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Abstract
We present an approach for safe trajectory plan-
ning, where a strategic task related to autonomous
racing is learned sample efficiently within a sim-
ulation environment. A high-level policy, rep-
resented as a neural network, outputs a reward
specification that is used within the objective of a
parametric nonlinear model predictive controller.
We can guarantee safe and feasible trajectories
by including constraints and vehicle kinematics
in the nonlinear program. Compared to classi-
cal reinforcement learning, our approach restricts
exploration to safe trajectories, starts with good
prior performance, and yields complete trajecto-
ries that can be passed to a tracking lowest-level
controller. We validate the performance of our
algorithm in simulation and show how it learns to
overtake and block other vehicles efficiently.

1. Introduction
This work focuses on strategic planning for fixed opponent
policies with safety guarantees. We propose a combination
of model-predictive control (MPC) and a neural network
(NN) trained by a reinforcement learning (RL) algorithm
within simulations. MPC is a powerful optimization-based
technique commonly used to solve trajectory planning and
control problems. Using efficient numerical solvers and
the possibility to incorporate constraints directly makes
MPC attractive in terms of safety, explainability, and perfor-
mance (Rawlings et al., 2017). Nevertheless, in problems
like interactive driving, it is difficult to model the behavior
of other vehicles. In contrast to MPC, RL is an exploration-
driven approach for solving optimal control problems. In-
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stead of an optimization-friendly model, RL only requires
samples of the dynamics and can, in theory, optimize over
arbitrary cost functions. The flexibility of RL comes at
the cost of sample inefficiency, which is often unfavorable
for real-world applications, where data are expensive and
rare. Furthermore, RL, in the general setting, lacks safety
guarantees. However, once the amount and quality of data
are sufficient, the learned policies can show superior re-
sults (Wurman et al., 2022). In this paper, we combine MPC
and RL using an MPC-inspired low-level trajectory planner
to yield kinematic feasible and safe trajectories and use the
high-level RL policy for strategic decision-making. The
Algorithm is referred to as Hierarchical Learning-based
Predictive Planner (HILEPP). We use the expression MPP
(Parameterized Model Predictive Planner) to refer to an
MPC-based planner, which outputs feasible reference tra-
jectories that we assume to be tracked by a lowest-level
control systems. This hierarchical approach is common in
automotive software stacks (Vázquez et al., 2020; Paden
et al., 2016). We use the MPP to formulate safety-critical
constraints and basic time-optimal behavior but let the cost
function be subject to changes by the high-level RL policy.
Particularly, we propose an interface where the high-level
RL policy outputs a reference in the Frenet coordinate frame.
With this approach, we start with an excellent prior strategy
for known model parts. We can guarantee safe behavior
concerning the chosen vehicle model and the prediction of
opponents.
Contribution: We contribute by deriving and evaluating a
sample efficient and safe motion planning algorithm for
autonomous race cars. It includes a novel cost function for-
mulation for the interaction of MPC and RL with a strong
prior performance, real-time applicability, and interpretabil-
ity.
Related work: Several works consider RL as a set-point
generator for MPC for autonomous agents (Greatwood &
Richards, 2019; Brito et al., 2021). As opposed to our ap-
proach, they focus on final target points. Another research
branch focuses on safety verification with a so-called ”safety
filter” (Brunke et al., 2022). For instance, in (Wabersich &
Zeilinger, 2021), a rudimentary MPC variant is proposed
that considers constraints using MPC as a verification mod-
ule. Similarly, the authors of (Lubars et al., 2021) use MPC

