115 0.309 37.64

MARKTUNE Yes Atten. 8 0.1 0.5 0.107 0.807 14.69 3.149 0.286 49.58

MARKTUNE Yes Up Proj. 8 0.1 0.5 0.895 0.990 13.59 3.118 0.306 37.97

MARKTUNE Yes Up Proj. 10 0.1 0.5 0.837 0.982 13.46 3.117 0.313 37.42

MARKTUNE Yes Up Proj. 6 0.1 0.5 0.735 0.968 14.43 3.129 0.304 40.09

MARKTUNE Yes Up Proj. 8 0.1 0.5 0.895 0.990 13.59 3.118 0.306 37.97

MARKTUNE Yes Up Proj. 8 0.05 0.5 0.748 0.971 12.83 3.091 0.327 36.29

MARKTUNE Yes Up Proj. 8 0.2 0.5 0.957 0.994 14.89 3.257 0.289 47.40

MARKTUNE Yes Up Proj. 8 0.1 0.5 0.895 0.990 13.59 3.118 0.306 37.97

MARKTUNE Yes Up Proj. 8 0.1 0.2 0.935 0.993 15.03 3.152 0.296 46.15

MARKTUNE Yes Up Proj. 8 0.1 1.0 0.796 0.979 12.15 3.101 0.316 36.67

We also compare different module and layer choices for watermark embedding. Perturbations in the
projection matrices of the MLP at deeper layers generally yield stronger quality-detectability trade-
offs, with the up projection matrix at layer 8 showing the most favorable balance in our experiments.
In contrast, injecting noise into earlier layers or into attention modules tends to substantially diminish
the watermark signal.

Finally, a grid search over the hyperparameters σ and λ reveals a clear quality-detectability trade-off.
Larger values of σ and smaller values of λ improve TPR@FPR=1% and AUC, but at the cost of
higher perplexity and reduced LAMBADA accuracy. Notably, the setting σ = 0.1, λ = 0.5 achieves
near–Pareto-optimal performance across all metrics.

F Limitations and Future Work

Several directions remain open for future work. First, it is worth applying MARKTUNE to larger
open-weight LMs [1, 2, 35] and conducting comprehensive evaluations. Second, introducing adaptive
hyperparameter search algorithm for MARKTUNE would be a promising direction to reduce the
computational load of hyperparameter selection. Third, designing semantic embedding-awareness
watermark signal reward and integrate it into MARKTUNE would potentially further enhance the
watermark robustness against paraphrasing attacks. We hope these directions inspire future research
toward robust and practical watermarking for open-weight LMs.

17


	Introduction
	Preliminaries
	Our Method
	Experiments
	Conclusion
	Practical Implementation of MarkTune
	Theorems and Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	A Stylized Linear-Softmax Analysis of MarkTune
	Implementation Details
	Supplemental Results
	Empirical Results on Detectability
	Empirical Results on Robustness
	Ablation Study

	Limitations and Future Work

