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ABSTRACT

The core learning signal used in language model distillation is the standard
Kullback-Leibler (KL) divergence between the distribution of the student and
the teacher. Traditional KL divergence tends to be dominated by the teacher’s
highest-probability modes, thus diminishing the influence of less probable yet
potentially informative components of the output distribution. We propose a new
tail-aware divergence that decouples the contribution of the teacher model’s top- K
predicted probabilities from those with lower probabilities, while maintaining the
same computational profile as the KL Divergence. Our decoupled approach reduces
the impact of the teacher modes and, consequently, increases the contribution of the
tail of the distribution. Experimental results demonstrate that our modified distilla-
tion method yields competitive performance in both pre-training and supervised
distillation of decoder models across various datasets. Furthermore, the distillation
process is efficient and can be performed with a modest academic budget for large
datasets, eliminating the need for industry-scale computingﬂ

1 INTRODUCTION

The rapid advancement in language models (LMs) has led to highly complex systems capable of
performing state-of-the-art natural language processing (NLP) tasks. However, these models are
often too computationally expensive and memory-intensive to be deployed on resource-constrained
devices, such as edge devices, mobile phones, or low-latency systems. The gap is addressed by small
language models, which can be further improved via knowledge distillation (KD) from larger models.

Most work on distilling generative language models focuses on supervised distillation, which aims to
match the student’s response to the teacher’s response given a prompt (Gu et al.[(2024)),|Agarwal et al.
(2024))). These works typically assume the presence of an already pre-trained student, which might not
always be the case. In contrast, works like DistilBERT (Sanh et al.,[2019) train a student from scratch
via pretraining distillation, and our work extends this technique to causal models. However, the
training corpora for modern causal LMs are usually closed-source, which complicates the application
of distillation approaches such as DistilBERT. However, applying pretraining distillation to modern
causal LMs faces significant challenges: the training corpora are typically closed-source, and the
models require substantial computational resources—often requiring tens to hundreds of billions
of tokens when distilled on generic open-source corpora. This poses a significant computational
challenge, especially in academic settings.

We distill various teacher models from different model families within a 1-week budget on a single
H100 GPU, enabling the distillation of approximately 2 billion tokens for 1-billion-parameter student
models, or more for smaller ones. We propose an algorithm that surpasses vanilla KD by decoupling
the contribution of the teacher’s top-K probabilities to the KL divergence and demonstrate the
method’s effectiveness across different LMs. Despite the training budget constraint, our method
produces competitive results with recent work, such as MiniPLM (Gu et al.| [2025)). Furthermore,
when we use our supervised distillation method for mathematical reasoning, we achieve results
comparable to SOTA scores on the same foundational models, with a GSM8K score of 36.8 for
TinyLlama-1.1B and 56.0 for Llama2-7B after distillation.

'We used LLMs like Grammarly and ChatGPT-Plus to check grammar and spelling and to polish our work.
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Figure 1: KL divergence on the validation set of Regmix for vanilla KD vs TAD. The x axis shows training
progress in terms of the number of tokens, and the y axis shows held-out KL between the student and teacher.

2 TAIL-AWARE DISTILLATION

If P is the simplex of token probabilities produced by a language model (e.g., P(.S) for the student
and P(T) for the teacher), then the standard distillation loss of a causal model has the following form
for a sequence of length NV,

N
Lxp =Y Lopm(t;PS)+ Dg(t; P, PY) €))

t=1

where L1 (t; ) is the causal language modeling (CLM) loss of the student, and D1, (t; PT, P?)
is the KL divergence between the teacher and the student for the token ¢. In our method, we focus
on the teacher’s next-token probabilities when we input a sequence. With some abuse of notation,
if pf = maxyey[{p{,p3,...pY ...} \ {pF }¥Z]] is the kth maximum of all the token probabilities

J
for a vocabulary V, we can split the KL divergence between the top-K and the rest as,

Dicr, (PTIP?) = Drcr (07 197) yre iy, + @k Prr (BT 15%) g iy |

=Dk, + akDkr, )

Here {pf }X_, is the set of top-K teacher probabilities, and o, = 1 — Zszl pi is the non-top-K
or the tail probability mass of the teacher. D, is the KL divergence associated with them (i.e.,
the modes), including a (K + 1)st term for probabilities 1 — Zszl piand 1 — Z,i(:l py. Whereas,
Dk 1, is the KL Divergence for the rest, i.e., the tail, involving |V| — K terms. The terms p* or 7° in
Drc 1., are the normalized teacher (or student) probabilities for the rest, i.e., 57 = pT /(1 -1, pT),
since the sum of the non-top-K probabilities is 1 — Zszl pi. Note that even if the non-top-K

probabilities (p? ¢ {;5{}?:1) are close to zero, their normalized values (57 ) are not. Therefore,
Dk 1., 18 non-trivially different from zero. The detailed derivation is included in Appendix

Observe that if the probability distribution is skewed towards the modes, i.e., top-K token probabilities

and has a thin tail, Zle pi is very high, and the contribution of D, to the KL divergence is very
low. To mitigate this, we can multiply the second term by a hyperparameter (3, yielding the two-term
loss Dk, + 60[ng KL, In this form, we recover the exact KL Divergence for § = 1, and the loss
requires 8 > 1. Setting the value of 8 becomes quite difficult, and the loss does not converge. We
overcome this issue by sequence-level normalization. For the stochastic form of training, we use a
mini-batch of sequences, and every token in a sequence has a different value of {p?,pI ... pI'}. If
a sequence has N tokens, we can normalize 3 by the mean of ok across all the tokens. Indexing the
tokens with ¢ € [N], the final loss for a token ¢ in the sequence takes the form,

B

Lprv(;PT,P%) = Dk, (t) + ————
% Zivzl af(t)

g (t)Dicr, (t) (3)

This normalization makes the loss stable for nominal values of 3, such as 1 or 2. This also preserves
the overall shape of the teacher probability distribution, but only amplifies the tail’s contribution to the
KL divergence. Finally, we add the causal language modeling (CLM) loss of the student Ly 57 (P)
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for every token ¢ € [N] to the divergence to constitute the final loss as,

N
Lrap =Y Lowm(tPY) + Lory (6 PT,PY) @
t=1
We refer to the original form of KD (Hinton et al.,[2014) as Vanilla KD, which replaces Lpy in
Equation () with the KL divergence. When we train by optimizing Lprv (see Section [3.2), the
student attains a lower held-out KL than when trained by optimizing KL itself (Figure[T), even though
KL is the evaluation metric. We also show the variation in tail probability mass (o) with K across
different teachers in Figure 2]

