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Abstract
Non-linear dimensionality reduction methods
have proven successful at learning low-
dimensional representations of high-dimensional
point clouds on or near data manifolds. However,
existing methods are not easily extensible— for
large datasets, it is prohibitively expensive to
add new points to these embeddings. As a result,
it is very difficult to use existing embeddings
generatively, to sample new points on and along
these manifolds. In this paper, we propose GAGA
(geometry-aware generative autoencoders) a
framework which merges the power of generative
deep learning with non-linear manifold learning
by: 1) learning generalizable geometry-aware
neural network embeddings based on non-linear
dimensionality reduction methods like PHATE
and diffusion maps, 2) deriving a non-euclidean
pullback metric on the data space to generate
points faithfully along data manifold geodesics,
and 3) learning a flow on the manifold that
allows us to transport populations. We provide
illustration on easily-interpretable synthetic
datasets and showcase results on simulated
and real single cell datasets. We show that the
geodesic-based generation can be especially
important for scientific datasets where the
manifold represents a state space and geodesics
can represent dynamics of entities over this space.
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1. Introduction
There has been rapid growth in high-dimensional scien-
tific data such as scRNA-seq and molecular data. These
high-dimensional data are assumed to be concentrated on
or near intrinsically low-dimensional manifolds embedded
in high-dimensional space. Reliably accessing the intrinsic
geometry of the underlying data manifold and computing ge-
ometric quantities such as volume, curvature, and geodesics
has become increasingly important. For example, in sci-
entific data, the manifold represents a state space, and its
geodesics can represent the dynamics of entities over this
space.

Non-linear dimensionality reduction methods such as
PHATE or diffusion maps have proven useful in learning
manifold structure from high-dimensional data. However,
they have been difficult to extend to new points or for gener-
ative use, to sample new points (Moon et al., 2019; Huguet
et al., 2024). To address this, some prior works have tried to
regularize an autoencoder to match distances obtained from
non-linear dimensionality reduction methods (Huguet et al.;
MacDonald et al.; Fasina et al., 2023). Despite distance
preservation, these methods have not focused on generative
modeling of points, and can struggle in gaps, or sometimes
do not decode the data at all and simply provide embeddings
(Fasina et al., 2023). As a result, it is very difficult to use
existing embeddings for data generation or for sampling
new points on and along these manifolds faithfully.

Generating along geodesics on data manifolds often poses a
challenge, as it requires a meaningful Riemannian metric on
the data manifold to measure arc length and a way to restrict
learned paths to stay on the manifold. To tackle this chal-
lenge, we propose a generalizable geometry-aware genera-
tive autoencoder (GAGA), a neural network-based encoding,
which learns an embedding that handles within-manifold
points differently from negatively sampled points. First, it
embeds within-manifold points in a geometry-preserving
fashion by matching distances. Then it folds non-manifold
(negatively sampled) points into an auxiliary latent space
dimension, embedding off-manifold points far away in la-
tent space. GAGA enables us to extract a continuous metric
on the original data space via the Riemannian pullback
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metric, computed using the Jacobian of the neural network
encoding. This non-Euclidean pullback metric facilitates
data generation along manifold geodesics by measuring the
length of curves on the manifold but incurs a sharp penalty
in length whenever the curve deviates from the manifold.

Empirically, we show that the tailored geometry-aware em-
beddings preserve geodesic distances on simulated single-
cell datasets, ensuring high DEMaP (Denoised Manifold
Affinity Preservation; Moon et al., 2019) consistently under
various noise settings. We also demonstrate that GAGA can
effectively denoise single-cell data and capture gene-gene
correlations. For generative modeling, we show that the in-
duced non-Euclidean metric can generate geodesics on toy
datasets and real-world single-cell datasets. Finally, we il-
lustrate that the proposed method can transport distributions
through geodesic flows on toy data.

In summary, our main contributions are:

1. We design a geometry-aware generative autoencoder
marrying manifold learning with generative modeling.

2. We propose a method for creating a meaningful off-
manifold geometry with a non-Euclidean metric on the
data space that penalizes movement off the manifold.

3. We present an approach to generating data along
geodesics and interpolating between distributions along
geodesic flow paths.

4. We demonstrate empirically that the proposed methods
work well in practice on toy and real-world data.

2. Background
Manifold Learning and Diffusion Geometry. The Mani-
fold Hypothesis states that data often lie on or near a low-
dimensional manifold within high-dimensional space. Man-
ifold learning methods like Diffusion Maps, PHATE, and
HeatGeo use diffusion probabilities to recover manifold ge-
ometry despite sparsity and noise (Coifman & Lafon, 2006;
Moon et al., 2019; Huguet et al., 2024). For details, see
Appendix A.

Riemannian Manifolds and Metrics. The Manifold Hy-
pothesis encourages using Riemannian geometry tools. An
n-dimensional manifold M has a Riemannian metric g for
computing angles, lengths, and geodesics. Given a map
f : M → (N, g), we induce a geometry on M using the
Riemannian pullback metric. The differential df of the map
pulls back the metric g on N to f∗g on M , defined as
f∗g(X,Y ) = g(dfpX, dfpY ). For details, see Appendix B.