1



Hierarchical MPC-RL Motion Planner

to correct an RL policy if a collision check fails. RL is also
used for MPC weight tuning, such as in (Song & Scara-
muzza, 2020) for UAVs and in (Zarrouki et al., 2021) for
adaptive control in autonomous driving. Related research
for motion planning of autonomous racing was recently sur-
veyed in (Betz et al., 2022). Several works focus on local
planning without strategic considerations (Vázquez et al.,
2020; Wurman et al., 2022), thus can not directly be used
in multi-agent settings. Other works use a game-theoretic
framework (Liniger & Lygeros, 2020), which often limits
the applicability due to its complexity. An algorithm for
obtaining Nash equilibria is iterated best response (IBR), as
shown for drone racing in (Spica et al., 2020) or for vehi-
cle racing in (Wang et al., 2021). However, IBR has high
computation times. An algorithm aiming at the necessary
KKT conditions of the generalized Nash equilibrium prob-
lem is presented in (Le Cleac’h et al., 2022). However, the
resulting optimization problem is complicated to solve.

2. Background and Motivation
A trained neural network (NN) used as a function approx-
imator for the policy πθ(s), where θ ∈ Rnθ is the learned
parameter vector and s ∈ Rns is the RL environment state,
can generally not guarantee safety. Safety is related to con-
straints for states and controls that must be satisfied at all
times. Therefore, the authors in (Wabersich & Zeilinger,
2021) propose an MPC-based policy πS : Rna → Rna that
projects the NN output a ∈ Rna to a safe control uS =
πS(x, a), where it is guaranteed that uS ∈ US ⊆ Rna .
The safe set US is defined for a known (simple) system
model ẋ = f(x, u) with states x and controls u and cor-
responding, often tightened, constraints. In this formula-
tion, the input u has the same interpretation as the action a
and the state x relates to the model inside the filter. Con-
straint satisfaction for states is expressed via the set member-
ship x ∈ X and for controls via u ∈ U . The system model is
usually transformed to discrete-time via an integration func-
tion xi+1 = F (xi, ui) with step size ∆t. When using direct
multiple shooting (Bock & Plitt, 1984) one obtains decision
variables for the state X = [x0, . . . , xN ] ∈ Rnx×(N+1) and
for the controls u = [u0, . . . , uN−1] ∈ Rnu×N . Since the
optimization problem can only be formulated for a finite
horizon, a control invariant terminal set St must be included.
The safety filter solves the following optimization problem

min
X,U

‖u0 − ā‖2R

s.t. x0 = x̄0, xN ∈ St,

xi+1 = F (xi, ui), i = 0, . . . , N − 1,

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1

(1)

and takes the first control u∗0 of the solution (X∗, U∗) as
output uS := u∗0. The authors in (Wabersich & Zeilinger,

2021) use the filter as a post-processing safety adaption.
However, we propose to use this formulation as a basis for an
online filter, even during learning, which makes it applicable
to safety-relevant environments. We do not require the same
physical inputs to our filter but modifications to a parametric
optimization problem, similar to (Gros & Zanon, 2020). We
propose a general interface between the high-level RL policy
and MPC, namely a cost function L(X,U, a), modified by
action a. Our version of the MPP as a fundamental part of
the algorithm solves the optimization problem

min
X,U

L(X,U, a)

s.t. x0 = x̂0, xN ∈ St,

xi+1 = F (xi, ui), i = 0, . . . , N − 1,

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1,

(2)

and takes the optimal state trajectory of the solu-
tion (X∗, U∗) as output Xref := X∗ of the MPP algorithm.
The algorithm becomes sample-efficient by pruning infeasi-
ble, i.e., unsafe, trajectories of the actual control.

