
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DON’T IGNORE THE TAIL: DECOUPLING TOP-K PROB-
ABILITIES FOR EFFICIENT LANGUAGE MODEL DISTIL-
LATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The core learning signal used in language model distillation is the standard
Kullback-Leibler (KL) divergence between the distribution of the student and
the teacher. Traditional KL divergence tends to be dominated by the teacher’s
highest-probability modes, thus diminishing the influence of less probable yet
potentially informative components of the output distribution. We propose a new
tail-aware divergence that decouples the contribution of the teacher model’s top-K
predicted probabilities from those with lower probabilities, while maintaining the
same computational profile as the KL Divergence. Our decoupled approach reduces
the impact of the teacher modes and, consequently, increases the contribution of the
tail of the distribution. Experimental results demonstrate that our modified distilla-
tion method yields competitive performance in both pre-training and supervised
distillation of decoder models across various datasets. Furthermore, the distillation
process is efficient and can be performed with a modest academic budget for large
datasets, eliminating the need for industry-scale computing.1

1 INTRODUCTION

The rapid advancement in language models (LMs) has led to highly complex systems capable of
performing state-of-the-art natural language processing (NLP) tasks. However, these models are
often too computationally expensive and memory-intensive to be deployed on resource-constrained
devices, such as edge devices, mobile phones, or low-latency systems. The gap is addressed by small
language models, which can be further improved via knowledge distillation (KD) from larger models.

Most work on distilling generative language models focuses on supervised distillation, which aims to
match the student’s response to the teacher’s response given a prompt (Gu et al. (2024), Agarwal et al.
(2024)). These works typically assume the presence of an already pre-trained student, which might not
always be the case. In contrast, works like DistilBERT (Sanh et al., 2019) train a student from scratch
via pretraining distillation, and our work extends this technique to causal models. However, the
training corpora for modern causal LMs are usually closed-source, which complicates the application
of distillation approaches such as DistilBERT. However, applying pretraining distillation to modern
causal LMs faces significant challenges: the training corpora are typically closed-source, and the
models require substantial computational resources—often requiring tens to hundreds of billions
of tokens when distilled on generic open-source corpora. This poses a significant computational
challenge, especially in academic settings.

We distill various teacher models from different model families within a 1-week budget on a single
H100 GPU, enabling the distillation of approximately 2 billion tokens for 1-billion-parameter student
models, or more for smaller ones. We propose an algorithm that surpasses vanilla KD by decoupling
the contribution of the teacher’s top-K probabilities to the KL divergence and demonstrate the
method’s effectiveness across different LMs. Despite the training budget constraint, our method
produces competitive results with recent work, such as MiniPLM (Gu et al., 2025). Furthermore,
when we use our supervised distillation method for mathematical reasoning, we achieve results
comparable to SOTA scores on the same foundational models, with a GSM8K score of 36.8 for
TinyLlama-1.1B and 56.0 for Llama2-7B after distillation.

1We used LLMs like Grammarly and ChatGPT-Plus to check grammar and spelling and to polish our work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

No.	of	Tokens	(in	B)

0 0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

1.6
Vanilla
TAD	(K=1)
TAD	(K=5)
TAD	(K=10)

0.065

(a) Qwen1.8B → 0.5B

No.	of	Tokens	(in	B)

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9
Vanilla
TAD	(K=1)
TAD	(K=5)
TAD	(K=10)

0.065

(b) Qwen1.8B → 1.2B

No.	of	Tokens	(in	B)

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8
Vanilla
TAD	(K=1)
TAD	(K=5)
TAD	(K=10)

0.05

(c) Phi2 2.8B → 1B

Figure 1: KL divergence on the validation set of Regmix for vanilla KD vs TAD. The x axis shows training
progress in terms of the number of tokens, and the y axis shows held-out KL between the student and teacher.

2 TAIL-AWARE DISTILLATION

If P is the simplex of token probabilities produced by a language model (e.g., P(S) for the student
and P(T) for the teacher), then the standard distillation loss of a causal model has the following form
for a sequence of length N ,

LKD =

N∑
t=1

LCLM (t;PS) +DKL(t;PT ,PS) (1)

where LCLM (t;PS) is the causal language modeling (CLM) loss of the student, and DKL(t;PT ,PS)
is the KL divergence between the teacher and the student for the token t. In our method, we focus
on the teacher’s next-token probabilities when we input a sequence. With some abuse of notation,
if ∗
pTk = maxv∈V [{pT1 , pT2 , . . . pTv . . . } \ { ∗

pTj }
k−1
j=1] is the kth maximum of all the token probabilities

for a vocabulary V , we can split the KL divergence between the top-K and the rest as,

DKL

(
PT ∥PS

)
= DKL

(
pT ∥pS

)
pT∈{∗

pT
k }K

k=1

+ αT
KDKL

(
p̃T ∥p̃S

)
pT /∈{∗

pT
k }K

k=1

= DKL1
+ αT

KDKL2
(2)

Here { ∗
pTk }Kk=1 is the set of top-K teacher probabilities, and αT

K = 1−
∑K

k=1
∗
pTk is the non-top-K

or the tail probability mass of the teacher. DKL1
is the KL divergence associated with them (i.e.,

the modes), including a (K + 1)st term for probabilities 1−
∑K

k=1
∗
pTk and 1−

∑K
k=1

∗
pSk . Whereas,

DKL2 is the KL Divergence for the rest, i.e., the tail, involving |V| −K terms. The terms p̃T or p̃S in
DKL2

are the normalized teacher (or student) probabilities for the rest, i.e., p̃T = pT /(1−
∑K

k=1
∗
pTk),

since the sum of the non-top-K probabilities is 1 −
∑K

k=1
∗
pTk . Note that even if the non-top-K

probabilities (pT /∈ { ∗
pTk }Kk=1) are close to zero, their normalized values (p̃T) are not. Therefore,

DKL2 is non-trivially different from zero. The detailed derivation is included in Appendix B.

Observe that if the probability distribution is skewed towards the modes, i.e., top-K token probabilities
and has a thin tail,

∑K
k=1

∗
pTk is very high, and the contribution of DKL2

to the KL divergence is very
low. To mitigate this, we can multiply the second term by a hyperparameter β, yielding the two-term
loss DKL1 + βαT

kDKL2 . In this form, we recover the exact KL Divergence for β = 1, and the loss
requires β > 1. Setting the value of β becomes quite difficult, and the loss does not converge. We
overcome this issue by sequence-level normalization. For the stochastic form of training, we use a
mini-batch of sequences, and every token in a sequence has a different value of {pT1 , pT2 . . . , pTv }. If
a sequence has N tokens, we can normalize β by the mean of αT

K across all the tokens. Indexing the
tokens with t ∈ [N], the final loss for a token t in the sequence takes the form,

LDIV (t;PT ,PS) = DKL1
(t) +

β
1
N

∑N
t=1 α

T
k (t)

αT
k (t)DKL2

(t) (3)

This normalization makes the loss stable for nominal values of β, such as 1 or 2. This also preserves
the overall shape of the teacher probability distribution, but only amplifies the tail’s contribution to the
KL divergence. Finally, we add the causal language modeling (CLM) loss of the student LCLM (PS)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for every token t ∈ [N] to the divergence to constitute the final loss as,

LTAD =

N∑
t=1

LCLM (t;PS) + LDIV (t;PT ,PS) (4)

We refer to the original form of KD (Hinton et al., 2014) as Vanilla KD, which replaces LDIV in
Equation (4) with the KL divergence. When we train by optimizing LDIV (see Section 3.2), the
student attains a lower held-out KL than when trained by optimizing KL itself (Figure 1), even though
KL is the evaluation metric. We also show the variation in tail probability mass (αT

K) with K across
different teachers in Figure 2.

