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Abstract

Prompt tuning shows great potential to sup-001
port relation extraction because it is effective002
to take full use of rich knowledge in pretrained003
language models (PLMs). However, current004
prompt tuning models are directly implement-005
ed on a raw input. It is weak to encode seman-006
tic dependencies of a relation instance. In this007
paper, we designed a cueing strategy which008
implants task specific cues into the input. It009
enables PLMs to learn task specific contextu-010
al features and semantic dependencies in a re-011
lation instance. Experiments on ReTACRED012
corpus and ACE 2005 corpus show state-of-013
the-art performance in terms of F1-score.014

1 Introduction015

Relation extraction (RE) identifies predefined se-016

mantic relationships between two named entities017

in a sentence. Because a sentence usually contains018

several named entities, which share the same con-019

textual features in a sentence and relation types are020

asymmetric, it is important to learn semantic de-021

pendencies relevant to considered entities. In deep022

neural networks, many techniques have been de-023

veloped to do so, for example, position embedding024

(Zeng et al., 2015), multi-channel (Chen et al.,025

2020), neuralized feature engineer (Chen et al.,026

2021) and entity indicators (Qin et al., 2021; Zhou027

and Chen, 2021). These models are common in028

that entities relevant features (e.g., entity positions029

or types) are encoded into a task specific represen-030

tation, then fed into a deep architecture for classi-031

fication. They predict confidence scores for every032

relation instance.033

For learning better representations, PLMs like034

ELMo (Peters et al., 2018) and BERT (Devlin035

et al., 2018) are widely adopted for embedding to-036

kens into distributed representations. They have037

achieved great success in relation extraction (Torfi038

et al., 2020). However, in traditional type classi-039

fication models (Soares et al., 2019; Li and Tian,040

2020; Zhao et al., 2021; Cohen et al., 2020), PLM- 041

s are mainly used to support token embedding. 042

The classification only depends on a single rep- 043

resentation of the whole input, which undoubtedly 044

results in a serious semantic loss. Furthermore, 045

the process to initialize PLMs is implemented as a 046

masked token prediction task (Devlin et al., 2018). 047

There is a gap between pre-training objectives and 048

fine tuning objectives, which weakens the effec- 049

tiveness of PLMs. 050

In prompt tuning, prompts are defined as tem- 051

plates with slots that take values from a verbal- 052

ized type token set. These prompts are concate- 053

nated with an input, then fed into PLMs to predic- 054

t masked slots, the same as a cloze-style schema 055

(Schick and Schütze, 2020). Because prompt tun- 056

ing can gap between pre-training objectives and 057

fine tuning objectives, it is effective to take use of 058

knowledge within PLMs. This strategy has been 059

successfully applied in tasks such as text classifi- 060

cation and natural language inference (Schick and 061

Schütze, 2020). 062

In relation extraction, current prompt tuning 063

models are often directly implemented on a raw 064

input concatenated with predefined prompt tem- 065

plates (Han et al., 2021; Shin et al., 2020; Gao 066

et al., 2020; Xiang et al., 2020). Rare work has 067

been done to tune PLMs for learning task specif- 068

ic features about considered entities. Because in 069

relation extraction it is very important to learn se- 070

mantic dependencies relevant to considered enti- 071

ties. In this paper, we designed a cueing strategy 072

which implants task specific cues into the input. 073

By combining the cueing strategy with prompt 074

tuning, it enables PLMs encoding semantic depen- 075

dencies between type tokens and contextual word- 076

s. Furthermore, the predicting process is similar 077

as that of PLMs tuning, it is helpful to bridge the 078

gap between PLMs and relation extraction. Our 079

study shows remarkable improvement. It reveals 080

a meaningful mechanism that is essential for rela- 081
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tion extraction and prompt tuning.082

