
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QUAMBA: A POST-TRAINING QUANTIZATION RECIPE
FOR SELECTIVE STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

State Space Models (SSMs) have emerged as an appealing alternative to Transform-
ers for large language models, achieving state-of-the-art accuracy with constant
memory complexity which allows for holding longer context lengths than attention-
based networks. The superior computational efficiency of SSMs in long sequence
modeling positions them favorably over Transformers in many scenarios. However,
improving the efficiency of SSMs on request-intensive cloud-serving and resource-
limited edge applications is still a formidable task. SSM quantization is a possible
solution to this problem, making SSMs more suitable for wide deployment, while
still maintaining their accuracy. Quantization is a common technique to reduce
the model size and to utilize the low bit-width acceleration features on modern
computing units, yet existing quantization techniques are poorly suited for SSMs.
Most notably, SSMs have highly sensitive feature maps within the selective scan
mechanism (i.e., linear recurrence) and massive outliers in the output activations
which are not present in the output of token-mixing in the self-attention modules.
To address this issue, we propose a static 8-bit per-tensor SSM quantization method
which suppresses the maximum values of the input activations to the selective
SSM for finer quantization precision and quantizes the output activations in an
outlier-free space with Hadamard transform. Our 8-bit weight-activation quantized
Mamba 2.8B SSM benefits from hardware acceleration and achieves a 1.72 ×
lower generation latency on an Nvidia Orin Nano 8G, with only a 0.9% drop in
average accuracy on zero-shot tasks. When quantizing Jamba, a 52B parameter
SSM-style language model, we observe only a 1% drop in accuracy, demonstrating
that our SSM quantization method is both effective and scalable for large language
models, which require appropriate compression techniques for deployment. The ex-
periments demonstrate the effectiveness and practical applicability of our approach
for deploying SSM-based models of all sizes on both cloud and edge platforms.

1 INTRODUCTION

State Space Models (SSMs) (Gu & Dao, 2023; Lieber et al., 2024b) have attracted notable attention
due to their efficiency in long sequence modeling and comparable performance to Transformers
(Zhang et al., 2022; Brown et al., 2020). Although Transformers have shown a strong ability to
capture the causal relationships in long sequences, the self-attention module within Transformers
incurs a quadratic computation complexity with respect to the context length in the prefilling stage
as well as a linear memory complexity (e.g., the K-V cache) in the generation stage. In contrast,
SSMs, an attractive substitute to Transformers, perform sequence modeling with a recurrent neural
network-like (RNN-like) linear recurrence module (i.e., selective scan) which has linear computation
complexity in the prefilling stage and constant memory complexity in the generation stage.

However, despite their appealing computational attributes, deploying SSMs across a wide variety of
hardware platforms is challenging due to their memory and latency constraints. SSM quantization is
a possible solution to this problem as it reduces model size and latency with low bit-width data types
while preserving accuracy. For example, 8-bit integer (INT8) quantization halves memory usage
compared to FP16 and poised to benefit from hardware acceleration. Quantizing SSMs is non-trivial
as current post-training quantization (PTQ) techniques for Transformers (Xiao et al., 2023; Dettmers
et al.) fail to handle the sensitive activations of the selective scan (i.e., linear recurrence) resulting in
poor performance (Lieber et al., 2024b; Zhao et al., 2024). Our study shows SSMs exhibit distinct

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: We demonstrate that (a) our method achieves Pareto-optimality on the Nano 8G with 1K
input tokens. Figure (b) shows latency speedups for long input sequences on the A5000, and Figure
(c) shows the memory usage across devices comparing to Pythia 2.8B (Biderman et al., 2023) and
4-bit Llama-2-7B (Touvron et al., 2023).

outlier patterns compared to Transformers (Ashkboos et al., 2024b; Dettmers et al.; Xiao et al., 2023;
Zhao et al., 2023). We show that outliers appear in the SSMs output (i.e. the y tensor). In contrast,
the input and output of self-attention layers are relatively smooth and do not exhibit outlier issues.
More comparisons can be found in Section J. This highlights that different quantization methods
are needed for SSM-based models. Due to the absence of an appropriate quantization technique for
the selective scan mechanism, SSMs exhibit sub-optimal memory usage and latency on deployed
hardware.

We first analyze the input and output activations of the selective scan module to reveal the quantization
sensitivity and outliers in SSM activations (ref. Figure 2 and Figure 3). Specifically, we show that
quantizing SSMs is particularly challenging since SSM input and output activations present a causal
relationship, making the input tensor (i.e., x in Eq. 1) sensitive to quantization errors. Additionally,
representing the large outliers using 8-bit precision in the output activations (i.e., y in Eq. 1), which
are not present in the token-mixing output of self-attention modules, is difficult. To address this, we
propose Quamba, an 8-bit static per-tensor quantization method for selective SSMs that can leverage
the low bit-width acceleration features on modern computing units with minimal overhead. We
suppress maximum values in input activations to SSMs, which is the most sensitive to the quantization
error, for finer quantization precision. For the extreme outliers in output activations from SSMs,
we use the Hadamard transform to smooth out the activations. Our quantized 8-bit 2.8B Mamba
SSM benefits from the hardware acceleration and improves the generation latency by 1.72× (i.e.,
time-per-output-token, TPOT) on Nvidia Orin Nano 8G while only incurring a 0.9% accuracy drop in
zero-shot tasks. We demonstrate our method achieves Pareto-optimality on the Nano 8G and lower
the latency by 1.2 × on A5000, as shown in Figure 1. While quantizing Jamba, a 52B parameter
SSM-style language model, we observe just a ∼ 1% reduction in accuracy. The effectiveness and

Figure 2: We analyze the sensitivity of quantization errors for (b) self-attention layers and (c) SSMs
input activations. Our study shows that the x tensor causes huge errors at the output y due to the
causal relationship of the linear recurrence, which is unique to SSMs. Self-attention layers are more
robust to quantization errors. Our method (d) reduces the quantization error for the input sample. In
Figure 12, we highlight the smooth, outlier, and sensitive paths in SSMs and self-attention layers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

scalability of our quantization technique for SSM-based models, as well as the practicality of our
approach for deploying SSM-based models of various sizes on cloud and edge platforms.

2 RELATED WORK

Model quantization. Deploying large, over-parameterized neural networks on resource-constrained
devices is challenging, and researchers have developed model quantization (Han et al., 2015; Jacob
et al., 2018; Wang et al., 2019) as a solution to this problem. Quantization techniques reduce the
data type precision (e.g. FP32 to INT4) to compress the model size and accelerate inference. The
quantization techniques are generally divided into two categories: Quantization-aware training (QAT)
and post-training quantization (PTQ) (Zhu et al., 2023; Gholami et al., 2022; Zhou et al., 2024). QAT
(Liu et al., 2023; Dettmers et al., 2024) requires additional training efforts to adapt models to low
bit-width, in exchange for better model performance. Our work falls under PTQ, which does not
require training and can therefore be plug-and-play.

LLM post-training quantization. Post-training quantization (PTQ) techniques are generally
broken down into two categories: weight-only quantization (e.g., W4A16 and W2A16) and weight-
activation quantization (e.g., W8A8 and W4A4) (Zhu et al., 2023). Weight-only quantization (Frantar
et al., 2022; Lin et al., 2023) focuses on quantizing weight matrices (e.g., 4-bit or 2-bit) while keeping
the activations in half-precision floating point. However, although weight-only quantization reduces
memory usage, it still requires costly floating-point arithmetic for compute-intensive operations (e.g.,
linear layers). To utilize low bit-width operations, Xiao et al. (2023); Zhao et al. (2023); Ashkboos
et al. (2024b); Dettmers et al. study quantization for both weights and activations in Transformers.
They address outliers in activations by using mixed-precision (Dettmers et al.), rescaling quantization
factors (Xiao et al., 2023), group quantization (Zhao et al., 2023), and quantizing activations in an
outlier-free space (Ashkboos et al., 2024b). Unfortunately, these techniques target Transformers, do
not generalize well to SSMs, and either fail to handle the sensitive tensors in SSMs resulting in poor
performance (Xiao et al., 2023; Dettmers et al.) or introduce additional computational overhead to
the input of the selective scan (Zhao et al., 2023; Ashkboos et al., 2024b). Our research addresses
this gap by examining SSM weight-activation quantization, aiming to concurrently reduce memory
and compute costs by harnessing hardware acceleration for integer operations.

