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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has become the predom-
inant approach for aligning language models (LMs) to be more helpful and less
harmful. At its core, RLHF uses a margin-based loss for preference optimization,
which specifies the ideal LM behavior only in terms of the difference between pre-
ferred and dispreferred responses. In this paper, we identify a fundamental issue
of margin-based preference optimization: under-specification of ideal behavior
for each response individually leads to two unintended consequences as the mar-
gin increases: (1) The probability of dispreferred (e.g., unsafe) responses may
increase, resulting in potential safety alignment failures. (2) The probability of
preferred responses may decrease, even when these responses are ideal. Insights
on why and when these problematic LM behaviors occur are provided: simultane-
ous increase/decrease in the probabilities of preferred and dispreferred responses
is caused by the high correlation between the gradients of two probabilities. We
derive a condition for all margin-based preference optimization objectives under
which these LM behaviors occur: the inner products between the gradients of pre-
ferred log-probabilities and the gradients of dispreferred log-probabilities are large
relative to the individual gradient norms. We theoretically analyze when such in-
ner products are large and empirically validate our findings. Our framework also
reveals important differences in the training dynamics of various preference opti-
mization algorithms and suggests new directions for developing better algorithms
for language model alignment.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has become a primary approach for align-
ing Language Models (LMs) to improve their helpfulness and mitigate harmfulness (Stiennon et al.,
2020; Bai et al., 2022; Ouyang et al., 2022). This pipeline typically consists of two stages: su-
pervised fine-tuning (SFT), where demonstration data is used to directly teach the model desirable
behaviors, and the reinforcement learning (RL) stage, which uses preference data—comparisons be-
tween different responses to the same prompt—to highlight the contrast between chosen and rejected
responses, with the goal of helping the model learn distinctions between good and bad behaviors.

In its vanilla form, the RL stage first employs a contrastive loss—based on the margin between
the scores of the chosen and rejected responses—to train a reward model, followed by policy opti-
mization methods to fine-tune the LM based on the reward model. Leveraging the structure of the
problem, a recent line of work has combined these two steps by directly optimizing the language
model using a margin-based preference optimization loss of the following general form (Rafailov
et al., 2024; Azar et al., 2024; Xu et al., 2024; Ethayarajh et al., 2024; Hong et al., 2024; Pal et al.,
2024; Park et al., 2024; Yuan et al., 2024; Meng et al., 2024; Zhao et al., 2023; Wu et al., 2024):1

ℓ(x, yw, yl; θ) = m(hw(log πθ(yw|x))− hl(log πθ(yl|x))), (1)

where for language model πθ, log πθ(yw|x) specifies the log-probability of the chosen response
yw and log πθ(yw|x) specifies that of the rejected response yl, given the same prompt x. Most of
existing preference optimization losses can be interpreted as varying the scalar functions m,hw, hl

(Section 3.2 and Table 2). At the core, they all rely on the margin between the chosen log-probability
log πθ(yw|x) and the rejected log-probability log πθ(yl|x).

1The reward modeling loss in vanilla RLHF is also an example of this general form.
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The training dynamics of these margin-based preference optimization are quite intriguing—the log-
probabilities of the chosen and rejected responses often show a synchronized increase and decrease
(Figure 1). It is worth noting that, by the end of the training, even though the margin increases
(resulting in minimization of the margin-based loss), the log probability of both the chosen and
rejected responses may increase (Figure 1a), or both may decrease (Figure 1b).
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Figure 1: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset (Sti-
ennon et al., 2020), with log probabilities averaged on the evaluation set. As the margin between
the two increases, the chosen and rejected log-probabilities exhibit synchronized increases and de-
creases per step. In Figure 1a, both chosen and rejected log-probabilities have an overall trend of
increasing, especially towards the end of training, whereas in Figure 1b, both have a trend of de-
creasing.

This synchronized log-probability change exposes a fundamental issue with using margin-based
loss for preference optimization in language model alignment: it only specifies the ideal behavior of
margin between chosen and rejected log-probabilities, but not the ideal behavior of individual terms.
This under-specification may have two problematic consequences:

• First, when the primary goal is to reduce the probability of generating rejected responses (e.g.,
in safety-related alignment tasks where certain undesirable responses should not be generated),
merely increasing the margin (i.e., ensuring that the chosen response is preferred over the rejected
one) does not guarantee that the log-probability of the rejected response is actually decreasing
(Figure 1a).

• Second, even when the log-probability of the rejected response does decrease, the current margin-
based losses often lead to a simultaneous reduction in the log-probability of chosen response (Fig-
ure 1b). This becomes particularly concerning in some of the current fine-tuning practices where
we want to retain or even increase the probability of generating the preferred responses. However,
in more recent work, the chosen and rejected samples are often synthetic data generated by strong
language models and are used to distill these strong models into smaller ones (Dubey et al., 2024;
Chiang et al., 2023; Tunstall et al., 2024; Taori et al., 2023). In some other cases, chosen samples
may come from demonstration data collected during the SFT phase (Chen et al., 2024). In both
scenarios, where the chosen responses are ideal, we want the probability of the chosen response
to increase—or at least not decrease—to ensure the model retains a high probability of generating
these ideal responses.

In the original procedure of RLHF, both chosen and rejected samples are drawn from models that
require further training (Stiennon et al., 2020). In such cases, the ideal behavior of the model on the
chosen samples is less clear—aside from being preferred over the rejected ones.

In this work, we dig into this phenomenon, identifying conditions under which the chosen and
rejected log-probability log πθ(yw|x), log πθ(yl|x) exhibits synchronized increase and decrease.
Our first key finding is that this synchronized change happens when the gradient inner product
⟨∇θ log πθ(yw|x),∇θ log πθ(yl|x)⟩ is “large” relative to their individual norms (Section 3.1). The
precise definition of “large” varies for different algorithms (Section 3.2). The gradient inner product
conditions we derived enable us to characterize existing margin-based preference optimization meth-
ods, explain their differing training dynamics, and identify the appropriate conditions for using these
algorithms. Our theoretical findings are also validated through empirical observations (Section 3.3).
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We further investigate when these gradient inner product conditions may fail. In synthetic settings,
we theoretically show that (1) as the chosen and rejected responses share more similar tokens, their
gradient inner product will increase, and (2) while the sentence-level gradient inner product may
be large and positive, individual token-level inner products can be small and negative (Section 4.1).
We validate these theoretical insights empirically, and our findings suggest the potential for more
fine-grained preference optimization methods that leverage token-level information (Section 4.2).

To summarize, our contributions are as follows:

• We identify a key issue with margin-based preference optimization for LM alignment: it under-
specifies the ideal behavior of the LM on chosen and rejected responses individually (Section 1);

• For various margin-based losses, we provide a gradient inner product condition that captures when
the synchronized movement of chosen and rejected log probabilities occurs (Section 3);

• We explore when the gradient conditions may fail theoretically and experimentally (Section 4).
• Using our framework, we outline future directions for language model alignment (Section A).