0 10 20 30 40 50

Ta
il	
Pr
ob
ab
ili
ty

0

0.1

0.2

0.3

0.4

0.5
Qwen1.5-1.8B
Phi2-2.8B
Qwen2.5-3B
Gemma2-9B

(a) Tail Probability Mass
0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
ex
t	T
ok
en
	v
s.
	M
od
e	
M
is
m
at
ch

0

10

20

30

40

50

60

70

80

45.9
42.4 41.3

38.8

Qwen1.5-1.8B
Phi2-2.8B
Qwen2.5-3B
Gemma2-9B

(b) Mismatch Rate

Figure 2: Tail probability mass (αT
K) against K for dif-

ferent teachers in the first, and the Next Token vs. Mode
mismatch rate in percentage in the second plot, mea-
sured on the validation set of Regmix (see Section 3.2)

Our method is motivated by decoupled knowl-
edge distillation (DKD; Zhao et al. (2022)),
which was proposed for supervised classifica-
tion with labeled datasets and improves accu-
racy on ImageNet and CIFAR-100. In contrast,
language model pretraining distillation operates
on unlabeled corpora, so the original DKD for-
mulation is not well-suited to this setting. While
one might treat the next token as a target label,
this creates a fundamental mismatch: in classi-
fication, the target class is, by definition, correct.
However, since most LMs’ pretraining corpora
are undisclosed and we distill using a generic
corpus, the teacher’s most probable token (i.e.,

argmaxv∈V pTv) may differ from the ground-truth next token. When we study this discrepancy on
the validation set of our dataset (see Section 3.2), we observe a mismatch rate ranging from 39% to
46%, depending on the teacher, with larger teachers having lower mismatch rates (Figure 2). This
mismatch creates conflicting signals between the dataset labels and teacher predictions. We therefore
introduce TAD: a rank-based Top-K vs. tail decoupling using a probability-mass-normalized tail
KL divergence that preserves the teacher’s distributional information. TAD is not a variant of DKD:
DKD’s decoupling is label-anchored (target vs. non-target), while TAD’s is rank-anchored (Top-K
vs tail) and label-free. Two examples with identical values of pS and pT yield the same TAD losses,
but their DKD losses can be different if their labels differ.

2.1 GRADIENT ANALYSIS

For a token t in a sequence X of length N , the KL Divergence loss is LKLD =
∑|V|

i=1 p
T
i log(pTi /p

S
i),

where the probabilities pi are typically produced by the softmax of the logit zi of the final layer, the
gradient has the following form. For the sake of simplicity, we omit the index t from the equations.

∂LKLD

∂zi
= pSi − pTi (5)

Since the top-K probabilities of the teacher, denoted ∗
pTk , are much larger than the tail probabilities

(i.e., ∗
pTk ≫ pTi for k ∈ [K], i ∈ [V \K]), the gradients w.r.t the logits of the top-K tokens are much

greater than the those of the tail tokens’ logits. This forces the student model to focus primarily on
the top-K tokens, pushing the sum of the student’s top-K probabilities close to 1, i.e.,

∑K
k=1

∗
pSk ≈ 1.

For Tail-aware KD, the gradient of the loss w.r.t the logits of the top-K probabilities remains the
same as Equation (5). However, for the tail logits (zi : i ∈ [V \K]), it has the form

∂LDIV

∂zi
= pSi − pTi +

(
β(X)− 1

)(
pSi ·

1−
∑K

k=1
∗
pTk

1−
∑K

k=1
∗
pSk

− pTi

)
(6)

where β(X) = β/(1
N

∑N
t=1 α

T
k (t)) is defined in Equation (3) and is specific to the sequence X ,

and ∗
pSk are the student probabilities corresponding to the tokens of top-K teacher probabilities. We

typically set β ≥ 1, and β(X) has probability terms in the denominator, making β(X) > 1. When∑K
k=1

∗
pSk ≈ 1, the second term of ∇ziLDIV (Equation (6)) increases the relative weight of tail

gradients, causing the tail probability of the student to rise, ensuring that
∑K

k=1
∗
pSk < 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This mechanism ensures that the tail probability of the student will rise with each gradient step as
long as the top-K probability of the student is more than the teacher’s, i.e.,

∑K
k=1

∗
pSk ≥

∑K
k=1

∗
pTk .

In this case, the gradient satisfies: ∇ziLDIV ≥ β(X)(pSi − pTi), which is stronger than the standard
KL gradient. Once the top-K probability mass of the student matches the teacher’s, i.e.,

∑K
k=1

∗
pSk ≈∑K

k=1
∗
pTk , the gradient compensation stops. At this point, the ∇ziLDIV ≈ β(X)(pSi − pTi). The

fixed point of the gradient lies at pSi = pTi , same as Vanilla KD, and therefore converges to the same
solution. By this stage, the student has already acquired a sufficient mass in the tail probabilities and
has begun to generalize beyond the top-K tokens. On the other hand, if

∑K
k=1

∗
pSk <

∑K
k=1

∗
pTk , the

strong gradient of top-K tokens will drive up the top-K probability mass of the student. This way,
Tail-aware KD enables a better learning of the teacher probabilities across the entire vocabulary. The
full derivation is included in the Appendix C.

3 EXPERIMENTAL DETAILS

We distill models of varying sizes, ranging from Qwen1.5 (1.8B) to Gemma-2 (9 B). We do not
have access to (or require) the pretraining corpus of any of these models. MiniPLM was trained on
the Pile dataset (Gao et al., 2020), an extensive 825 GB collection that is no longer available due
to copyrighted content. We instead use a small 20GB subsample2 of the Regmix dataset (Liu et al.,
2024b), containing a total of 5B tokens, that can be processed using our limited compute setting.
Regmix replicates the Pile, but without copyrighted components.

We only perform pretraining distillation in our experiments, and no fine-tuning is done on any labeled
dataset for the student models. Unless mentioned otherwise, we use a temperature of 1 and a context
size of 2048 for all our distillation experiments. The training details, including the exact architecture
of the students, hardware, and hyperparameters, are detailed in Appendix A.

3.1 EVALUATION

We evaluate the models on eight datasets for few-shot performance, as in Gu et al. (2025), using the
standard LM evaluation harness (Gao et al., 2024) from Huggingface (Wolf et al., 2019), and then
report the average score across all datasets.

3.2 PRETRAINING DISTILLATION FROM SCRATCH

We follow Sanh et al. (2019) in using the teacher’s weights to initialize the student models, by
initializing the student’s attention layers with the teacher’s attention weights, truncated to the student’s
hidden dimension for each head. The MLP layers are randomly initialized.

3.2.1 BENCHMARKING WITH QWEN

We begin our experiments by distilling the Qwen1.5-1.8B model to benchmark our method against
the recently published MiniPLM (Gu et al., 2025). It is a data-centric distillation method that utilizes
the teacher to identify suitable samples for training the student, but it cannot perform supervised
distillation. Table 1 also reports the results of Sequence-KD (Kim & Rush, 2016) and MiniLLM
(Gu et al., 2024) for comparison, quoted from the MiniPLM article. Sequence-KD fine-tunes the
student on teacher-generated sequences. MiniLLM records the student’s generated output in response
to a prompt and uses a reward maximization algorithm similar to PPO (Schulman et al., 2017).
DistilLM (Ko et al., 2024) is a similar algorithm to MiniLM, producing results similar to MiniLM
while reducing execution time; therefore, it is not mentioned separately. These experiments are
expensive (costs reported in Table 3), and reproducing them on billions of tokens was infeasible with
our resources.