State Space Models. In recent times, a new wave of RNN-like models (Gu et al., 2021; Smith et al.,
2022; Peng et al., 2023; Gu & Dao, 2023; Beck et al., 2024) has emerged, noted for their efficacy in
modeling long-range dependencies and achieving performance comparable to Transformers. State
Space Models (SSMs) (Gu et al., 2021; Smith et al., 2022; Gu & Dao, 2023) are a promising class of
architectures that have been successfully applied to various applications, such as text (Gu & Dao,
2023; Wang et al., 2024), image (Zhu et al., 2024; Nguyen et al., 2022), video (Li et al., 2024; Nguyen
et al., 2022), and audio (Goel et al., 2022; Saon et al., 2023). Despite their successes, the challenge of
deploying SSMs across resource-limited hardware platforms remains largely unresolved. Our work
addresses this challenge by proposing a quantization method specifically tailored for SSMs.

3 BACKGROUND

3.1 SELECTIVE STATE SPACE MODELS

State Space Models. Inspired by continuous systems, discrete linear time-invariant (LTI) SSMs
(Gu et al., 2020; 2021; 2022) map input sequences x to output sequences y. Given a discrete input
signal xt at time step t, the transformation xt 7→ yt through a hidden state h is defined as

ht = Ȧht−1 + Ḃxt, yt = Cht +Dxt (1)

where Ȧ and Ḃ are discrete parameters. The discretization function for Ȧ and Ḃ with a given ∆
is defined as Ȧ = exp(∆A), Ḃ = (∆A)−1(exp(∆A) − I) · ∆B ≈ ∆B. This system uses A as
a state transition parameter and B and C as projection parameters. ∆ is the time-scale parameter
that is used to discretize the continuous parameters A and B. D is an optional residual parameter.
(A,B,C,D,∆) are trainable parameters. A residual branch zt is applied to the SSM output such that
yt · SiLU(zt) before the output projection.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: The primary difficulties in quantizing Mamba blocks lie in the precision of the activations
input into and output from the selective SSM. Although inputs are numerically small, the quantization
step is skewed by the maximum value, causing significant errors in the output SSMs after the linear
recurrent system. In contrast, large outliers are observed in the outputs. We use Hadamard matrices
to transform the outputs to an outlier-free space.

SSMs with selection. Gu & Dao (2023) improve SSMs with selection by letting their parameters
B, C, and ∆ be input-dependent, allowing the model to selectively remember or ignore inputs based
on their content. Specifically, the interaction with input xt is defined as Bt = FB(xt), Ct =
FC(xt), ∆t = softplus(F∆(xt)) where FB and FC are linear layers that map xt 7→ Bt, Ct. F∆

use two consecutive projection layers, such that F∆ = Proj(Proj(x)) + bias. With the selection
mechanism, the model has changed from time-invariant to time-varying.

3.2 QUANTIZATION

We focus on symmetric uniform quantization to approximate floating-point weights and activations
with discrete 8-bit signed integers (i.e., INT8) due to its hardware compatibility. The general
symmetric uniform quantization function is defined as

X = clamp
(⌊X

s

⌉
,−2N−1, 2N−1 − 1

)
, s =

max
(
|X|

)
2N−1 − 1

, (2)

where X represents the quantized weights or activations in INT8, X is the input matrix in floating
point, and s is the scaling factor (i.e., quantization step) that is determined by the target bit-width N
(N = 8 in our setting). The static scaling factor s is pre-calibrated on a subset of data and is fixed
during inference. We use the notation X to represent the floating-point matrices, and X to represent
their quantized matrices with their floating-point scaling factors sx. For operators, we use f(·) to
represent the quantized version of the function f(·) (i.e., the weights are quantized in the function f).

3.3 WALSH–HADAMARD TRANSFORM

Hadamard matrices. A Hadamard matrix is an n-dimensional square matrix whose entries are
either +1 or −1, and the rows and columns are mutually orthogonal with the computational property
HnH

⊤
n = nIn. Walsh-Hadamard matrix is a special category of Hadamard matrix, consisting of

square matrices of size 2k and can be constructed as follows:

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
= H2 ⊗H2k−1 , where H2 =

[
1 1
1 −1

]
.

Walsh–Hadamard transform. The Walsh–Hadamard transform (WHT), a generalized class of
Fourier transforms, has been applied to many related areas, such as LLM quantization (Ashkboos
et al., 2024b) and efficient transfer learning (Yang et al., 2024), due to its favorable computational
properties. We perform WHT to remove outliers from the output of the selective SSM. WHT projects
a discrete input sequence signal onto a set of square waves (i.e., Walsh functions). Its forward
and inverse transform can be expressed in matrix form as x̃ = Hnx , and x = H⊤

n x̃. x is the
input discrete sequence signal, and x̃ denotes the WHT coefficients (i.e., sequence components)
that describe the magnitude of the square waves. WHT is efficient since the transform matrices
consist only of real numbers, +1 or -1, so no multiplications are needed. The fast Walsh–Hadamard

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

transform (FWHT) can compute the transformation with a complexity of nlogn in a GPU-friendly
(i.e., parallelizable) fashion (Dao, 2024b). For input dimension n ̸= 2k, we factorize n = 2pm,
where m is the size of a known Hadamard matrix (Sloane, 1999).

4 QUAMBA: QUANTIZING MAMBA BLOCKS

4.1 PRELIMINARY STUDY

Theoretical error bound for SSM quantization. For a comprehensive analysis of our proposed
Mamba block quantization approach, we derive a theoretical error bound of a discrete 1D linear
time-invariant (LTI) SSM. We consider a discrete 1D linear time-invariant (LTI) SSM such that
h[t] = a(T, t)h[t− 1] + bx[t], where b is a constant, a(T, t) is an exponential series with respect to
the time step such that a(T, t) = et−T , where T is the sequence length and t is the time step. We
show that quantization error is bounded with any input sequence length T . The details of the proof
can be found in Section A in Appendix.

Theorem 4.1. The quantization error of h[t] from each time step of the given discrete 1D linear
time-invariant model is bounded by bϵ e

t−T

e−1 such that |h[t]− h[t]| ≤ bϵ e
t−T

e−1 .

Figure 4: The precision mapping and dataflow of
Quamba. All scaling factors and element-wise op-
erations (i.e., non-linearity and residual addition)
are fused in the quantized operations.

Empirical analysis of SSM quantization. As
shown in Figure 2 and Figure 3, the main chal-
lenge in quantizing Mamba blocks is the pre-
cision of the SSM input activation x, which is
sensitive to quantization errors, and the output
activation y. In Figure 1 (a), the naive 8-bit
quantization introduces large quantization er-
rors, resulting in model collapse for all model
sizes. We delve into the causal relationship be-
tween (A,B,C,∆, x) and y as modeled by the
linear recurrent system in Equation 1. As shown
in Figure 2 (b) and Figure 3 (a), we find that x
is sensitive to quantization errors and it leads to
the largest errors in the SSM output y, although
the values in the x tensor are numerically small
(ref: Figure 13). We conjecture the reason be-
hind the phenomenon is that (B,C,∆) are input-
dependent (i.e., x-dependent). We note that this
finding is specific to SSMs. As shown in Figure
2 (a), self-attention layers are more resilient to
quantization errors and do not experience the
same issues.

SSM outliers. Our study shows SSMs exhibit
distinct outlier patterns compared to Transformers (Ashkboos et al., 2024b; Dettmers et al.; Xiao et al.,
2023; Zhao et al., 2023). We show that outliers appear in the SSMs output (i.e. the y tensor), which
perform a similar token-mixing function to self-attention layers. In contrast, the input and output of
self-attention layers are relatively smooth and do not exhibit outlier issues. More comparisons can be
found in Section J. This highlights that different quantization methods are needed for SSM-based
models. Therefore, we tailor two different quantization techniques: percentile-based quantization
for the input activation x and quantizing the output y in an outlier-free space using the Hadamard
transform. Our method recovers performance by improving the quantization precision for the inputs
and outputs of the SSM and achieves a better trade-off between accuracy and latency.