Our method is motivated by decoupled knowl-
edge distillation (DKD; [Zhao et al.| (2022)),
which was proposed for supervised classifica-
tion with labeled datasets and improves accu-
racy on ImageNet and CIFAR-100. In contrast,
language model pretraining distillation operates
on unlabeled corpora, so the original DKD for-
mulation is not well-suited to this setting. While
one might treat the next token as a target label,

Figure 2: Tail probability mass %) against K for dif- this .Creates a fundamen.tal mlsmatf:h: in classi-
ferent teachers in the first, and the Next Token vs. Mode ~ fication, the target class is, by definition, correct.
mismatch rate in percentage in the second plot, mea- However, since most LMs’ pretraining corpora
sured on the validation set of Regmix (see Section3.2)  are undisclosed and we distill using a generic

corpus, the teacher’s most probable token (i.e.,
arg max,cy p. ) may differ from the ground-truth next token. When we study this discrepancy on
the validation set of our dataset (see Section [3.2)), we observe a mismatch rate ranging from 39% to
46%, depending on the teacher, with larger teachers having lower mismatch rates (Figure . This
mismatch creates conflicting signals between the dataset labels and teacher predictions. We therefore
introduce TAD: a rank-based Top-K vs. tail decoupling using a probability-mass-normalized tail
KL divergence that preserves the teacher’s distributional information. TAD is not a variant of DKD:
DKD’s decoupling is label-anchored (target vs. non-target), while TAD’s is rank-anchored (Top-K
vs tail) and label-free. Two examples with identical values of p° and p” yield the same TAD losses,
but their DKD losses can be different if their labels differ.

Tail Probability

(a) Tail Probability Mass (b) Mismatch Rate

2.1 GRADIENT ANALYSIS

For a token ¢ in a sequence X of length IV, the KL Divergence lossis Lrp = > LZ|1 pl log(p! /p?),
where the probabilities p; are typically produced by the softmax of the logit z; of the final layer, the
gradient has the following form. For the sake of simplicity, we omit the index ¢ from the equations.

oL
D ==l 5)
2

Since the top-K probabilities of the teacher, denoted p? , are much larger than the tail probabilities
(i.e., pr > pl for k € [K], 4 € [V \ K]), the gradients w.r.t the logits of the top-K tokens are much
greater than the those of the tail tokens’ logits. This forces the student model to focus primarily on

the top- K tokens, pushing the sum of the student’s top-K probabilities close to 1, i.e., Zszl pf ~ 1.

For Tail-aware KD, the gradient of the loss w.r.t the logits of the top-K probabilities remains the
same as Equation . However, for the tail logits (z; : i € [V \ K]), it has the form

9Lprv 1= S0 bF

5. =p —p +(BX) 1) (B — S e 6)
i DIy

where 3(X) = B/(% SN al(t)) is defined in Equation (3) and is specific to the sequence X,

and pf are the student probabilities corresponding to the tokens of top-K teacher probabilities. We

typically set 8 > 1, and 3(X) has probability terms in the denominator, making 8(X) > 1. When

Zszl pf ~ 1, the second term of V., Lpry (Equation @)) increases the relative weight of tail

gradients, causing the tail probability of the student to rise, ensuring that Zszl f)f <1
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This mechanism ensures that the tail probability of the student will rise with each gradient step as
long as the top-K probability of the student is more than the teacher’s, i.e., >0, p5 > ST0, pr.
In this case, the gradient satisfies: V., Lpryv > B(X)(py — p!'), which is stronger than the standard
KL gradient. Once the top-K probability mass of the student matches the teacher’s, i.e., ZkK:l pf ~
Zszl pr, the gradient compensation stops. At this point, the V., Lprv =~ 3(X)(p? — pl). The
fixed point of the gradient lies at p{ = p!’, same as Vanilla KD, and therefore converges to the same
solution. By this stage, the student has already acquired a sufficient mass in the tail probabilities and
has begun to generalize beyond the top-K tokens. On the other hand, if Zszl Py < Zszl pL, the
strong gradient of top-K tokens will drive up the top-K probability mass of the student. This way,

Tail-aware KD enables a better learning of the teacher probabilities across the entire vocabulary. The
full derivation is included in the Appendix

3 EXPERIMENTAL DETAILS

We distill models of varying sizes, ranging from Qwenl.5 (1.8B) to Gemma-2 (9 B). We do not
have access to (or require) the pretraining corpus of any of these models. MiniPLM was trained on
the Pile dataset (Gao et al., 2020), an extensive 825 GB collection that is no longer available due
to copyrighted content. We instead use a small 20GB subsampl of the Regmix dataset (Liu et al.,
2024b), containing a total of 5B tokens, that can be processed using our limited compute setting.
Regmix replicates the Pile, but without copyrighted components.

We only perform pretraining distillation in our experiments, and no fine-tuning is done on any labeled
dataset for the student models. Unless mentioned otherwise, we use a temperature of 1 and a context
size of 2048 for all our distillation experiments. The training details, including the exact architecture
of the students, hardware, and hyperparameters, are detailed in Appendix [A]

3.1 EVALUATION

We evaluate the models on eight datasets for few-shot performance, as in|Gu et al.| (2025)), using the
standard LM evaluation harness (Gao et al., 2024)) from Huggingface (Wolf et al., 2019), and then
report the average score across all datasets.

3.2 PRETRAINING DISTILLATION FROM SCRATCH

We follow [Sanh et al.| (2019) in using the teacher’s weights to initialize the student models, by
initializing the student’s attention layers with the teacher’s attention weights, truncated to the student’s
hidden dimension for each head. The MLP layers are randomly initialized.

3.2.1 BENCHMARKING WITH QWEN

We begin our experiments by distilling the Qwen1.5-1.8B model to benchmark our method against
the recently published MiniPLM (Gu et al.} 2025). It is a data-centric distillation method that utilizes
the teacher to identify suitable samples for training the student, but it cannot perform supervised
distillation. Table E] also reports the results of Sequence-KD (Kim & Rush, |[2016) and MiniLLM
(Gu et al., |2024) for comparison, quoted from the MiniPLM article. Sequence-KD fine-tunes the
student on teacher-generated sequences. MiniLLM records the student’s generated output in response
to a prompt and uses a reward maximization algorithm similar to PPO (Schulman et al., 2017).
DistilLM (Ko et al.,2024)) is a similar algorithm to MiniLM, producing results similar to MiniLM
while reducing execution time; therefore, it is not mentioned separately. These experiments are
expensive (costs reported in Table [3)), and reproducing them on billions of tokens was infeasible with
our resources.