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM SETUP

We consider auto-regressive language models π(yt|x, y<t) that specify the distribution of the next
token yt at index t on a finite vocabulary set V , given the prefix tokens including the prompt x and the
partially generated responses y<t. In the context of LM alignment, there is a reference policy πref,
usually obtained by large-scale pre-training and supervised fine-tuning, and serves as the sampling
policy and start point of further alignment algorithms.

2.2 PREFERENCE OPTIMIZATION

There have been plenty of works on the design of preference optimization losses, motivated by
various assumptions or considerations. Here we briefly review them and discuss their connection to
the probability margin:

Rafailov et al. (2024) derive the DPO loss from the KL-constrained reward maximization problem:

max
θ

Ex∼X ,y∼πθ(·|x)[r(y;x)]− βEx∼X [KL(πθ(·|x)∥πref(·|x))].

They further derive the DPO loss for any triplet (x, yw, yl) where the yw, yl are the chosen and
rejected response, respectively:

ℓDPO(x, yw, yl; θ;πref) := − log σ

(
β

[
log

(
πθ(yw|x)
πref(yw|x)

)
− log

(
πθ(yl|x)
πref(yl|x)

)])
. (2)

Motivated by non-transitive human preference and language model calibration respectively, Azar
et al. (2024) and Zhao et al. (2023) propose IPO and SlicHF loss with similar forms that solely
depend on the margin log πθ(yw|x)− log πθ(yl|x).
Due to the length bias observed in practice, Park et al. (2024) propose to add a length penalty term
in the BT preference model, but the gradient still relies on the margin log πθ(yw|x)− log πθ(yl|x).
Meng et al. (2024) and Yuan et al. (2024) consider the setting of average rewards and derive a loss
dependent on the length-normalized margin 1

|yw| log πθ(yw|x)− 1
|yl| log πθ(yl|x).

Unlike prior work, Ethayarajh et al. (2024) and Wu et al. (2024) do not consider the difference
between the likelihood, but deal with the chosen and rejected response separately. These works
typically assign a positive reward signal to the chosen response and a negative reward signal to the
rejected one, according to the logistic loss (Ethayarajh et al., 2024) or the square loss (Wu et al.,
2024).

(Pal et al., 2024) observes a decrease in the log-probability of chosen response during DPO when the
edit distances between each pair of completions are small in preference datasets. To fix the decrease,
a natural way is to add explicit regularization to the loss objective, to force the increase of the chosen
response’s log-probability. In particular, (Pal et al., 2024) propose the DPOP loss that behaves the
same as DPO when the chosen response’s log-ratio log

( πθ(yw|x)
πref(yw|x)

)
is above 0, while adds an explicit

regularization when the ratio is below 0. Similarly, Xu et al. (2024) and Zhao et al. (2023) also add
explicit regularization to maximize the chosen response’s log-probability.

3
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Among these works, the most relevant to ours is Pal et al. (2024), which touches upon a similar
failure mode of DPO. The main difference is that they focus on mitigating only the decrease mode of
the chosen response’s probability by new loss designs. In contrast, we dig deeper to obtain a broader
view on the synchronized change (increase or decrease) in chosen and rejected probabilities. We
rigorously analyze the training dynamics and extract a general success/failure conditions based on
gradient correlation, which applies to a range of margin-based losses for preference optimization.

3 GRADIENT ENTANGLEMENT

Margin-based preference optimization often results in synchronized increase/decrease in chosen and
rejected log-probabilities (Section 1). Our key finding is that the synchronized change is caused by
an effect we term as gradient entanglement. Starting with a case study on DPO in Section 3.1, we
formally define the gradient entanglement effect, from the definition we will see the entanglement
is passed through the inner product between chosen and rejected gradients. We derive conditions on
such inner product under which the gradient entanglement causes concerning synchronized change.
In Section 3.2, we identify gradient entanglement for general margin-based preference optimization
methods and apply our framework to explain the training dynamics of those methods. We validate
our findings empirically in Section 3.3.

[Revision: The following Sec3.1 and Sec3.2 are refactored to improve presentation.]

3.1 CASE STUDY: GRADIENT ENTANGLEMENT IN DPO

Let us start with deriving the gradient of the DPO objective (2). To simplify the formula of DPO
gradient, we define the implicit reward r̂θ(x, y) := β log πθ(y|x)

πref (y|x) (which is a scalar) and introduce
the notations:

log πw(θ) := log πθ(yw|x), log πl(θ) := log πθ(yl|x), c(θ) := σ (r̂θ (x, yl)− r̂θ (x, yw)) > 0.

Then considering a single sample (x, yw, yl), the DPO gradient can be rewritten as2

∇θℓDPO = −βc(θ) · (∇θ log πw(θ)−∇θ log πl(θ)). (3)

Suppose η > 0 is the step size for minimizing the DPO objective and let C = ηβc(θ). After one
step gradient descent with (3), a simple analysis of the log-probability change in chosen and rejected
responses uncovers the intriguing gradient entanglement effect as follows:

Gradient Entanglement (DPO)

The chosen log-probability change ∆ log πw depends on the rejected gradient ∇ log πl,
and similarly, the rejected log-probability change ∆ log πl depends on the chosen gradient
∇ log πw:

∆ log πw ≈ C ·
(
∥∇ log πw∥2 − ⟨∇ log πw,∇ log πl⟩

)
, (4)

∆ log πl ≈ C ·
(
⟨∇ log πw,∇ log πl⟩ − ∥∇ log πl∥2

)
. (5)

(4) and (5) are derived by approximating ∆ log πw and ∆ log πl with first-order Taylor expansion
(Appendix B.1). Beyond the DPO objective, the gradient entanglement effect is an inherent char-
acteristic of margin-based objectives as the chosen and rejected log-probability are coupled in the
definition of “margin.” In Section 3.2, we will formally derive gradient entanglement for general
margin-based objectives for preference optimization. In the sequel, we will derive conditions on
⟨∇ log πw,∇ log πl⟩ under which the gradient entanglement will have concerning effects.

3.1.1 WHEN WILL THE GRADIENT ENTANGLEMENT BE CONCERNING?

If we measure the change in the margin between log πw and log πl, i.e., the quantitiy ∆(log πw −
log πl), then the Cauchy–Schwarz inequality ensures:

∆(log πw − log πl) ≈ C · (∥∇ log πw∥2 − 2⟨∇ log πw,∇ log πl⟩+ ∥∇ log πl∥2) ≥ 0,

2When the context is clear, we omit θ and just use log πw, log πl and ∇.
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which fulfills the contrastive goal of the DPO loss: enlarging the difference between the chosen log-
probability log πw and rejected log-probability log πl. However, due to the gradient entanglement
effect, to individually ensure the increment of log πw and the decrement of log πl, the inner product
between chosen and rejected gradient should satisfy the following condition, which we will refer to
as “gradient condition”.
Condition 1 (Gradient condition for DPO). In DPO, to increase log πw and decrease log πl indi-
vidually, (4) and (5) imply the following conditions:

⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πw∥2 ⇐⇒ ∆ log πw ≥ 0, log πw increases;

⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πl∥2 ⇐⇒ ∆ log πl ≤ 0, log πl decreases.