4.2 QUANTIZATION FOR SELECTIVE SSM

We aim to quantize the weight (A,D) to 8 bits, and the activations (Bt, Ct,∆t, xt) to 8 bits for
selective SSMs. The quantized selective SSM takes 8-bit weights and activations as input, as well
as their scaling factors, and outputs half precision yt such that yt = SSM(A,Bt, Ct, D,∆t, xt, sin).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(A,Bt, Ct, D,∆t, xt) are the quantized weights and activations, and their scaling factor sin in floating
point. (Bt, Ct,∆t) depend on the input xt to perform selection mechanism as Bt = FB(xt), Ct =
FC(xt), ∆t = softplus(F∆(xt)). The weights and biases in linear layers FB , FC , and F∆ are also
quantized to 8-bit integers. For simplicity, we omit the residual branch zt in the discussion.

SSM inputs. Our findings show that x is highly sensitive to quantization errors, which results in
the largest errors in the SSM output y. Specifically, we found the quantization error of x is dominated
by outliers during the calibration. Although they are numerically small (≤ 10), as shown in Figure
13, the small amounts of outliers (≤ 0.1%) increase the quantization step (i.e., scaling factors s
in Eq.2) and reduce the quantization precision for x. Clipping the values with a percentile max
(Zhao et al., 2022; Li et al., 2019) is a simple solution to restrict the activation range and has no
additional overhead during inference. For example, using the 99th percentile to clip the top 1% of the
highest activation values prevents the activation range from being skewed by extreme outliers. We
use percentile max to calculate the scaling factor for x: sx = (maxp

(
|x|

)
)/(2N−1 − 1), where p is a

parameter for percentiles. In our experiments, we found p = 99.999 works well for Quamba.

SSM outputs. We perform WHT to remove the outliers from the SSM output. The output y is
transformed to an outlier-free space using a Hadamard matrix such that yH = Hny where n is the
token dimension of y and the dimension of the squared Hadamard matrix H. We fuse the inverse
Hadamard matrix into the output linear projection WH

out = HnWout to avoid additional computation
overhead and achieve compute-invariance (Ashkboos et al., 2024a;b) (i.e., the same output) by
MambaOutput = W⊤

outy = W⊤
outIy = W⊤

out(
1
nH

⊤
nHn)y = 1

n (W
H
out)

⊤yH . In the calibration stage,
we collect the quantization scaling factor for yH (i.e., transformed y). Therefore, the fused Hadamard
quantization layer can be expressed as

yH = clamp
(⌊yH

sy

⌉
,−2N−1, 2N−1 − 1

)
, sy =

max
(∣∣yH ∣∣)

2N−1 − 1
(3)

where N represents the target bit-width. We fuse the scaling factor sy in the forward Hadamard
transform such that yH = 1

sy
Hny, so the quantization does not incur additional computational

overhead. The fused Hadamard quantization layer is parallelizable and efficient on GPU with a
complexity of nlogn (Dao, 2024b).

4.3 OTHER OPERATORS

Projection layers. Projection layers, which perform dense matrix multiplications, are the most over-
parameterized and the most compute-intensive operators in the models. With quantized activations
and weights, projection layers benefit from hardware acceleration (e.g., Tensor Cores) for 8-bit
integers as well as reducing the memory costs by half. We implement the 8-bit linear layers with
commercial libraries, except for the output projection, which produces half-precision outputs for the
subsequent normalization layer.

Fused causal convolution. Causal convolution applies a w× c weight to perform the calculation in
a depthwise convolution fashion only using tokens from previous time steps t−w to the current time
step t, each of which is a c dimensional vector. The operator is memory-bound, as typical depthwise
convolution (Lu et al., 2021; Zhang et al., 2020), so applying quantization to the input and output
activations and weights largely reduces memory pressure. We quantize the inputs and weights as
8-bit integers and fuse the quantization operator before writing the result to memory. The causal
convolution operation is xout =

1
sout

σ
(
Conv(xin,W , s)

)
, s = swsxin . The SiLU (Elfwing et al.,

2018) σ is fused into the convolution, as described by Gu & Dao (2023).

Fused RMSNorm. We implement an operator that fuses the residual addition and static quantization
with RMSNorm (Zhang & Sennrich, 2019). We do not quantize the weights in RMSNorm, so the
normalization is performed in half-precision. The fused operator takes as input a half-precision tuple
(xout, xres), where xout is the output from the Quamba block and xres is the residual. The operator
returns a tuple (xin, xres) where the 8-bit xin is the input to the next Quamba block. The operator can
be expressed as (xL+1

in , xL+1
res) =

(
1
sout

RMSNorm(xL
out + xL

res), x
L
out + xL

res

)
where the L is the layer

number in the model, and the scaling factor sout is pre-calibrated.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model and datasets. We evaluate Quamba on the open-sourced Mamba family of SSMs (Gu &
Dao, 2023) and on Jamba (Lieber et al., 2024a), a hybrid architecture composed of self-attention,
SSMs, and Mixture of Experts (MoE). For zero-shot tasks, we use LM-EVAL (Gao et al., 2023),
on which we evaluate baselines and Quamba on LAMBADA (Paperno et al., 2016), HellaSwag
(Zellers et al.), PIQA (Bisk et al., 2020), ARC (Clark et al., 2018) and WinoGrande (Sakaguchi
et al., 2020). Model accuracy on each dataset and the average accuracy are reported. We follow
the evaluate protocol with Mamba (Gu & Dao, 2023), and report the accuracy for LAMBADA,
WinoGrande, PIQA, and ARC-easy, and accuracy normalized by sequence length for HellaSwag and
ARC-challenge. For perplexity, we evaluate the models using the testing set of WikiText2 (Merity
et al., 2016) and a randomly sampled subset from validation set of Pile dataset (Gao et al., 2021).

Quantization setup. The calibration set is constructed by randomly sampling 512 sentences from
the Pile dataset (Gao et al., 2021). We collect the static scaling factors for each operator based
on the absolute maximum value observed from the calibration set and apply symmetric per-tensor
quantization for weights and activations, except for the input to the SSM, where we use the 99.999th
percentile (i.e., the p described in Section 4.2) to clip the maximum values. The same scaling factors
are applied in all our experiments. Furthermore, a clipping optimization algorithm can be applied to
Quamba. We incorporate OCTAV (Sakr et al., 2022), referred to as Quamba-O in our work, which
results in an improvement in average accuracy. We note that our method does not require extra
training efforts and can be plug-and-play.

Implementation. We implement the INT8 linear layer using CUTLASS library (Thakkar et al.,
2023). We did not adjust the tensor core or thread configurations for each case, nor did we disable the
PyTorch cuDNN auto-tuner, both of which highlight the robust acceleration achieved by our method.
Quantization is integrated and adapted into the CUDA kernels of both the fast Hadamard transform
(Dao, 2024b) and causal convolution (Dao, 2024a). Additionally, the selective SSM CUDA kernel
(Gu & Dao, 2023) is modified to accommodate inputs with quantized weights and activations, and
their scaling factors. We evaluate all methods on the A5000, a widely used GPU for AI workloads
with 24GB of memory, emulating the setting for cloud applications. For the case of edge applications,
we profile all methods on the Nvidia Orin Nano 8G. We perform a few warm-up iterations and then
report the average latency of the following 100 iterations.

Baselines. In our W8A8 setting, we compare Quamba with static quantization, dynamic quantiza-
tion, and Mamba-PTQ (Pierro & Abreu, 2024). We re-implement the state-of-the-art Transformer
quantization methods: W8A8 SmoothQuant (SmQ) (Xiao et al., 2023) and QuaRot (Ashkboos et al.,
2024b) for 8-bit weight-activation SSM quantization as additional baselines. These are denoted
by Mamba-SmQ and Mamba-Had, respectively. We apply Hadamard matrices (Ashkboos et al.,
2024b) to the activations and weights, and quantize them in 8-bit, as shown in Figure 8. For the
re-implemented SmoothQuant (Xiao et al., 2023), we apply a smoothing factor α = 0.5 to all linear
layers within Mamba. We find the low bit-width quantization methods for Transformers do not
generalize well to SSMs and quantizing SSMs with low-bit-width remains unexplored, we include
some of the results in Section E.

