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Abstract

Filter pruning has been widely used for compressing convolutional neural networks
to reduce computation costs during the deployment stage. Recent studies have
shown that filter pruning techniques can achieve lossless compression of deep
neural networks, reducing redundant filters (kernels) without sacrificing accuracy
performance. However, the evaluation is done when the training and testing data
are from similar environmental conditions (independent and identically distributed),
and how the filter pruning techniques would affect the cross-domain generalization
(out-of-distribution) performance is largely ignored. We conduct extensive em-
pirical experiments and reveal that although the intra-domain performance could
be maintained after filter pruning, the cross-domain performance will decay to
a large extent. As scoring a filter’s importance is one of the central problems
for pruning, we design the importance scoring estimation by using the variance
of domain-level risks to consider the pruning risk in the unseen distribution. As
such, we can retain more generalized filters. The experiments show that under
the same pruning ratio, our method can achieve significantly better cross-domain
generalization performance than the baseline filter pruning method. For the first
attempt, our work sheds light on the joint problem of domain generalization and
filter pruning research.

1 Introduction

In the past decade, convolutional neural networks (CNNs) have been rapidly developed and widely
applied for computer vision [9, 8]. For better precision performance, CNN models are gradually
designed deeper and larger. However, this will lead to more model parameters and thus result in a
higher burden of computation, making the model inefficient for real-time inference.

Recent research shows that CNNs models are usually overparameterized, and the overparameterized
models have redundant parameters that can be pruned without performance decay [5, 16, 10]. Among
different model compression techniques, filter pruning is an effective structured pruning method,
which prunes redundant convolutional filters or kernels (hereafter, we use filters, kernels, or neurons
alternatively). It has been shown that state-of-the-art filter pruning methods [10, 3, 16] can achieve
a high compression ratio with a little performance drop. However, in the research community of
neural network compression, the pruned network’s performance is mainly evaluated based on the
intra-domain setting, but the domain shift [13, 6] problem is largely ignored. Also, it has not been
explored yet how the filter pruning would affect the performance when there exists a domain shift
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between the training and testing data. We discuss the related works about generalization and pruning
in Appendix A.1.

Motivated by the above discussion, we investigate how the filter pruning would affect the cross-
domain generalization performance. We implement the state-of-the-art filter pruning method [16].
Through experiments on the Domain Generalization (DG) benchmark, we find that the pruning method
can preserve the intra-domain performance after pruning. However, cross-domain testing shows
significant performance decay when the distribution shift (domain shift) exists between the training
and testing data. Therefore, we reveal that pruning can degrade cross-domain generalization
performance significantly. This is a crucial problem urgent to be solved because the so-called
“lossless” compressed models would work unexpectedly in the real world, where the distribution shift
problem usually appears.

To alleviate the problem of unexpected unseen-domain performance drops from pruning, we revisit
existing pruning methods. In the common pruning-then-finetuning paradigm, [1, 15, 17, 3, 16, 7],
and a filter’ importance score is calculated. Then, the filters with the lowest importance are masked
or pruned. Thus, scoring a filter’s importance is one of the central problems in pruning [21].
Existing importance criteria are mainly based on magnitude [3], gradient information [16] or feature
information [7], which may work with the Independent and Identically Distributed (i.i.d) assumption,
but cross-domain generalization is ignored which is also named the Out-of-Distribution (o.o.d)
problem. Thus, directly pruning low-importance neurons will result in unexpected performance drops
in the unseen target data domain.

As the neurons’ importance scoring is one of the central problems in pruning [21], we explore
improving the importance estimation by taking into account the out-of-distribution risks. In this paper,
we introduce the Importance of out-of-distribution Risk (IoR) to measure the filter importance, which
is simple to implement by just including the gradient information of the variance of domain-level
risks to calculate the importance. In the experiments of the DG benchmarks PACS [12], we evaluate
both the intra-domain and cross-domain performance before and after pruning. Compared with the
baseline pruning method [16], our method with IoR can achieve better cross-domain generalization
performance under the same pruning ratio.