Consistent with MiniPLM, we distill the model to two students with 1.2B and 0.5B parameters,
corresponding to approximately 1B and 475M active (non-embedding) parameters, respectively.
We use only 2B tokens to distill the 1.2B model and 2.8B tokens for the 0.5B model — as much
as we could train on an H100 GPU within a week. Note that MiniPLM trains the student on

2https://huggingface.co/datasets/sail/regmix-data-sample

4

https://huggingface.co/datasets/sail/regmix-data-sample

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Teacher/Student HS WG OBQA ARC-E ARC-C PIQA SIQA Story Avg Rel

Qn1.5
1.8B
↓
1.2B

CLM (no KD) 39.4 51.8 28.4 46.0 25.7 67.0 39.5 62.2 45.0 −0.7
Vanilla KD 40.7 53.2 29.8 46.1 25.5 67.3 39.2 63.5 45.6

Seq-KD 38.5 51.9 29.2 46.5 25.1 66.3 39.0 61.0 44.7 −0.9
MiniLLM 36.1 51.2 28.5 44.1 25.3 65.8 37.9 61.4 43.8 −1.9
MiniPLM 42.8 53.3 31.0 46.8 26.9 68.3 39.8 64.0 46.6 +1.0

TAD (K = 1) 42.3 53.8 30.5 52.0 27.0 67.3 41.2 63.9 47.2 +1.2
TAD (K = 5) 42.9 53.9 31.7 52.3 27.0 68.1 41.1 63.5 47.6 +2.1

TAD (K = 10) 43.0 55.2 31.5 53.1 27.1 68.2 40.9 63.6 47.8 +2.2
TAD (K = 20) 42.8 54.7 30.9 52.7 27.6 68.1 41.0 63.5 47.7 +2.0

Qn1.5
1.8B
↓
0.5B

CLM (no KD) 35.8 51.0 30.2 41.7 24.4 65.4 38.2 61.4 43.6 −0.5
Vanilla KD 37.0 51.7 29.4 45.1 24.2 65.8 38.0 61.6 44.1

Seq-KD 34.9 50.7 28.6 42.7 23.6 65.0 38.4 58.9 42.8 −1.3
MiniLLM 33.0 51.2 27.5 42.1 24.2 62.3 37.3 60.2 42.3 −1.9
MiniPLM 39.0 52.2 30.2 45.8 24.9 67.0 39 62.2 45.0 +1.0

TAD (K = 1) 38.0 51.7 30.5 45.9 25.7 66.7 39.4 61.7 45.0 +1.1
TAD (K = 5) 38.2 52.0 31.0 45.8 25.8 66.9 39.7 61.7 45.1 +1.3

TAD (K = 10) 38.4 52.1 31.1 46.0 25.9 67.3 39.8 62.2 45.4 +1.5
TAD (K = 20) 38.2 50.3 31.0 45.2 25.3 66.1 39.6 62.1 44.7 +0.9

Table 1: Results for Tail-aware distillation for β = 2 over Qwen1.5-1.8B (“Qn”), for a 1.2B and 0.5B
student model. The best performance for each column, and any value within 0.4 of it, is highlighted.
CLM stands for pre-training the model with only the CLM loss, without distillation. The average
relative change for the best-case TAD (K = 10) is 50% to 120% better than MiniPLM.

anywhere from 25 to 50B tokens and draws inference on the teacher over 100B tokens, a much larger
computational budget than in our case. We perform the distillation for K ∈ {1, 5, 10, 20}, following
the experimental settings used in prior work on top-K based methods (Lapin et al., 2016; Kool et al.,
2019). Results improve until K= 10, beyond which there is not much benefit. For the optimal setting
of K = 10, we conduct a sensitivity analysis over β ∈ {0.5, 1, 2, 5, 10}, with results presented in
Table 2. Performance peaks around β = 2, with a smooth degradation on either side up to β = 1,
indicating robustness to this hyperparameter. However, for β < 1, the performance might degrade
fast as β(X) > 1 is no longer guaranteed (Equation (6)).

β 0.5 1 2 5 10

1.2B Avg 47.0 47.6 47.8 47.7 47.6
Rel +1.4 +2.0 +2.2 +2.1 +2.0

0.5B Avg 45.0 45.1 45.4 45.1 44.9
Rel +1.0 +1.2 +1.5 +1.2 +1.0

Table 2: Parameter sensitivity of β for the distilla-
tion of Qwen 1.8B for K = 10

For the 1.2B student model, Tail-aware KD consis-
tently outperforms MiniPLM’s average score by a
substantial margin across all values of K. For the
smaller 0.5B student, the performance gap narrows,
though Tail-aware KD still maintains an edge. A
breakdown by task shows that TAD outperforms
MiniPLM across more challenging benchmarks,
such as ARC-Challenge and OpenBookQA. In con-
trast, MiniPLM exhibits slight gains on easier tasks,
such as ARC-Easy and Story. Since the easier tasks
inherently yield higher accuracy, the averages tend

to be skewed towards them. To provide a more granular evaluation, we compute the symmetric
relative change in accuracy with respect to Vanilla KD, following Törnqvist et al. (1985). The relative
change is defined as Rel = 100 · log(Acc/AccVanilla), where Acc is the accuracy of the method under
comparison (e.g., MiniPLM or TAD). We report the average relative change across all tasks as Rel
in Table 1. The difference between MiniPLM and TAD becomes more prominent in the relative
measure.

MiniPLM approximates reverse-KL–style distillation via data selection: the teacher scores the
corpus, selects suitable samples, and the student is then trained on those samples. However, to
sample an δ fraction of the corpus, it takes 1/δ times as many forward passes through the teacher as
backpropagations through the student, which is a significant overhead. When we compute the FLOPs
for all the methods to train on 1M tokens, MiniPLM has 33% to 50% higher FLOP count due to the
overhead (Table 3), while TAD has a similar FLOP count to Vanilla KD. The authors of MiniPLM

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Teacher/Student HS WG OBQA ARC-E ARC-C PIQA SIQA Story Avg Rel F-ECE ↓

Phi2
2.8B
↓
1B

CLM (no KD) 38.2 51.1 27.4 51.2 24.1 66.3 40.8 63.1 45.3 −4.3 1.57
CLM (Mat.) 40.2 51.9 28.6 52.3 24.8 67.6 41.7 64.7 46.5 −2.4 1.50
Vanilla KD 43.6 53.5 33.0 57.3 30.0 68.0 43.2 64.3 49.1 1.45
MiniPLM 43.7 52.5 30.6 57.1 29.9 68.1 43.8 64.3 48.8 −0.4 1.62

RKL 42.3 54.1 31.6 58.0 28.7 68.2 43.8 64.9 49.0 −0.4 1.77

TAD (K = 1) 45.2 55.3 34.0 58.0 30.7 68.3 44.4 64.9 50.1 +0.9 1.19
TAD (K = 5) 45.5 55.6 34.6 58.1 31.0 68.8 44.5 64.7 50.3 +1.2 1.29

TAD (K = 10) 45.6 56.0 34.0 58.3 31.1 68.8 43.8 64.7 50.3 +1.1 1.37
TAD (K = 20) 45.3 56.4 33.5 57.6 31.0 69.0 43.8 64.7 50.2 +1.0 1.42

Qn2.5
3B
↓
1B

CLM (no KD) 36.2 53.0 26.4 46.6 25.9 61.6 35.7 58.9 43.0 −1.9 1.49
CLM (Mat.) 38.1 53.9 27.6 47.6 26.6 62.8 36.5 60.4 44.2 −0.7 1.41
Vanilla KD 38.0 53.4 26.8 50.6 27.4 64.0 38.8 60.4 44.9 1.42
MiniPLM 37.3 53.4 29.2 49.4 25.3 64.7 38.6 61.4 44.9 +0.0 1.45

RKL 38.9 53.7 28.2 50.7 27.6 63.8 39.0 61.4 45.4 +0.6 1.99

TAD (K = 1) 39.9 54.3 27.5 52.1 27.8 64.9 39.7 60.9 45.9 +1.0 1.29
TAD (K = 5) 39.9 53.5 27.9 53.4 27.9 64.9 39.2 61.0 46.0 +1.1 1.30

TAD (K = 10) 40.6 54.5 29.6 52.0 28.4 64.8 39.3 61.5 46.3 +1.6 1.32
TAD (K = 20) 40.5 54.5 29.2 51.8 29.1 64.3 39.6 61.2 46.2 +1.6 1.37

Gem2
9B
↓
2B

CLM (no KD) 37.4 49.2 27.2 49.0 25.1 65.4 38.9 60.7 44.1 −1.7 1.43
CLM (Mat.) 39.4 50.0 28.4 50.1 25.8 66.7 39.8 62.2 45.3 −0.4 1.41
Vanilla KD 40.3 51.3 27.8 53.0 26.1 66.9 39.2 61.9 45.8 1.27
MiniPLM 37.5 51.9 27.2 49.5 26.0 66.6 39.0 61.9 46.0 −0.8 1.56