3. Method
We apply our algorithm to a multi-agent vehicle competition
on a race track. We aim to obtain a sample efficient plan-
ner that performs time-optimal trajectory planning, avoids
interactive opponents, and learns strategic behavior, such
as blocking other vehicles in simulation. We assume fixed
policies of a fixed number of Nob opponents and, there-
fore, do not consider the interaction as a game-theoretical
problem (Zhang et al., 2021). We use an obstacle avoid-
ance rule, according to the autonomous racing competitions
Roborace (Roborace, 2020) and F1TENTH (O’Kelly et al.),
where in a dueling situation, the following vehicle (FV) is
mainly responsible avoiding a crash. However, the lead-
ing vehicle (LV) must not provoke a crash. Unfortunately,
to the best of the author’s knowledge, there is no rigorous
rule for determining the allowed actions of dueling vehicles.
However, we formalize the competition rules of F1TENTH
similar to (Li et al., 2021), where the LV only avoids an
inevitable crash, which we state detailed in Sec. 4.2.2. A
block diagram of our proposed algorithm is shown in Fig. 1,
where we assume a multi-agent environment with a mea-
sured state z ∈ Rnz , which concatenates the ego agent
states x, the obstacle/opponent vehicle states xob and the
road curvature κ(ζi) on evaluation points ζi. We include
prior domain knowledge to get the high-level RL policy
state s ∈ Rns with the pre-processing function s = gs(z).
For instance, we use relative distances of the opponents
to the ego vehicle instead of absolute values. An expan-
sion function P = GP (a), with the high-level RL pol-
icy a = πθ(s), is used to increase the dimension of the NN
output to obtain a parametric cost function. The expansion
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Figure 1. Proposed control structure. The multi-vehicle environ-
ment constitutes a trajectory tracking ego agent (lowest-level con-
troller πLL(·)). A state z concatenates all Nob + 1 vehicle states
and road curvature information. A function gs(z) projects the state
to a lower dimensional state space. A high-level RL policy πθ(s)
and an expanding function GP (a) modify the cost function of
Parameterized Model Predictive Planner (MPP) πMPC(z, P ) by
action a. The MPP outputs a feasible and safe trajectory Xref to
the ego lowest-level controller.

function is used to include prior knowledge and to obtain an
optimization-friendly cost function in the MPP.

4. Parameterized Model Predictive Planner
Our core component MPP constitutes an MPC formulation
that accounts for safety and strong initial racing perfor-
mance. It comprises a vehicle model, safety constraints, and
a parameterized cost function, which we will explain in the
following section.

4.1. Vehicle Model

We use rear-wheel-centered kinematic single-track vehicle
models in the Frenet coordinate frame, similar to (Kloeser
et al., 2020). We use the states x =

[
ζ n α v δ

]>
and controls u =

[
Fd r

]>
, with the longitudinal force Fd

and the steering rate r, which is the first derivative of the
steering angle δ. Moreover, the states include the longitu-
dinal position ζ, the lateral position n, the heading angle
mismatch α, and the velocity v. The Frenet frame vehicle
model is parameterized by the curvature κ(ζ), the mass m

and length l and given as

ẋ = f(x, u) =


v cos(α)
1−nκ(ζ)

v sin(α)
v
l tan(δ)− κ(ζ)v cos(α)

1−nκ(ζ)
1
m (Fd − Fres(v))

r

 . (3)

The discrete states xk at sampling time k∆t are obtained by
an RK4 integration function xk+1 = F (xk, uk,∆t).

4.2. Safety Constraints

The MPP formulation should restrict trajectories Xref to sat-
isfy model constraints. Safety requires feasibility regarding
vehicle limitations and obstacle constraints, which are ex-
plained in the following section. Recursive feasibility in (2)
is given by the terminal safe set St := {x | α = 0, v ≤ 0}.

4.2.1. VEHICLE LIMITATIONS

We use box constraints for states Bx and controls Bu as
in (Kloeser et al., 2020). Further, we use a lateral accelera-
tion constraints set

Blat(σ) :=

{
x

∣∣∣∣∣
∣∣∣∣v2 tan(δ)

l

∣∣∣∣ ≤ alat + σa

}
, (4)

to account for friction limits.