5.2 MODEL SIZE AND LATENCY

Quamba reduces the size of the 2.8B model nearly by half (5.29 GB vs. 2.76 GB) by quantizing
weights as 8-bit integers except for normalization layers, as shown in the Table 1. We profile
the latency on an A5000 GPU and an Orin Nano 8G for cloud and edge deployment scenarios.
Quamba enjoys the 8-bit acceleration and improves the latency by 1.27× with a 512 input context
(i.e., time-to-first-token, TTFT) on the A5000 GPU and 1.21× in the generation stage (i.e., L=1,
time-per-output-token, TPOT). On the Orin Nano, Quamba improves the latency by 1.2× with a 512
input context and 1.72× in the generation stage. Figure 10 shows the snapshot of real-time generation
on Nano 8G. Despite that having similar accuracy to Mamba-Had, Quamba delivers a better speedup
on both A5000 and Nano, since Mamba-Had requires extra transpose and Hadamard transforms to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Profiling latency for Mamba and Quamba 2.8B on Nvidia A5000 GPU and Orin Nano 8G.
The latency is measured milliseconds (ms).

Method Precision Size (G)
A5000 Orin Nano 8G

Generate Pre-filling Generate Pre-filling

- L=512 L=1024 L=2048 - L=512 L=1024 L=2048

Mamba-SmQ
W8A8 2.76

6.81 43.85 79.09 151.56 56.53 572.36 1123.91 2239.63
Mamba-Had 10.46 56.87 103.98 199.83 67.76 746.31 1453.91 2892.95

Quamba (Ours) 8.12 48.24 84.84 165.13 60.17 607.25 1181.09 2354.85

Mamba FP16 5.29 9.86 61.19 102.29 184.16 103.56 730.16 1634.08 2756.28

Quamba Reduction (Ours) - 1.91 × 1.21 × 1.27 × 1.21 × 1.12 × 1.72 × 1.20 × 1.38 × 1.17 ×

handle the SSM input activations. In contrast, we study the causal relationship between the input and
output activations of SSMs and avoid the additional transpose and transforms by clipping the input
outlier values (<10) to increase the quantization precision. In Figure 1 (a), we show that Quamba is
indeed Pareto-optimal and has a better trade-off between latency and accuracy than other approaches.
Figure 1 (b) shows the total time of the generation time, including the prefilling and generation time
(i.e., the time to last token, TTLT). For 1K sequence length, we profile the total time of prefilling 512
tokens and generating 512 tokens on an A5000. Quamba improves the TTLT by 1.2× compared with
Mamba. Compared with Pythia (Biderman et al., 2023), more latency improvement is observed as
the sequence length is increased, since SSMs do not require K-V cache for the generation.

Table 2: Perplexity results of different quantization methods applied on Mamba (Gu & Dao, 2023)
family of SSMs. We evaluate the quantized models on a subset of Pile and Wikitext2 datasets.
Quamba is a static per-tensor quantization method that closes the performance gap and delivers a
better trade-off between latency and accuracy (ref. Figure 1 (a)). Bold is the best, and underline is
the second best.

Model Methods
Wikitext2 Perplexity (↓) Pile Perplexity (↓) latency (↓)

130M 370M 1.4B 2.8B 130M 370M 1.4B 2.8B 2.8B

Pythia
FP16 – – 15.14 12.68 – – 7.62 6.89 -

SmQ – – 38.24 14.03 – – 14.86 7.37 -

Mamba

FP16 20.61 14.31 10.75 9.45 11.50 8.81 7.11 6.39 103.56

dynamic 57.18 24.58 19.32 16.92 28.74 15.28 12.37 10.56 -
static 139.90 84.69 60.87 78.63 62.48 40.43 32.33 35.08 -

Mamba-SmQ 29.51 19.29 14.23 13.59 15.81 11.40 9.14 8.59 56.53
Mamba-Had 32.43 16.29 11.39 9.89 16.78 9.87 7.49 6.66 67.76

Quamba (Ours) 25.09 16.18 11.35 9.91 13.63 9.84 7.49 6.67 60.17

5.3 PERPLEXITY EVALUATION

Table 2 presents the perplexity results of Quamba and the baseline methods on the Mamba family of
SSMs. Static quantization fails to maintain the precision in SSM quantization, resulting in significant
performance degradation (i.e., increased perplexity, where lower is better). Even with scaling factors
calculated dynamically, which introduces significant computational overhead during inference, it
still results in a considerable increase in perplexity (+7.5) on Mamba-2.8B. Although Mamba-SmQ
mitigates the issue of outliers in the output of the SSM, a performance gap remains when compared to
the non-quantized Mamba because it fails to address the issue of quantizing sensitive x input tensors
to SSMs. Quamba achieves similar perplexity to Mamba-Had but delivers a better speedup on both
A5000 and Nano, as shown in Table 1 and Figure 1 (a). Since Mamba-Had is not optimized for SSMs,
it requires extra transpose and Hadamard transforms to handle the SSM input activations.

5.4 ZERO-SHOT EVALUATION

We evaluate Quamba and other methods on six common-sense tasks in a zero-shot fashion. The
accuracy of each task and the average accuracy across the tasks are reported in Table 3. Quamba 2.8B
has only a 0.9% accuracy drop compared to floating-point Mamba 2.8B and outperforms Mamba-PTQ

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Zero-shot accuracy of W8A8 models on six common sense tasks. Quamba is a static
per-tensor quantization method that closes the performance gap and outperforms the same-sized
Transformers, Pythia (Biderman et al., 2023), in accuracy. We apply a clipping optimization algorithm
(Sakr et al., 2022) to Quamba, denoting it as Quamba-O. Bold is the best, and underline is the second
best.

Model Size Methods LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande Avg.

Pythia
1.4B FP16 62.0% 41.8% 72.0% 61.7% 27.4% 56.5% 53.6%

SmQ 19.6% 37.6% 66.9% 53.8% 25.2% 55.3% 43.1%

2.8B FP16 65.2% 59.4% 74.1% 63.5% 30.0% 58.5 % 58.4%
SmQ 59.7% 58.4% 73.2% 62.1% 28.4% 57.1% 56.5%

Mamba

130M

FP16 44.2% 35.3% 64.5% 48.0% 24.3% 51.9% 44.7%

dynamic 38.6% 34.1% 60.2% 41.5% 24.6% 51.9% 41.8%
static 24.0% 31.8% 58.1% 37.5% 24.4% 48.5% 37.4%

Mamba-PTQ 43.1% 27.7% 56.5% - - 51.1% -
Mamba-SmQ 41.1% 34.4% 63.0% 43.6% 23.6% 51.9% 42.9%
Mamba-Had 40.7% 35.2% 62.0% 44.1% 24.0% 49.7% 42.6%

Quamba (Ours) 40.6% 35.0% 63.0% 46.5% 23.0% 53.1% 43.5%
Quamba-O (Ours) 40.7% 34.5% 61.3% 44.2% 25.8% 51.4% 42.9%

370M

FP16 55.6% 46.5% 69.5% 55.1% 28.0% 55.3% 51.7%

dynamic 44.0% 45.2% 67.3% 51.8% 28.1% 51.9% 48.0%
static 28.9% 38.5% 58.7% 40.4% 25.9% 51.4% 40.6%

Mamba-PTQ 10.3% 31.0% 58.8% - - 51.0% -
Mamba-SmQ 44.3% 44.3% 66.3% 51.2% 27.7% 54.7% 48.1%
Mamba-Had 53.2% 46.3% 68.6% 53.2% 27.1% 51.6% 50.0%

Quamba (Ours) 50.5% 46.2% 67.1% 51.6% 26.9% 51.9% 49.0%
Quamba-O (Ours) 53.2% 46.2% 68.4% 53.5% 27.7% 53.5% 50.4%

1.4B

FP16 64.9% 59.1% 74.2% 65.5% 32.8% 61.5% 59.7%

dynamic 52.2% 56.6% 70.4% 61.7% 31.7% 59.2% 55.3%
static 20.3% 46.7% 63.0% 44.4% 27.8% 50.5% 42.1%

Mamba-PTQ 55.4% 43.8% 70.2% - - 54.3% -
Mamba-SmQ 50.8% 56.9% 71.9% 61.8% 31.4% 57.5% 55.1%
Mamba-Had 63.1% 58.7% 72.6% 64.1% 32.1% 58.1% 58.1%

Quamba (Ours) 62.6% 58.4% 72.7% 64.5% 33.4% 58.6% 58.4%
Quamba-O (Ours) 63.8% 58.8% 73.7% 64.3% 32.3% 57.6% 58.4%