RKL 39.4 52.0 28.1 53.4 26.3 66.8 40.1 62.5 46.1 +0.2 1.80

TAD (K = 1) 41.0 52.1 28.4 54.0 26.4 67.6 39.3 61.9 46.3 +0.5 1.04
TAD (K = 5) 41.3 52.7 28.5 54.2 26.5 67.3 39.7 62.2 46.5 +0.6 1.11

TAD (K = 10) 41.2 53.7 30.0 54.5 26.8 67.1 40.1 62.8 47.0 +1.3 1.17
TAD (K = 20) 40.9 52.8 30.0 54.5 26.3 66.9 39.7 62.4 46.7 +1.0 1.20

Table 4: Pretraining distillation of various teachers to students with ∼1B active parameters on 2
billion tokens from Regmix. CLM (no KD) refers to pretraining with only CLM loss, without
distillation with the same number of tokens (2B), where CLM (Mat.) refers to computation-matched
pretraining, matched to the same FLOPs as training of TAD. The last column “F-ECE” shows the
calibration error of the models, measured using Full-ECE, with the lower being better.

treat the teacher-scoring overhead as offline pre-processing, as they use the same teacher for all their
students. However, a practitioner might want to try different teachers to optimize a small LM rather
than relying on a single teacher, or even use a multi-teacher approach for optimal performance, as in
Wu et al. (2021). Unlike any divergence-based method, MiniPLM cannot be applied to such practical
scenarios without significant modification. Finally, MiniPLM is not necessarily competitive with our
approach, and its selected samples could, in principle, be used with our tail-aware divergence as the
distillation loss. However, we exclude such combinations from the scope of this work.

3.2.2 DISTILLING LARGER MODELS

P(M) Vanilla MiniPLM TAD MiniLLM Seq-KD

1.2B 9.2 12.4 9.3 39.0 65.0
0.5B 6.4 9.7 6.5 21.8 43.2

Table 3: PetaFLOPs for the distillation of Qwen-1.5-
1.8B (Section 3.2.1) on a subset of 1M tokens from the
Regmix dataset. TAD has a similar PFLOP to Vanilla
KD, while MiniPLM is higher than both. The methods
involving sequence generation (SeqKD or MiniLLM)
are too expensive to scale to billions of tokens.

We further distill a series of larger models in
Table 4, namely Phi-2 (Javaheripi et al., 2023),
Qwen2.5-3B (Yang et al., 2024), and Gemma2-
9B (Team et al., 2024), with parameter size rang-
ing from 2.8B to 9B. We choose teacher check-
points only with pretraining to ablate the effect
of instruction tuning on distillation. The stu-
dent’s architectures are selected to have the same
dimensions as the teacher’s, but with fewer lay-
ers and smaller intermediate sizes. For medium-
sized models like Phi-2 or Qwen2.5-3B, the stu-
dent has half the teacher layers, whereas for
Gemma2-9B, the student has a third of the teacher’s layers. The student embeddings are initialized
from the teacher embeddings and remain frozen thereafter, resulting in approximately 1B active

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Phi2 2.8 → 1B Qn2.5 3B → 1B Gemma 9B → 2B

No. of Tokens 10B 100B 1T 10B 100B 1T 10B 100B 1T

Vanilla KD (KL) 2.80 2.77 2.76 3.18 3.09 3.05 3.15 3.00 2.93

Vanilla KD (RKL) 2.91 2.86 2.84 3.26 3.15 3.11 3.23 3.08 3.01

TAD (K = 10) 2.78 2.73 2.71 3.04 2.92 2.87 3.08 2.94 2.88

Table 5: Validation loss predictions for three distillation methods—Vanilla KD with forward and reverse KL
divergence and Tail-aware Distillation (TAD, K = 10), fit with the scaling law of (Hoffmann et al., 2022). TAD
is projected to achieve the lowest loss even when scaled to 1T training tokens.

parameters per student. For example, Gemma2-9B has around 900M embedding parameters due to its
large vocabulary size (256K), so the 2B student has only 1.1B active parameters. We also add cosine
loss between the student and the teacher hidden states to Equation (4), similar to DistilBERT (Sanh
et al., 2019). Finally, we add MiniPLM experiments on the same training dataset in Table 4. Due to
computational constraints, we do not train a reference model from scratch; instead, we use OPT-125M
(Zhang et al., 2022) as a reference model for all the teachers. We used a difference-sampling ratio of
δ = 0.5, the same as in the MiniPLM experiments.

When we measure the distillation cost in PetaFLOPs on a small training subset containing 1M tokens
as in the last section, MiniPLM takes 50% more FLOPs as Vanilla KD for the distillation of Phi2
(18.4 vs. 12.4) or Qwen2.5-3B (22.2 vs. 15.2), and 67% more for Gemma2 (52.0 vs. 31.4). At
the same time, TAD has a similar FLOP count to Vanilla KD. For the entire distillation, both the
Vanilla KD and TAD exceed 1019 FLOPs per billion tokens for teachers with 3B or more parameters.
To put this into perspective, the pretraining distillation of the older models, such as MBART-Large
(610M params, Tang et al. (2020)), consumes at most 1017 FLOPs overall (Dasgupta & Cohn, 2025).
We do not present any baseline other than Vanilla KD and MiniPLM, as we already demonstrated the
high computational cost of MiniLLM and Seq-KD in the previous section (Table 3).

The students receive no fine-tuning after distillation, and we evaluate them on the same few-shot tasks
as before. MiniPLM did not outperform Vanilla KD, and on Phi-2 it was worse (Table 4). Adding the
cosine loss on hidden states improved both Vanilla KD and TAD. As formulated, MiniPLM (a data-
selection method) does not incorporate such internal-state losses, which reduces its competitiveness
relative to Section 3.2.1. To ensure parity, we also report reverse KL (RKL) with the same cosine
loss on the hidden states (Table 4). RKL is slightly better than vanilla KD but remains inferior to
TAD. For TAD, the performance improved up to K = 5 or 10, beyond which we did not see any
significant gain (Table 4). We also evaluate the loss using Equation (1) on the Regmix validation set
and extrapolate it to 1T training tokens with the scaling law in Hoffmann et al. (2022). The projected
losses in Table 5 show that TAD surpasses the other methods when distilled with large token budgets.

3.2.3 CALIBRATION ERROR

We evaluate model calibration using Expected Calibration Error (ECE) (Table 4). Specifically, we
adopt the Full-ECE metric from (Liu et al., 2024a), which is tailored to language models with large
vocabularies and measures calibration over the entire predictive distribution, rather than the standard
ECE from (Guo et al., 2017), which focuses only on the argmax prediction and is more appropriate for
classification settings. We found that TAD has a slightly lower Full-ECE than Vanilla KD. However,
the ECE increases with K for all the cases. The reverse KL has the worst ECE of all.