2 Methodology083

A relation instance is defined as a 3-tuple I =084

⟨r, e1, e2⟩, which contains a relation mention r and085

two named entities e1 and e2. Relation mention086

r is a token sequence r = [t1, t2, · · · , tn]. En-087

tities ek = [ti, · · · , tj ] (k ∈ {1, 2}) is a sub-088

string of r. Let Y = {y0, y1, · · · , yM} be a re-089

lation type set. It is composed of M positive rela-090

tion types and one negative relation types y0. Let091

I = {I1, I2, · · · } represent a relation instance set.092

Then, relation extraction is represented as a map093

between I and Y, denoted as: f : I → Y, where094

f is a function which can be a shallow model or a095

deep neural network.096

In a traditional model, a deep architecture (de-097

noted as N ) is implemented on the original input098

r to extract its representation. To encode exter-099

nal knowledge, the network N can be embedded100

with a PLM to support token embedding. It is de-101

noted as NM. The output of NM is represented102

as H = [H1,H2, · · · ,Hn]. Then, it is fed into a103

classifier (C) to make a prediction. The process is104

formalized as:105

P (Y|I) = Softmax

(
C
(
NM(r)

))
(1)106

Directly implementing a deep network on r usu-107

ally cause serious performance degradation, be-108

cause the network know nothing about the posi-109

tion of considered entities. To handle this prob-110

lem, task relevant entity cues can be implemented111

into the input to control the attention of a deep net-112

work for learning task specific representation. It is113

formalized as:114

Cueing(ek) = [⟨ck⟩, ek, ⟨/ck⟩],
Cueing(r) = [r̈|ek/Cueing(ek),k={1,2}].

(2)115

where, ⟨ck⟩ and ⟨/ck⟩ are specific tokens repre-116

senting the start and end boundaries of entity ek117

(k = {1, 2}). They are named as entity cues.118

In Equation (2), the first equation concatenates119

two tokens on both sides of ek. In the second120

equation, ek/Cueing(ek) denotes to the string121

replacement operation, where ek is replaced by122

Cueing(ek). Therefore, the function Cueing(r)123

implant entity cues into both side of the considered124

entity pair. With this settings, Equation (1) can be125

revised as:126

P (Y|I)=Softmax

(
C
(
NM

(
Cueing(r)

)))
(3)127

Entity cues enables the deep network focusing 128

on considered entity pair. Then, the classification 129

is based on a sentence representation relevant to 130

considered entities. 131

2.1 Prompt Tuning Paradigm 132

In prompt tuning, class types are verbalized into 133

a token set V = {person, parent, true, · · · }. It 134

is composed of entity types, relation types or cat- 135

egory labels (e.g., “true” or “false”). Elements of 136

V are referred as “type tokens”. Then, a prompt 137

is defined as a template with slots can be filled by 138

verbalized type tokens (e.g., “It is a [MASK]”). 139

It is concatenated with a raw input and fed into 140

a deep network for predicting the distribution of 141

type tokens in the position of “ [MASK]”. 142

The design of prompt templates heavily depend- 143

s on the property of a task. At current, it is an art 144

instead of a science. In this paper, we follow the 145

work of Han et al. (Han et al., 2021), where a re- 146

lation prompt is defined as a template with three 147

slots: “P(e1, e2) = the [MASK]1 e1 is [MASK]2 148

to [MASK]3 e2”, where, [MASK] takes values 149

from V. The prompt is concatenated with the in- 150

put and fed into a deep neural network to learn 151

token representations H. It is represented as: 152

[H1,· · ·,HL]=NM
(
Cueing(r)+P(e1, e2)

)
(4) 153

In prompt tuning, instead of outputting a class 154

label based on token representations [H1,· · ·,HL], 155

for each slot ([MASK]) in a prompt template, the 156

normalized confidence score that NM assigns a 157

type token v ∈ V to [MASK]i is computed as: 158

159

S([MASK] = v|I) = Hv ·HMi (5) 160

where, HMi ∈ H is the representation of a 161

[MASK]i and Hv is the token type representation 162

of v ∈ V in the employed PLMs. Then, given a 163

relation instance I , the distribution of type token v 164

in slot [MASK]i is computed as: 165

P (v|I)=
exp

(
S
(
[MASK]=v|I

))
∑

v′∈V exp
(
S
(
[MASK]=v′|I

)) (6) 166

In prompt tuning, a right output requires that 167

three slots are correct recognized. Because prompt 168

tuning is effective to use rich knowledge in PLMs, 169

it still shows competitive performance. 170
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Figure 1: Examples of Cueing Strategies