Consistent with MiniPLM, we distill the model to two students with 1.2B and 0.5B parameters,
corresponding to approximately 1B and 475M active (non-embedding) parameters, respectively.
We use only 2B tokens to distill the 1.2B model and 2.8B tokens for the 0.5B model — as much
as we could train on an H100 GPU within a week. Note that MiniPLM trains the student on

https://huggingface.co/datasets/sail/regmix-data-sample
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Teacher/Student HS WG OBQA ARC-E ARC-C PIQA SIQA Story Avg Rel
CLM (no KD) 394 518 28.4 46.0 25.7 67.0 39.5 62.2 45.0 -0.7

Vanilla KD 40.7 532 29.8 46.1 25.5 67.3 39.2 63.5 45.6
Seq-KD 385 519 29.2 46.5 25.1 66.3 39.0 61.0 44.7 —0.9
Qnl.5s  MiniLLM 36.1 512 28.5 44.1 25.3 65.8 379 61.4 43.8 -19
1.8B MiniPLM 428 533 31.0 46.8 26.9 68.3 39.8 64.0 46.6 +1.0
ilB TAD (K = 1) 423 5338 30.5 52.0 27.0 67.3 41.2 63.9 472 +1.2
TAD (K = 5) 429 539 31.7 523 27.0 68.1 41.1 63.5 47.6 +2.1
TAD (K = 10) 43.0 552 31.5 53.1 27.1 68.2 40.9 63.6 47.8 +2.2
TAD (K =20) 428 547 30.9 527 27.6 68.1 41.0 63.5 47.7 +2.0
CLM (no KD) 358 51.0 30.2 41.7 24.4 65.4 38.2 61.4 43.6 -0.5

Vanilla KD 37.0 517 29.4 45.1 242 65.8 38.0 61.6 44.1
Seq-KD 349  50.7 28.6 427 23.6 65.0 38.4 58.9 42.8 -1.3
Qnl.s  MiniLLM 33.0 512 27.5 42.1 24.2 62.3 37.3 60.2 423 -1.9
1.8B MiniPLM 39.0 522 30.2 45.8 249 67.0 39 62.2 45.0 +1.0
(%.SB TAD (K = 1) 38.0 51.7 30.5 459 257 66.7 39.4 61.7 45.0 +1.1
TAD (K = 5) 382 520 31.0 45.8 25.8 66.9 39.7 61.7 45.1 +1.3
TAD (K = 10) 384 521 31.1 46.0 25.9 67.3 39.8 62.2 45.4 +1.5
TAD (K =20) 382 503 31.0 452 253 66.1 39.6 62.1 44.7 +0.9

Table 1: Results for Tail-aware distillation for 8 = 2 over Qwen1.5-1.8B (“Qn”), for a 1.2B and 0.5B
student model. The best performance for each column, and any value within 0.4 of it, is highlighted.
CLM stands for pre-training the model with only the CLM loss, without distillation. The average
relative change for the best-case TAD (K = 10) is 50% to 120% better than MiniPLM.

anywhere from 25 to 50B tokens and draws inference on the teacher over 100B tokens, a much larger
computational budget than in our case. We perform the distillation for K € {1, 5, 10, 20}, following
the experimental settings used in prior work on top-K based methods (Lapin et al., 2016; Kool et al.
2019). Results improve until K= 10, beyond which there is not much benefit. For the optimal setting
of K = 10, we conduct a sensitivity analysis over 8 € {0.5,1,2, 5,10}, with results presented in
Table[2] Performance peaks around 3 = 2, with a smooth degradation on either side up to § = 1,
indicating robustness to this hyperparameter. However, for 5 < 1, the performance might degrade
fast as 8(X) > 1 is no longer guaranteed (Equation (6)).

For the 1.2B student model, Tail-aware KD consis-
tently outperforms MiniPLM’s average score by a

0.5 i 2 5 10 . .
. substantial margin across all values of K. For the

Avg 47.0 47.6 47.8 477 47.6

12 R 404 420 422 421 420 smaller 0.5B student, the performance gap narrows,
osp  Ave 450 451 454 451 449 though Tail-aware KD still maintains an edge. A
) Rel 410 412 415 +12  +10 breakdown by task shows that TAD outperforms

MiniPLM across more challenging benchmarks,
Table 2: Parameter sensitivity of 3 for the distilla-  gych as ARC-Challenge and OpenBookQA. In con-
tion of Qwen 1.8B for K = 10 trast, MiniPLM exhibits slight gains on easier tasks,

such as ARC-Easy and Story. Since the easier tasks

inherently yield higher accuracy, the averages tend
to be skewed towards them. To provide a more granular evaluation, we compute the symmetric
relative change in accuracy with respect to Vanilla KD, following Tornqvist et al.|(1985). The relative
change is defined as Rel = 100 - log(Acc/Accyunina), Where Acc is the accuracy of the method under
comparison (e.g., MiniPLM or TAD). We report the average relative change across all tasks as Rel
in Table[I] The difference between MiniPLM and TAD becomes more prominent in the relative
measure.

MiniPLM approximates reverse-KL—style distillation via data selection: the teacher scores the
corpus, selects suitable samples, and the student is then trained on those samples. However, to
sample an ¢ fraction of the corpus, it takes 1/4 times as many forward passes through the teacher as
backpropagations through the student, which is a significant overhead. When we compute the FLOPs
for all the methods to train on 1M tokens, MiniPLM has 33% to 50% higher FLOP count due to the
overhead (Table 3), while TAD has a similar FLOP count to Vanilla KD. The authors of MiniPLM
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Teacher/Student HS WG OBQA ARC-E ARC-C PIQA SIQA Story Avg Rel  F-ECE |
CLM (noKD) 382  5l.1 274 51.2 24.1 66.3 40.8 63.1 453  —43 1.57
Phi2  CLM (Mat.) 402 519 28.6 52.3 24.8 67.6 417 647 465 24 1.50
288 vunilla KD 436 535 33.0 57.3 30.0 68.0 432 643  49.1 1.45
llB MiniPLM 437 525 30.6 57.1 29.9 68.1 43.8 643 488 —0.4 1.62
RKL 423 541 31.6 58.0 28.7 68.2 43.8 649 490 —0.4 1.77
TAD (K =1) 452 553 34.0 58.0 30.7 68.3 44.4 649 501  +09 1.19
TAD (K =5) 455 556 34.6 58.1 31.0 68.8 4.5 647 503  +1.2 1.29
TAD (K = 10) 456  56.0 34.0 58.3 311 63.8 43.8 647 503  +1.1 1.37
TAD (K = 20) 453 564 335 57.6 31.0 69.0 438 647 502 410 1.42
Qnz.5 CLM(m0KD) 362 530 26.4 46.6 25.9 61.6 35.7 589 430 —19 1.49
3B CLM (Mat.) 381 539 27.6 476 26.6 62.8 36.5 604 442  —07 1.41
1 Vanilla KD 380 534 26.8 50.6 27.4 64.0 38.8 604 449 1.42
1B MiniPLM 373 534 29.2 494 253 64.7 38.6 614 449  +0.0 1.45
RKL 389 537 28.2 50.7 27.6 63.8 39.0 614 454  40.6 1.99
TAD (K = 1) 399 543 275 52.1 27.8 64.9 39.7 609 459 410 1.29
TAD (K =5) 399 535 27.9 53.4 27.9 64.9 39.2 61.0 460  +1.1 1.30
TAD (K = 10)  40.6  54.5 29.6 52.0 28.4 64.8 393 615 463  +1.6 1.32
TAD (K = 20) 405 54.5 292 51.8 29.1 64.3 39.6 612 462  +16 137
CLM (noKD) 374 492 272 49.0 25.1 65.4 38.9 60.7 441 —17 143
Gem2 CLM (Mat.) 394 500 28.4 50.1 25.8 66.7 39.8 622 453  —04 1.41
9B Vanilla KD 403 513 27.8 53.0 26.1 66.9 39.2 619 458 1.27
ZiB MiniPLM 375 519 27.2 49.5 26.0 66.6 39.0 619 460 —0.8 1.56
RKL 394 520 28.1 53.4 26.3 66.8 40.1 625 461  +0.2 1.80
TAD (K =1) 410 521 28.4 54.0 26.4 67.6 393 619 463 405 1.04
TAD (K =5) 413 527 28.5 542 26.5 67.3 39.7 622 465 406 1.11
TAD (K = 10) 412 537 30.0 54.5 26.8 67.1 40.1 628 470  +13 1.17
TAD (K = 20) 409 528 30.0 54.5 26.3 66.9 39.7 624 467  +1.0 1.20