3. Methods
This section is arranged as follows. Section 3.1 presents the
distance-matching autoencoder, with an auxiliary dimension

informed by a discriminator. This provides a pullback metric
on the data space that is matched to the data metric for points
on the data manifold, and induces a large distance to the
manifold for points off the manifold. Section 3.2 solves
the problem of learning geodesics between points on the
manifold using this pullback metric. Section 3.3 generalizes
this to generating geodesics between populations of points
using geodesic-guided flow matching.

3.1. Geometry-Aware Encoding for Both On-Manifold
and Off-Manifold Points

Our first task is to learn a latent space embedding whose Eu-
clidean distances correspond to the data manifold geodesic
distances. Many existing non-linear dimension reduction
techniques, including Diffusion Maps, PHATE, and Heat-
Geo, achieve this goal. We then produce a non-Euclidean
metric on data space that captures data manifold geodesic
distances by pulling back (via the encoder) the Euclidean
metric from latent space. This metric allows us to gener-
ate data along manifold geodesics and interpolate between
distributions along geodesic flow paths.

The following standard result from Riemannian geometry
states that by matching data manifold geodesic distances in
latent space (i.e., learning a local isometry), we construct the
desired non-Euclidean pullback metric on the data manifold.
Proposition 1. For Riemannian manifolds
(M, gM), (N , gN ) and diffeomorphism f :M→N , if f
is a local isometry, i.e., there exists ϵ > 0, such that for
any x0, x1 ∈ M, dM(x0, x1) < ϵ =⇒ dM(x0, x1) =
dN (f(x0), f(x1)), then we have gM = f∗gN .

To implement this construction, we define an encoder fθ
and a decoder hϕ, both parameterized by neural networks,
with a reconstruction objective

LRecon(θ, ϕ) =
1

N

N∑
i=1

||xi − hϕ(fθ(xi))||22, (1)

and a distance-matching objective
LDist(θ) (2)

=
1

N

∑
i<j

e−ζd(xi,xj) (||fθ(xi)− fθ(xj)||2 − d(xi, xj))2 ,

where x1, . . . , xN are the data samples, and d(xi, xj) is the
geodesic distance between points xi and xj obtained via
existing dimensionality reduction methods such as PHATE
(Moon et al., 2019) or diffusion maps (Coifman & Lafon,
2006). The hyperparameter ζ > 0 and the term e−ζd(xi,xj)

weight the penalty towards the more important local geome-
try of the data manifold.

To obtain a geometry-aware data encoding, we minimize
the objective function

L(θ, ϕ) = λ1LDist(θ) + λ2LRecon(θ, ϕ) (3)
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with respect to θ and ϕ. This objective function balances
distance matching and reconstruction with hyperparameters
λ1, λ2. It results in an embedding that matches the data
geometry and retains the information needed to reconstruct
the data. The pullback (via the encoder) of the Euclidean
metric from latent space yields a non-Euclidean ambient
space metric, capturing geodesic distances along the data
manifold.

While this construction produces a pullback metric on the en-
tire data space, it is only accurate near the training data, i.e.,
along the data manifold. To generate data along geodesics
without deviating into data space, we create a special embed-
ding for off-manifold points x̌i. These points are embedded
into a latent space with an auxiliary dimension, far from the
embedding of on-manifold points. We achieve this via a
GAN-style discriminator that predicts if a point is on or off
the manifold and use it to extend the embedding from the
previous section.

We first generate negative samples off the data manifold in
data space by adding high-dimensional Gaussian noise to
the data.

x̌i = xi + ϵi, ϵi ∼ N (0, cI), (4)

where c is a constant chosen such that the space away from
the manifold is in the support of the distribution of x̌. Then,
we define a discriminator wψ that maps from the ambient
space to a score, trained with the Wasserstein-GAN-inspired
loss function.

Lw(ψ) = Ex̌ [wψ(x̌)]− Ex [wψ(x)] + Varx(wψ(x)),
(5)

wψ is a Lipshitz function due to weight clipping and spectral
normalization (Arjovsky et al., 2017; Miyato et al., 2018).
The variance term is added to encourage the discriminator to
have uniform prediction. Finally, we define the off-manifold
map

r(x) =

(
fθ(x)
s(x)

)
, (6)

where s(x) = β(w̄ − wψ(x)) with w̄ = Ex[wψ(x)], and β
is a hyperparameter.

For points on the manifold, where s(x) is close to 0, the
embedding is unaffected. We formalize this statement as
follows:

Lemma 1. Suppose wψ is L-Lipshitz, and maxi,j ||xi −
x̌j || ≤M . for any ϵ > 0, if Lw(ψ) ≤ −LM + ϵ , we have
Ex[s(x)2] ≤ ϵ.

Points off the manifold, where s(x) is large, are placed
into the extended dimension of latent space, far from the
on-manifold points. Formally, we have:

Lemma 2. If there exists α ∈ R such that for
any x, x̌, α||x − x̌|| ≤ |wψ(x) − wψ(x̌)|. Then
for any x, x̌, ||r(x) − r(x̌)|| ≥ αβ||x − x̌||. Fur-
thermore, denoting DM(y) := supx∈M ||x− y|| and
Dr(M)(y) := supx∈M ||r(x)− r(y)||, then for any x̌, we
have Dr(M)(x̌) ≥ αβDM(x̌).