3.2.4 SELECTION OF K

Across experiments with Qwen1.5-1.8B (Section 3.2.1) and with the larger teacher models, we
observe that performance peaks at K = 5 or 10 and then declines. In natural language, the next-token
probabilities are approximately Zipfian, and the teacher’s tail mass αT

K(t) = 1−
∑K

k=1
∗
pTk (t) decay

sharply beyond K ≳ 5–10 (see Figure 2). Even after normalizing the tail term in LDIV by the
sequence mean ᾱT

K = 1
N

∑N
t=1 α

T
K(t) of the tail probability mass, many low-entropy tokens still

satisfy αT
K(t) → 0 as K grows. Instead, the contribution of high-entropy (noisier) tokens increases

with K. Consequently, we observe no material gains beyond K ≈ 5–10.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model #Tkn HS WG OBQA ARC-E ARC-C PIQA SIQA Story Avg

TinyLlama(TL)−1.1B 1T 53.6 56.8 32.2 61.2 30.1 70.8 41.2 68.1 51.8
CLM (no KD) +2B 53.8 57.1 32.6 61.8 30.4 71.1 41.4 68.5 52.1

Phi3
4B
↓

TL

Vanilla KD +2B 54.1 58.9 33.5 63.2 31.6 71.2 44.2 68.7 53.2

TAD (K = 1)

+2B

55.1 60.0 34.8 64.2 33.1 71.3 44.8 69.1 54.0
TAD (K = 5) 55.5 60.2 35.2 63.6 32.6 71.4 44.9 69.4 54.1

TAD (K = 10) 54.6 60.0 34.6 63.2 32.4 71.8 44.6 68.9 53.8
TAD (K = 20) 54.8 59.9 33.8 62.5 32.0 72.1 44.2 68.7 53.5

TinyLlama(TL)−1.1B 2T 55.2 58.9 33.4 61.3 30.7 71.4 42.1 68.9 52.7

Table 6: Continued pretraining for the distillation of Phi-3 models to TinyLlama-1B. We use the TinyLlama-1B
checkpoint, pretrained on 1T tokens, as the student and distill it on an additional 2B tokens from the Regmix
corpus. The distilled students outperform the 2T checkpoint of TinyLlama, by training on 500× less tokens.

3.3 CONTINUED PRETRAINING

Although we demonstrated that our distillation algorithm works across various sizes of teacher models,
it is not possible to create student models from scratch with only 2B tokens to achieve state-of-the-art
performance. In this section, we start from an already pretrained student model, TinyLlama-1.1B
(Zhang et al., 2024), specifically its 1T checkpoint, and focus on distilling it from Phi-3 (Abdin et al.,
2024), a much stronger model. In the first set of experiments, we distill the students on the same 2B
tokens from the Regmix dataset. Here, we do not use any teacher model internals, nor do we freeze
the student embeddings. As in the previous sections, no fine-tuning is performed on the students after
distillation. The distilled students outperform the 2T checkpoint of TinyLlama (Table 6), trained with
another 1T tokens (500×) from the base model.

3.3.1 MATHEMATICAL REASONING

In this section, we distill TinyLlama-1.1B using Phi3-Mini as the teacher on the OpenWebMath
(OWM) corpus (Paster et al., 2023), which primarily consists of mathematical articles. The Distillation
is performed on 2.5 billion tokens from the token, and the 2.5T TinyLlama-1.1B checkpoint is used
as the base model. Evaluation is performed on eight tasks using the standard setting of Mathematical
evaluation harness,3, namely GSM8K, MATH, SVAMP, ASDiv, MAWPS, Tabmwp (TAB), MathQA
(MQA), and SAT (Table 7). We employ a few-shot chain-of-thought approach (Wei et al., 2022) for
evaluation and then measure the average score across the tasks.

Tiny-Llama performs poorly in mathematical reasoning tasks. After distillation, we observe ap-
proximately 2 times better performance on tasks such as MAWPS, MATH, and ASDiv, and 3.5
times better on GSM8K. Furthermore, the distilled students with TAD outperform Llama3.2-1B,
which is pretrained with a far higher number of tokens (9T), whereas Vanilla KD falls short. These

3https://github.com/ZubinGou/math-evaluation-harness

Model Data (#Tkns) GSM8K MATH SVAMP ASDiv MAWPS TAB MQA SAT Avg

TinyLlama(TL)−1.1B Web (2.5T) 2.0 2.6 9.5 16.3 20.1 12.7 12.8 15.6 11.4
CLM (no KD) + OWM(2.5B) 3.9 3.8 17.9 29.7 39.5 12.2 10.8 15.6 16.7

Phi3
4B
↓

TL

Vanilla KD + OWM(2.5B) 6.1 4.2 21.1 33.5 41.5 15.5 11.2 16.7 18.7
MiniPLM 3.3 3.4 13.4 27.3 34.0 10.8 10.5 12.5 14.4

TAD (K = 1)

+ OWM(2.5B)

6.1 6.2 22.1 33.1 41.5 14.0 11.3 21.9 19.5
TAD (K = 5) 7.1 4.8 19.2 35.9 46.7 15.9 10.0 22.6 20.3

TAD (K = 10) 6.4 4.6 19.7 33.0 42.7 12.9 9.3 37.5 20.7
TAD (K = 20) 6.5 3.8 18.2 31.7 40.9 13.7 9.0 31.2 19.4

Gemma3−1B−PT Web (2T) 2.1 2.2 12.8 17.1 22.4 11.1 14.5 15.6 12.2
Llama3.2−1.2B−PT Web (9T) 6.5 4.2 21.7 35.7 44.2 21.1 13.2 6.2 19.1

Table 7: Adaptation to mathematical reasoning via pretraining distillation of Phi-3 into TinyLlama-1B (“TL”)
on the OpenWebMath (OWM) corpus. The distilled students with TAD outperform pretrained 1B Gemma3 and
Llama3.2 models in terms of average score.

8

https://github.com/ZubinGou/math-evaluation-harness

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Data (#tokens) GSM8K MATH SVAMP ASDiv MAWPS TAB MQA SAT Avg.

TinyLlama(TL)−1.1B Web (2.5T) 2.0 2.6 9.5 16.3 20.1 12.7 12.8 15.6 11.4
CLM + SFT +OWM(2.5B)

+ORCAMEL
19.6 4.0 49.4 58.8 74.3 21.8 18.0 28.1 34.3

Phi3
4B
↓

TL

Vanilla KD +OWM(2.5B)
+ORCAMEL

30.8 6.8 64.6 62.5 80.7 20.1 16.7 27.5 38.7

TAD (K = 1)
+OWM (2.5B)
+ORCAMEL

36.8 6.8 67.8 67.9 81.7 25.4 16.3 28.1 41.4
TAD (K = 5) 33.2 7.4 65.4 68.7 85.6 27.6 17.9 34.4 42.5

TAD (K = 10) 30.1 9.0 65.7 68.4 85.4 24.1 18.2 29.8 41.3
TAD (K = 20) 28.2 7.2 66.2 68.2 84.2 24.6 17.1 25.0 40.1

Rho−1−Math(1.1B) +OWM (30B) † 36.3 13.4 52.6 66.5 83.6 29.5 32.1 18.5 41.5

Llama2−7B Web (2T) 14.2 3.6 39.1 51.6 63.6 30.9 12.5 32.8 31.4
CLM + SFT +OWM(2.5B)

+ORCAMEL
22.0 4.2 47.7 56.3 72.3 37.7 23.0 28.1 36.4

Phi3
14B
↓

L2

Vanilla KD +OWM(2.5B)
+ORCAMEL

50.5 8.1 75.3 74.4 90.5 29.7 37.2 34.4 50.0

TAD (K = 1)
+OWM (2.5B)
+ORCAMEL

56.0 10.2 77.2 77.1 91.8 39.8 39.2 40.6 54.0
TAD (K = 5) 51.6 9.2 76.7 75.4 91.2 38.7 40.5 37.5 52.6

TAD (K = 10) 51.4 8.4 76.6 75.5 90.6 38.7 39.2 44.4 53.1
TAD (K = 20) 52.8 8.0 77.6 76.9 92.4 39.2 39.0 46.9 54.1

Llemma−7B +ProofPile(0.2T) 39.7 15.4 56.9 67.7 83.3 47.0 40.9 44.0 49.4
WizardMath−7B +RL with Evol Instruct 46.6 7.0 56.8 65.2 81.1 35.0 20.3 23.1 41.9
Orca2−7B +SFT (ORCA) + KTO 40.0 6.2 70.2 67.0 87.5 30.4 31.6 28.1 45.1
†Trained with special Rho loss to eliminate the noisy tokens.