2.8B

FP16 69.1% 65.9% 75.6% 69.2% 35.8% 63.0% 63.1%

dynamic 59.2% 63.9% 72.7% 67.8% 34.4% 58.1% 59.4%
static 20.0% 51.2% 64.8% 55.1% 31.0% 53.5% 45.9%

Mamba-PTQ 51.4% 47.6% 70.2% - - 57.6% -
Mamba-SmQ 46.6% 62.8% 73.3% 66.5% 35.0% 59.8% 57.3%
Mamba-Had 65.9% 65.6% 74.3% 68.6% 36.8% 63.3% 62.4%

Quamba (Ours) 65.9% 65.3% 73.9% 68.7% 36.5% 62.9% 62.2%
Quamba-O (Ours) 66.9% 65.6% 74.6% 68.9% 35.9% 63.0% 62.5%

(Pierro & Abreu, 2024) and Mamba-SmQ (Xiao et al., 2023) in accuracy. Quamba achieves similar
accuracy to Mamba-Had, but Quamba achieves a better trade-off between accuracy and latency, as
shown in Figure 1 (a). We apply a clipping optimization algorithm (Sakr et al., 2022) to Quamba,
denoting the enhanced version Quamba-O. This improvement increases our average accuracy and
outperforms Mamba-Had in both accuracy and latency.

5.5 QUANTIZING JAMBA: A LARGE-SCALE HYBRID MAMBA-TRANSFORMER LLM

Jamba (Lieber et al., 2024b) is a hybrid transformer-mamba language model with 52B parameters,
built with self-attention, Mixture of Experts (MoEs), and Mamba blocks, making it the first large-scale
Mamba-style model with a number of parameters comparable to Mixtral (Jiang et al., 2024). In
Table 4, we compare the LAMBADA OpenAI accuracy of Jamba’s FP16 inference by combining
off-the-shelf quantization methods with different quantization strategies. Applying LLM.int8
(Dettmers et al.) to self-attention and MoE preserves the model’s accuracy, whereas jointly quantizing
Mamba with LLM.int8 (Dettmers et al.) degrades the model and fails to produce meaningful
accuracy. In contrast, we combine Quamba with LLM.int8 (Dettmers et al.) and as a result we
achieve competitive accuracy (1.1% accuracy drop) with a lower model footprint than FP16.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Quantizing Jamba, a transformer-mamba hybrid model. We combine off-the-shelf quan-
tization methods with our method. The zero-shot LAMBADA accuracy is reported. We apply
SmoothQuant (Xiao et al., 2023) and LLM.int8(Dettmers et al.) to self-attention and MoEs.

Self-attention Mamba MoE Accuracy

FP16 FP16 FP16 74.0%

LLM.int8 FP16 LLM.int8 73.9%
SmQ FP16 LLM.int8 70.6%

LLM.int8 LLM.int8 LLM.int8 fail
SmQ Quamba (Ours) LLM.int8 68.7%

LLM.int8 Quamba (Ours) LLM.int8 72.9%

6 ABLATION STUDY

6.1 QUAMBA ABLATION

In Table 5, We conduct a performance analysis on each component in Quamba and report the average
accuracy across six zero-shot datasets. Naive W8A8 quantization results in significant performance
discrepancies across all sizes of models. We improve the performance of quantized models by
constraining the quantization range of the SSM input x using percentile clipping (+ In Per.). While
addressing the large outlier in the SSM output using the Hadamard transform improves performance
(+ Out Had.), the results remain unsatisfactory. Quamba integrates two techniques, thereby closing
the performance gaps across all model sizes.

6.2 PERCENTILE-BASED ACTIVATION CLAMPING

In Table 6, we conduct a sensitivity analysis on the percentile maximum clipping for the input x to
SSM. We test different percentiles (i.e., the p described in 4.2) and report the accuracy on LAMBADA
dataset. The table shows more outliers in the larger models, while smaller amounts of outliers are
clipped in the smaller models. Therefore, clipping 0.001% (i.e., p = 99.999) of outliers in the model
with 130m parameters produces best performance. In contrast, for the model with 2.8b parameters,
clipping 0.1% (i.e., p = 99.9) performs best on the LAMBADA dataset (Paperno et al., 2016).

Table 5: Ablation study on Quamba. Avg. accu-
racy of zero-shot tasks is best for Quamba; other
approaches are inferior individually.

Size FP16 W8A8 + In Per. + Out Had. Quamba

130M 44.7% 37.4% 38.7% 41.8% 43.5%
370M 51.6% 40.6% 41.9% 47.8% 49.0%
1.4B 59.7% 42.1% 47.4% 50.8% 58.4%
2.8B 63.0% 45.9% 48.5% 56.4% 62.2%

Table 6: Ablation Study on different per-
centiles for Quamba on LAMBADA (Pa-
perno et al., 2016) dataset.

Size p = 99 99.9 99.99 99.999

130M 10.8% 36.4% 40.0% 40.6%
370M 20.4% 44.7% 49.9% 50.3%
1.4B 44.4% 60.6% 62.6% 60.4%
2.8B 58.9% 66.5% 66.3% 65.5%

7 CONCLUSION

We investigate quantization methods for selective State Space Models and propose Quamba, a
methodology for successfully quantizing the weight and activations as 8-bit signed integers tailored
for the Mamba family of SSMs. Our experiments show that Quamba maintains the original FP16 when
accuracy compared with state-of-the-art counterparts, including current techniques for Transformers.
The profiling results on a wide variety of platforms show that the low bit-width representation of
Quamba not only enables deployment to resource-constrained devices, such as edge GPUs, but also
benefits from hardware acceleration with reduced latency. In summary, our extensive experiments
demonstrate the effectiveness of Quamba in addressing the real deployment challenges faced by many
emerging applications based on SSMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ghada Alsuhli, Vasileios Sakellariou, Hani Saleh, Mahmoud Al-Qutayri, Baker Mohammad, and
Thanos Stouraitis. Number systems for deep neural network architectures: A survey, 2023. URL
https://arxiv.org/abs/2307.05035.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024b.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI Press, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jack Choquette. Nvidia hopper h100 gpu: Scaling performance. IEEE Micro, 43(3):9–17, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, 2018.

Tri Dao. Causal depthwise conv1d in cuda with a pytorch interface, 2024a. URL https://
github.com/Dao-AILab/causal-conv1d.

Tri Dao. Fast hadamard transform in cuda, with a pytorch interface, 2024b. URL https://
github.com/Dao-AILab/fast-hadamard-transform.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale, 2022. CoRR abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027, 2021. URL
https://arxiv.org/abs/2101.00027.

11

https://arxiv.org/abs/2307.05035
https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://arxiv.org/abs/2101.00027

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR,
2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Andrey Kuzmin, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters, and Tijmen Blankevoort.
Fp8 quantization: The power of the exponent, 2024. URL https://arxiv.org/abs/2208.
09225.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024.

Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized network
for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2810–2819, 2019.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model. CoRR, abs/2403.19887, 2024a. doi: 10.48550/ARXIV.2403.19887. URL
https://doi.org/10.48550/arXiv.2403.19887.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024b.

12

https://zenodo.org/records/10256836
https://arxiv.org/abs/2208.09225
https://arxiv.org/abs/2208.09225
https://doi.org/10.48550/arXiv.2403.19887

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Gangzhao Lu, Weizhe Zhang, and Zheng Wang. Optimizing depthwise separable convolution
operations on gpus. IEEE Transactions on Parallel and Distributed Systems, 33(1):70–87, 2021.

Justus Mattern and Konstantin Hohr. Mamba-chat. GitHub, 2023. URL https://github.com/
havenhq/mamba-chat.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

Eric Nguyen, Karan Goel, Albert Gu, Gordon W Downs, Preey Shah, Tri Dao, Stephen A Baccus,
and Christopher Ré. S4nd: Modeling images and videos as multidimensional signals using state
spaces. arXiv preprint arXiv:2210.06583, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers. The Association for Computer Linguistics, 2016. doi: 10.18653/V1/
P16-1144. URL https://doi.org/10.18653/v1/p16-1144.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023.

Alessandro Pierro and Steven Abreu. Mamba-ptq: Outlier channels in recurrent large language
models. arXiv preprint arXiv:2407.12397, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI Press, 2020.