4.2.2. OBSTACLE CONSTRAINTS

We approximate by an ellipse and assume a predictor of
an obstacle vehicle i that outputs the expected Cartesian
positions of the vehicle center pobi

k = [xobi
e,k yobi

e,k ]> ∈ R2

with a constraint ellipse shape matrix Σ̂obi
k (x) ∈ R2×2 at

time step k that depends on the (Frenet) vehicle state in x.
The ellipse area is increased by Σobi(x) = Σ̂obi(x) + I(r+
∆r)2 with radii of the ego covering circle r and a safety
distance ∆r. For obstacle avoidance concerning the ellipse
matrix, we use the constraint set in compact notation

BO(xob,Σob) ={
x ∈ R2

∣∣∣ ∥∥P (F−1(x))− pob
∥∥2

(Σob(x))−1 ≥ 1
}
.

(5)

4.2.3. OBSTACLE PREDICTION

The opponent prediction uses a simplified model with states
xob = [ζob, nob, vob]> and assumes curvilinear motion de-
pending on the initial estimated state x̂ob. With the constant
acceleration force F ob

d , the ODE of the opponent estimator
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can be written as

ζ̇ob =
vob(t) cos(α̂ob)

1− nobκ(ζob)
(6a)

ṅob = vob(t) sin(α̂ob) (6b)

v̇ob =
1

mob
F ob

d . (6c)

Since the FV is responsible for a crash, it generously pre-
dicts the LV by assuming constant velocity motion, where
F ob

d is set to 0. The LV predicts the FV most evasively,
which we realize by assuming an FV full stop with its max-
imum braking force F ob

d = F ob
d . In any situation, this

allows the FV to plan for at least one safe trajectory (i.e., a
full stop) Thus, the LV does not ”provoke” a crash, as re-
quired in racing competition rules (Roborace, 2020; O’Kelly
et al.). Besides these minimum safety restrictions, interac-
tion should be learned by the high-level RL policy. We
simulate the system forward with a function Φ(·), using
steps of the RK4 integration function to obtain the predicted
states [xob

0 , . . . , xob
N ] = Φ(x̂ob, α̂ob, F ob

d ).

4.3. Objective

For the parameterized cost function L(X,U, a), we pro-
pose a formulation with the following properties: (i) simple
structure for reliable and fast NLP iterations, (ii) expressive
behavior related to strategic driving, (iii) low-dimensional
action space, (iv) good initial performance.

The first property is achieved by restricting the cost function
to a quadratic form. The second property is achieved by for-
mulating the state reference in the Frenet coordinate frame.
The final properties of a low dimensional action space and
an excellent initial performance are achieved by interpreting
the actions as reference lateral position nref and reference
speed vref . By setting the reference speed, also the corre-
sponding longitudinal state ζref,k of a curvilinear trajectory
is defined by ζref,k = ζ̂ + k∆tvref . The reference heading
angle miss-match αref and the steering angle δref are set to
zero, with fixed weights wα and wδ , since these weights are
tuned for smooth driving behavior. We compare the influ-
ence using references with their associated weights wv, wn
(HILEPP-II with aII = [vref nref wv wn]>) to fixed
weights without using them in the action space (HILEPP-I
with aI = [vref nref ]

>).

4.4. Nonlinear programming formulation

We use the action-dependent stage cost matrix Qw(a)
with Qw : Rna → Rnx×nx and a cost independent termi-
nal cost Qt ∈ Rnx×nx . We set the values of R, Q0, and
Qt to values corresponding to driving smoothly and time-
optimally. With constant action inputs ā, this leads to a supe-
rior initial performance at the beginning of training the high-
level RL policy. With the constant time action-dependent ref-

erence values ξref,k(a) = [0 n 0 vx 0]> ∈ Rnx for
HILEPP-I/II and constant time reference weights Qw(a) =
diag([0 wn 0 wv 0]) for HILEPP-II, we can write
the expanding function as

GP (a) : a→
(
ξref,0(a), . . . , ξref,N (a), Qw(a)

)
, (7)

which maps na to n2
x(N + 1) + nx(N + 1) dimensions for

cost matrices and reference values. We state the final NLP,
using the vehicle model (3), the MPC path constraints for
obstacle avoidance (5), vehicle constraints Bx, Bu and (4)
and the parametric cost functions of (2). The full objective
for each stage, associated L2 weights Qσ,2 = diag(qσ,2) ∈
R6×6 and L1 weights qσ,1 ∈ R6, reads as

L(X,U, a) =

N−1∑
k=0

‖xk − ξref,k(a)‖2Qw(a) + ‖uk‖2R

+ ‖xN − ξref,N (a)‖2Qt .