Table 4: Pretraining distillation of various teachers to students with ~1B active parameters on 2
billion tokens from Regmix. CLM (no KD) refers to pretraining with only CLM loss, without
distillation with the same number of tokens (2B), where CLM (Mat.) refers to computation-matched
pretraining, matched to the same FLOPs as training of TAD. The last column “F-ECE” shows the
calibration error of the models, measured using Full-ECE, with the lower being better.

treat the teacher-scoring overhead as offline pre-processing, as they use the same teacher for all their
students. However, a practitioner might want to try different teachers to optimize a small LM rather
than relying on a single teacher, or even use a multi-teacher approach for optimal performance, as in
Wu et al.|(2021). Unlike any divergence-based method, MiniPLM cannot be applied to such practical
scenarios without significant modification. Finally, MiniPLM is not necessarily competitive with our
approach, and its selected samples could, in principle, be used with our tail-aware divergence as the
distillation loss. However, we exclude such combinations from the scope of this work.

3.2.2 DISTILLING LARGER MODELS

We further distill a series of larger models in

Table[d] namely Phi-2 (Javaheripi et al.| 2023)), , . .

Qwen2.5-3B (Yang et al.;,|2024), and Gemma2- #lpg:) Va;'z”a MI?ZLM T()A;) M';;LOL i S?;ED
9B (Team et al.,[2024), with parameter size rang- 03B 64 97 65 218 432
ing from 2.8B to 9B. We choose teacher check- S

points Only with pretraining to ablate the effect Table 3: PetaFLOPs for the distillation of Qwen-l.S-

of instruction tuning on distillation. The stu- 1-8B (Section[3.2.1) on a subset of IM tokens from the
dent’s architectures are selected to have the same ~Regmix dataset. TAD has a similar PFLOP to Vanilla
dimensions as the teacher’s, but with fewer lay- KD, while MiniPLM is higher than both. The methods

. . . . i lving s ti SeqKD or MiniLLM
ers and smaller intermediate sizes. For medium- L o v 1€ S€quence generation (Seq or Vit )

sized models like Phi-2 or Qwen2.5-3B, the stu- are too expensive to scale to billions of tokens.

dent has half the teacher layers, whereas for

Gemma2-9B, the student has a third of the teacher’s layers. The student embeddings are initialized
from the teacher embeddings and remain frozen thereafter, resulting in approximately 1B active
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Phi2 2.8 — 1B Qn2.53B — 1B Gemma 9B — 2B
No. of Tokens 10B | 100B 1T 10B | 100B 1T 10B | 100B 1T

Vanilla KD (KL) 2.80 2.77 2.76 3.18 3.09 3.05 3.15 3.00 293

Vanilla KD (RKL) 291 2.86 2.84 3.26 3.15 3.11 3.23 3.08 3.01
TAD (K = 10) 2.78 2.73 2.71 3.04 2.92 2.87 3.08 2.94 2.88

Table 5: Validation loss predictions for three distillation methods— Vanilla KD with forward and reverse KL
divergence and Tail-aware Distillation (TAD, K = 10), fit with the scaling law of (Hoffmann et al.||2022). TAD
is projected to achieve the lowest loss even when scaled to 1T training tokens.

parameters per student. For example, Gemma2-9B has around 900M embedding parameters due to its
large vocabulary size (256K), so the 2B student has only 1.1B active parameters. We also add cosine
loss between the student and the teacher hidden states to Equation (E[) similar to DistilBERT (Sanh
et al.| 2019). Finally, we add MiniPLM experiments on the same training dataset in TableEl Due to
computational constraints, we do not train a reference model from scratch; instead, we use OPT-125M
(Zhang et al.l 2022) as a reference model for all the teachers. We used a difference-sampling ratio of
0 = 0.5, the same as in the MiniPLM experiments.

When we measure the distillation cost in PetaFLOPs on a small training subset containing 1M tokens
as in the last section, MiniPLM takes 50% more FLOPs as Vanilla KD for the distillation of Phi2
(18.4 vs. 12.4) or Qwen2.5-3B (22.2 vs. 15.2), and 67% more for Gemma2 (52.0 vs. 31.4). At
the same time, TAD has a similar FLOP count to Vanilla KD. For the entire distillation, both the
Vanilla KD and TAD exceed 101® FLOPs per billion tokens for teachers with 3B or more parameters.
To put this into perspective, the pretraining distillation of the older models, such as MBART-Large
(610M params, Tang et al.|(2020)), consumes at most 1017 FLOPs overall (Dasgupta & Cohn, [2025).
We do not present any baseline other than Vanilla KD and MiniPLM, as we already demonstrated the
high computational cost of MiniLLM and Seq-KD in the previous section (Table [3).