Charbel Sakr, Steve Dai, Rangha Venkatesan, Brian Zimmer, William Dally, and Brucek Khailany.
Optimal clipping and magnitude-aware differentiation for improved quantization-aware training.
In International Conference on Machine Learning, pp. 19123–19138. PMLR, 2022.

George Saon, Ankit Gupta, and Xiaodong Cui. Diagonal state space augmented transformers for
speech recognition. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Neil JA Sloane. A library of hadamard matrices. available at the website: http://www. research. att.
com/˜ njas/hadamard, 1999.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

13

https://github.com/havenhq/mamba-chat
https://github.com/havenhq/mamba-chat
https://doi.org/10.18653/v1/p16-1144

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosaian,
Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig, Fengqi
Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish Gupta. CUTLASS,
January 2023. URL https://github.com/NVIDIA/cutlass.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. arXiv preprint arXiv:2401.13660, 2024.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8612–8620, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Marculescu, and Radu Marculescu. Efficient
low-rank backpropagation for vision transformer adaptation. Advances in Neural Information
Processing Systems, 36, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez (eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–4800. Association for
Computational Linguistics.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Pengfei Zhang, Eric Lo, and Baotong Lu. High performance depthwise and pointwise convolutions
on mobile devices. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 6795–6802, 2020.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding, Siteng Huang, and Donglin Wang. Cobra:
Extending mamba to multi-modal large language model for efficient inference. arXiv preprint
arXiv:2403.14520, 2024.

Lingran Zhao, Zhen Dong, and Kurt Keutzer. Analysis of quantization on mlp-based vision models.
arXiv preprint arXiv:2209.06383, 2022.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

14

https://github.com/NVIDIA/cutlass

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A QUANTIZATION ERROR ANALYSIS FOR SSMS

We show the error bound of a discrete 1D linear time-invariant (LTI) SSM and the empirical experi-
ments on the quantization errors of the discretized high-dimensional SSMs.

A.1 THEORETICAL ERROR ANALYSIS

We consider a discrete 1D linear time-invariant (LTI) state space model such that h[t] = a(T, t)h[t−
1]+ bx[t], where b is a constant, a(T, t) is an exponential series with respect to the time step such that
a(T, t) = et−T , T is a constant representing the sequence length, and t is the time step. We assume
that the system input has a quantization error δx[t] such that x[t] = x[t] + δx[t] where |δx[t]| ≤ ϵ.
The system is initialized to 0 such that h[0] = h[0] = 0.
Theorem A.1. The quantization error of h[t] from each time step of the given discrete 1D linear
time-invariant model is bounded by bϵ e

t−T

e−1 such that |h[t]− h[t]| ≤ bϵ e
t−T

e−1 .

Proof. Given the quantization error |δx[t]| ≤ ϵ and the quantized input x[t] = x[t] + δx[t] of each
step, we have an original system h[t] and a quantized system h[t]

h[t] = a(T, t)h[t− 1] + btx[t] = et−Th[t− 1] + bx[t]

h[t] = a(T, t)h[t− 1] + btx[t] = et−Th[t− 1] + bx[t] = et−Th[t− 1] + b(x[t] + δx[t]).

By subtracting two systems, we have h[t]− h[t] = et−T (h[t− 1]− h[t− 1]) + bδx[t] . Define the
error term h[t]− h[t] = ω[t] to simplify our notation, we have

ω[t] = et−Tω[t− 1] + bδx[t]

|ω[t]| = |et−Tω[t− 1] + bδx[t]|
|ω[t]| ≤ |et−Tω[t− 1]|+ |bδx[t]| (using the triangle inequality)

|ω[t]| ≤ |et−Tω[t− 1]|+ bϵ

|ω[t]| ≤ et−T |ω[t− 1]|+ bϵ.

We define |ω[t − 1]| = Ω[t − 1] to simplify our notation, and the inequality becomes Ω[t] ≤
et−TΩ[t− 1]+ bϵ. Since Ω[0] = |ω[0]| = |h[0]−h[0]| = 0, by unrolling the recursive error function
from t = 0, we have

t=0, Ω[1] ≤ e1−TΩ[0] + bϵ = bϵ

t=1, Ω[2] ≤ e2−TΩ[1] + bϵ = e2−T bϵ+ bϵ

... .

Therefore, at time step t, the error is

Ω[t] ≤ et−TΩ[t− 1] + bϵ = bϵ

t−1∑
k=0

ek−T .

∑t−1
k=0 e

k−T is a geometric series, therefore, we apply the sum of the first t terms of the geometric
series

Ω[t] ≤ bϵ

t−1∑
k=0

ek−T = bϵe−T
t−1∑
k=0

ek = bϵe−T et − 1

e− 1
.

Then, we have the error bound

|h[t]− h[t]| = Ω[t] ≤ bϵe−T et − 1

e− 1
= bϵ

et−T − e−T

e− 1
≤ bϵ

et−T

e− 1
.

The proof shows that for any time step t, the quantization error of h[t] of the given discrete 1D linear
time-invariant model is bounded.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Materialized with HiPPO-LegT (b) Materialized with HiPPO-LegS

Figure 5: Output errors introduced by the quantized x[t]. The errors are bounded for each time step t
with different materialization methods for A and B matrices.

A.2 EMPIRICAL ERROR ANALYSIS

In Figure 5, we show the empirical results of the quantization errors for the discretized high-
dimensional SSMs. Given a discretized high-dimensional SSM

h[t] = Ȧh[t− 1] + Ḃx[t], y[t] = Ch[t]

where x[t] ∈ Rp is the input vector, h[t] ∈ Rn is the state vector, and y[t] ∈ Rq is the output
vector, with the state matrix A ∈ Rn×n, input matrix B ∈ Rn×p, output matrix C ∈ Rq×n. In
the experiments, we set n = p = q = 4, and the total time step T to 100. We follow the official
implementation in Gu et al. (2020). HiPPO-LegT and HiPPO-LegS matrices (Gu et al., 2020) are
used to materialize the A and B matrix and are discretized to Ȧ and Ḃ. We initialize C matrix with a
normal distribution N (0, 1). The input x[t] of each time step is drawn from a normal distribution
N (0, 1), and is quantized into 8-bit representation x[t]. We initialize the h[0] to a zero vector and
update h[t] with state space dynamics in each time step. In Figure 5, we show the output errors
Mean(|y[t]− y[t]|) induced by x[t]. The errors are bounded as the time step t increases.

B SENSITIVITY ANALYSIS OF QUANTIZING SSMS

Figure 6: We analyzed the sensitivity of quantiz-
ing SSM input and output (SSM I/O), reporting
zero-shot accuracy on the LAMBADA dataset. Ac-
curacy is highly sensitive to input/output precision.
Quamba quantizes SSM I/O to 8-bit, reducing the
performance gap with FP16 (red, W8A8 SSM I/O
FP16/FP16).

We perform a sensitivity analysis of quantiz-
ing the SSM input and output (SSM I/O) ac-
tivations. Figure 6 illustrates that the model
collapses when all activations and weights are
quantized to 8 bits. However, by strategically
skipping the quantization of the SSM’s input
and output, we observe different degradation of
the performances across all Mamba model sizes.
Notably, quantizing the SSM output results in
severe performance degradation (orange, SSM
I/O FP16/I8) due to the skewed quantization res-
olution caused by large outliers, particularly ex-
treme values (≥ 100). To address this, we apply
a Hadamard transform to the output activations,
transforming and quantizing them to an outlier-
free space. Moreover, the small outlier values
(< 10) in the SSM input cause significant per-
formance drops (green, SSM I/O I8/FP16), and
the Hadamard transform does not resolve this
issue. To mitigate this, we clip the distribution
results to preserve better quantization precision,
thereby reducing the performance gap.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C PARETO FRONT ANALYSIS FOR ACCURACY VS. LATENCY

Figure 7 illustrates the average accuracy across six zero-shot tasks (y-axis) versus latency (x-axis,
in log-scale) on the A5000 cloud platform and Nano 8G edge GPU. In panel (a), we profile TTFT
(time-to-first-token) in milliseconds using 4K input tokens on A5000. For a comparison of end-to-end
latency, we profile TTLT (time-to-last-token) in seconds, with 2K input tokens and 2K generated
tokens on A5000, as shown in panel (b). On Orin Nano 8G, we reduce the input length to 1K and
profile TTFT and TTLT, as shown in panel (c) and (d). For QuaRot (Ashkboos et al., 2024b), we use
the official implementation and profile latencies for Llama-2 (Touvron et al., 2023) on both A5000
and Nano. We note that latency is merely estimated for models that do not fit within the 24GB/8G
memory of the A5000/Nano and is represented with dashed lines. Half-precision Llama-2 models are
not included in panels (c) and (d) as they do not fit on the Nano. Our method is on the Pareto front
and offers the best trade-off between average accuracy and latency, outperforming half-precision
Mamba (Gu & Dao, 2023) and Mamba-Had on both A5000 and Nano.