2 Preliminary

A CNN model that has a number of M filters can be parameterized as Θ = {θ1, θ2, ...θM}. Each
filter θm is a convolutional kernel. A heuristic solution is to select unimportant filters to be pruned
and then finetune the pruned model [16]. Therefore, how to measure the importance of filters is one
of the central problems [21]. When there N multiple data domains D = {D1, D2, ...DN} available,
the importance can be expressed as

Im(Θ) = (
1

N

N∑
i

Ri(X,Y,Θ)− 1

N

N∑
i

Ri(X,Y,Θ|θm = 0))2, (1)

where Ri denotes the empirical risk of domain Di, and θm = 0 means that filter θm is pruned. Based
on first-order taylor expansion [16], Eq.1 can be approximated as

Im(Θ) = (
1

N

N∑
i

∂Ri

∂θm
θm)2 (2)

As shown in Eq. 1, the importance of filter θm is measured by evaluating how much risk is increased
if θm is pruned (θm = 0). If the i.i.d assumption holds, the training data and testing data are drawn
from the same distribution. As such, Eq. 1 can measure the importance of a filter w.r.t the testing
data. However, distribution shift often exists in the real world, and testing data could be in a different
distribution of training data. As such, directly using Eq. 1 for pruning could lead to an unexpected
performance drop in an unseen data distribution. To reduce the sacrifice of testing performance on the
unseen data domain, we propose to select more generalized filters and pruned those less generalized
filters by improving the importance scoring criterion.
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Table 1: Pruning ResNet18 and ResNet50 models on the PACS benchmark. “Intra” means the
intra-domain top-1 accuracy (%), and “Cross” means the cross-domain top-1 accuracy (%)

Model Art Cartoon Photo Sketch
Intra Cross Intra Cross Intra Cross Intra Cross

ResNet18 (before pruning) 99.63 76.86 100 78.20 97.39 93.59 99.68 77.86
ResNet18-50% (baseline) 99.28 74.94 99.97 77.50 95.82 92.04 99.27 77.41
ResNet18-50% with IoR (ours) 99.34 75.60 99.90 78.79 96.80 92.53 99.42 75.98
ResNet18-30% (baseline) 97.12 68.85 97.86 73.74 91.34 85.09 96.79 69.51
ResNet18-30% with IoR (ours) 95.94 68.37 97.59 72.31 92.98 86.37 96.55 70.81
ResNet50 (before pruning) 95.04 83.50 96.78 81.27 96.56 96.11 99.84 83.53
ResNet50-50% (baseline) 99.13 82.84 99.82 80.30 98.49 93.68 100 79.04
ResNet50-50% with IoR (ours) 99.22 83.36 98.36 80.56 98.10 94.49 99.97 79.74
ResNet50-30% (baseline) 97.37 74.53 97.99 76.79 93.14 86.86 98.57 74.87
ResNet50-30% with IoR (ours) 97.55 75.76 98.12 77.11 96.68 91.47 98.57 78.36

3 Scoring out-of-distribution importance

To improve the importance scoring, we consider the out-of-distribution risk to design the importance
score. Inspired by risk extrapolation [11], we approximate the out-of-distribution risk Ro by

Ro ≈ V ar{R1,R2, ...RN}, (3)

where V ar represents the variance of empirical risks from the source domains.

As such, the importance in Eq. 2 can be improved as IIoRm :

IIoRm (Θ) = (
1

N

N∑
i

∂Ri

∂θm
θm)2 + α(

∂V ar{R1,R2, ...RN}
∂θm

θm)2, (4)

where α is a constant scaling factor and α = 1 in our experiments. Since the gradient ∂Ri

∂θm
can

be obtained during the training and pruning, there would not be much extra computation needed
for calculating Eq. 2. During pruning, importance scores of all filters are obtained. The filters are
ranked according to importance scores in ascending order. In each iteration, top-K remained filters
are removed and then finetuned.