We can now use Equation (6) to extend the pullback metric
on the data manifold to the entire ambient space:

Definition 1. The pullback of the Euclidean metric from
latent space to the data manifold M is defined by
gM(X,Y ) := XTJTf JfY , where X,Y ∈ TxM are tan-
gent vectors at x ∈M, Jf := ∂fθ(x)i/∂xj is the Jacobian
of fθ at x.

Definition 2. The extended pullback of the Euclidean metric
from latent space to the full ambient space Rn is defined
by gRn(X,Y ) := XTJTr JrY , where X,Y ∈ TxRn are
tangent vectors at x ∈ Rn, Jr := ∂(r(x))i/∂xj is the
Jacobian of r at x.

Note that gM is defined only on the tangent space ofM,
whereas the off-manifold map r(x) allows gRn to be defined
on the tangent space of the entire ambient (data) space Rn.

3.2. Learning Geodesics on the Data Manifold

We now turn to the problem of learning the geodesic be-
tween a pair of points on the data manifold. One could try
to find the curve which minimizes length with respect to
the metric gM. However, this metric is only accurate on the
manifold, and such shortest paths might cut through ambi-
ent space. Indeed, we need to minimize length under the
condition that the curve stays on the manifold. The main re-
sult of this section shows that this constrained optimization
problem is actually solved by minimizing arc length with
respect to the extended pullback gRn . Intuitively, this metric
imposes large penalties for deviating from the manifold,
as off-manifold points are embedded into the dimension-
extended latent space, forcing the shortest path onto the
manifold.

We begin with a neural-network parameterized interpolation
curve. for any x0, x1 ∈ M, we define a neural network-
parameterized interpolation curve cη(x0, x1, ·) : [0, 1] →
Rn satisfying cη(x0, x1, 0) = x0, cη(x0, x1, 1) = x1. Fur-
ther details about the parameterization are provided in Ap-
pendix C.1. We minimize

LGeo(η, x0, x1) =
1

M

M∑
m=1

gRn(ċη, ċη)(x0, x1, tm), (7)

where 0 = t0 < t1 < ... < tM = 1 are sampled time points.
Note that Equation (7) is a discretization of the integral∫ 1

0
gRn(ċη, ċη)(x0, x1, t)dt. In Do Carmo & Flaherty Fran-

cis (1992), this is defined as the energy of the curve, and
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following Chapter 9, Proposition 2.5 in Do Carmo & Fla-
herty Francis (1992), minimizing the energy is equivalent
to minimizing the curve length.

The following proposition demonstrates that geodesic com-
putation onM can be achieved by minimizing arc length
with respect to the metric gRn :
Lemma 3. Assume that the ω-thickening of M ⊂ Rn,
Mω := {x ∈ Rn : infm∈M d(x,m) < ω}, maps into a
subset of the ϵ-thickening of f(M), where ϵ can be chosen
such that for every x ∈ f(M),Bϵ∩f(M) has only one con-
nected component. Then, for any smooth c : [0, 1] → Rn,
satisfying c(0) = x0, c(1) = x1, there exists a smooth
c′ : [0, 1] → M, satisfying c′(0) = x0, c

′(1) = x1, such
that LGeo(c

′) ≤ LGeo(c)− α2β2 1
M

∑M
m=1(DM(c(tm))−

DM(c(tm−1)))
2 + ξ where α is in the assumption of

Lemma 2 and ξ is a fixed positive constant independent
on xt and β.
Proposition 2. When LGeo is minimized,
maxm=1,...,M DM(c(tm)) ≤

√
ξ/(αβ), i.e., for suf-

ficiently large β, c(t) is close to the manifold with
a maximum distance of

√
ξ/(αβ). Furthermore, let

c′(t) be a geodesic between x0 and x1 under the met-
ric gM, we have 1

M

∑M
m=1 gM(ċ, ċ)(x0, x1, tm) ≤

1
M

∑M
m=1 gM(ċ′, ċ′)(x0, x1, tm) + ξ′

√
ξ/(αβ) for some

positive constant ξ′. That is, c approximately minimizes the
energy (and hence curve length) under gM.

This proposition shows that when Equation (7) is minimized,
we obtain the geodesic onM between starting point x0 and
ending point x1, with respect to the pullback metric gM.
We achieve the desired geodesic onM by minimizing arc
length with respect to the extended pullback metric.

3.3. Generation with Geodesic-Guided Flow Matching

In the previous section, we achieved point-wise geodesic
computation, learning the geodesic between a pair of
points. More generally, we aim to generate population-
level geodesics. Given two distributions on the manifold,
we want to generate geodesics between populations sam-
pled from these distributions, minimizing the expected total
length of the geodesics. This equates to solving the dynami-
cal optimal transport problem (Tong et al., 2020; Benamou
& Brenier, 2000), where the cost is the curve length on the
manifold.