Table 8: Supervised distillation for mathematical reasoning, showing distillation of Phi3-4B into
TinyLlama-1.1B (“TL”) and Phi3-14B into Llama2-7B on ORCAMEL, alongside GPT4-generated
solutions. TAD for TinyLlama is 2.5× computationally cheaper than Rho-1 and 9× cheaper for
Llama2-7B than Llemma-7B (see Appendix A.1), which is the best model created from Llama2-7B.

experiments demonstrate that a seemingly weak student model (e.g., TinyLlama) can be made com-
petitive in a specific domain through distillation from an expert teacher. For MiniPLM, we choose
Galactica-125m (Taylor et al., 2022) as the reference model, since it is pretrained on scientific datasets
including mathematics, and uses a difference sampling ratio of δ = 0.5. MiniPLM completely fails
for domain-specific distillation, with an average score worse than pretraining without distillation
(CLM in Table 7).

3.4 SUPERVISED DISTILLATION

For our final experiment, we perform supervised distillation for mathematical reasoning using
instructions generated from GPT-4 (Table 8). We combine a 200K dataset from Microsoft-ORCA
(Mitra et al., 2024) with a 50K dataset from Camel-AI (Li et al., 2023), both of which contain answers
generated by GPT-4 in response to mathematical questions, and refer to the combined dataset as
ORCAMEL. Unlike many mathematical instruction datasets, e.g., Yu et al. (2023), which use the
training responses from GSM8K (Cobbe et al., 2021) or MATH (Lewkowycz et al., 2022), our training
dataset contains only their input prompts, making the results more generalizable. Furthermore, we do
not use any modifications of the original question as an intermediate step, such as backward questions
in Yu et al. (2023) or Evol-Instructions in Luo et al. (2023), which might yield additional gains.

We perform our distillation on two pairs of teacher and student: (1) Phi3-4B to TinyLlama, and (2)
Phi3-14B to Llama2-7B (Touvron et al., 2023). We do not fine-tune the teachers on the dataset and
assume them to be sufficiently capable in mathematical reasoning to produce supervision signals. For
every pair of teacher and student, our distillation is performed in two stages,

1. Pretraining distillation on 2.5B tokens from the OWM corpus (β = 2.0)

2. Three epochs of distillation on the ORCAMEL dataset for the same teacher–student pair.

We also add a baseline by fine-tuning TinyLlama on the ORCAMEL dataset, after pretraining it
on the same 2.5B OWM tokens without any distillation. The performance of the distilled models
is comparable to that of Rho-1 (Lin et al., 2024). Rho-1 is created by continuing TinyLlama’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

pretraining on 30B tokens from the OWM corpus, using reducible holdout (Rho) loss selection
(Mindermann et al., 2022) to eliminate noisy tokens, achieving SOTA results on mathematical tasks
with models of around 1B parameters. The distilled Llama2-7B outperforms SOTA models for Maths
inference built using Llama-2 as the base model, such as Llemma-7B (Azerbayev et al., 2023), Orca-2
(Mitra et al., 2024), or Wizard-Math (Luo et al., 2023), and we generated their results using the
same Mathematical evaluation harness. Further, our method has a much lower compute budget than
the next-best model, Llama-7 B, as explained in Appendix A.1. Although unsupervised corpora
for pretraining are unlimited, supervised datasets are always limited. It is better to use them with a
teacher’s supervision for optimal performance, rather than merely fine-tuning the student on them.

4 RELATED WORK

Most of the work in KD for LLMs focuses on task-specific knowledge transfer via instruction
prompts, following Sequence-KD (Kim & Rush, 2016), where the teacher generates a sequence-
specific prompt, and the student is fine-tuned on that sequence. Recently, there has been a surge
in reinforcement learning-based policy optimization for distillation, like MiniLLM and Agarwal
et al. (2024). However, these methods involve generating sequences from the student during training,
which can be expensive for large datasets. Recently, DistilLM (Ko et al., 2024) addressed this issue
by implementing an efficient generation scheduler. Overall, these on-policy methods are limited to
small datasets; for example, both DistilLM and MiniLLM use the DollyEval dataset, which contains
15,000 data points. They cannot be applied to large-scale datasets larger than 200K, which is standard
for distillation for Summarization or Translation (Shleifer & Rush (2020), Agarwal et al. (2024)).

When it comes to large-scale pretraining distillation to prepare the student from scratch, there is work
on encoder-only models, such as DistilBERT (Sanh et al., 2019) or MiniLM (Wang et al., 2020).
Work like Shleifer & Rush (2020) extends it to encoder–decoder models for generative tasks such
as summarization or machine translation. However, most pretraining distillation in causal models,
such as distilling Gemma2 models from Gemini (Team et al., 2024) or work like Muralidharan et al.
(2024), still follows logit matching with minimal modification. MiniPLM is the only work we found
that attempts distillation without logit matching.

Works like MiniPLM, MiniLLM, or On-policy KD of Agarwal et al. (2024) uses the reverse KL
divergence instead of the forward one. However, the mode-seeking behavior of reverse KLD will
suppress the contribution of words other than the one with the maximum probability. For task-specific
distillation, where we match the conditional teacher probability (P[y|x]) on the output sequence y
given a prompt input x, mode-seeking might be beneficial. However, for pretraining distillation
on the entire input x, we match P[x] for every token. The teacher’s probability distribution will
contain multiple dominant modes, and focusing solely on the maximum will limit the transfer of
dark knowledge. Furthermore, a strong correlation exists between KD and reward maximization for
aligning language models, as established in the derivation of MiniPLM. Wang et al. (2023) shows
that preference alignment using the reverse KL divergence lowers the diversity of a model’s generated
sequence, and the same will be true for KD as well.

5 CONCLUSION

Here, we present a novel distillation algorithm for language models that extends the commonly used
KL divergence, and we demonstrate its competitiveness through extensive experiments. Works such
as Sequence-KD and MiniLLM are not well-suited to pretraining on large-scale datasets. MiniPLM
performs poorly for domain-specific distillation and cannot be directly applied to supervised tasks.
In contrast, our method applies to both pretraining and supervised distillation, and it is significantly
cheaper in the latter because it requires neither teacher decoding (as in Seq-KD) nor student generation
(as in MiniLLM or DistilLM (Ko et al., 2024)). Consequently, TAD has a computational burden
comparable to Vanilla KD, enabling large-scale pretraining distillation within a limited GPU budget.
Finally, we show that it can be used to train competitive models for mathematical reasoning using
publicly available datasets. Taken together with its low computational requirements, TAD provides a
compelling and versatile distillation method for causal LMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Critical ethical considerations in training language models include licensing terms of the pre-training
data; evaluation and mitigation of model bias with respect to a variety of protected attributes of both
users and target referents; and AI safety guardrails over the final model to reduce toxic/harmful
outputs. As this paper centers on a novel knowledge distillation method and all experiments use
widely used language models and open-source datasets, there are no new dimensions to these concerns.
We do, however, concede that KD can amplify existing model biases to some degree (Ahn et al.,
2022), that it is possible to mitigate teacher model biases as part of the KD process (Blakeney et al.,
2021), and that there is value in quantifying this effect for our method. We consider this to be
orthogonal to this work, however.

7 REPRODUCIBILITY

We have attached a few code samples as supplementary material. The teacher models and the datasets
are all open-source and available on huggingface (Wolf et al., 2019). The data preprocessing step
involves standard random sampling without replacement from datasets like Regmix (Section 3.2) or
Open-Web-Math (Section 3.3.1).

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.

Jaimeen Ahn, Hwaran Lee, Jinhwa Kim, and Alice Oh. Why knowledge distillation amplifies gender
bias and how to mitigate from the perspective of DistilBERT. In Proceedings of the 4th Workshop
on Gender Bias in Natural Language Processing (GeBNLP), pp. 266–272, 2022.

Anshumann Anshumann, Mohd Abbas Zaidi, Akhil Kedia, Jinwoo Ahn, Taehwak Kwon, Kangwook
Lee, Haejun Lee, and Joohyung Lee. Sparse logit sampling: Accelerating knowledge distillation in
llms. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 18085–18108, 2025.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023.