Based on the two conditions above, in Table 1 we summarize three cases that depict all pos-
sible changes on the chosen and rejected log-probabilities and are categorized by the value of
⟨∇ log πw,∇ log πl⟩.

Case ∆ log πw,∆ log πl log πw, log πl Condition

1 ∆ log πw ≥ 0 ≥ ∆ log πl log πw ↑ log πl ↓ ⟨∇ log πw,∇ log πl⟩ ≤ min(∥∇ log πw∥2, ∥∇ log πl∥2)

2 0 ≥ ∆ log πw ≥ ∆ log πl log πw ↓ log πl ↓ ∥∇ log πw∥2 ≤ ⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πl∥2

3 ∆ log πw ≥ ∆ log πl ≥ 0 log πw ↑ log πl ↑ ∥∇ log πl∥2 ≤ ⟨∇ log πw,∇ log πl⟩ ≤ ∥∇ log πw∥2

Table 1: Three possible cases of the changes on chosen and rejected log-probabilities in DPO. ↑
and ↓ indicate increase and decrease. Case 1 (Ideal): log πw increases and log πl decreases; Case 2:
log πw and log πl both decreases but log πl decreases more; Case 3: log πw and log πl both increases
but log πw increases more.

3.2 GENERAL GRADIENT ENTANGLEMENT EFFECT

We now move on to the general margin-based loss (1). Here, we additionally consider regularizers
used in these losses:

ℓ(θ) = −
(
m(hw(log πw)− hl(log πl)) + Λ(log πw)

)
, (6)

where Λ(log πθ(yw|x)) is a scalar regularizer depending on the chosen log-probability. We instan-
tiate popular preference optimization methods from this general form in Table 2, where we denote
cwref := log πref(yw|x), clref := log πref(yl|x), cref := cwref − clref. Terms that only depend on πref(y|x)
shall be viewed as constant, independent of θ.

Based on this unified formulation of preference optimization objectives (6), we derive general gra-
dient entanglement for all margin-based losses (derivations in Appendix B.1):

Gradient Entanglement (General)

The chosen log-probability change depends on the rejected gradient, and vice versa. The
mutual dependency is characterized by:

∆ log πw ≈ η
(
dw∥∇ log πw∥2 − dl⟨∇ log πw,∇ log πl⟩

)
,

∆ log πl ≈ η
(
dw⟨∇ log πw,∇ log πl⟩ − dl∥∇ log πl∥2

)
.

In the general form of gradient entanglement, dw and dl are scalars defined as
dw := m′(hw(log πw)− hl(log πl))h

′
w(log πw) + Λ′(log πw), (7)

dl := m′(hw(log πw)− hl(log πl))h
′
l(log πl). (8)

We derive a generalized version of Condition 1 for general margin-based losses.
Condition 2 (Gradient condition for general margin-based objectives). For margin-based preference
optimization objectives(6), the conditions for log πw to increase and for log πl to decrease are:

⟨∇ log πw,∇ log πl⟩ ≤
dw
dl

∥∇ log πw∥2 ⇐⇒ ∆ log πw ≥ 0, log πw increases; (9)

⟨∇ log πw,∇ log πl⟩ ≤
dl
dw

∥∇ log πl∥2 ⇐⇒ ∆ log πl ≤ 0, log πl decreases. (10)

5
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Accordingly, we can instantiate Condition 2 for different algorithms by using their specialized
m,hw, hl,Λ in Table 2.

m(a) hw(a) hl(a) Λ(a)

DPO (Rafailov et al.) log σ(a − cref) βa βa —
R-DPO (Park et al.) log σ(a − (cref + α(|yw| − |yl|))) βa βa —
SimPO (Meng et al.) log σ(a − γ) β

|yw|a
β

|yl|
a —

IPO (Azar et al.) (a − (cref +
1
2β ))2 a a —

RRHF (Yuan et al.) min(0, a) 1
|yw|a

1
|yl|

a λa

SlicHF (Zhao et al.) min(0, a − δ) a a λa
CPO (Xu et al.) log σ(a) βa βa λa
DPOP (Pal et al.) log σ(a − cref) βa − λmax(0, log cwref − a) βa —
KTO (Ethayarajh et al.) a λwσ(βa − (log cwref + zref)) λlσ((log clref + zref) − a) —
SPPO (Wu et al.) a (a − β−1)2 (a + β−1)2 —

Table 2: Instantiation of margin-based preference optimization losses. The constants in these losses
satisfy β, γ, δ, λw, λl > 0.

3.2.1 HOW DO OTHER MARGIN-BASED METHODS WORK DIFFERENTLY FROM DPO?

Utilizing the gradient condition we derived, we provide in the following a brief discussion on some
existing preference optimization algorithms and explain why these algorithms may work differently
from DPO under certain settings.

• DPO: dw

dl
= dl

dw
= 1, reproducing the Condition 1 in DPO setting.

• SPPO: dw

dl
= β−1−log πw

β−1+log πl
> 13, where β−1 is a large constant. Compared with DPO, SPPO loss

ensures that it is easier for log πw to increase based on (9) and harder for log πl to decrease due to
(10).

• KTO: dw

dl
∝ λw

λl
, where λw, λl are two hyperparameters in KTO, fine-tuned according to different

tasks and datasets. Thus no general conclusion on the chosen/rejected probability change can be
made from our conditions.

• Explicit regularization on chosen log-probability (CPO, DPOP4, RRHF and Slic-HF): Ac-
cording to the formulas of dw and dl in (7) and (8), the negative log-likelihood (NLL) regularizer
on chosen responses enlarges dw while having no influence on dl as Λ′ ≥ 0 and only appears in
(7). As a result, larger dw

dl
makes condition (9) more lenient and thus the chosen log-probability is

more likely to increase.
• Length-normalization (SimPO, RRHF and IPO): In SimPO, dw

dl
= |yl|

|yw| and condition (9) and
(10) can be rewritten as:〈

∇ log πw

|yw|
,
∇ log πl

|yl|

〉
≤

∥∥∥∥∇ log πw

|yw|

∥∥∥∥2

;

〈
∇ log πw

|yw|
,
∇ log πl

|yl|

〉
≤

∥∥∥∥∇ log πl

|yl|

∥∥∥∥2

. (11)

These conditions imply the following: to ensure increasing chosen log-probability while de-
creasing rejected log-probability, (11) should hold. This is more lenient than the corresponding
condition posed for DPO that ⟨∇ log πw,∇ log πl⟩ ≤ min(∥∇ log πw∥2, ∥∇ log πl∥2), when the
length of chosen and rejected responses is biased so that either the chosen or rejected gradient
norm is significantly greater than the other. Therefore, compared to DPO, SimPO leans towards
increasing the chosen probability and decreasing that of the rejected when the preference data
is heavily length-biased. The same reasoning also applies to RRHF and IPO5 for their length
normalization design.