To solve this, we first find the optimal pairing of points
from the starting and ending distributions to minimize total
geodesic length, then compute those geodesics. To general-
ize to new points, we learn a vector field matching the time
derivatives (speed) of the geodesics. Given a point sampled
from the first distribution, we can generate the geodesic by
integrating the vector field starting from the point.

Specifically, we define a neural network vν(x0, t) ∈ Rn,

and the flow matching loss for any joint distribution π and
curve cη:

LFM(ν, η, x0, x1) (8)

= Eπ(x0,x1)||vν(t, x0)−
d

dt
cη(t, x0, x1)||2.

When this loss is minimized, vν is the vector field that
matches the time derivatives of the curves.

In each training step, we sample starting and ending points
from the two distributions, and solve the optimal transport
problem where the ground distance is the Euclidean distance
in the latent space. This optimal transport plan π would min-
imize the total geodesic length between (x0, x1) ∼ π, be-
cause GAGA is trained so that the Euclidean distance in the
latent space is matched to the geodesic distance on the data
manifold. We then parameterize the interpolation curves cη
as in Section 3.2, and minimize the following loss which
balances the loss Equation (7) that the cη are the geodesics,
and the aforementioned flow matching lossEquation (8).

LGFM(ν, η, x0, x1) (9)
= λ3Lgeo(η, x0, x1) + λ4LFM(ν, η, x0, x1).

Further details are provided in Algorithm 1.

After training, we generate the geodesics by integrating the
vector field vη. Given an initial point x0, we can generate
points along the geodesics starting from it with

x(t) = x0 +

∫ t

0

vν(x0, τ)dτ. (10)

Finally, we have the following proposition that shows our
method generates the desired population-level geodesics:

Proposition 3. Given starting and ending distributions p, q,
at the convergence of Algorithm 1,

x(t) = x0 +

∫ t

0

vν(x0, τ)dτ, x0 ∼ p, t ∈ [0, 1] (11)

are geodesics between the two distributions following the
optimal transport plan that minimizes the total expected
geodesic lengths.

4. Results
Geometry-aware autoencoder. We empirically show that
GAGA preserves geodesic distances of data manifold in the
latent space and can effectively recover gene trends through
decoding. We evaluate GAGA on synthetic scRNA-seq
datasets Splatter (Zappia et al., 2017).

For the encoder, we use DEMaP (Denoised Embedding
Manifold Preservation; Moon et al., 2019) to measure the
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Table 1. Average DEMaP and DRS on simulated single-cell
datasets over different noise settings.

Cellular State Space DEMaP (↑) DRS (↑)
Autoencoder Clusters 0.347±0.117 0.642±0.129

GAGA Clusters 0.645±0.195 0.667±0.165

Autoencoder Trajectories 0.433±0.135 0.587±0.148

GAGA Trajectories 0.600±0.191 0.559±0.143

Table 2. Average MSE between predicted geodesic lengths and
ground truth on data with different dimensions and noise settings.

Djikstra’s GAGA Local Density
Ellipsoid 4.40±6.6 3.76±7.1 143.70±246.5 5.36±9.0

Hemisphere 4.83±6.2 0.47±0.6 43.20±65.7 0.60±0.6

Saddle 1.87±3.5 4.11±8.8 55.59±76.8 5.30±12.4

Torus 5.01±7.9 4.09±6.3 271.84±295.3 5.39±9.5

correlation between Euclidean distances in latent space
and ground truth geodesic distances in data space. For
decoder, we propose a novel criterion, DRS (Denoised Re-
construction Score) to compute the correlation between re-
constructed genes and denoised genes through denoising
method MAGIC (Van Dijk et al., 2018). Every set of our
experiments is repeated under 5 random seeds. See Ap-
pendix E.1 for details on Splatter and evaluation criteria.

We can see from Table 1 that the distance matching loss
is important for preserving geodesic distances, indicated
by higher DEMaP scores averaged across different noise
levels. Furthermore, GAGA generally rivals the standard
autoencoder on DRS, indicating our distance-matching loss
does not degrade data reconstruction.

Generating along geodesics on the data manifold. We use
synthetic manifold datasets to evaluate generated geodesics.
We compare our method with Dijkstra’s algorithm, a base-
line that directly uses the local metric, and a method that
uses density regularization. Further details are provided in
Appendix E.2.

Figure 1. Comparison of geodesics. From left to right columns: 1)
ground truth, 2) GAGA, 3) local metric, 4) density regularization.

Table 2 shows that GAGA generally outperforms all the
other methods except Djikstra’s on the saddle datasets. It’s
noteworthy to point out that Dijkstra’s algorithm is only
capable of connecting existing points but is unable to gen-
erate points along the path. Directly using the local metric
performs the worst, lagging far behind all other methods.

ESCs

Pre-NE

NE-1

NE-2

NE/NC

EN

EN-2

NS-4

Figure 2. Geodesics learned for the Embryoid Body dataset.

We visualize the predicted geodesics in Figure 1. In gen-
eral, trajectories generated by GAGA stay on the manifold
and are close to the ground truth geodesics, whereas some
learned by the local metric or density regularization either
deviate from the ground truth or cut through the manifold.
Further details are provided in Appendix F.3.