The students receive no fine-tuning after distillation, and we evaluate them on the same few-shot tasks
as before. MiniPLM did not outperform Vanilla KD, and on Phi-2 it was worse (Table d). Adding the
cosine loss on hidden states improved both Vanilla KD and TAD. As formulated, MiniPLM (a data-
selection method) does not incorporate such internal-state losses, which reduces its competitiveness
relative to Section [3.2.1] To ensure parity, we also report reverse KL (RKL) with the same cosine
loss on the hidden states (Table [d). RKL is slightly better than vanilla KD but remains inferior to
TAD. For TAD, the performance improved up to K = 5 or 10, beyond which we did not see any
significant gain (Table[d). We also evaluate the loss using Equation (T)) on the Regmix validation set
and extrapolate it to 1T training tokens with the scaling law in|Hoffmann et al.| (2022). The projected
losses in Table[5]show that TAD surpasses the other methods when distilled with large token budgets.

3.2.3 CALIBRATION ERROR

We evaluate model calibration using Expected Calibration Error (ECE) (Table[d). Specifically, we
adopt the Full-ECE metric from (Liu et al., [2024a)), which is tailored to language models with large
vocabularies and measures calibration over the entire predictive distribution, rather than the standard
ECE from (Guo et al.}[2017)), which focuses only on the argmax prediction and is more appropriate for
classification settings. We found that TAD has a slightly lower Full-ECE than Vanilla KD. However,
the ECE increases with K for all the cases. The reverse KL has the worst ECE of all.

3.2.4 SELECTION OF K

Across experiments with Qwen1.5-1.8B (Section [3.2.1)) and with the larger teacher models, we
observe that performance peaks at /{ = 5 or 10 and then declines. In natural language, the next-token

probabilities are approximately Zipfian, and the teacher’s tail mass o (t) = 1 — Zszl pL(t) decay
sharply beyond K 2> 5-10 (see Figure . Even after normalizing the tail term in Lpry by the

sequence mean o_g{ = ﬁ Zi\; 1 af((t) of the tail probability mass, many low-entropy tokens still

satisfy o’k (t) — 0 as K grows. Instead, the contribution of high-entropy (noisier) tokens increases
with K. Consequently, we observe no material gains beyond K ~ 5-10.
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Model #Tkn HS WG OBQA ARC-E ARC-C PIQA SIQA Story Avg
TinyLlama(TL)—1.1B 1T 536  56.8 322 61.2 30.1 70.8 412 68.1 518
CLM (no KD) 2B 538 571 326 61.8 30.4 71.1 41.4 68.5  52.1
phiz  VanillaKD 2B 541 589 335 63.2 31.6 71.2 442 687 532
4B TAD (K = 1) 55.1  60.0 34.8 64.2 33.1 71.3 44.8 69.1 54.0
TiL TAD (K = 5) B 555 602 352 63.6 326 71.4 44.9 69.4 541
TAD (K = 10) 546  60.0 34.6 63.2 324 71.8 44.6 689 538
TAD (K = 20) 548 599 33.8 62.5 32.0 72.1 442 687 535
TinyLlama(TL)—1.1B 2T 552 589 33.4 61.3 30.7 71.4 42.1 68.9 527

Table 6: Continued pretraining for the distillation of Phi-3 models to TinyLlama-1B. We use the TinyLlama-1B
checkpoint, pretrained on 1T tokens, as the student and distill it on an additional 2B tokens from the Regmix
corpus. The distilled students outperform the 2T checkpoint of TinyLlama, by training on 500X less tokens.

3.3 CONTINUED PRETRAINING

Although we demonstrated that our distillation algorithm works across various sizes of teacher models,
it is not possible to create student models from scratch with only 2B tokens to achieve state-of-the-art
performance. In this section, we start from an already pretrained student model, TinyLlama-1.1B
(Zhang et al.l [2024)), specifically its 1T checkpoint, and focus on distilling it from Phi-3 (Abdin et al.}
2024), a much stronger model. In the first set of experiments, we distill the students on the same 2B
tokens from the Regmix dataset. Here, we do not use any teacher model internals, nor do we freeze
the student embeddings. As in the previous sections, no fine-tuning is performed on the students after
distillation. The distilled students outperform the 2T checkpoint of TinyLlama (Table [6), trained with
another 1T tokens (500 ) from the base model.

3.3.1 MATHEMATICAL REASONING

In this section, we distill TinyLlama-1.1B using Phi3-Mini as the teacher on the OpenWebMath
(OWM) corpus (Paster et al.,|2023)), which primarily consists of mathematical articles. The Distillation
is performed on 2.5 billion tokens from the token, and the 2.5T TinyLlama-1.1B checkpoint is used
as the base model. Evaluation is performed on eight tasks using the standard setting of Mathematical
evaluation harnessEI, namely GSMS8K, MATH, SVAMP, ASDiv, MAWPS, Tabmwp (TAB), MathQA
(MQA), and SAT (Table[7). We employ a few-shot chain-of-thought approach (Wei et al, 2022) for
evaluation and then measure the average score across the tasks.

Tiny-Llama performs poorly in mathematical reasoning tasks. After distillation, we observe ap-
proximately 2 times better performance on tasks such as MAWPS, MATH, and ASDiv, and 3.5
times better on GSMS8K. Furthermore, the distilled students with TAD outperform Llama3.2-1B,
which is pretrained with a far higher number of tokens (9T), whereas Vanilla KD falls short. These

*https://github.com/ZubinGou/math-evaluation—harness

Model Data (#Tkns) GSMSK MATH SVAMP ASDiv MAWPS TAB MQA SAT Avg
TinyLlama(TL)—1.1B Web (2.5T) 2.0 2.6 9.5 16.3 20.1 12.7 12.8 15.6 11.4
CLM (no KD) + OWM(2.5B) 39 3.8 17.9 29.7 39.5 12.2 10.8 15.6 16.7
Phi3 Vaxllillla KD +OWM(2.5B) 6.1 42 21.1 335 41.5 15.5 11.2 16.7 18.7
4B MiniPLM 33 34 134 273 34.0 10.8 10.5 12.5 14.4
TiL TAD (K = 1) 6.1 6.2 22.1 33.1 41.5 14.0 11.3 21.9 19.5
TAD (K = 5) + OWM(2.5B) 7.1 4.8 19.2 359 46.7 15.9 10.0 22.6 20.3
TAD (K = 10) 6.4 4.6 19.7 33.0 42.7 12.9 9.3 37.5 20.7
TAD (K = 20) 6.5 3.8 18.2 31.7 40.9 13.7 9.0 31.2 19.4
Gemma3—1B—PT Web (2T) 2.1 2.2 12.8 17.1 224 11.1 14.5 15.6 12.2
Llama3.2—1.2B—PT Web (9T) 6.5 42 21.7 35.7 44.2 21.1 13.2 6.2 19.1