3.3 EMPIRICAL OBSERVATIONS

We conduct experiments on the TL;DR dataset (Stiennon et al., 2020) to showcase the widely-
existing phenomenon that the chosen and rejected log-probabilities have synchronized changes dur-
ing preference optimization. In addition, Figure 1 depicts how different margin-based preference
optimization algorithms influence the log-probability of chosen and rejected responses.

3See Section B.2 for the derivation.
4For DPOP, the regularizer is included in its hw(a) term in Table 2, due to its design to turn on/off the

regularizer based on the value of chosen log-probability.
5In the TRL library, the implementation of IPO averages the log-probabilities by the number of tokens.

6
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Figure 2: [Revision: Figure polished to zoom in y axis.] Training dynamics of the chosen and
rejected log-probabilities on the TL;DR dataset for different algorithms trained on Mistral 7B. The
corresponding plot for Llama3 8B is in Figure 5 (Appendix D.5). For SimPO and IPO, the log-
probabilities are normalized by the response length, while in the other plots, the log-probabilities
are of entire responses. All algorithms exhibit synchronized increases and decreases in the chosen
and rejected log-probabilities. We also provide the cosine similarity plots between ∇θ log πw and
∇θ log πl in Appendix D.5 (Figure 6).

For DPO and R-DPO, both the chosen and rejected log-probabilities tend to decrease simultane-
ously. This behavior proves the existence of gradient entanglement, showing that methods purely
dependent on the margin might result in both terms decreasing, with the rejected log-probability
decreasing more significantly. This leads to an increase in the margin, which is the original learning
objective, but not necessarily an increase in the chosen log-probability.

SPPO demonstrates a distinct trend where the log-probability of the chosen responses increases,
while the log-probability of the rejected responses decreases. This matches the theoretical intuition
obtained from the specialized gradient conditions for SPPO in Section 3.2.

For CPO, DPOP, RRHF, and Slic-HF, algorithms with explicit regularization on the chosen log-
probability, we observe a consistent increase in the log-probability of the chosen responses. This
behavior reflects the effect of explicit regularizations in increasing the chosen log-probability, which
also aligns with the conditions discussed in Section 3.2.

SimPO and IPO6 in Figure 1 report the average log-probability of responses. Again, an increase in
the margin is guaranteed, but not necessarily an increase in the average chosen log-probability due
to the gradient entanglement effect.

Overall, experimental results on various margin-based losses closely align with our analysis on
the gradient entanglement and the gradient conditions outlined in Section 3.2, demonstrating how
loss structures, explicit regularization, length-normalization and other design choices influence the
dynamics of preference optimization.

4 INVESTIGATION ON GRADIENT INNER PRODUCT

The previous section reveals that the gradient entanglement effect is driven by the key quantity:
⟨∇θ log πw,∇θ log πl⟩ (Condition 1, 2: gradient condition). Margin-based objectives are often trig-
gered to not behave in the ideal way, suggesting that the gradient condition is violated due to a
large gradient inner product. Therefore, in this section, we investigate into such inner product to
understand why it can be large when aligning language models.

Our investigation focuses on the representative margin-based objective DPO and we use toy syn-
thetic settings to analyze this problem and build up our general intuition. All proofs are in Ap-

6In their original paper, Azar et al. (2024) proposed the IPO loss without average log-probability. The
authors later claimed using average log-probability with IPO yields improved performance.
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pendix C. Key insights obtained from our analysis are: (1) the gradient inner product increases
as the chosen and rejected responses share more similar tokens; and (2) while the sentence-level
gradient inner product can be large, individual token-level inner products may be small.7 We then
empirically verify our intuition in Section 4.2.

4.1 THEORETICAL RESULTS

4.1.1 POSITIVE RESULT ON WHEN THE CONDITION HOLDS

We first provide a positive result when Condition 1 holds and DPO has the ideal behavior that
pushes up the log-probability of chosen and pushes down the log-probability of rejected. We begin
with set-ups for the LM and preference data.

Model Setup 1 (LM with learnable last linear layer). Let V = |V| be the vocabulary size. We
assume for prompt x and response y, at any index i in the response, the LM outputs:

πθ(y
i | x, y<i) = s(h⊤

i θ)[y
i],

where L = |y|, θ ∈ Rd×V is the learnable parameter, hi ∈ Rd is the hidden state for predicting the
i-th token in y and s : RV → ∆V

8 denotes the softmax function. The hidden states are assumed as
frozen during DPO.

Data Setup 1. Both chosen and rejected responses contain only one token under the prompt x. That
is, yw, yl ∈ V1, and yw[1] ̸= yl[1]

9.

The following theorem shows in this task, ⟨∇ log πw,∇ log πl⟩ < 0 so that gradient descent steps
of DPO make sure log πw increases and log πl decreases.

Theorem 1. Under Model Setup 1 and data Setup 1, assume after the SFT stage, given prompt x,
the model prediction on the first token in response is uniformly concentrated on M ≤ V tokens in
the vocabulary V , then we have

⟨∇ log πw,∇ log πl⟩ = − 1

M
∥h∥2, ∥∇ log πw∥2 = ∥∇ log πl∥2 =

M − 1

M
∥h∥2,

with h being the hidden state for predicting the token that follows prompt x. Thus, both parts of
Condition 1 hold, resulting in log πw increases and log πl decreases.

Theorem 1 can be extended to the data setup where the chosen and rejected responses have multiple
tokens but only differ at the last one, i.e., yw[1 : L− 1] = yl[1 : L− 1], yw[L] ̸= yl[L] with L ≥ 2
being the number of tokens in yw or yl.

Corollary 2. Under Model Setup 1, the chosen and rejected responses only differ at their last token,
assume after SFT the model prediction on the L-th token in response is uniformly concentrated on
M ≤ V tokens in the vocabulary, we have ⟨∇ log π(yLw|x, y<L

w ),∇ log π(yLl |x, y<L
l )⟩ < 0, thus at

token L, the chosen log-probability log π(yLw | x, y<L
w ) will increase and rejected counterpart will

decrease.

From the proof of Corollary 2 in Appendix C, though the log-probabilities on the last token be-
have ideally, it is not guaranteed that the whole chosen response yw will increase its likelihood and
log π(yl | x) will decrease, due to the correlation between ∇ log πw and ∇ log πl.

4.1.2 NEGATIVE RESULT ON WHEN THE CONDITION IS VIOLATED

From the previous results, we can see that the gradient inner product condition is not violated and
DPO has the ideal behavior when the chosen and rejected responses differ only at the last token. To
gain theoretical insights on what causes the violation of the condition, we level up our previous data
setup to the following.

Data Setup 2. Chosen and rejected responses have an edit distance 1 and the difference appears
in the middle of a response, i.e., the chosen and rejected responses yw ∈ VL and yl ∈ VL satisfy
yw[1 : m− 1] = yl[1 : m− 1], yw[m] ̸= yl[m], yw[m+ 1 : L] = yl[m+ 1 : L] for 1 ≤ m < L.

