

000 COGNITIVE STRUCTURE GENERATION VIA DIFFUSION 001 MODELS WITH POLICY OPTIMIZATION 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Cognitive structure (CS), a student’s construction of concepts and inter-concept
012 relations, has long been recognized as a foundational notion in educational psy-
013 chology, yet remains largely unassessable in practice. Existing approaches such
014 as knowledge tracing (KT) and cognitive diagnosis (CD) simplify and indirectly
015 approximate CS, but they intertwine representation learning with prediction ob-
016 jectives, limiting generalization, interpretability, and reuse across tasks. To ad-
017 dress this gap, we propose Cognitive Structure Generation (CSG), a task-agnostic
018 framework that explicitly models CS through generative modeling. Based on edu-
019 cational theories, CSG first pretrains a Cognitive Structure Diffusion Probabilistic
020 Model (CSDPM) and then applies reinforcement learning with SOLO-based hi-
021 erarchical rewards to [capture plausible patterns of cognitive development](#). By
022 decoupling cognitive structure representation from downstream prediction, CSG
023 produces interpretable and transferable cognitive structures that can be seamlessly
024 integrated into diverse student modeling tasks. Experiments on four real-world
025 datasets show that CSG yields more comprehensive representations, substantially
026 improving performance while offering enhanced interpretability and modularity.

027 1 INTRODUCTION

029 Cognitive structure, originally conceived in topological psychology and later embraced by cognitive
030 psychology in education (Piaget, 1952; Bruner, 2009; Ausubel, 1968), denotes the knowledge
031 system within a student’s mind, manifested as an inherent learning state. Through the learning
032 processes, students continually integrate new concepts and reorganize existing ones to refine their
033 cognitive structures for further learning. Formally, a cognitive structure can be modeled as an evolving
034 graph (Novak & Gowin, 1984), with nodes and edges representing the student’s construction of
035 concepts and inter-concept relations, respectively (Steffe & Gale, 1995).

036 Cognitive structure assessment, has long been a central topic in psychometrics (Lord & Novick,
037 2008). Traditional methods primarily relied on expert-defined educational principles to directly
038 calculate cognitive structure but lacked sufficient accuracy (Tatsuoka, 2009; Lin et al., 2016b). Con-
039 sidering that cognitive structure is an inherent learning state, researchers have shifted to indirectly
040 measuring it based on students’ responses to test items. Knowledge tracing (KT) (Corbett & An-
041 derson, 1994) and cognitive diagnosis (CD) (Leighton & Gierl, 2007) are prototypical tasks. KT
042 predicts the response r_t at time t as $P_{KT}(r_t) = f_{KT}(\mathbf{h}_t, \beta_t; \Phi)$, where \mathbf{h}_t is the student’s latent
043 state inferred from historical interactions before t , β_t is the tested item’s features, and Φ denotes
044 the model parameters (Abdelrahman et al., 2023). CD models the association between response r
045 and student’s cognitive state or ability θ based on tested item β as $P_{CD}(r) = f_{CD}(\theta, \beta; \Omega)$, where
046 Ω denotes the model parameters (Wang et al., 2024). Although recently emerged KT (Piech et al.,
047 2015; Choi et al., 2020; Zhang et al., 2017) and CD (Cheng et al., 2019; Wang et al., 2020) models
048 have achieved remarkable performance, they still face two foundational limitations.

049 First, both the student’s latent state \mathbf{h}_t in KT and the cognitive state or ability θ in CD are typi-
050 cally narrowed to the student’s construction of individual concepts, i.e. $\mathbf{h}_t, \theta \rightarrow \mathbb{R}^L$ (where L is
051 the number of concepts), and thus cannot model the student’s construction of inter-concept rela-
052 tions necessary for modeling a complete cognitive structure and its holistic evolution during the
053 real learning process. Although some studies have applied graph learning methods on static con-
cept maps (Liu et al., 2019; Nakagawa et al., 2019; Tong et al., 2020) or heterogeneous interaction

graphs (Gao et al., 2021; Yang et al., 2024) to obtain enhanced representations of h_t and θ , they only model students' construction on individual concepts and still do not explicitly model students' construction of inter-concept relations. Therefore, our core motivation is to explicitly and comprehensively model cognitive structure (CS), the states of the students' construction of concepts and inter-concept relations (Ausubel, 1968), which remains a foundational yet unassessable concept in educational practice.

Second, by definition, students' responses are only an external manifestation or an indirect indicator of their underlying learning state—namely, the cognitive structure in this paper, h_t in KT, and θ in CD. Yet most existing models have become increasingly preoccupied with maximizing response prediction accuracy, often through extensive domain feature integration (Liu et al., 2021; Xu et al., 2023; Zhou et al., 2021), ever more sophisticated network designs and optimizations (Yang et al., 2023a;b; Li et al., 2024; Liu et al., 2024b; Chen et al., 2023), and so forth. While such directions improve accuracy, they still tightly couple state inference with response prediction, intertwining representation learning with prediction objectives, which restricts generalization, particularly when models are applied in cold-start or uncertain settings, and limits interpretability and modular reuse.