Together with the predictor for time step k of the j-th future
opponent vehicle states, represented as bounding ellipses
with the parameters pob,j

i ,Σob,j
i , the parametric NLP can be

written as

min
X,U

L(X,U, a)

s.t. x0 = x̂, xN ∈ St,

xi+1 = F (xi, ui) i = 0, . . . , N − 1,

ui ∈ Bu, i = 0, . . . , N − 1,

xi ∈ Bx ∩Blat i = 0, . . . , N,

xi ∈ Bob(pob,j
i ,Σob,j

i ) i = 0, . . . , N,

j = 0, . . . , Nob.
(8)

The final MPP algorithm is stated in Alg. (1).

Algorithm 1 MPP
Input: action a, ego states x̂, Nob obstacle states x̂ob

Output: planned trajectory Xref

for j = 1 to Nob do
if ζ̂ob ≤ ζ̂ then

Consider opp. as FV: F ob
d ← F ob

d

else
Consider opp. as LV F ob

d ← 0
end if
Predict [xob

0 , . . . , xob
N ] = Φ(x̂ob, α̂ob, F ob

d )

Compute constraint ellipses Σob,j
k = Σ0(ϕob,j)

end for
Compute weights

(
ζref,k, Qw

)
← GP (a)

Xref ←Solve NLP (2) with
(
ζref,k, Qw

)
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5. Hierarchical Learning-based Predictive
Planner

The MPP of Sec. 4 plans safely and time-optimally, but
not strategically. Therefore, we learn a policy πθ with RL
that decides how to parameterize the MPP to achieve a
strategic goal at each time step. Since we assume stationary
opponent policies, we can apply standard, i.e., single-agent
RL algorithms (Zhang et al., 2021) and solve for the best
response. We use the soft actor-critic (SAC) (Haarnoja et al.,
2018) to learn the parameterization of the MPP, where the
exploration noise is added at the parameters a of the MPP,
which is the sampled output of the policy. In the following,
we describe the training procedure in detail.

5.1. Training Environment

In the following, we describe Alg. 2 which we use for train-
ing and Alg. 3, used for the final deployment of HILEPP.

Algorithm 2 HILEPP training
Input: num. of episodes nepi, max. env. steps nscene,
reset function (z, κ(ζ)) = Z(), reward function R(s, a)
Output: learned policy πθ(ζ)
for j = 1 to nepi do

reset + randomize environment (z, κ(ζ))← Z()
for i in range(nscene) do

get policy input state s← gs(z)
sample high-level action a ∼ πθ(·|s)
evaluate planner Xref ←MPP(a, z)
simulate environment znext = sim(Xref)
get reward r ← R(znext, a)
store (z, znext, r, a) in buffer D
update z← znext

if it’s time to update then
θ ←SAC update sampling from D

end if
end for

end for
return πθ(s)

Algorithm 3 HILEPP deployment
Input: env. state z, trained policy πθ(s)
Output: reference trajectory Xref

compute NN input state s← gs(z)
compute high-level RL policy output a← πθ(s)
return MPP output Xref ←MPP(z, a)

In the HILEPP training and deployment Alg. 2 and 3, we re-
duce the RL state space, based on domain knowledge which
we put into the function gs(zk). Therefore, the infinite-
dimensional race track layout defined through its curva-

ture κ(ζ) is approximated by finite evaluations κ(ζ + di) at
different longitudinal distances di relative to the ego vehicle
position ζ , for i = 1, . . . , Nκ. For the RL ego state s(zk) =
[n, v, α]>, we include the lateral position n, the velocity v
and the heading angle miss-match α. For opponent i, we
additionally add the opponent longitudinal distance ζob − ζ
to the ego vehicle to state sobi = [ζobi−ζ, nobi , vobi , αobi ]