7To be specific, by token-wise gradient, we mean ∇θ log πθ(y
i|x, y<i).

8Here, ∆ denote the probability simplex.
9For a vector y, we use y[i] to denote its i-th entry and use y[i1 : i2] to denote its entry from i1 to i2.
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To analyze the optimization steps of DPO under this data setup, we adopt a simpler setting for
parameterizing the LM, where the LM has learnable logits.

Model Setup 2 (LM with learnable logits). We first consider the setting where the LM output
follows the structure: For index i ∈ [L],

πθ(·|x, y<i
w ) = sw,i, πθ(·|x, y<i

l ) = sl,i,

where sw,i, sl,i ∈ ∆V are the probability distributions of the chosen and rejected response at token
i, respectively. The vectors sw,i and sl,i are configured as variables to optimize in the model and to
which we take the derivative of chosen and rejected log probability.

Because yw[1 : m − 1] = yl[1 : m − 1], we have that si = sw,i = sl,i for i ∈ [m]. Since sw,i and
sl,i are predicted by a shared model, they are not independent and one may impose assumptions to
characterize the relationship between them. We denote for i ∈ [m+ 1 : L], j∗i to be the vocabulary
index of token appearing at yw[i] and yl[i]. As in Pal et al. (2024), we assume that sw,i[j

∗
i ] ≥ sl,i[j

∗
i ]

and sw,i[j] ≤ sl,i[j] for j ̸= j∗i . Under this assumption, Theorem 3 shows that in this case the log-
probability of the chosen and rejected will likely both decrease after one DPO gradient descent step.

Theorem 3. Under Model Setup 2 and data Setup 2, after one DPO step, the per-token log-
probability change in chosen response yw can be characterized with first-order Taylor expansion:
for i ∈ [1 : m− 1], the per-token chosen log-probability before the differing token stays unchanged:

∆ log π(yiw | x, y<i
w ) ≈ 0. (12)

For i = m, the chosen log-probability at the differing position will increase: suppose j∗ and k∗ are
the indices of yw[m] and yl[m] in the vocabulary V ,

∆ log π(ymw | x, y<m
w ) ≈ 1 + (sw,m[j∗]− sw,m[k∗]) ≥ 0. (13)

For i ∈ [m+ 1 : L], the chosen log-probability at these positions will decrease:

∆ log π(yiw | x, y<i
w ) ≈ (1− sw,i[j

∗
i ])(sl,i[j

∗
i ]− sw,i[j

∗
i ])−

∑
j ̸=j∗i

sw,i[j](sl,i[j]− sw,i[j]) ≤ 0,

(14)

since sl,i[j
∗
i ] − sw,i[j

∗
i ] ≤ 0 and sl,i[j] − sw,i[j] ≥ 0. Given the change in sentence-wise log-

probability of chosen is the summation of the per-token changes specified in (12), (13) and (14), as
the same suffix following the differing tokens gets longer, log πw decreases more.

Remark. While Theorem 3 adopts the same assumptions made in Pal et al. (2024), we precisely
characterize the per-token log-probability changes based on the first-order approximation, and ex-
plicitly break down the sentence-wise probability change for chosen into 3 parts: before/at/after the
differing position. Therefore, the analysis in Theorem 3 captures the varying probability change
directions at different positions, uncovering the underlying dynamic behind the overall decreased
chosen probability observed in experiments (Figure 3).

4.2 EMPIRICAL OBSERVATIONS

We verify our intuition regarding when the gradient inner product condition may be held or violated
using a sentiment classification task trained on GPT-2, where the prompt x is a statement, e.g.,
“Happy mothers day mom xoxo.” The chosen response yw specifies the correct sentiment, while the
rejected response yl gives the wrong one. We consider three styles of responses:

• Single token: yw: positive. yl: negative.
• Short suffix: yw: It has a positive sentiment. yl: It has a negative sentiment.
• Long suffix: yw: It has a positive sentiment based on my judgement. yl: It has a negative senti-

ment based on my judgement.

Empirical observation validates three implications obtained from our theorems:

• First, As showing in Figure 3, the chosen log probability increases only in the single token case,
aligning with the theoretical prediction by Theorem 1. The short suffix chosen log probability de-
creases less than that of the long suffix as responses in long suffix contain more tokens following
the differing spot, aligning with the theoretical prediction by Theorem 3.

9
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• Taking one step deeper behind the behavior of log-probabilities, the gradient cosine similarity in
the single token case quickly declines and stays negative during training, while that in the short
suffix and long suffix is positive and increases as the suffix length grows (Figure 4a). This aligns
with our gradient condition (Condition 1), where the drop in chosen log probability depends on
the magnitude of the gradient inner product.

• Finally, we inspect the token-wise gradient inner product in the long suffix case. From the heat
map of token-wise gradient similarities (Figure 4b), we observe that on the diagonal, the inner
product between the gradients on the tokens “positive” and “negative” is negative, whereas for
other identical tokens in the two responses, the gradient cosine similarities are significantly higher
and close to 1 for some token pairs.

0 200 400

-40

-20

0
Single Token

0 200 400

Short Suffix
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g
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Training Step

chosen

rejected

Figure 3: Training dynamics of the chosen and rejected log probabilities for sentiment tasks.

Our theoretical and empirical investigation into the token-level gradient inner product suggests
broader implications for general alignment tasks. Significant tokens (e.g., “positive”/“negative”)
contrasting the chosen and rejected responses the most, exhibit negative gradient correlation and
prevent gradient entanglement. Meanwhile, those non-contrastive insignificant tokens (e.g., iden-
tical tokens) cause gradient entanglement due to the high similarity in their gradients. This insight
highlights the importance of token-level gradient dynamics and their contribution to the entangle-
ment effect.
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(a) Cosine similarity between ∇θ log πw and ∇θ log πl.
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Figure 4: Gradient cosine similarity behaviors on the sentence-level and token-level for sentiment tasks. Fig-
ure 4a gives the cosine similarity between ∇θ log πw and ∇θ log πl for DPO on single token, short suffix and
long suffix datasets, defined as: ⟨∇θ log πw,∇θ log πl⟩

∥∇θ log πw∥∥∇θ log πl∥
. Figure 4b shows the token-wise gradient similarity for

an instance in the long suffix task.