Figure 7: Pareto front analysis for accuracy vs. latency on A5000 and Nano. Quamba models are on
the Pareto front for average accuracy and latency when compared to other SSM and transformer-based
LLMs, while also featuring lower memory footprint as evidenced in the figure (size of the circle).

D RE-IMPLEMENTATION OF QUAROT ON MAMBA

We re-implement QuaRot (Ashkboos et al., 2024b), a state-of-the-art low-bitwidth quantization
method for Transformers, for the Mamba structure. Our re-implementation is denoted by Mamba-
Had. Figure 8 (b) illustrates the details of our re-implementation. While Mamba-Had is on-par with
Quamba in terms of perplexity and accuracy, it is not optimized for the structure of SSMs and requires
additional Hadamard transforms and transpositions to process the SSM input activations. In contrast,
our approach is friendly to hardware and effectively improves the quantization precision of the x
tensor, delivering real speedups on both cloud and edge devices (see Table 1).

E LOW BIT-WIDTH QUANTIZATION

We show that Transformer-based quantization methods do not generalize well to Mamba blocks. We
re-implement state-of-the-art low bit-width quantization methods for Transformers, Quip# (weight-
only quantization, W2A16) (Tseng et al., 2024) and QuaRot (W4A4) (Ashkboos et al., 2024b),
for the Mamba structure. These are denoted by Mamba-Quip# and Mamba-Had, respectively Our

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: The figure compares Quamba to Mamba-Had. We fuse the Hadamard matrices in the linear
layers to achieve compute-invariance. xp represents the 8-bit x tensor with percentile clipping. Our
method provides real speedups on cloud and edge devices, while QuaRot requires extra Hadamard
transforms and transpositions for SSM input activations. Residual connections are simplified to
reduce clutter in the figure.

experiments show that they fail to effectively quantize Mamba in low bit-width settings, as shown in
Tables 7 and 8. In Table 7, applying Quip# and QuaRot to Mamba results in much higher perplexity,
leading to worse performance compared to Transformers. For instance, Mamba-Quip# quantizes
Llama-2-7b with W2A16, causing only a 1.02× increase in perplexity, whereas our implementation
on Mamba results in a 1.34× increase. In Table 8, although models with different bit-widths cannot
be directly compared, the results show that both Mamba-Quip# and Mamba-Had reduce the average
accuracy across six zero-shot downstream tasks. Our study highlights that quantizing SSMs is
particularly challenging, as their input and output activations exhibit a causal relationship with
varying levels of outliers, a phenomenon unique to SSMs (ref. Section J).

Table 7: Quantizing Llama-2-7b and Mamba 2.8B
with low bit-width methods. The perplexity on
Wiki2 is reported.

Methods Precision Llama-2-7b Mamba-2.8b

Mamba FP16 5.47 9.45

Mamba-Quip# W2A16 5.56 (1.02 ×) 12.71 (1.34 ×)
Mamba-Had W4A4 6.10 (1.11 ×) failed

Quamba (Ours) W8A8 - 9.91

Table 8: Quantizing Mamba 2.8B with low bit-
width methods. The average accuracy on six
zero-shot tasks is reported.

Methods Precision Mamba-2.8b

Mamba FP16 63.1%

Mamba-Quip# W2A16 58.5%
Mamba-Had W4A4 30.2%

Quamba (Ours) W8A8 62.2%

F LAYER-WISED DISTRIBUTION OF SSMS

We analyzed the input and output distributions of SSM for Mamba family, as shown in Figure 9. The
box plots reveal the presence of outliers in both inputs and outputs.

SSM input x. In Figure 9 left, a skewed as well as asymmetric distribution is present in all layers
of SSM inputs. Although the activation values are relatively small (< 10), however, due to the
sensitivity of the linear recurrent dynamics, representing the input activations with low bit-width
data causes significant performance drops for all sizes of Mamba-family. Therefore, clipping the
distributions results in better quantization precision and avoids the accuracy degradation. Though
asymmetric quantization performs slightly better than symmetric quantization as shown in Table 9,
we choose symmetric quantization due to the support of most frameworks, e.g., CUTLASS. We leave
the asymmetric optimization in the future work.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Mamba-130m (SSM Iuput 𝑥) Mamba-130m (SSM Output 𝑦)

Mamba-370m (SSM Iuput 𝑥)

Mamba-1.4b (SSM Iuput 𝑥)

Mamba-2.8b (SSM Iuput 𝑥)

Mamba-370m (SSM Output 𝑦)

Mamba-1.4b (SSM Output 𝑦)

Mamba-2.8b (SSM Output 𝑦)

Figure 9: Box plots of the SSM inputs and outputs distributions for Mamba family. We obtained the
distributions using the Pile dataset, which serves as the calibration dataset for all our experiments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

SSM output y. In Figure 9 right, large outliers are observed in the SSM outputs. The outliers pose a
great challenge in quantizing SSMs, due to the skewed quantization resolution caused by the extreme
values (≥ 100). This finding in SSMs echoes the outlier phenomenon observed in Transformers. We
apply the Hadamard matrices to transform the output activations to an outlier-free space, making
quantization easier. Interestingly, the layers closer to the model output have larger outlier values,
suggesting that different quantization schemes can be applied to the earlier layers. We leave the study
for future work.

G EXPLORE QUANTIZATION ALGORITHMS FOR SSM INPUTS

In our investigation of 8-bit quantization strategies for the state space model (SSM), we observed that
the SSM input x exhibits outliers. Although these outliers are not excessively large, their presence
significantly impacts the quantization error, affecting the SSM output y. In this section, we present
the results and analysis of several other 8-bit quantization options in Table 9, though not necessarily
hardware efficient.

Table 9: We explore different methods for quantizating SSM inputs into 8-bit. For the quantization of
other tensors, we use the same settings as Quamba. We evaluate the quantized models and report the
accuracy on the LAMBADA dataset. Our method is generalized to current mainstream freamworks
and toolchains. (Sym., Asym., and Per. are short for symmetric, asymmetric, and percentile)

Methods for SSM Inputs Framework
Supports

LAMBADA Accuracy (↑)

130m 370m 1.4b 2.8b

FP16 Yes 41.24% 51.81% 63.82% 67.51%

Dynamic

MinMax Sym. Yes3 40.38% 51.45% 62.55% 66.62%

Static

MinMax Sym. Yes 34.10% 45.78% 44.89% 55.71%
MinMax Sym. Log2 No 40.31% 51.80% 63.57% 67.51%
MinMax Asym. Per. No 40.73% 50.46% 63.09% 66.76%
MinMax Sym. Per. (Ours) Yes 40.61% 50.37% 60.43% 65.67%

Dynamic quantization. One direct approach to provide a more accurate quantization mapping is
through dynamic quantization. By dynamically capturing the activation range based on the current
inputs, we can map the floating value into 8-bit with precise scaling factors. The approach boosts
the accuracy and closes the performance gap between FP16. However, the dynamic approach will
result in extra execution overhead on re-calculating the quantization scales, leading to sub-optimal
computation efficiency.

Asymmetric quantization. We notice that the visualized tensor distribution of SSM inputs is
asymmetric in Figure 9. To better utilize the bit-width, we could apply asymmetric quantization to
the SSM inputs. As shown in Table 9, asymmetric quantization yields better accuracy in the zero-shot
tasks, particularly for Mamba-1.4b and Mamba-2.8b models. However, asymmetric quantization
increases the computational load during inference and requires specific software framework and
hardware supports. We leave the asymmetric optimization for future work.