In addition to toy datasets, we also visualize the geodesics
learned on the Embryoid Body dataset (Figure 2). The start-
ing points correspond to stem cells, while the ending points
are selected at different lineages. The predicted geodesics
recover the corresponding differentiation branches, aligning
with our biological understanding of the data.

Geodesics-guided flow matching. Lastly, we evaluate
geodesics-guided flow matching on several toy datasets.
Figure 3 shows that the starting population of points is
successfully transformed into the ending population through
geodesic flows on the manifold.

Figure 3. Generating transporting trajectories on toy manifolds.

5. Conclusion
In this paper, we propose a geometric-aware generative
autoencoder (GAGA) that preserves geometry in latent em-
beddings and can generate new points on the data manifold,
along the geodesics, and at the population levels. We circum-
vent the limitations of existing manifold learning methods
by training generalizable geometric-aware neural network
embeddings, folding off-manifold points into auxiliary la-
tent dimension, and learning a non-euclidean metric on data
space via Riemannian pullback metric.

5



Geometry-Aware Autoencoders for Metric Learning and Generative Modeling on Data Manifolds

Acknowledgements
This research was partially funded and supported by ESP
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Appendix

A. Manifold Learning and Diffusion Geometry
The Manifold Hypothesis states that data are often sampled on or near an intrinsically low-dimensional manifold within high-
dimensional Euclidean space. Manifold learning techniques aim to uncover and recreate this manifold in a lower-dimensional
space.

Many manifold learning approaches use data diffusion geometry, which extracts geometric features from an approximation
of heat flow on the data. Diffusion geometry models a high-dimensional point cloud as a graph by applying a kernel K (e.g.,
the Gaussian kernel exp(−||z1 − z2||2/σ)) to the pairwise Euclidean distances between data points.

The kernel K is normalized to obtain a row-stochastic matrix P , where P (z1, z2) =
K(z1,z2)

||K(z1,·)||1 . This matrix P encodes
transition probabilities between points. Powering P t represents a t-step random walk. Long-range or spurious connections
are given less weight through this iterated walk than robust on-manifold paths, allowing the resulting point-wise diffusion
probabilities to recover manifold geometry even in the presence of sparsity and noise. Methods like Diffusion Maps, PHATE,
and HeatGeo use diffusion probabilities to define a statistical distance between data points (Coifman & Lafon, 2006; Moon
et al., 2019; Huguet et al., 2024).

B. Riemannian Manifolds & Metrics
The Manifold Hypothesis also encourages the use of tools from Riemannian geometry. Formally, an n-dimensional manifold
M is a topological space locally homeomorphic to n-dimensional Euclidean space. Riemannian manifolds (M, g) have the
additional structure of a Riemannian metric g, an inner product defined on the tangent space of each point, enabling the
computation of angles, lengths, and geodesics.

Given a map between manifolds f : M → (N, g), where the target manifold (N, g) has a Riemannian metric, we can induce
a geometry on the original manifold M through the Riemannian pullback metric. First, we define the differential df of the
map, which at a point p ∈M , is a map between tangent spaces dfp : TpM → Tf(p)N . We use this map df to pull back the
metric g on N to a metric f∗g on M .

To define this pullback, we specify its effect on a pair of vectors X,Y ∈ TpM . The pullback metric is defined as

f∗g(X,Y ) = g(dfpX, dfpY ), (B.1)

where dfpX and dfpY are the pushforward vectors, i.e., the images of X and Y under the differential.

C. Geodesic Parameterization and Computation
C.1. Parameterization of curve

We parameterize the curves using an interpolation between starting and ending points, with a linear term and a non-linear
term parameterized by an MLP γη .

cη(x0, x1, t) = tx1 + (1− t)x0 + (1− (2t− 1)2)γη(x0, x1, t), (C.2)

C.2. Algrorithm for Geodesic Flow Matching

We use geodesic flow matching with a minibatch OT setup similar to (Tong et al., 2023)

D. Proofs
D.1. Proposition 1

For Riemannian manifolds (M, gM), (N , gN ) and diffeomorphism f :M→N , if f is a local isometry, i.e., there exists
ϵ > 0, such that for any x0, x1 ∈M, dM(x0, x1) < ϵ =⇒ dM(x0, x1) = dN (f(x0), f(x1)), then we have gM = f∗gN .