5 IMPLICATIONS

In this paper, we touch upon a common pitfall of margin-based preference optimization methods
in language alignment. At a high level, our work highlights the need to reconsider the current
margin-based preference optimization paradigm. While this approach may enable language models
to effectively learn contrasts between good and bad responses, it may not be well-suited for settings
where the focus is on the behavior of either the rejected or chosen samples—such as in safety-critical
alignment tasks or when distilling from a strong model.
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A BROADER IMPLICATIONS

In this paper, we touch upon a common pitfall of margin-based preference optimization methods
in language alignment: it underspecifies the ideal behavior of the LM on the chosen and rejected
responses individually. Our gradient inner product condition suggests that when the chosen and re-
jected gradients are similar, their log probabilities will exhibit synchronized increases and decreases.
Using this gradient condition, we can categorize existing RLHF variants into two types: (1) those
that modify the criterion for the size of the inner product, as seen in the works listed in Table 2,
which rely on the same gradient inner product but apply different size criteria; and (2) those that
change the inner product of interest directly. As discussed in Section 4, while the sentence-level
gradient inner product may be large, the token-level inner product can be small. A line of research,
such as advantage-based methods(Mudgal et al., 2023; Setlur et al., 2024), focuses on leveraging
token-level information to improve RLHF and falls under the second category.

Finally, at a high level, our work highlights the need to reconsider the current margin-based prefer-
ence optimization paradigm in language model alignment. While this approach may enable language
models to effectively learn contrasts between good and bad responses, it may not be well-suited for
settings where the focus is on the behavior of either the rejected or chosen samples—such as in
safety-critical alignment tasks or when distilling from a strong model.

B DERIVATIONS FOR GRADIENT ENTANGLEMENT AND CONDITIONS IN
SECTION 3

Some derivations in the original Sec 3 are moved here.

B.1 DERIVATION FOR GRADIENT ENTANGLEMENT

DPO. After one step of gradient descent with step size η > 0 for decreasing the loss ℓDPO, the
change in the log-probability of the chosen response denoted by ∆ log πw, as well as the change
in the log-probability of the rejected response denoted by ∆ log πl, can be approximated by the
first-order Taylor expansion:

∆ log πw ≈ ⟨∇θ log πw,−η∇θℓDPO⟩ = ηβc(θ) ·
(
∥∇ log πw∥2 − ⟨∇ log πw,∇ log πl⟩

)
∆ log πl ≈ ⟨∇θ log πl,−η∇θℓDPO⟩ = ηβc(θ) ·

(
⟨∇ log πw,∇ log πl⟩ − ∥∇ log πl∥2

)
.

General Losses. First, the gradient of (6) can be written as
∇θℓ = dw∇θ log πw − dl∇θ log πl,

where dw and dl are scalars such that
dw := m′(hw(log πw)− hl(log πl))h

′
w(log πw) + Λ′(log πw),

dl := m′(hw(log πw)− hl(log πl))h
′
l(log πl).

After one step of gradient descend with step size η > 0 for decreasing the loss ℓ, the changes in
log-probabilities can be approximated by the first-order Taylor expansion:

∆ log πw ≈ ⟨∇θ log πw,−η∇θℓ⟩ = η
(
dw∥∇θ log πw∥2 − dl⟨∇θ log πw,∇θ log πl⟩

)
,

∆ log πl ≈ ⟨∇θ log πl,−η∇θℓ⟩ = η
(
dw⟨∇θ log πw,∇θ log πl⟩ − dl∥∇θ log πl∥2

)
.

B.2 DERIVATION FOR SPPO

Denote a = ∇θ log π(w) and b = ∇θ log π(l). For DPO, we see that the direction of winner and
loser is decided by ⟨a,a− b⟩ and ⟨b,a− b⟩.
Similarly, for any pairwise loss ℓ(log π(w)− log π(l)), the above statement still holds. Now we take
a look at non-pairwise loss ℓSPPO = (log π(w)− β−1)2 + (log π(l) + β−1)2. We have

dθ

dt
= −∇θℓSPPO = −(log π(w)− β−1)∇θ log π(w)− (log π(l) + β−1)∇θ log π(l).

Then
d

dt
log π(i) =

〈
∇θ log π(i),

dθ

dt

〉
= −(log π(w)− β−1)

〈
∇θ log π(i),∇θ log π(w)

〉
− (log π(l) + β−1)

〈
∇θ log π(i),∇θ log π(l)

〉
.
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We have
d

dt
log π(w) ≈ −(log π(w)− β−1)⟨a,a⟩ − (log π(l) + β−1)⟨a,b⟩

which means if we want log π(w) to increase, we need
⟨a,b⟩
⟨a,a⟩

<
β−1 − log π(w)

β−1 + log π(l)
=: α.

Note that the inequality above implicitly assume that β−1 + log π(l) > 0. This is true in practice as
we set β−1 to be extremely large. Similarly, if we want log π(l) to decrease, we need

⟨a,b⟩
⟨b,b⟩

<
β−1 + log π(l)

β−1 − log π(w)
=: α−1.

We have α > 1. It seems SPPO can make sure that log π(w) goes up more easily but also make
log π(l) goes up more easily, compared to DPO.

C PROOFS FOR THE GRADIENT INNER PRODUCT IN SECTION 4

C.1 LM WITH LEARNABLE LAST LINEAR LAYER: SINGLE TOKEN CASE

We prove Theorem 1 below.
⟨∇ log πw,∇ log πl⟩ =

〈
∇θ log π(y

1
w | x), ∇θ log π(y

1
l | x)

〉
,

where θ ∈ Rd×V . Let h ∈ Rd be the hidden state for the token next to the prompt, s(·) is the
softmax function, then

∇θ log π(y
1
w | x) = ∇θ

(
log s(h⊤θ)[y1w]

)
, (15)

∇θ log π(y
1
l | x) = ∇θ

(
log s(h⊤θ)[y1l ]

)
. (16)

Compute the gradient with chain rule,
∇θ log πw = [−s(1)h, · · · , (1− s(iw))h, · · · ,−s(il)h, · · · ,−s(V )h], (17)
∇θ log πl = [−s(1)h, · · · ,−s(iw)h, · · · , (1− s(il))h, · · · ,−s(V )h], (18)

iw, il are the index of token y1w and y1l in vocabulary, respectively. For any index i, s(iw) denote
LLM’s output logit for the i-th token in vocabulary.

Suppose at the initialization of θ, s(1) = · · · = s(iw) = · · · = s(il) = s(v) = 1
M for M entries and

the rest V−M entries have they are equal to 0. We note that the exact indices j of which s(j) = 1/M
does not matter as it would be the same index for both the chosen and rejected gradients.

∇ log πw = [− 1

M
h, . . . ,

(
1− 1

M

)
h︸ ︷︷ ︸

iw−th

, · · · − 1

M
h︸ ︷︷ ︸

il−th

, · · · ,− 1

M
h], (19)

∇ log πl = [− 1

M
h, · · · ,− 1

M
h︸ ︷︷ ︸

iw−th

, · · ·
(
1− 1

M

)
h︸ ︷︷ ︸

il−th

, · · · − 1

M
h], (20)

⟨∇ log πw,∇ log πl⟩ =
M − 2

M2
∥h∥2 − 2 · 1

M
· M − 1

M
∥h∥2 = − 1

M
∥h∥2. (21)

⟨∇ log πw,∇ log πl⟩ is negative. While in comparison, the norms of ∇ log πw and ∇ log πl follow:

∥∇ log πw∥2 = ∥∇ log πl∥2 =
M − 1

M2
∥h∥2 +

(
1− 1

M

)2

∥h∥2 =
M − 1

M
∥h∥2.