Table 7: Adaptation to mathematical reasoning via pretraining distillation of Phi-3 into TinyLlama-1B (“TL”)
on the OpenWebMath (OWM) corpus. The distilled students with TAD outperform pretrained 1B Gemma3 and
Llama3.2 models in terms of average score.
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Model Data (#tokens) GSMSK MATH SVAMP  ASDiv MAWPS TAB MOQA SAT  Avg
TinyLlama(TL)—1.1B  Web (2.5T) 2.0 2.6 95 163 20.1 127 128 156 114
CLM + SFT +OWM(2.5B) 19.6 40 494 58.8 743 208 180 281 343
+ORCAMEL
phiz | VanillaKD +OWM(2.5B) 30.8 6.8 64.6 62.5 80.7 20.1 167 215 387
+ORCAMEL
4B
L TAD(K = 1) 36.8 6.8 67.8 67.9 81.7 254 163 281 414
TL tAD (K =5  +OWM(23B) 332 7.4 654 68.7 85.6 276 179 344 425
TAD (K = 10)  tORCAMEL 30.1 9.0 65.7 68.4 85.4 24.1 182 298 413
TAD (K = 20) 282 72 66.2 68.2 84.2 246 171 250 401
Rho—1—Math(1.1B) +OWM (30B) T 36.3 134 52.6 66.5 83.6 295 321 185 415
Llama2—7B Web (2T) 142 3.6 39.1 516 63.6 309 125 328 314
CLM + SFT +OWM(2.5B) 22,0 42 477 56.3 723 377 230 281 364
+ORCAMEL
priz | VanillaKD +OWM(2.5B) 50.5 8.1 753 74.4 90.5 297 372 344 500
1 4]; +ORCAMEL
!\ TAD(K =1) 56.0 10.2 772 771 91.8 398 392 406 540
L2 map(x =5) +OWM (2.5B) 51.6 9.2 76.7 75.4 91.2 387 40.5 375 52.6
TAD (K = 10)  tORCAMEL 514 8.4 76.6 755 90.6 387 392 444 531
TAD (K = 20) 52.8 8.0 7.6 76.9 924 392 390 469 541
Liemma—7B +ProofPile(0.2T) 39.7 154 56.9 67.7 833 470 409 440 494
WizardMath—7B +RL with Evol Instruct 46.6 7.0 56.8 65.2 8.1 350 203 231 419
Orca2—7B +SFT (ORCA) + KTO 40.0 6.2 70.2 67.0 87.5 304 316 281 451

T Trained with special Rho loss to eliminate the noisy tokens.

Table 8: Supervised distillation for mathematical reasoning, showing distillation of Phi3-4B into
TinyLlama-1.1B (“TL”) and Phi3-14B into Llama2-7B on ORCAMEL, alongside GPT4-generated
solutions. TAD for TinyLlama is 2.5x computationally cheaper than Rho-1 and 9x cheaper for
Llama2-7B than Llemma-7B (see Appendix[A.T), which is the best model created from Llama2-7B.

experiments demonstrate that a seemingly weak student model (e.g., TinyLlama) can be made com-
petitive in a specific domain through distillation from an expert teacher. For MiniPLM, we choose
Galactica-125m (Taylor et al.,|2022) as the reference model, since it is pretrained on scientific datasets
including mathematics, and uses a difference sampling ratio of § = 0.5. MiniPLM completely fails
for domain-specific distillation, with an average score worse than pretraining without distillation
(CLM in Table[7).

3.4 SUPERVISED DISTILLATION

For our final experiment, we perform supervised distillation for mathematical reasoning using
instructions generated from GPT-4 (Table [§). We combine a 200K dataset from Microsoft-ORCA
(Mitra et al., 2024} with a 50K dataset from Camel-Al (L1 et al., 2023)), both of which contain answers
generated by GPT-4 in response to mathematical questions, and refer to the combined dataset as
ORCAMEL. Unlike many mathematical instruction datasets, e.g.,|Yu et al.| (2023)), which use the
training responses from GSM8K (Cobbe et al.,|2021) or MATH (Lewkowycz et al.|[2022), our training
dataset contains only their input prompts, making the results more generalizable. Furthermore, we do
not use any modifications of the original question as an intermediate step, such as backward questions
in|Yu et al.| (2023) or Evol-Instructions in|Luo et al.|(2023)), which might yield additional gains.

We perform our distillation on two pairs of teacher and student: (1) Phi3-4B to TinyLlama, and (2)
Phi3-14B to Llama2-7B (Touvron et al.,[2023). We do not fine-tune the teachers on the dataset and
assume them to be sufficiently capable in mathematical reasoning to produce supervision signals. For
every pair of teacher and student, our distillation is performed in two stages,

1. Pretraining distillation on 2.5B tokens from the OWM corpus (5 = 2.0)
2. Three epochs of distillation on the ORCAMEL dataset for the same teacher—student pair.
We also add a baseline by fine-tuning TinyLlama on the ORCAMEL dataset, after pretraining it

on the same 2.5B OWM tokens without any distillation. The performance of the distilled models
is comparable to that of Rho-1 (Lin et al.| 2024)). Rho-1 is created by continuing TinyLlama’s
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pretraining on 30B tokens from the OWM corpus, using reducible holdout (Rho) loss selection
(Mindermann et al.,|2022)) to eliminate noisy tokens, achieving SOTA results on mathematical tasks
with models of around 1B parameters. The distilled Llama2-7B outperforms SOTA models for Maths
inference built using Llama-2 as the base model, such as Llemma-7B (Azerbayeyv et al.|[2023)), Orca-2
(Mitra et al., 2024), or Wizard-Math (Luo et al.} 2023)), and we generated their results using the
same Mathematical evaluation harness. Further, our method has a much lower compute budget than
the next-best model, Llama-7 B, as explained in Appendix [A.T] Although unsupervised corpora
for pretraining are unlimited, supervised datasets are always limited. It is better to use them with a
teacher’s supervision for optimal performance, rather than merely fine-tuning the student on them.

4 RELATED WORK

Most of the work in KD for LLMs focuses on task-specific knowledge transfer via instruction
prompts, following Sequence-KD (Kim & Rush| 2016), where the teacher generates a sequence-
specific prompt, and the student is fine-tuned on that sequence. Recently, there has been a surge
in reinforcement learning-based policy optimization for distillation, like MiniLLM and |Agarwal
et al.| (2024)). However, these methods involve generating sequences from the student during training,
which can be expensive for large datasets. Recently, DistilLM (Ko et al.|[2024) addressed this issue
by implementing an efficient generation scheduler. Overall, these on-policy methods are limited to
small datasets; for example, both DistilLM and MiniLLM use the DollyEval dataset, which contains
15,000 data points. They cannot be applied to large-scale datasets larger than 200K, which is standard
for distillation for Summarization or Translation (Shleifer & Rush|(2020), | Agarwal et al.| (2024)).