>.
Combined, we get the following position-invariant RL-state

sk = gs(zk) =

[κ(ζ + di), . . . , κ(ζ + dN ), s>, s>ob1 , . . . , s
>
obNob

]>.
(9)

Next, we propose a reward that encourages time-optimal
and strategic driving: For driving time-optimally, we reward
the progress on the race track by the velocity of the ego
vehicle ṡk projected point on the center line. For driving
strategically, we reward the overall rank of the ego vehicle
by adding the constant 1 for being in front of every opponent.
Combined, we get the reward function

R(s, a) =
ṡ

200
+

Nob∑
i=1

1
ζk>ζ

obi
k

. (10)

At each time step, the high-level RL policy chooses a param-
eter for the MPP; thus, the RL action space is the parameter
space of the MPP.

For training the high-level RL policy, the environment is
simulated for nepi episodes and a maximum of nscene steps
by a numerical integration of the dynamics with znext =
sim(z, κ(·)). The road layout defined by κ(ζ) is randomized
within an interval [90.04, 0.04]m−1 before each training
episode. The curvature is set together with initial random
vehicle states z by a reset function (z, κ(ζ)) = Z(). Notice
that Alg. 2 involves additional parameters related to the SAC
algorithm (Haarnoja et al., 2018), e.g., weights of the critic
networks, which are not explicitly stated here.

6. Simulated Experiments
We evaluate (Alg. 3) and train (Alg. 2) HILEPP on three dif-
ferent scenarios that resemble racing situations (cf. Fig. 2).
The first scenario overtaking constitutes three ”weaker”, ini-
tially leading opponent agents, where ”weaker” relates to the
parameters of maximum accelerations, maximum torques
and vehicle mass (cf. Tab. 1). The second scenario blocking
constitutes three ”stronger”, initially subsequent opponents.
The ego agent starts between a stronger and a weaker oppo-
nent in a third mixed scenario. Each scenario is simulated
for one minute, where the ego agent has to perform best re-
lated to the reward (10). We train the HILEPP agent with the
different proposed action interfaces (I: A = {nref , vref}, II:
A = {nref , vref , wn, wv}). Opponent agents, as well as the
ego agent baseline, are simulated with the state-of-the-art
MPP (Alg. 1) with a fixed action a that accounts for non-
strategic time-optimal driving with obstacle avoidance. The
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Figure 2. Scenarios differ in the initial rank and performance of
vehicles.

Table 1. Vehicle model parameters. SI-units, if not stated explic-
itly.

Name Variable Ego ”Weak” ”Strong”
Agent Agent Agent

wheelbase lr, lf 1.7 1.7 1.7
chassis lengths lr,ch, lf,ch 2 2 2
chassis width wch 1.9 1.9 1.9
mass m 1160 2000 600
max. lateral acc. alat, alat ±8 ±5 ±13

max. acc. force Fd 10kN 8kN 12kN
max. brake force Fd 20kN 20kN 20kN
max. steering rate r, r ±0.39 ±0.39 ±0.39
velocity bound v 60 60 60

steering angle bound δ, δ ±0.3 ±0.3 ±0.3
road bounds n, n ±7 ±7 ±7

search space was defined by [10−5, 10−3] for the learning
rate, τ ∈ [10−5, 10−2] for the polyak averaging of the target
networks, {64, 128, 256} for the width of the hidden layers,
{1, 2, 3} for the number of hidden layers and {128, 256} for
the batch size. We used the average return of 30 evaluation
episodes after training for 105 steps as the search metric.
We trained on randomized scenarios for 10 · 105 steps with
10 different seeds in each scenario. To estimate the final pol-
icy’s performance, we evaluated the episode return (sum of
rewards) on 100 episodes. We further compare our trained
HILEPP against a pure RL policy that directly outputs the
controls u. The final experiments were run on a computing
cluster where all 30 runs for one method were run on 8
GeForce RTX 2080 Ti with an AMD EPYC 7502 32-Core
Processor with a training time of around 6 hours. For solv-
ing the NLP, the solver acados (Verschueren et al., 2021)
was used with parameters of Tab. 2 using slack variables to
increase numerical stability.