Proof. We first prove that the two metrics agree on vector norms. That is, for any u ∈ TxM, gN (dfu, dfu) = gM(u, u).:

7
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Algorithm 1 Mini-batch OT Geodesic Flow Matching

Input: Starting and ending populations X ,Y , encoder f , dimension-extended encoder r, t = (t1, ..., tM )
while Training do

Sample batches of size b i.i.d. from the datasets
Sample {x1, ..., xl} ⊂ X , {y1, ..., yl} ⊂ Y
µ← 1

l

∑l
i=1 I(x = xi), ν ← 1

l

∑l
i=1 I(x = yi)

π∗ = argmin
π∼Γ(µ,ν)

(
1
l

∑l
i=1 π(x

′
i, y

′
i)||f(x′i)− f(y′i)||2

)1/2

Sample (xj1 , yj1), ..., (xjl , yjl)
i.i.d.∼ π∗

Compute geodesic and velocity-matching losses
L← 1

l

∑l
i=1(λ3Lgeo(η, xji , yji) + λ4LFM(ν, η, xji , yji))

η, ν ← GradientDescentUpdate(η, ν,∇L)
end while
Output: ν

∀z ∈ N ,∀ smooth curve γ(t) ⊂ N , and let ξ(t) = f−1(γ(t)). Then there exists δ > 0 such that ∀0 < t < δ∫ t

0

√
gM(ξ̇(τ), ξ̇(τ))dτ < ϵ (D.3)

We have ∫ t

0

√
gM(ξ̇(τ), ξ̇(τ))dτ =

∫ γ−1◦ξ(t)

0

√
gN (γ̇(τ), γ̇(τ))dτ (D.4)

Take t→ 0, we have gN (dfu, dfu) = gM(u, u) where u = ξ̇(0).

Next we use the identity

⟨u, v⟩ = 1

4
(⟨u+ v, u+ v⟩ − ⟨u− v, u− v⟩) (D.5)

for any 2-form ⟨·, ·⟩, and apply to gM, gN , we have

gN (dfu, dfv) = gM(u, v)∀u, v ∈ TxM. (D.6)

D.2. Lemma 1

Suppose wψ is L-Lipshitz, and maxi,j ||xi − x̌j || ≤M . ∀ϵ > 0, if Lw(ψ) ≤ −LM + ϵ, we have Ex[s(x)2] ≤ ϵ.

Proof. Denote pon the data distribution and poff the distribution of off-manifold points defined Equation (4).

∀x ∼ pon, x̌ ∼ poff, since wψ is L-Lipshitz, |wψ(x̌)− wψ(x)| ≤ L||x̌− x|| < LM.

Taking expectaion, we have Ex̌[wψ(x̌)]− Ex[wψ(x)] ≥ −LM.

Thus, Lw(ψ) ≤ −LM + ϵ =⇒ E[s(x)2] = Varx(wψ(x)) = Lw(ψ)− (Ex̌[wψ(x̌)]− Ex[wψ(x)]) ≤ ϵ.

D.3. Lemma 2

If there exists α ∈ R such that for any x, x̌, α||x− x̌|| ≤ |wψ(x)−wψ(x̌)|. Then for any x, x̌, ||r(x)−r(x̌)|| ≥ αβ||x− x̌||.
Furthermore, denoting DM(y) := supx∈M ||x− y|| and Dr(M)(y) := supx∈M ||r(x)− r(y)||, then for any x̌, we have
Dr(M)(x̌) ≥ αβDM(x̌).

8
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Proof. Because r(x) =
(
fθ(x)
s(x)

)
, where s(x) = β(w̄ − wψ(x)), we directly compute:

||r(x)− r(x̌)||2 =||fθ(x)− fθ(x̌)||2 + |s(x)− s(x̌)|2 (D.7)

≥|s(x)− s(x̌)|2 (D.8)

≥β2|wψ(x)− wψ(x̌)|2 (D.9)

≥β2α2||x− x̌||2, (D.10)

we have ||r(x)− r(x̌)|| ≥ βα||x− x̌||.

Taking supremum over x ∈M, we have Dr(M)(x̌) ≥ βαDM(x̌)

D.4. Lemma 3

Assume that the ω-thickening of M ⊂ Rn, Mω := {x ∈ Rn : infm∈M d(x,m) < ω}, maps into a subset of the ϵ-
thickening of f(M), where ϵ can be chosen such that for every x ∈ f(M), Bϵ ∩ f(M) has only one connected component.
Then, for any smooth c : [0, 1]→ Rn, satisfying c(0) = x0, c(1) = x1, there exists a smooth c′ : [0, 1]→M, satisfying
c′(0) = x0, c

′(1) = x1, such that LGeo(c
′) ≤ LGeo(c) − α2β2 1

M

∑M
m=1(DM(c(tm)) −DM(c(tm−1)))

2 + ξ where α is
in the assumption of Lemma 2 and ξ is a fixed positive constant independent on xt and β.

Proof. Consider a smooth c : [0, 1] → Rn with c(0) = x1, c(0) = x1 which lies within the ω-thickening of M. We
construct an open cover of its image f(c) as the collection of open balls {Bϵ(c(t)) : t ∈ [0, 1]}. By compactness, this admits
a finite subcover at some collection of times {t1 . . . tN}. For each ti, we can choose point c′[ti] from Bϵ(c(ti)) ∩ f(M).
By the continuity of f ◦ c, these are all part of the same connected component of f(M), hence there exists a curve
c′ : [0, 1] → Rn with the same endpoints as c, whose image contains {c′[ti]}. Furthermore, by the smoothness of f and
c, there exists a uniform K > 0 independent of c, c′ such that |

∫
ċ(t)TJTf Jf ċ(t)− ċ′(t)TJTf Jf ċ′(t)dt| < Kϵ. Following

Lemma 1, because c′ ∈M, we also have |
∫
ċ′(t)TJTs Jsċ

′(t)| < ϵ′ for some uniform ϵ′ > 0 independent on c, c′.