2.2 Cueing Strategies171

In our method, instead of designing new prompt172

templates, we focus on designing and implanting173

entity cues for tuning PLMs to support relation ex-174

traction. Several cueing strategies have been pro-175

posed in this paper. They are listed as follows:

Cueing Types Demonstration
Cueingo(ek) [ek]
Cueinge(ek) [⟨ck⟩, ek, ⟨/ck⟩]
Cueinght(ek) [{(head) e1}], [⟨⌈tail⌋ e2⟩]

Table 1: Cueing Strategies

176
In Table 1, square brackets is used to indicate177

that the inner is a token sequence. Cueingo mean-178

s that the input relation mention is unchanged.179

Cueinge replaces entity ek (k ∈ {1, 2}) with a to-180

ken sequence “⟨ck⟩, ek, ⟨/ck⟩”. Note that all pairs181

of closed braces and parentheses are also used as182

tokens to indicate the position of named entities.183

In Cueinght(ek), a “head” token and a “tail” to-184

ken with different braces are used to distinguish185

different entities. In this strategy, entity types can186

also be used as the entity cues.187

Entity cues are implanted into the input. Then,188

the revised input is concatenated with prompt tem-189

plates to tune PLMs for relation extraction. In Fig-190

ure 1, we give examples to demonstrate the cueing191

strategy.192

In Figure 1, “PTR prompt” is the prompt tem-193

plate proposed by Han et al. (Han et al., 2021),194

in which a template has three slots. [MASK]1 and195

[MASK]3 can take values in {“person”, “country”,196

· · · }. They denote to the type of named entities.197

[MASK]2 takes values in {“was born in”, “was lo-198

cated in”, · · · }. It is used to indicate the relation199

between named entities. In “Naive prompt”, three200

[MASK] are directly used without any contextual201

words. It is mainly used for comparison. 202

The cueing strategies listed in Table 1 are con- 203

catenated with both “PTR prompt” and “Naive 204

prompt”, where ⊕ denotes to the concatenating 205

operation. For example, “Cueinght(ek)+PTR” 206

means that, given a relation instance ⟨r, e1, e2⟩, 207

we first replace e1 and e2 in r by two string 208

“{(head) e1}” and “⟨⌈tail⌋ e2⟩”. Then, the re- 209

vised relation mention (r̈|ek/Cueinght(ek),k={1,2}) 210

is concatenated with the PTR prompt. The output 211

is fed into a PLM to predict type tokens in each 212

[MASK]. If a PLM outputs “person”, “is paren- 213

t of”, “person”, then a “person:parent“ relation is 214

identified between e1 and e2. 215

3 Experiments 216

Our strategy is evaluated on the ReTACRED cor- 217

pus (Stoica et al., 2021) and the ACE 2005 En- 218

glish corpus1. RoBERTaLARGE (Liu et al., 2019) 219

is adopted as our PLMs2. The max length for each 220

input is set as 150. The “Adam” is used as opti- 221

mizer. Dropout rate is set to 0.1 to avoid the over- 222

fitting. Epochs, learning rate and batch size are set 223

as 20, 2e-5, 64, respectively. To compare with re- 224

lated work, we follow experiment settings as Han 225

et al. (2021)3 in the ReTACRED corpus and Qin 226

et al. (2021) in the ACE corpus. 227

3.1 Comparing with Related Work 228

In this experiment, our cueing strategy is com- 229

pared with spanBERT (Joshi et al., 2020), 230

REBEL (Cabot and Navigli, 2021), Typed- 231

marker (Zhou and Chen, 2021), PTR (Han et al., 232

2021), KnowPrompt (Xiang et al., 2020), Dual 233

PN (Park and Kim, 2020), BERT-CNN (Qin et al., 234

1https://catalog.ldc.upenn.edu/LDC2006T06
2https://huggingface.co/roberta-large
3https://github.com/thunlp/PTR
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2021) and SSM (Yanping et al., 2017). We adopt-235