Table 2. Parameters for MPP in SI units

Name Variable Value

nodes/disc. time N / ∆t 50/ 0.1

state weights q [1, 500, 103, 103, 104]∆t

terminal state weights qN [10, 90, 100, 10, 10]

control weights R diag([10−3, 2 · 106])∆t
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Env. Steps (105)

0

500
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ve

ra
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R

et
u

rn

Overtaking

0 10

Env. Steps (105)

Blocking

0 10

Env. Steps (105)

Mixed

HILEPP I HILEPP II RL MPP

Figure 3. Training performance of average episode returns of
HILEPP with different action interfaces, pure RL and the MPP
baseline. Remarkably, we could not train a successful pure RL
agent in the overtaking scenario.

Overtaking

Blocking

0 200 400 600 800

Average Return

Mixed

HILEPP I HILEPP II RL MPP

Figure 4. Final episode return of 100 evaluation runs of the pro-
posed interfaces for different scenarios (Fig. 2).

6.1. Results

In Fig. 3, we compare the training performance related to
the reward (10) and in Fig. 4, we show the final performance
of the two HILEPP formulations. HILEPP quickly outper-
forms the baseline MPP as well as the pure RL formulation,
showing its high sample efficiency. With a smaller action
space, HILEPP-I learns faster. However, with more samples,
HILEPP-II outperforms the smaller action space in all three
scenarios on the evaluation runs regarding median perfor-
mance, see Fig. 4. The training was stopped after 106 steps
due to the high training time and the slow return increase, as
shown in Fig. 3. Despite using state-of-the-art RL learning
algorithms and an extensive HP search on GPU clusters,
the pure RL agent could not outperform the MPP baseline.
Furthermore, the pure RL policy could not prevent crashes,
whereas MPP successfully filters the actions within HILEPP
to safe actions that do not cause safety violations. Notably,
due to the struggle of the pure RL agent with lateral accel-
eration constraints, it has learned a less efficient strategy to
drive slowly and focus on blocking subsequent opponents in
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Figure 5. Exemplary evaluation episode of the HILEPP-I planner
in the mixed scenario. On the bottom, the controls of the MPP and
the actions of the high-level RL policy are shown. The grey box
indicates a time window where snapshots of a blocking maneuver
are shown in the top plot.

scenarios blocking and mixed. Therefore, pure RL could not
perform efficient overtaking maneuvers in the overtaking
scenario and yields evasive returns (consequently excluded
in Fig. 4). The HILEPP is capable of planning trajectories
with approximately 100Hz, which is sufficient and competi-
tive for automotive motion planning (Betz et al., 2022). A
rendered plot of learned blocking is shown in Fig. 5, where
also the time signals are shown of how the high-level RL pol-
icy sets the references of HILEPP-I. A rendered simulation
for all three scenarios can be found on the website https:
//rudolfreiter.github.io/hilepp_vis/.

7. Conclusions
We have shown how a hierarchical combination of RL and
MPC can outperform a basic time-optimal and obstacle-
avoiding approach and pure deep-learning-based RL in sev-
eral scenarios. Since the MPP can be considered part of the
environment, as seen from the RL policy, the policy can be
updated by sampling from the replay buffer without solving
the optimization problem again. If MPP was used as part of
the policy, i.e., exploration noise and the SAC critic were
evaluated at the controls u rather than at the parameters a,
the parameter update would require differentiating the op-
timizer. This would require a converged solution of the

MPP with an NLP solver which can hardly be parallelized
and used within standard RL frameworks. The approach is
restricted to stationary policies of opponents.
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