Cody Blakeney, Nathaniel Huish, Yan Yan, and Ziliang Zong. Simon says: Evaluating and mitigating
bias in pruned neural networks with knowledge distillation. arXiv preprint arXiv:2106.07849,
2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Sayantan Dasgupta and Trevor Cohn. Improving language model distillation through hidden state
matching. In The Thirteenth International Conference on Learning Representations, 2025.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Yuxian Gu, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. MiniPLM: Knowledge
distillation for pre-training language models. In The Thirteenth International Conference on
Learning Representations, 2025.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS 2014 Deep Learning Workshop, 2014. doi: 10.48550/ARXIV.1503.02531. URL https:
//arxiv.org/abs/1503.02531.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Brian Kenji Iwana, Ryohei Kuroki, and Seiichi Uchida. Explaining convolutional neural networks
using softmax gradient layer-wise relevance propagation. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp. 4176–4185. IEEE, 2019.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 1(3):3, 2023.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined
distillation for large language models. In International Conference on Machine Learning, pp.
24872–24895. PMLR, 2024.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International conference on
machine learning, pp. 3499–3508. PMLR, 2019.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Loss functions for top-k error: Analysis and
insights. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1468–1477, 2016.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large scale language model society, 2023.

12

https://zenodo.org/records/12608602
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

Han Liu, Yupeng Zhang, Bingning Wang, Weipeng Chen, and Xiaolin Hu. Full-ece: A metric for
token-level calibration on large language models. arXiv preprint arXiv:2406.11345, 2024a.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing
Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training. arXiv
preprint arXiv:2407.01492, 2024b.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Meta. Llama 3.2 multilingual multimodal language models. Model card, Hugging Face, 2024. URL
https://huggingface.co/meta-llama/Llama-3.2-3B. Release Date: September
25, 2024.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Conference
on Machine Learning, pp. 15630–15649. PMLR, 2022.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://arxiv.
org/abs/1910.01108.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sam Shleifer and Alexander M Rush. Pre-trained summarization distillation. arXiv preprint
arXiv:2010.13002, 2020.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and
Angela Fan. Multilingual translation with extensible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401, 2020.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Leo Törnqvist, Pentti Vartia, and Yrjö O Vartia. How should relative changes be measured? The
American Statistician, 39(1):43–46, 1985.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

13

https://huggingface.co/meta-llama/Llama-3.2-3B
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
eralizing direct preference optimization with diverse divergence constraints. arXiv preprint
arXiv:2309.16240, 2023.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. HuggingFace’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. URL
http://arxiv.org/abs/1910.03771.

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. One teacher is enough? pre-trained language model
distillation from multiple teachers. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 4408–4413, 2021.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp.
11953–11962, 2022.

14

http://arxiv.org/abs/1910.03771

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Teacher #P(M) |V| dS LS nH dH dFFN

Qwen1.5-1.8B 1.2B 151,936 1,536 24 16 96 4,224
Qwen1.5-1.8B 0.5B 151,936 1,024 24 16 64 2,816

Phi2-2.8B 1.1B 52,000 2,560 16 32 80 5,120
Qwen2.5-3B 1.2B 151,936 2,048 18 16 128 7,680
Gemma2-9B 2B 256,000 3,584 14 16 224 4,096

Table 9: The architectures of different students used in distillation for pretraining from scratch. |V| is
the vocabulary size, dS for the hidden size of the student, LS for the number of layers, and nH for
the number of heads, dH for the dimension of each head, and dFFN for the intermediate size.

A EXPERIMENTAL DETAIL

The architectures of different students for the pretraining from scratch are listed in Table 9. All
students have approximately 1B active parameters, except for the 0.5B student of Qwen, which has
approximately 475M active parameters. The architectures of the students of Qwen1.5 − 1.8B are
kept the same as in the MiniPLM paper (Gu et al., 2025).

The experiments are divided into two major parts: pretraining distillation from scratch, and continued
pretraining. For pretraining distillation from scratch, we distilled the Qwen1.5, Phi2, and Qwen2.5
models on a single H100 GPU for a week, whereas we used 2 H100 GPUs for distilling the Gemma2-
9B model. We used flash attention (Dao et al., 2022) whenever possible to speed up the computation,
except for Gemma2. We used Adam optimizer (Kingma & Ba, 2014) with a learning rate of η = 1e−4
and a weight decay of λd = 0.1 for all the experiments. We used a batch size of 128 for all the
experiments.

For the continued pretraining distillation of Tiny-Llama, we used the Adam optimizer (Kingma & Ba,
2014) with a learning rate of η = 3e − 5 and a weight decay of λd = 0.1 for all experiments. All
experiments used a batch size of 128 and were conducted on a single NVIDIA H100 GPU. Supervised
distillation is performed with a batch size of 32, η = 1e− 5, λd = 0.1, and a context size of 2048.

A.1 COST OF SUPERVISED DISTILLATION

We conduct a comparative cost analysis of GPU hours required to produce state-of-the-art mathemati-
cal reasoning, starting with foundational models such as TinyLlama-1.1B and Llama2-7B. Models
like Llemma or Rho-1 are trained using industrial resources. Rho-1 is trained for approximately
10 hours on a 32-GPU H100 stack, requiring a total of 320 GPU hours. The best model built on
Llama-7B is Llemma, which was trained on A100 GPUs for 23,000 GPU hours. Even though it
uses different hardware, we can draw an equivalence using the GPU hours the 7B model in Lin et al.
(2024) takes to train on H100. It required 18 hours to train on 15 billion tokens using 32 H100 GPUs.
Using their configuration setting, Llemma-7B will take 7,680 GPU hours to train on a single H100.
This provides a reasonable estimate, since A100s are approximately a third slower than H100 GPUs
for training (23K ≈ 3× 7, 680). Our two-stage method requires approximately 130 hours on a single
H100 GPU for TinyLlama and 420 hours on two H100 GPUs (totaling 840 hours) for Llama-2, which
is substantially cheaper than the existing methods.

B SPLITTING OF THE KL DIVERGENCE INTO TOP-K AND TAIL

Here, we show the derivation of Equation (2). Like we defined before, ∗
pTk = maxv[{pT1 , pT2 . . . pTv } \

{ ∗
pTj }

k−1
j=1] is the kth maximum of all the token probabilities for a vocabulary size v, and ∗

pSk is the
corresponding student probability of the same word. The sum of top-K probability of the teacher is∑K

k=1
∗
pTk . The normalized teacher (or student) probability, by the factor 1−

∑K
k=1

∗
pTk , is defined as,

p̃T =
pT

1−
∑K

k=1
∗
pTk

p̃S =
pS

1−
∑K

k=1
∗
pSk

(7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

It can be easily seen that for the non-top-K probabilities, p̃T sums to 1, i.e.
∑

pT /∈{∗
pT
k }K

k=1
p̃T = 1.

Now, we split the KL divergence between the top-K probability and the rest, as follows,

DKL

(
PT ∥PS

)
=

∑
pT∈{∗

pT
k }K

k=1

pT log
pT

pS
+

∑
pT /∈{∗

pT
k }K

k=1

pT log
pT

pS

=
∑

pT∈{∗
pT
k }K

k=1

pT log
pT

pS
+

(
1−

K∑
k=1

∗
pTk

) ∑
pT /∈{∗

pT
k }K

k=1

pT(
1−

∑K
k=1

∗
pTk

) log
pT

pS

=
∑

pT∈{∗
pT
k }K

k=1

pT log
pT

pS
+

(
1−

K∑
k=1

∗
pTk

) ∑
pT /∈{∗

pT
k }K

k=1

p̃T log
p̃T
(
1−

∑K
k=1

∗
pTk

)
p̃S
(
1−

∑K
k=1

∗
pSk

)
=

∑
pT∈{∗

pT
k }K

k=1

pT log
pT

pS
+

(
1−

K∑
k=1

∗
pTk

) ∑
pT /∈{∗

pT
k }K

k=1

p̃T log
1−

∑K
k=1

∗
pTk

1−
∑K

k=1
∗
pSk

+

(
1−

K∑
k=1

∗
pTk

) ∑
pT /∈{∗

pT
k }K

k=1

p̃T log
p̃T

p̃S

=
∑

pT∈{∗
pT
k }K

k=1

pT log
pT

pS
+

(
1−

K∑
k=1

∗
pTk

)
log

1−
∑K

k=1
∗
pTk

1−
∑K

k=1
∗
pSk

�
���

���
��*

1 ∑
pT /∈{∗

pT
k }K

k=1

p̃T


+

(
1−

K∑
k=1

∗
pTk

)
DKL

(
p̃T ∥p̃S

)
pT /∈{∗

pT
k }K

k=1

= DKL

(
pT ∥pS

)
pT∈{∗

pT
k }K

k=1

+

(
1−

K∑
k=1

∗
pTk

)
DKL

(
p̃T ∥p̃S

)
pT /∈{∗

pT
k }K

k=1

= DKL1
+

(
1−

K∑
k=1

∗
pTk

)
DKL2

(8)