ed the Cueinght(ek) strategy in Table 1. The re-236

vised relation mention is concatenated with the P-237

TR prompt. An example is illustrated in Figure238

1. Every concatenated string is fed into a PLM to239

predict type tokens in masked slots. Table 2 gives240

the performance of our strategy and related work.241

All performance is reported in F1 score (%).242

Corpus Tuning Methods F1

R
eT

A
C

R
E

D

Fi
ne

spanBERT 85.3
REBEL 90.4
Typed-marker 91.1

Pr
om

pt KnowPrompt 89.8
PTR 90.9
Ours 92.36

A
C

E

Fi
ne

Dual PN 80.8
BERT-CNN 85.7
SSM 80.75

Prompt Ours 88.92

Table 2: Comparing with related work

Prompt tuning outputs type tokens based con-243

textual features and semantic dependencies of a244

sentence, it is effective to take full use of rich245

knowledge in PLMs and bridge the gap between246

PLMs training and downstream tasks. As Table247

2 showing, compared with fine tuning models,248

prompt tuning achieves competitive performance.249

However, prompt tuning is not always better than250

the fine tuning, because fine tuning models also251

address the gap between PLMs and integrate ex-252

ternal knowledge. Therefore, they are also effec-253

tive to use knowledge in PLMs.254

As cueing strategy is integrated during promp-255

t tuning, the model can better utilize the seman-256

tic dependency information between entity pairs.257

The result shows that, implanting entity cues is258

valuable to support relation extraction. Our model259

achieves the state-of-the-art performance in both260

the ReTACRED and ACE corpora. The conclu-261

sion reveals the mechanism of prompt tuning. It is262

significant to support future studies on both rela-263

tion extraction and prompt tuning.264

3.2 Ablation Study265

In order to demonstrate the effectiveness of cue-266

ing strategies, we combined them with the Naive267

prompt and PTR prompt to show the influence of268

cueing strategies on the performance. The result269

was listed in Table 3.270

ID Cueing+Prompt ReTACRED ACE

(1)
Cueingo(ek)+Naive 43.37 72.97
Cueingo(ek)+PTR 90.46 86.07

(2)
Cueinge(ek)+Naive 90.62 82.30
Cueinge(ek)+PTR 91.12 87.95

(3)
Cueinght(ek)+Naive 90.43 88.92
Cueinght(ek)+PTR 92.36 89.44

Table 3: Performance with Different Cueing Strategies

(1) In Cueingo(ek)+Naive, every original input 271

is directly concatenated with a naive prompt. It is 272

mainly conducted as the baseline of prompt tuning 273

for comparison. Cueingo(ek)+PTR is the strate- 274

gy used in Han et al. (2021). Because the PTR 275

prompt contains contextual words, it considerably 276

improves the performance. 277

(2) In Cueinge(ek)+Naive, entity cues are im- 278

planted into the input to indicate the position of en- 279

tities ei (i ∈ {1, 2}). Comparing with related work 280

in Table 2, it already achieved the state of the art 281

performance. The result indicates that entity cues 282

are every powerful in prompt tuning based mod- 283

els. Cueinge(ek)+PTR also outperforms its naive 284

version. 285

(3) In this cueing strategy, different entity cues 286

are used to make a distinction between entities. In 287

stead of specific tags (e.g., ⟨ck⟩ or ⟨/ck⟩), contex- 288

tual words are used as entity cues (e.g., entity type- 289

s or “head” and “tail”). In this cueing strategy, 290

both entity cues and prompts contains contextu- 291

al words. They are effective to encode contextual 292

features and semantic dependencies of a relation 293

instance. 294

In all experiments, when both entity cues and 295

prompts are used simultaneously, the relation ex- 296

traction achieves more robust and superior perfor- 297

mance. Compared with the traditional entity cues 298

method which can only mark the location of the 299

entity, our cueing strategy packaged the entity or- 300

der and location together. This setting achieves the 301

highest performance in our experiments. 302

4 Future Work 303

In this paper, we proposed a cueing strategy for 304

relation extraction. It achieves the state of the art 305

performance. In our future work, more studies will 306

be conducted to reveal the mechanism of cueing 307

strategy. Furthermore, the cueing strategy can be 308

extended to support other NLP tasks. 309
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