Log2 quantization. To avoid the quantization step skewed by the outliers, and to ensure that
smaller values in a tensor are accurately mapped, we can quantify the tensor in log-scale. Here, we
implement log2 quantization (Alsuhli et al., 2023; Miyashita et al., 2016), which maps the values
to the nearest power of 2, achieving the desired non-uniform mapping. Our log2 version slightly
outperforms Quamba. However, log2 matrix multiplication requires specific optimization on both
software and hardware levels. Our method is more generalizable to mainstream frameworks and
toolchains (i.e., PyTorch, CUTLASS).

3The dynamic approach will result in extra execution overhead on re-calculating the quantization scales.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Other alternatives. Exploring the power of exponents with advanced low-bit floating-point data
types (Kuzmin et al., 2024), such as E5M2 or E4M3 (Choquette, 2023), currently supported by
NVIDIA Hopper GPUs, might also be an effective solution for quantizing SSM inputs. A more
comprehensive study on quantizing SSMs using floating-point quantization is left for future work.

H GENERATION QUALITY

We also applied Quamba to a chat language model to evaluate its effectiveness in preserving generation
quality. Specifically, we used the Mamba-2.8B-Chat model (Mattern & Hohr, 2023), which is based
on Mamba-2.8B and fine-tuned on UltraChat200k (Tunstall et al., 2023). We compared the sentences
generated by the quantized and non-quantized models, as shown in Table 10. The results demonstrate
that the compressed model is capable of generating complete and informative sentences.

Table 10: Generated Examples of Quamba (W8A8) and Mamba (FP16)

Model Generated Sentences

Mamba
(FP16)

What’s great about the holiday season? I do not have a personal opinion or feelings. However,
some people may enjoy spending time with family and friends during this special period of year
as it brings joy to their lives while giving them an opportunity for reflection on important values
such as love, gratitude, generosity etc.. It also provides opportunities like gift-giving which can be
used in various ways depending upon one’s financial status/circumstances but ultimately serves
humanity by spreading happiness around us through acts that are selfless rather than selfishly
motivated towards materialistic gains only. Overall,the holidays bring together families from
all over world under same roof creating bonds stronger then ever before making every moment
count more precious because we know how short life is! So let me wish you happy new years!!!
Happy Holidays!! May your days ahead filled up fullness & peacefulness!!!

Quamba
(W8A8)

What’s great about the holiday season? I do not have a personal opinion or feelings. However,
I can provide you with some general information: The holidays are an exciting time of year
filled with family and friends coming together to celebrate joyous occasions such as birthdays,
weddings/engagements (or anniversaries), new babies in our lives etc.. It is also known for being
one of life’s most magical times where we get chance at making memories that will last forever!-
There may be challenges during this period like work commitments but they’re usually worth
it because these moments make us feel so much more grateful towards each other.- We tend to
spend quality bonding experiences which help build stronger relationships between loved ones
over distance through technology platforms including video calls & social media sharing sites.
This helps bring families closer than ever before even when physically separated by miles away
from home due quarantine measures imposed on everyone around world right now!!! So yes,the
Holidays definitely brings out best sides within ourselves!! Happy Holiday Season Everyone!!!

I REAL-TIME GENERATION ON EDGE GPUS

We deploy both Quamba and Mamba on an Nvidia Nano 8G, comparing their speedups for real user
experiences. We use the pre-trained weights of Mamba-Chat (Mattern & Hohr, 2023) and apply our
quantization techniques. Figure 10 shows a screen snapshot taken during the demo. We input the
same prompt to the model at the beginning (a) T = 0. At the initial time point (a) T = 0, the same
prompt is provided to both models. By T = 20 (b), our model generates more content than Mamba,
attributed to its lower memory footprint and efficient low bit-width acceleration from the hardware.
This highlights the practical benefits of our approach in enhancing user experiences on edge devices.

J COMPARING SSMS WITH SELF-ATTENTION LAYERS

Comparing the quantization sensitivity. We explore the quantization sensitivity of input and
output activation maps for both SSMs and self-attention layers, as shown in Figure 11. We conduct
experiments on Mamba 2.8B, a same-sized Transformer Pythia 2.8B, and a recently published,
comparably sized Transformer Llama 3.2 3B. Quantizing the input x and output y tensors leads to
the most significant accuracy drop on the LAMBADA dataset for SSMs, compared to other tensors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 10: Demo on Orin Nano 8G.

In contrast, quantizing the tensors in self-attention layers (i.e. h, q, k, v, and output y) results in
minimal accuracy loss. For transformers, using 8-bit hd tensors in feedforward layers significantly
degrades model performance. Due to the differing quantization sensitivity patterns between Mamba
and Transformer blocks, we highlight the smooth, outlier, and sensitive paths for both in Figure 12.
This highlights that different quantization methods are needed for SSM-based models.

Figure 11: Quantizing the input x and output y tensors causes the most significant accuracy drop on
the LAMBADA dataset for SSMs. In contrast, quantizing the tensors in self-attention layers results
in minimal accuracy loss.

Figure 12: We annotate the different sensitivity patterns for SSMs and self-attention layers, which
shows that they require different quantization techniques. The residual connections are simplified to
avoid cluttering the figure.

Visualizing activations. We visualize these activation maps in Figures 13 and 14. Figure 13 shows
the SSM activation maps in the last layer of Mamba 2.8B, while Figure 14 shows those for the
self-attention layer in Llama 3.2 3B. We use the same test sample to visualize these activations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 13: We visualize the activations of the SSM in the last layer of Mamba 2.8B. This figure
shows that the values in the x tensor are not significantly large. However, outliers are present in the y
tensor of the SSM output, making them difficult to represent in low bit-width data types.

Figure 14: We visualize the activations of the self-attention layer in the last layer of Llama 3.2 3B.
This figure shows that outliers are not present in the output y of the self-attention layers. In contrast
to SSMs, the outlier issue arises in the hd tensor of the feedforward layers.

Notably, SSMs and self-attention layers exhibit distinct activation patterns. Outliers appear in the
SSM output y, unlike in self-attention layers, where the outputs y remain smooth and do not present
outliers. In Transformer blocks, outliers only occur in the hd of the feedforward layers, making them
difficult to quantize. In contrast, Mamba blocks have large outliers in the SSM output y tensor, which
are challenging to represent with low-bit data types. While the x tensor values are not significantly
large, they are highly sensitive to quantization errors. We address this issue in Mamba blocks and
introduce Quamba to manage the unique quantization patterns of SSMs.

Comparing the precision mapping. Figure 15 compares our precision mapping to the standard
one used in Transformers (Zhao et al., 2023; Ashkboos et al., 2024b; Lin et al., 2024; Xiao et al.,
2023).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 15: We compare our precision mapping to the precision mapping commonly used in Trans-
formers. The residual connections are simplified to avoid cluttering the figure.

K LIMITATIONS AND BROADER IMPACTS

We find that the accuracy degradation is not negligible in both accuracy and perplexity in Table 2
and Table 3. Despite this, the performance trade-off is acceptable given the significant improvements
in latency and resource efficiency. Our work enables large language models to be deployed on
resource-limited devices. As a positive feature, our method may push the development of privacy-
centric on-device applications, where sensitive data can be processed locally without relying on
cloud services. However, our work may also present challenges such as increased device resource
consumption and potential security vulnerabilities if the local devices are compromised.

25

	Introduction
	Related Work
	Background
	Selective State Space Models
	Quantization
	Walsh–Hadamard Transform

	Quamba: Quantizing Mamba Blocks
	Preliminary Study
	Quantization for Selective SSM
	Other Operators

	Experiments
	Experimental Setup
	Model size and Latency
	Perplexity Evaluation
	Zero-shot Evaluation
	Quantizing Jamba: A Large-Scale Hybrid Mamba-Transformer LLM

	Ablation study
	Quamba Ablation
	Percentile-based Activation Clamping

	Conclusion
	Quantization Error Analysis for SSMs
	Theoretical Error Analysis
	Empirical Error Analysis

	Sensitivity Analysis of Quantizing SSMs
	Pareto front analysis for accuracy vs. latency
	Re-implementation of QuaRot on Mamba
	Low Bit-width Quantization
	Layer-wised Distribution of SSMs
	Explore Quantization Algorithms for SSM Inputs
	Generation Quality
	Real-time Generation on Edge GPUs
	Comparing SSMs with self-attention layers
	Limitations and Broader Impacts