Therefore, based on Condition 1:

⟨∇ log πw,∇ log πl⟩ = − 1

M
∥h∥2,

∥∇ log πw∥2 = ∥∇ log πl∥2 =
M − 1

M
∥h∥2,

log πw increases and log πl decreases.
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C.2 LM WITH LEARNABLE LAST LINEAR LAYER: MULTI-TOKEN PREFIX CASE

Recall the data setup: the chosen and rejected responses have multiple tokens but only differ at the
last one, i.e., yw[1 : L− 1] = yl[1 : L− 1], yw[L] ̸= yl[L] with L being the length of yw and yl. We
prove Corollary 2 below.

In this case, up to the L-th token where chosen and rejected differ, the hidden states are the same for
the two responses. This is true because yw[1 : L− 1] = yl[1 : L− 1] and the share the same prompt
x, so we have that hi,w = hi,l for i = 1, · · · , L, thus we denote both hi,w and hi,l as hi.

For any index i, denote log πθ(y
i
w | x) by log πi

w and denote log πθ(y
i
l | x) by log πi

l , then we have

log πw =

L∑
i=1

log πi
w, log πl =

L∑
i=1

log πi
l ; (22)

⟨∇θ log πw,∇θ log πl⟩ =
L∑

i=1

L∑
j=1

⟨log πi
w, log π

j
l ⟩. (23)

Let hi ∈ Rd be the hidden state for predicting the i-th token, s(·) is the softmax function, then

∇θ log π
i
w = ∇θ

(
log s(h⊤

i θ)[y
i
w]
)
,

∇θ log π
i
l = ∇θ

(
log s(h⊤

i θ)[y
i
l ]
)
,

among which we have ∇θ log π
i
w = ∇θ log π

i
l for i ∈ [L− 1] because yiw = yil at those indices. For

i = L, computing the gradient with chain rule, we have

∇θ log π
L
w = [−s(1)hL, · · · , (1− s(iw))hL, · · · ,−s(il)hL, · · · ,−s(V )hL],

∇θ log π
L
l = [−s(1)hL, · · · ,−s(iw)hL, · · · , (1− s(il))hL, · · · ,−s(V )hL].

iw, il are the index of token yLw and yLl in vocabulary, respectively.

Suppose at the initialization of θ, s(1) = · · · = s(iw) = · · · = s(il) = s(v) = 1
M for M entries and

the rest V −M entries have s(j) = 0. Similar to the proof of Theorem 1, we have〈
∇ log πL

w,∇ log πL
l

〉
= − 1

M
∥hL∥2, (24)

∥∇ log πL
w∥2 = ∥∇ log πL

l ∥2 =
M − 1

M
∥hL∥2. (25)

Therefore, by introducing notations ai := ∇θ log π
i
w = ∇θ log π

i
l for i ∈ [L− 1], bw := ∇θ log π

L
w

and bl := ∇θ log π
L
l

⟨∇θ log πw,∇θ log πl⟩ =
L∑

i=1

L∑
j=1

⟨∇θ log π
i
w,∇θ log π

j
l ⟩

=

L−1∑
i=1

L−1∑
j=1

⟨ai, aj⟩+ ⟨
L−1∑
i=1

ai, bl⟩+ ⟨
L−1∑
i=1

ai, bw⟩+ ⟨bw, bl⟩;

∥∇θ log πw∥2 =

L∑
i=1

L∑
j=1

⟨∇θ log π
i
w,∇θ log π

j
w⟩

=

L−1∑
i=1

L−1∑
j=1

⟨ai, aj⟩+ ⟨
L−1∑
i=1

ai, bw⟩+ ⟨
L−1∑
j=1

ai, bw⟩+ ∥bw∥2;

∥∇θ log πl∥2 =

L∑
i=1

L∑
j=1

⟨log πi
l , log π

j
l ⟩

=

L−1∑
i=1

L−1∑
j=1

⟨ai, aj⟩+ ⟨
L−1∑
i=1

ai, bl⟩+ ⟨
L−1∑
i=1

ai, bl⟩+ ∥bl∥2;

15
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From the equations above, it’s ensured that

⟨∇θ log πw,∇θ log πl⟩ <
∥∇θ log πw∥2 + ∥∇θ log πl∥2

2
(26)

due to ⟨bw, bl⟩ < 0. However, whether ⟨∇θ log πw,∇θ log πl⟩ will be greater or less
than min(∥∇θ log πw∥2, ∥∇θ log πl∥2) depends on the exact absolute value of the term
⟨
∑L−1

i=1 ai,∇θ log π
L
w − ∇θ log π

L
l ⟩, recall ai = ∇θ log π

i
w = ∇θ log π

i
l . If this absolute value is

greater than ∥hL∥2, then ⟨∇θ log πw,∇θ log πl⟩ > min(∥∇θ log πw∥2, ∥∇θ log πl∥2) the condition
is violated, otherwise the condition is satisfied. When L is large, in other words, the prefix is long,
then the condition is more likely to be violated, leading to the side effect of gradient entanglement.

C.3 LM WITH LEARNABLE LOGITS SETTING

We prove Theorem 3 below. We will set up some new notations first. First, we work with the case
where Tw = Tl = L is sentence length, V is the vocab size, yw[1 : m − 1] = yl[1 : m − 1],
yw[m] ̸= yl[m], and yw[m + 1 : L] = yl[m + 1 : L]. Note that for all i ∈ [L], the token
y[i] ∈ [V ] is an index, θw and θl are learnable logits in LM. Each row of the following matrix is
πθ(·|x, y<i) ∈ ∆[V ] where i is the row index. (Here, there is a slight abuse of notation: ∆ is the
probability simplex.) s : RV → ∆V is the softmax function.

[0, 1]
L×V ∋ πθ(x, yw) = s(θw) =



s(θw[1, :])
...

s(θw[m, :])
s(θw[m+ 1, :])

...
s(θw[L, :])


, πθ(x, yl) = s(θl) =



s(θl[1, :])
...

s(θl[m, :])
s(θl[m+ 1, :])

...
s(θl[L, :])


=



s(θw[1, :])
...

s(θw[m, :])
s(θl[m+ 1, :])

...
s(θl[L, :])



Each row s(θ[i, :]) ∈ ∆V . The first m rows are the same for θw and θl because the tokens up to row
m are the same between yw and yl. The index at row i corresponding to the selected token will be
denoted as j∗i , a generic vocab index is j. Note that, j∗i = j∗i,w = j∗i,l for i ̸= m, and j∗i,w ̸= j∗i,l for
i = m.

Next, the corresponding gradient matrices ∇ log s(θw),∇ log s(θl) can be specified by:

RL×V ∋ ∇θ log s(θw[i, j
∗
i+1]) =



0
...

∇θw[i,:] log s(θw[i, j
∗
i ])

...
0

 , ∇θ log s(θl) =



0
...