When it comes to large-scale pretraining distillation to prepare the student from scratch, there is work
on encoder-only models, such as DistilBERT (Sanh et al., [2019) or MiniLM (Wang et al., [2020).
Work like Shleifer & Rush|(2020) extends it to encoder—decoder models for generative tasks such
as summarization or machine translation. However, most pretraining distillation in causal models,
such as distilling Gemma2 models from Gemini (Team et al.,|2024) or work like Muralidharan et al.
(2024), still follows logit matching with minimal modification. MiniPLM is the only work we found
that attempts distillation without logit matching.

Works like MiniPLM, MiniLLM, or On-policy KD of |Agarwal et al.| (2024) uses the reverse KL
divergence instead of the forward one. However, the mode-seeking behavior of reverse KLLD will
suppress the contribution of words other than the one with the maximum probability. For task-specific
distillation, where we match the conditional teacher probability (P[y|x]) on the output sequence y
given a prompt input x, mode-seeking might be beneficial. However, for pretraining distillation
on the entire input z, we match P[z] for every token. The teacher’s probability distribution will
contain multiple dominant modes, and focusing solely on the maximum will limit the transfer of
dark knowledge. Furthermore, a strong correlation exists between KD and reward maximization for
aligning language models, as established in the derivation of MiniPLM. |Wang et al.| (2023)) shows
that preference alignment using the reverse KL divergence lowers the diversity of a model’s generated
sequence, and the same will be true for KD as well.

5 CONCLUSION

Here, we present a novel distillation algorithm for language models that extends the commonly used
KL divergence, and we demonstrate its competitiveness through extensive experiments. Works such
as Sequence-KD and MiniLLM are not well-suited to pretraining on large-scale datasets. MiniPLM
performs poorly for domain-specific distillation and cannot be directly applied to supervised tasks.
In contrast, our method applies to both pretraining and supervised distillation, and it is significantly
cheaper in the latter because it requires neither teacher decoding (as in Seq-KD) nor student generation
(as in MiniLLM or DistilLM (Ko et al., 2024)). Consequently, TAD has a computational burden
comparable to Vanilla KD, enabling large-scale pretraining distillation within a limited GPU budget.
Finally, we show that it can be used to train competitive models for mathematical reasoning using
publicly available datasets. Taken together with its low computational requirements, TAD provides a
compelling and versatile distillation method for causal LMs.

10
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6 ETHICS STATEMENT

Critical ethical considerations in training language models include licensing terms of the pre-training
data; evaluation and mitigation of model bias with respect to a variety of protected attributes of both
users and target referents; and Al safety guardrails over the final model to reduce toxic/harmful
outputs. As this paper centers on a novel knowledge distillation method and all experiments use
widely used language models and open-source datasets, there are no new dimensions to these concerns.
We do, however, concede that KD can amplify existing model biases to some degree (Ahn et al.,
2022), that it is possible to mitigate teacher model biases as part of the KD process (Blakeney et al.,
2021), and that there is value in quantifying this effect for our method. We consider this to be
orthogonal to this work, however.

7 REPRODUCIBILITY

We have attached a few code samples as supplementary material. The teacher models and the datasets
are all open-source and available on huggingface (Wolf et al., 2019). The data preprocessing step
involves standard random sampling without replacement from datasets like Regmix (Section or
Open-Web-Math (Section [3.3.7).
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Teacher #P(M) |V‘ dg Ls nyg dyg dppn

Qwenl.5-1.8B 1.2B 151,936 1,536 24 16 96 4,224
Qwenl.5-1.8B 0.5B 151,936 1,024 24 16 64 2816

Phi2-2.8B 1.IB 52,000 2,560 16 32 80 5,120
Qwen2.5-3B 1.2B 151,936 2,048 18 16 128 7,680
Gemma?2-9B 2B 256,000 3,584 14 16 224 4,096

Table 9: The architectures of different students used in distillation for pretraining from scratch. |V| is
the vocabulary size, dg for the hidden size of the student, Lg for the number of layers, and ng for
the number of heads, dy for the dimension of each head, and drrn for the intermediate size.

A EXPERIMENTAL DETAIL

The architectures of different students for the pretraining from scratch are listed in Table [0} All
students have approximately 1B active parameters, except for the 0.5B student of Qwen, which has
approximately 475M active parameters. The architectures of the students of Qwenl.5 — 1.8B are
kept the same as in the MiniPLM paper (Gu et al.| 2025)).

The experiments are divided into two major parts: pretraining distillation from scratch, and continued
pretraining. For pretraining distillation from scratch, we distilled the Qwen1.5, Phi2, and Qwen2.5
models on a single H100 GPU for a week, whereas we used 2 H100 GPUs for distilling the Gemma?2-
9B model. We used flash attention (Dao et al., 2022) whenever possible to speed up the computation,
except for Gemma2. We used Adam optimizer (Kingma & Ba, 2014)) with a learning rate of n = le—4
and a weight decay of A\; = 0.1 for all the experiments. We used a batch size of 128 for all the
experiments.

For the continued pretraining distillation of Tiny-Llama, we used the Adam optimizer (Kingma & Bal
2014) with a learning rate of 7 = 3e — 5 and a weight decay of \; = 0.1 for all experiments. All
experiments used a batch size of 128 and were conducted on a single NVIDIA H100 GPU. Supervised
distillation is performed with a batch size of 32, » = 1le — 5, A; = 0.1, and a context size of 2048.

A.1 COST OF SUPERVISED DISTILLATION

We conduct a comparative cost analysis of GPU hours required to produce state-of-the-art mathemati-
cal reasoning, starting with foundational models such as TinyLlama-1.1B and Llama2-7B. Models
like Llemma or Rho-1 are trained using industrial resources. Rho-1 is trained for approximately
10 hours on a 32-GPU H100 stack, requiring a total of 320 GPU hours. The best model built on
Llama-7B is Llemma, which was trained on A100 GPUs for 23,000 GPU hours. Even though it
uses different hardware, we can draw an equivalence using the GPU hours the 7B model in|Lin et al.
(2024) takes to train on H100. It required 18 hours to train on 15 billion tokens using 32 H100 GPUs.
Using their configuration setting, Llemma-7B will take 7,680 GPU hours to train on a single H100.
This provides a reasonable estimate, since A100s are approximately a third slower than H100 GPUs
for training (23K ~ 3 x 7, 680). Our two-stage method requires approximately 130 hours on a single
H100 GPU for TinyLlama and 420 hours on two H100 GPUs (totaling 840 hours) for Llama-2, which
is substantially cheaper than the existing methods.