4 Experiments

4.1 Implementation

We follow the leave-one-domain-out protocol and the setting used in [25]. The setup of data of
training, (intra-domain) validation, and (cross-domain) testing can be found in Appendix A.2. To
implement the baseline, we use the official implementation of Taylor Pruning with the suggested
hyper-parameters [16]. Detailed parameters setting can be found in Appendix A.3. Our proposed
method also uses the same hyperparameters. All experimental results are reported by averaging the
results from five independent runs with different random seeds.

4.2 Experimental Results

We present the results by asking three research questions.
Research Question Q1: Will filter pruning affect the domain generalization performance?
Following DomainBed1 [6], we first use the Empirical Risk Minimization (ERM) to pretrain the
ResNet18 and ResNet50 models, which are often used as backbones in domain generalization
benchmarks [19, 22]. Then, we use the baseline pruning method [16] to prune the pretrained
ResNet18 and ResNet50 models. After pruning, 50% or 30% of filters remain, and the pruned
models are denoted as ResNet18/50-50% or ResNet18/50-30%, respectively, as shown in Table 1.
We evaluate the top-1 accuracy of intra-domain and cross-domain accuracy before and after pruning.

1https://github.com/facebookresearch/DomainBed
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Table 2: Pruning 50% of the filters of the ResNet models pretrained by ERM, CORAL, and Mixup
on the PACS benchmark. “Intra” means the intra-domain top-1 accuracy (%), and “Cross” means the
cross-domain top-1 accuracy (%).

Pretrain Method Model
Art Cartoon Photo Sketch

Intra Cross Intra Cross Intra Cross Intra Cross

ERM
ResNet50 95.04 83.50 96.78 81.27 96.56 96.11 99.84 83.53
ResNet50-50% 99.13 82.84 99.82 80.30 98.49 93.68 100 79.04

∆ 4.09 -0.66 3.14 -0.97 1.93 -2.43 0.16 -4.49

CORAL
ResNet50 96.15 87.06 98.45 83.96 99.29 96.47 97.57 81.65
ResNet50-50% 96.77 80.37 98.20 76.83 99.17 94.49 97.08 73.02

∆ 0.62 -6.69 -0.25 -7.12 -0.12 -1.98 -0.49 -8.63

Mixup
ResNet50 96.52 87.55 94.47 82.25 98.7 97.13 99.03 80.63
ResNet50-50% 96.4 79.15 96.14 79.14 98.58 94.91 98.21 69.41

∆ -0.12 -8.40 1.67 -3.11 -0.12 -2.22 -0.81 -11.20

Table 1 shows the pruning results on the PACS benchmark. When we compare the intra/cross-domain
accuracy before and after pruning, we find that 1) cross-domain generalization performance is not
guaranteed even the intra-domain evaluation shows “lossless” compression results. As shown
in Table 1, when the pruning to 50% or 30%, the intra-domain accuracy could have insignificant
decay and could even improve to some extent, which indicates the “lossless” pruning. However,
we can see the pruned models’ cross-domain generalization performance degrades significantly in
different experiments (Art, Cartoon, Photo, Sketch) under different compression ratios. The most
interesting experiment is the Photo experiment of ResNet50. It appears that the original model has
good generalization performance since the cross-domain accuracy is close to intra-domain accuracy
before pruning (96%). However, after pruning (50% or 30%), the compressed model’s cross-domain
accuracy results are far lower than intra-domain results.

Research Question Q2: Can we reduce the sacrifice of the cross-domain performance from
pruning?
We explore this question by using our proposed importance scoring based on out-of-distribution
risk. In Table 1, we compare the pruning results of the baseline and our method (with IoR). When
comparing the cross-domain accuracy of the compression ratios 50% and 30% for ResNet18 and
ResNet50, there are 16 groups to be compared. Our IoR can achieve better results in 13 out of
16 comparison pairs (see the bold accuracy results). As such, more cross-domain generalization
performance can be saved from pruning by using our IoR. Thus, our work shows that designing
a better importance criterion is a feasible way to save cross-domain generalization from pruning.
In future work, we could design better criteria to further save the cross-domain generalization
performance.