We can decompose the pullback metric as

JTr Jr = JTf Jf + JTs Js. (D.11)

and compute the difference

LGeo(c)− LGeo(c
′) =

1

M

M∑
m=1

(ċ(t)TJTf Jf ċ(t) + ċ(t)TJTs Jsċ(t)− (ċ′(t)TJTf Jf ċ
′(t) + ċ′(t)TJTs Jsċ

′(t))) (D.12)

=
1

M

M∑
m=1

(ċ(t)TJTf Jf ċ(t)− ċ′(t)TJTf Jf ċ′(t) + ċ(t)TJTs Jsċ(t) + ċ′(t)TJTs Jsċ
′(t)) (D.13)

≥−Kϵ− ϵ′ + 1

M

M∑
m=1

ċ(t)TJTs Jsċ(t). (D.14)

≥−Kϵ− ϵ′ − ϵ′′ + 1

M

M∑
m=1

(̇s(c(tm))− s(c(tm−1))
2 (D.15)

≥−Kϵ− ϵ′ − ϵ′′ + 1

M

M∑
m=1

(̇s(c(tm))− s(c(tm−1))
2. (D.16)

≥−Kϵ− ϵ′ − ϵ′′ + 1

M
αβ

M∑
m=1

(̇DM(c(tm))−DM(c(tm−1))
2, (D.17)

(D.18)

where ϵ′, ϵ′′ are positive constants independent on xt, β.
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D.5. Proposition 2

When LGeo is minimized, max
m=1,...,M

DM(c(tm)) ≤
√
ξ

αβ , i.e., for sufficiently large β, c(t) is close to the manifold with

a maximum distance of
√
ξ

αβ . Furthermore, let c′(t) be a geodesic between x0 and x1 under the metric gM, we have
1
M

∑M
m=1 gM(ċ, ċ)(x0, x1, tm) ≤ 1

M

∑M
m=1 gM(ċ′, ċ′)(x0, x1, tm) + ξ′

√
ξ

αβ for some positive constant ξ′. That is, c
approximately minimizes the energy (and hence curve length) under gM.

Proof. Suppose c minimizes LGeo. Then by Lemma 3, there exists c′ such that

LGeo(c
′) ≤ LGeo(c)− α2β2 1

M

M∑
m=1

(DM(c(tm))−DM(c(tm−1)))
2 + ξ. (D.19)

On the other hand, because c is a minimizer, we have

LGeo(c) ≤ LGeo(c
′). (D.20)

Combining them, we have

α2β2 1

M

M∑
m=1

(DM(c(tm))−DM(c(tm−1)))
2 ≤ LGeo(c)− LGeo(c

′) + ξ ≤ ξ. (D.21)

Rearrange t0, . . . , tM with a permutation σ such that DM(tσ(0)) ≤ · · · ≤ DM(tσ(M)), and because DM(t0) = 0 (the
minimum), WLOG, let tσ(0) = 0. We have

α2β2 1

M

M∑
m=1

(DM(c(tσ(m)))−DM(c(tσ(m−1))))
2 ≤ξ (D.22)

=⇒ α2β2(
1

M

M∑
m=1

(DM(c(tσ(m)))−DM(c(tσ(m−1))))
2 ≤ξ (by Jensen’s inequality) (D.23)

=⇒ α2β2(DM(c(tσ(M))−DM(c(tσ(0)))
2 ≤ξ (D.24)

=⇒ max
m=1,...,M

DM(c(tm)) = DM(c(tσ(M))) ≤
√
ξ

αβ
. (D.25)

The proof for the second part follows from the Lipshitz property of s(x) and the smoothness of f in Lemma 3.

D.6. Proposition 3

At the convergence of Algorithm 1, Equation (10) are geodesics between points in X and points in Y following the optimal
transport plan that minimizes the geodesic lengths.

Proof. We first prove that when Equation (7) and Equation (8) are minimized, Equation (10) yields geodesics from x0 ∈ X
to x1 ∈ Y . This is because by Lemma 3, the curves cη are geodesics. When Equation (8) is minimized, vν approximates the
gradient of cη , and its integration starts at the same point x0 approximates cη .

The rest follows from the the proof of Algorithm 3 in (Tong et al., 2023).

E. Experiment Details
E.1. Geometry-aware autoencoder

E.1.1. DATASETS: SPLATTER

We evaluate our geometry-aware autoencoder on simulated scRNA-seq datasets Splatter(Zappia et al., 2017). Splatter uses
parametric models to simulate cell populations with multiple cell types, structures, and differentiation patterns. Specifically,
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we evaluate on single-cell data of group and path structures with biological coefficient of variation (bcv) parameters
{0, 0.18, 0.25, 0.5}. A higher bcv corresponds to a lower signal-to-noise ratio. The cellular state space is a simulation
parameter indicating whether the cells are arranged in clusters or trajectories in the data space. In Splatter, it is specified by
the method parameter, where clusters correspond to groups and trajectories correspond to paths.