C DERIVATION OF THE GRADIENT

Here we present an elaborated derivation of the gradients. The derivations follow the material in the
appendix of Anshumann et al. (2025). If pi = exp(zi)/

∑|V|
i=1 exp(zi) is the softmax probability for

a logit zi for a vocabulary V , then the gradient of pk is (from (Iwana et al., 2019)):

∂pj
∂zi

= pj
(
1[i=j] − pi

)
(9)

Now, given a vocabulary V , the KL Divergence loss between the teacher probabilities of the teacher
(pTi) and the student (pSi) is:

LKLD =

|V|∑
i=1

pTi log(pTi /p
S
i) (10)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

It can be derived that,

∂LKLD

∂zi
= −

|V|∑
j=1

pTj
pSj

∂pSj
∂zi

= −
|V|∑
j=1

pTj
(
1[i=j] − pSi

)
= pSi · (

|V|∑
j=1

pTj)−
|V|∑
j=1

pTj 1[i=j]

= pSi − pTi (11)

Now, we can show that DKL1
has K + 1 terms when we consider top-K probabilities, with the first

K being (i ∈ [K])

L1:K =

K∑
k=1

∗
pTk log

∗
pTk
∗
pSk

where ∗
pSk are the student probabilities corresponding to the top-K tokens, i.e. tokens for which the

teacher probabilities are maximum. The derivative of L1:K w.r.t a logit zi is

∂L1:K

∂zi
= pSi · (

K∑
k=1

∗
pTk)−

K∑
k=1

∗
pTk 1[i=k] (12)

Now for i ∈ [V \K], the indicator function 1[i=k] is never one. Therefore, the gradient of L1:K has
the following forms for two different cases, as:

∂L1:K

∂zi
=

{
pSi · (

∑K
k=1

∗
pTi)− pTi i ∈ [K]

pSi · (
∑K

k=1
∗
pTi) i ∈ [V \K]

Please note that the top K probabilities do not sum to one. The last term LK+1 can be expressed as:

LK+1 =

(
1−

K∑
i=1

∗
pTk

)
log

1−
∑K

i=1
∗
pTk

1−
∑K

i=1
∗
pSi

= −

(
1−

K∑
k=1

∗
pTk

)
· log

(
1−

K∑
k=1

∗
pSk

)
+ C

where C is a constant. The derivative of the last term, using the derivative of pSk from Equation (9) is:

∂LK+1

∂zi
=

1−
∑K

k=1
∗
pTk

1−
∑K

k=1
∗
pSk

·
K∑

k=1

∂
∗
pSk
∂zi

=
1−

∑K
k=1

∗
pTk

1−
∑K

k=1
∗
pSk

·
K∑

k=1

∗
pSk
(
1[i=k] − pSi

)

Again, for i ∈ [V \K], the indicator function 1[i=k] is never one. Therefore,

∂LK+1

∂zi
=

pSi ·
(
1−

∑K
k=1

∗
pTk

)
i ∈ [K]

−pSi ·
(

1−
∑K

k=1

∗
pT
k

1−
∑K

k=1

∗
pS
k

)∑K
k=1

∗
pTk i ∈ [V \ K]

(13)

Combining the gradients of L1:K and LK+1, since DKL1 = L1:K + LK+1

∂DKL1

∂zi
=

{
pSi − pTi i ∈ [K]

pSi ·
(∑K

k=1

∗
pT
k −

∑K
k=1

∗
pS
k

1−
∑K

k=1

∗
pS
k

)
i ∈ [V \ K]

(14)

Therefore, the gradients of the logits corresponding to the tokens of top-K teacher probabilities
remain the same, while the gradients of the logits corresponding to the rest of the tokens change. The
second term DKL2 solely depends on the logits of the rest of the tokens.

DKL2
=

∑
i∈V\K

p̃Ti log
p̃Ti
p̃Si

(15)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where we can generate p̃Si directly from zi as p̃Si = exp zi∑
k∈V\K exp zk

. Also, p̃Ti comes from a similar
softmax, but is constant. Therefore,

∂DKL2

∂zi
=

{
0 i ∈ [K]

p̃Si − p̃Ti i ∈ [V \ K]

The gradients of the logits of the top-K tokens are zero for DKL2
; only their gradient for DKL1

is non-zero (Equation (14)). And as a result, their gradient is the same as that for ordinary KL
Divergence (Equation (11)). Therefore, TAD does not change the gradient of the logits of the top-K
tokens.

As for the logits of the non-top-K tokens, their gradient for DKL2
can be written as,

∂DKL2

∂zi
=

pSi

1−
∑K

k=1
∗
pSk

− pTi

1−
∑K

k=1
∗
pTk

(16)

since p̃Ti and p̃Si can also be defined as Equation (7).

Therefore, (
1−

K∑
k=1

∗
pTk

)
∂DKL2

∂zi
= pSi ·

1−
∑K

k=1
∗
pTk

1−
∑K

k=1
∗
pSk

− pTi (17)

Combining the derivative of DKL2
from (Equation (14) for the tail logits, i.e., for i ∈ [V \ K], it can

easily be checked that

∂DKL1

∂zi
+

(
1−

K∑
k=1

∗
pTk

)
∂DKL2

∂zi

=

(
pSi ·

∑K
k=1

∗
pTk − pSi ·

∑K
k=1

∗
pSk

1−
∑K

k=1
∗
pSk

)
+

(
pSi − pSi ·

∑K
k=1

∗
pTk

1−
∑K

k=1
∗
pSk

)
− pTi

= pSi − pTi

Since LKLD = DKL1
+
(
1−

∑K
k=1

∗
pTk

)
DKL2

, their gradients are the same. Now, for TAD, the

divergence is: LDIV = DKL1 + β(X)
(
1−

∑K
k=1

∗
pTk

)
DKL2 , where β(X) = β/(1

N

∑N
t=1(1 −∑K

k=1
∗
pTk (t))), where t is the index of a token in a sequence X containing a total of N tokens. This

also means,

LDIV = DKL1 +

(
1−

K∑
k=1

∗
pTk

)
DKL2 + (β(X)− 1)

(
1−

K∑
k=1

∗
pTk

)
DKL2

= LKLD + (β(X)− 1)

(
1−

K∑
k=1

∗
pTk

)
DKL2

Using Equation (17), the gradient of LDIV has the following form for the logits zi for the tail tokens
(i ∈ [V \K])

∂LDIV

∂zi
=

∂LKLD

∂zi
+ (β(X)− 1)

(
1−

K∑
k=1

∗
pTk

)
∂DKL2

∂zi

= pSi − pTi + (β(X)− 1)

(
pSi ·

1−
∑K

k=1
∗
pTk

1−
∑K

k=1
∗
pSk

− pTi

)

For the logits of the top-K tokens, ∂DKL2

∂zi
= 0, and therefore, their gradients are the same as those of

Vanilla KD. This completes the derivation of the gradient of LDIV .

18

	Introduction
	Tail-Aware Distillation
	Gradient Analysis

	Experimental Details
	Evaluation
	Pretraining Distillation from Scratch
	Benchmarking with Qwen
	Distilling Larger Models
	Calibration Error
	Selection of K

	Continued Pretraining
	Mathematical Reasoning

	Supervised Distillation

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility
	Experimental Detail
	Cost of Supervised Distillation

	Splitting of the KL Divergence into Top-K and Tail
	Derivation of the Gradient