Research Question Q3: Is a model pretrained by domain-generalization methods more than
ERM robust after pruning? We also investigate if a model pretrained by using domain general-
ization methods can be more robust during pruning. Similar to Q1, we follow DomainBed [6] to
use the domain generalization methods CORAL [18] and Mixup [23] to pretrain models before filter
pruning. Table 2 compares the accuracy results of ResNet50 models pretrained by ERM, CORAL,
and Mixup, before and after pruning 50% of filters, on the PACS benchmarks. In the experiments of
Art, Cartoon and Photo, CORAL and Mixup can help to achieve higher cross-domain accuracy results
than ERM (before pruning). Also, for all experimental results of CORAL and Mixup in Table 2, the
intra-domain accuracy performance is well maintained, with a drop of 0.81% at most. However, after
pruning, we observe that the cross-domain accuracy results of CORAL and Mixup generally drop far
more than that of the ERM. We conjecture the reason that in the pruning-then-finetuning paradigm,
the finetuning is based on ERM, which has different optimization processes from the DG optimization
methods. Therefore, when pruning the CORAL and Mixup pretrained models, finetuning the pruned
models with ERM could make the optimization process inconsistent, leading to poorer performance.

5 Conclusion

In this work, we investigate how filter pruning would affect cross-domain generalization when there
exists a domain shift between training and testing data. By conducting the experiments to answer the
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three research questions we raise, we reveal that: 1) “lossless" compression can lead to significant
cross-domain performance drop, even with few decays of intra-domain accuracy; 2) using domain
generalization methods to pretrain a more generalized model (than ERM) could not help to reserve
the drop accuracy from pruning; 3) our IoR can alleviate the cross-domain accuracy drop from
pruning by a better importance criterion. Our work shed the light on the joint problem of pruning
and domain generalization. We wish our work can attract more research attention to the joint problem
of pruning and domain generalization.

In the future, we will conduct more extensive evaluations of pruning in cross-domain scenarios
with more datasets of other modalities and more architectures. Moreover, pruning an architecture
pretrained by different optimization methods in cross-domain scenarios is still an open problem, and
we will explore pretrain-agnostic pruning methods.
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A Appendix

A.1 Related works

With regards to pruning and generalization, the most relevant work is [14]. While [14] mainly focuses
on the pruning and robustness against corruption. Our work mainly focuses on the pruning and
domain generalization toward “covariate shift".

Also, there are other papers about cross-domain compression [2, 4], aiming to utilize the source
domain data to improve the pruning performance in the target domain. In [2, 4], the target domain
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data is available for training and pruning, which is similar to the domain adaptation setting [20].
However, our work is related to the domain generalization setting [13, 24], where the target domain
data is unseen (unavailable) during the pruning process.

A.2 Evaluation protocol

We follow the leave-one-domain-out protocol and the setting used in [25]. The data in PACS of
each domain is split into two parts according to training: validation = 9: 1. In each experiment, one
domain is left as the unseen target domain for testing, while the rest data of the other domains is used
as source domains for training. For example, in the experiment of Photo of the PACS benchmark,
the training parts of Art, Cartoon, and Sketch are combined for the model pretraining and pruning.
Meanwhile, the validation parts of Art, Cartoon, and Sketch are combined to validate the top-1
accuracy. The pruned model with the best top-1 validation accuracy is selected for the testing, and the
best validation accuracy is reported as the intra-domain performance. After that, we use all the data
of the Photo domain as the unseen target domain to test the cross-domain performance in experiments
before or after pruning.

A.3 Implementation details

As the baseline pruning method is equivalent to the Taylor pruning [16], we use its official PyTorch
implementation 2 to conduct baseline pruning experiments. After each convolutional layer, we utilize
the gate replacement to use the gate’s importance to represent its filter’s importance [16]. Following
the recommended settings [16], we use batch size 64, learning rate 0.001, and epochs 100. The
pruning interval is 30 mini-batches, during which a maximum of 100 filters would be pruned. Also,
we use the exponential moving average filter (momentum) with a coefficient of 0.9 to calculate the
importance scores over different mini-batches. The experimental results are reported by averaging
the results of five independent runs with different random seeds.

2https://github.com/NVlabs/Taylor_pruning
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