∇θl[i,:]
log s(θl[i, j

∗
i ])

...
0

 .

where

∇θ[i,:] log s(θ[i, j
∗
i ]) ∈ RV , and for j ∈ [V ],∇θ[i,:] log s(θ[i, j

∗
i ])[j] =

{
−s[i, j] if j ̸= j∗i
1− s[i, j] if j = j∗i

where s[i, j] = s(θ[i, :])[j], log s(θ[i, j∗i ]) is j∗i -th entry of log s(θ[i, :]), and ∇ log s(θ[i, j∗i ])[j] is
the j-th entry of the gradient of log s(θ[i, j∗i ]).
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The sentence-wise gradient is

RL×V ∋ ∇θL ∝



∇ log s(θw[1, j
∗
1 ])−∇ log s(θw[1, j

∗
1 ])

...
∇ log s(θw[m, j∗m,w])−∇ log s(θw[m, j∗m,l])

∇ log s(θw[m+ 1, j∗m+1])−∇ log s(θl[m+ 1, j∗m+1])
...

∇ log s(θw[L, j
∗
L])−∇ log s(θl[L, j

∗
L])



=



0
...

∇ log s(θw[m, j∗m,w])−∇ log s(θw[m, j∗m,l])

∇ log s(θw[m+ 1, j∗m+1])−∇ log s(θ[m+ 1, j∗m+1])
...

∇ log s(θw[L, j
∗
L])−∇ log s(θl[L, j

∗
L])


Now, let’s first derive the token-wise condition for the selected token (learning rate η = 1):
Chosen response: if i = m, we have

∆ log s(θw[i, j
∗
i,w]) ≈

L∑
i′=1

⟨∇ log s(θw[m, j∗m,w]),∇L[i′, :]⟩ = ⟨∇ log s(θw[m, j∗m,w]),∇L[m, :]⟩

=⟨∇ log s(θw[m, j∗m,w]),∇ log s(θw[m, j∗m,w])−∇ log s(θw[m, j∗m,l])⟩

=

 ∑
j′ ̸=j∗m,w

sw[m, j′]2

+ (1− sw[m, j∗m,w])
2

−

 ∑
j′ ̸=j∗m,w,j′ ̸=j∗m,l

sw[m, j′]2

+ sw[m, j∗m,w](1− sw[m, j∗m,w]) + sw[m, j∗m,l](1− sw[m, j∗m,l])

=1 + (sw[m, j∗m,l]− sw[m, j∗m,w]) ≥ 0, (27)

where the last inequality is true because s ∈ [0, 1]. Here, basically, this margin loss will just encour-
age increase the chosen logP (and reduce the rejected one) for the selected token.

Chosen response: if i ̸= m, we have

∆ log s(θw[i, j
∗
i,w]) ≈

L∑
i′=1

⟨∇ log s(θw[i, j
∗
i ]),∇L[i′, :]⟩ = ⟨∇ log s(θw[i, j

∗
i ]),∇L[i, :]⟩

=⟨∇ log s(θw[i, j
∗
i ]),∇ log s(θw[i, j

∗
i ])−∇ log s(θl[i, j

∗
i ])⟩

=(1− sw[i, j
∗
i ])(sl[i, j

∗
i ]− sw[i, j

∗
i ])−

∑
j′ ̸=j∗i

sw[i, j
′](sl[i, j

′]− sw[i, j
′]) (28)

Here, basically, the loss can only pick one direction to change both chosen and rejected entry.

Connection to the derivation in Pal et al. (2024). The assumption in Pal et al. (2024) mainly
ensures the sign of (28). Basically, smaug’s assumption ensures that for i ∈ [m+ 1, L], sw[i, j∗i ] ≥
sl[i, j

∗
i ] and sw[i, j] ≤ sl[i, j] for j ̸= j∗i .

∇ log s(θw[i, j
∗
i ])−∇ log s(θl[i, j

∗
i ]) =


sl[i, 1]− sw[i, 1]

...
sl[i, j

∗
i ]− sw[i, j

∗
i ]

...
sl[i

′, V ]− sw[i
′, V ]

 =


≥ 0

...
≤ 0

...
≥ 0


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For (28), we have

(1− sw[i, j
∗
i ])(sl[i, j

∗
i ]− sw[i, j

∗
i ])−

∑
j′ ̸=j∗i

sw[i, j
′](sl[i, j

′]− sw[i, j
′]) ≤ 0.

This ensures the chosen token will have reduced logP.

Condition on chosen tokens increasing and rejected token decreasing at m, and on chosen and
rejected tokens decreasing after m+ 1:

(27) ≥ 0 always holds,
∀i ∈ [m+ 1, L], sw[i, j

∗
i ] ≥ sl[i, j

∗
i ], ∀j ̸= j∗i , sw[i, j] ≤ sl[i, j] =⇒ (28) ≤ 0

D EXPERIMENT DETAILS

D.1 HARDWARE AND SOFTWARE SETUP

Our experiments were implemented using TRL version 0.11.0. The training was performed on a
hardware setup consisting of two NVIDIA H100 GPUs, providing substantial computational power
for the training process.

D.2 TL;DR TASK SETUP

For the TL;DR summarization task, we utilized the CarperAI/openai summarize comparisons
dataset. We employed two LLMs for this task:

• mistralai/Mistral-7B-Instruct-v0.3 (referred to as Mistral 7B)
• meta-llama/Meta-Llama-3-8B-Instruct (referred to as Llama-3 8B)

We did not perform any supervised fine-tuning step prior to the RLHF training for these models.

To optimize the training process, we applied Low-Rank Adaptation (LoRA) with a rank of 64 to
both models. The learning rate was set at 5× 10−6 for all RLHF training.

D.3 RLHF ALGORITHM CONFIGURATIONS

We implemented several RLHF algorithms, each with its own specific configurations:

• Direct Preference Optimization (DPO): β = 0.1

• Chosen NLL term (used in CPO, RRHF, and SLiC-HF): λ = 1

• SLiC-HF: δ = 1

• SimPO: γ = 0.5

• R-DPO: α = 0.2

• DPOP: λ = 50

D.4 SENTIMENT ANALYSIS TASK SETUP

For the sentiment analysis task, we used a specially curated sentiment dataset. Unlike the TL;DR
task, we performed supervised fine-tuning on the GPT-2 model before proceeding with the RLHF
training. The learning rate for this RLHF training was also set to 5× 10−6.

D.5 ADDITIONAL EMPIRICAL RESULTS
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Figure 5: Training dynamics of the chosen and rejected log probabilities on the TL;DR dataset for
different preference optimization algorithms trained on Llama-3 8B. All algorithms exhibit synchro-
nized increases and decreases in the chosen and rejected log probabilities. Note: For SimPO and
IPO, the log probabilities are normalized, while in the other plots, they are the original log probabil-
ities.
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Figure 6: Cosine similarity between ∇θ log πw and ∇θ log πl on the TL;DR dataset for different
preference optimization algorithms trained on Llama-3 8B and Mistral 7B.
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