E.1.2. EVALUATION CRITERIA

For the encoder, we leverage DEMaP (Moon et al., 2019) to measure the correlation between Euclidean distances in latent
space and ground truth geodesic distances in original data space.

DEMaP(f) =
2

N(N − 1)

∑
i<j

Corr(||f(xi)− f(xj)||2, dij), (E.26)

where f is the encoder to be evaluated, Corr is Pearson correlation, xi, xj are points from test data, and dij is the ground
truth geodesic distance between xi, xj , computed from shortest path distance under noiseless setting.

For decoder evaluation, we propose a novel criteria, DRS (Denoised Reconstruction Score), to account for the noisy and
sparse nature of single-cell data. DRS computes the correlation between reconstructed genes and denoised genes through
denoising and imputation method MAGIC(Van Dijk et al., 2018).

DRS(f, h) =
1

Ngene

Ngene∑
i=1

Corr(yi, y
MAGIC
i ), (E.27)

where f, h are the encoder and decoder pair, yi = PCA-1(h(f(xi)), yMAGIC
i = PCA-1(MAGIC(xi)). PCA-1 here is the

inverse PCA operator since the original data are first PCA transformed and then fed into the autoencder. Therefore we use
inverse PCA to map the reconstructed points back to the gene space for evaluation.

E.2. Generating along geodesics

E.2.1. DATASETS: SIMULATED MANIFOLDS

We generate four toy manifolds: ellipsoid, torus, saddle, and hemisphere in R3. We add Gaussian noise of different scales to
the original toy manifolds and rotate the data to higher dimensions using a random rotation matrix. We simulate datasets
under {0, 0.1, 0.3, 0.5} noise scales and {3, 5, 10, 15} dimensions. For each dataset, we randomly select 20 pairs of starting
and ending points on the manifold.

We benchmark all methods on the noisy, high-dimensional data, and compute the pairwise geodesics.

E.2.2. EVALUATION CRITERIA

Quantitatively, we evaluate these methods on the MSE criteria: the mean squared error between the predicted geodesic
length and ground truth length.

Length MSE =
1

k

k∑
i=1

(l̂i − li)2, (E.28)

where k is the total number of geodesics, li, l̂i are the lengths of the i-th ground truth and predicted geodesics. We obtain the
ground truth geodesics analytically if the solution is available or using Dijkstra’s algorithm on noiseless data otherwise.

E.3. Geodesics-guided flow matching

E.3.1. DATASETS: RANDOMLY SAMPLED POPULATIONS ON TOY MANIFOLDS

To showcase GAGA’s ability on transporting distributions on manifolds, we generate four toy manifolds: ellipsoid, torus,
saddle, and hemisphere in R3. To simulate starting and ending distributions, we first randomly sample two points on the
manifold as the starting and ending center and then sample N points near these selected centers. We compute and visualize
the flow paths between the two distributions.

11



Geometry-Aware Autoencoders for Metric Learning and Generative Modeling on Data Manifolds

F. Additional Experiment Results
F.1. Geometry-aware autoencoder under increasingly noisy data
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Figure 4. Comparison for GAGA and standard autoencoder on increasingly noisy single-cell datasets.

In Figure 4, we observe that GAGA consistently outperforms standard autoencoder on DEMaP under increasingly noisy
sinle-cell data simulated with increasing bcv parameter. Moreover, we can see that GAGA generally rivals the standard
autoencoder on DRS, indicating our distance-matching loss does not detract from data reconstruction.

F.2. Visualizing GAGA’s latent embeddings

Qualitatively, we visualize the latent embeddings of GAGA on real-world scRNA-seq dataset EB, embryoid body data
generated over 27 day time course (Moon et al., 2019). We show that GAGA is able to capture geometric structures in the
data, which are essential for biological insights and interpretations. In addition to PHATE, we trained GAGA with two
other geodesic distances obtained under different settings of HeatGeo (Huguet et al., 2024). We can see from Figure 5 that
GAGA captures both local and global geometric structures such as clusters, branches, and paths. Moreover, Figure 5 shows
that GAGA can match closely with the embedding method that it’s based on, preserving the latent space of the original
dimension reduction method and, at the same time, capable of generalizing to unseen points.

F.3. Visualizing geodesics on toy manifolds

Figure 6 shows the geodesics of different methods on the same set of starting and ending points on multiple toy manifolds.
Each row corresponds to one manifold and each column corresponds to one method. From left to right column, the method
is 1) ground truth, 2) GAGA, 3) local metric, 4) density regularization. Density refers to geodesics learned with using
density regularization.

We can see that GAGA generally outperforms all the other methods except Djikstra’s on the saddle datasets. Directly using
the local metric performs the worst, lagging far behind all other methods. The inferior performance of the local metric again
illustrates the challenges of staying on the manifold while optimizing for the shortest path.
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Figure 5. Visualization of the embedding shows GAGA preserves local and global structures.
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Figure 6. Comparison of geodesics. From left to right columns: 1) ground truth, 2) GAGA, 3) local metric, 4) density regularization.
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