B SPLITTING OF THE KL DIVERGENCE INTO TOP-K AND TAIL

Here, we show the derivation of Equation . Like we defined before, p} = max, [{p{,pd ...pI}\
{p? f;ll] is the kth maximum of all the token probabilities for a vocabulary size v, and pf is the
corresponding student probability of the same word. The sum of top-K probability of the teacher is
Zle pL. The normalized teacher (or student) probability, by the factor 1 — Zszl pL, is defined as,

_ pT ~ pS

PT=T"Ck oy PsTE TSk s 0
L= p{ L= pf
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It can be easily seen that for the non-top-K probabilities, p* sums to 1, i.e. ZpT ¢TIE =1
Now, we split the KL divergence between the top-K probability and the rest, as follows,

D1 (PT|PF)
T T
p p
= Z p? log S + Z p? log P
pTe{pf 1, pTE{PE L,

v, P’ .7 p" p”
2 T\ 2 ey
pTe(PTH, k=1 pTETH, k=1Pk
r K (1= S iF)
p « 5 k=1 Pk
R L R
PTEGTH, k=1 pTepT e, p (1 - Zk=1pk)
T K K T
. N 1—-> -
SRR (B A W
PTERTH, k=1 oy, k=1 Pk
S i
+11- Zpk Z P log »
k=1

P
pTE{pf i,

1
T K 1 — K =7
SN R (BT
e, ! = ~ k=1 Pl \ e

K
+ (1 ~ Zﬁf) Dict (P 15%) yrg giry e

k=1

K
=DkL (pT‘|pS)pTe{1§g}kK:1 + <1 - Zﬁ{) DkrL (ﬁTHﬁS)pTg{ﬁZ‘ K

k=1
K
=Dkr, + (1 - ZP%) Dkr,
k=1

®)

C DERIVATION OF THE GRADIENT

Here we present an elaborated derivation of the gradients. The derivations follow the material in the

appendix of |Anshumann et al.| (2025). If p; = exp(z;)/ ZLZII exp(z;) is the softmax probability for
a logit z; for a vocabulary V), then the gradient of p;, is (from (Iwana et al., 2019)):

Op;
3 zj = p; (Lji=j) — pi) ©

Now, given a vocabulary V, the KL Divergence loss between the teacher probabilities of the teacher
(pT) and the student (p?) is:

4
Lxrp =Y} log(p] /p}) (10)

=1

16



Under review as a conference paper at ICLR 2026

It can be derived that,

vl g VI
OLKLD p; Op 7 S
0z _Z S 6zt _Z:pj (Li—g) — P7)
VI VI
=p7 - O_p]) =Y ) iy
j=1 j=1
=p) —p; (11)

Now, we can show that Dk, has K + 1 terms when we consider top-K probabilities, with the first
K being (i € [K])

LlK—Zpklog
k=1

where pf are the student probabilities corresponding to the top-K tokens, i.e. tokens for which the
teacher probabilities are maximum. The derivative of L. w.r.t a logit z; is

8L1 K u 7
=p; - j{j ) = Y h iy (12)
k=1

Now for i € [V \ K], the indicator function ]l[i: k] is never one. Therefore, the gradient of L1.x has
the following forms for two different cases, as:

Lk _ {pf (K BT —pf i€ [K]

On W (Simdl) i€ V\K]
Please note that the top K probabilities do not sum to one. The last term Ly 1 can be expressed as:

K 1_2Kp K
LKH:(l—zﬁz)mgw: ( z )-log<1—2ﬁi>+c
i=1 1-3 I k=1

=144

where C is a constant. The derivative of the last term, using the derivative of pf from Equation @) is:

. K
5'LK+171—Z;<; 117% Za 71_21@:1175 Z ' p9)
. - K x G li= P;
0z 1- Zk:l Pk 0z 1= P

Again, for i € [V \ K], the indicator function 1[;—y; is never one. Therefore,

K :
oLiw _ [rP- (1-S0T) i € [K] (13)
T 0z -5 PR K 7 .
o\t () Sl iemK
Combining the gradients of L1.x and Lg 1, since D, = L1.x + Li 11
S T .
i — Pi €K
0Dk, _ p; pij ok i€ [K] "
0\ (BEELEL) e\ K
=2 k=1Pk

Therefore, the gradients of the logits corresponding to the tokens of top-K teacher probabilities
remain the same, while the gradients of the logits corresponding to the rest of the tokens change. The
second term Dy 1,, solely depends on the logits of the rest of the tokens.

Dkr, = Y p?doggf (15)
i€V\K
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exp z;

= P2 Also, p7 comes from a similar
KEV\K

where we can generate 57 directly from z; as p;7 =

softmax, but is constant. Therefore,

8DKL2 . 0 1€ [K]
Dz By —pf i€ [V\K]

The gradients of the logits of the top-K tokens are zero for Dk ,,; only their gradient for Dgr,,
is non-zero (Equation (14))). And as a result, their gradient is the same as that for ordinary KL
Divergence (Equation (11)). Therefore, TAD does not change the gradient of the logits of the top-K’
tokens.

As for the logits of the non-top-K tokens, their gradient for D, can be written as,

9Dk, Py pi

?
= — (16)
. K K
9z DI Ty
since p7 and p7 can also be defined as Equation .
Therefore,
K K
.7\ DKL 1= 10F
N o a”
=1 g 1= PR

Combining the derivative of Dk, from (Equation for the tail logits, i.e., for i € [V \ K], it can
easily be checked that

0Dkr, X .7\ 0DkrL,
82’1‘ + (1 B Zpk 8zl

k=1

K * K *
_ <pf'2k_1p£_pf'2k_1pg> i (Pz _pz Zk 1Pk> T
- K *Q p’i
ISRy 1- Zk:l pk

=7 —p

Since Lx.p = Dk, + (1 — Zle pg) Dk 1, their gradients are the same. Now, for TAD, the
divergence is: Lprv = DPkr, + 8(X) (1 - Eszlp{) Dk, where B(X) = 8/(+ Zil(l

Zle pL(t))), where ¢ is the index of a token in a sequence X containing a total of NV tokens. This
also means,

K K
Lprv = Dkr, + (1 - ZP{) Dk, + (B(X) —1) (1 - Zﬁg> Dkr,
= e
1 ; 1
=Lkxrp + (B(X) —1) (1 - Zﬁg> DkrL,
=1

Using Equation (T7)), the gradient of £p v has the following form for the logits z; for the tail tokens

(i€ [V\K]
K
OLprv _ OLkLD +(B(X) = 1) <1 B Zp£> 0Dkr,

=pf—p?+(ﬂ(X>—1)<pf gz}s—pz)

For the logits of the top-K tokens, 8%“2 = 0, and therefore, their gradients are the same as those of

Vanilla KD. This completes the derivation of the gradient of Lpjy .
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