To bridge this gap, we propose **Cognitive Structure Generation (CSG)**, a task-agnostic framework that explicitly models CS through generative modeling, which decouples cognitive structure representation from downstream prediction. Guided by cognitive structure theory (Ausubel, 1968) and constructivism (Steffe & Gale, 1995), CSG aims to produce interpretable and transferable cognitive structures that can be seamlessly integrated into diverse student modeling tasks, thereby enhancing generalization, interpretability, and modularity. Specifically:

First, consider that a cognitive structure is manifested as a graph, we naturally cast *cognitive structure generation* as a *graph generation* task, and propose a *Cognitive Structure Diffusion Probabilistic Model* (CSDPM), whose forward diffusion and reverse denoising processes can learn the underlying distribution of real cognitive structures and produce novel ones. However, since real cognitive structures cannot be directly observed, we devise a rule-based method to infer students' construction of concepts and inter-concept relations from interaction logs, yielding a set of simulated cognitive structures, which is then used to pretrain the CSDPM and initialize its basic capability for CSG.

Second, although the cognitive structures sampled from the pretrained CSDPM match the distribution over simulated cognitive structures, they are insufficient to reflect the genuine levels of cognitive development (Flavell, 1977; Keil, 1992) that students achieve through their learning processes. To fill this gap, inspired by the *Structure of the Observed Learning Outcome (SOLO) taxonomy* (Biggs & Collis, 2014) that characterizes five levels of cognitive development, we define a fine-grained, hierarchical reward function. Using these reward signals, we optimize the policy of the denoising process via reinforcement learning to better [capture plausible patterns of cognitive development](#).

To the end, the pretrained and fine-tuned CSDPM, has been fully equipped for cognitive structure generation, and the generated cognitive structures can be leveraged for diverse downstream student modeling tasks in the educational domain. To the best of our knowledge, we are the **first** to:

- Reformulate cognitive structure modeling as a cognitive structure generation task;
- Decouples cognitive structure representation from downstream prediction;
- Propose a CSDPM with a two-stage design, pretraining on simulated structures and fine-tuning via reinforcement learning with SOLO-based hierarchical rewards.

Experimental results on four popular real-world education datasets show that cognitive structures generated by CSG offer more comprehensive and effective representations for student modeling, substantially improving performance on KT and CD tasks while enhancing interpretability.

2 RELATED WORKS

We organize related works into three strands. **Cognitive Structure Modeling** has been rooted in psychology and education (Piaget, 1952; Ausubel, 1968), where traditional psychometric approaches construct rule-based graphs of students' concepts and relations but lack personalization. With the rise of learning analytics, researchers approximate cognitive structures from student responses via knowledge tracing (Piech et al., 2015; Choi et al., 2020) and cognitive diagnosis

(Leighton & Gierl, 2007; Cheng et al., 2019). KT methods employ hidden-state models, classifiers, or encoder-decoders, sometimes augmented with concept maps or heterogeneous graphs (Liu et al., 2019; Yang et al., 2024), while CD methods focus on fine-grained attributes (Xu et al., 2023). **We also note recent diffusion-based KT/CD models such as MSKT (Zhang et al., 2024b) and DiffCog (Zhao et al., 2024), which couple diffusion processes with latent knowledge representations for improved KT/CD prediction.** However, they tend to focus on the mastery of individual concepts, overlooking the holistic evolution of cognitive structures. They focus solely on students' mastery of individual concepts while overlooking their mastery of inter-concept relations, thereby hindering the modeling of their holistic evolution of cognitive structures. Recent attempts still rely on predefined graphs (Chen et al., 2024), leaving the task of holistic cognitive structure generation largely unexplored. **Graph Diffusion Probabilistic Models (DPMs)** extend deep generative frameworks such as autoregressive models, VAEs, GANs, and normalizing flows. Continuous-time DPMs (Jo et al., 2022) denoise Gaussian-corrupted graphs, whereas discrete variants (Vignac et al., 2023) use categorical transitions to better preserve sparsity. These advances demonstrate the potential of diffusion models for complex graph generation, yet their mechanisms remain to be adapted for the unique challenges of cognitive structure generation. **Optimization of DPMs** has increasingly leveraged reinforcement learning to align generative models with external objectives. Recent approaches in vision (Fan et al., 2023; Black et al., 2024) and graphs (Liu et al., 2024c) treat reverse diffusion as a Markov decision process optimized via policy gradients. Building on this line of work, we propose a SOLO-based reward to optimize the graph diffusion model for CSG, thereby aligning the generated structures more effectively with cognitive development levels. For a more comprehensive discussion of related studies, please refer to Appendix A.

3 THE CSG FRAMEWORK

3.1 PROBLEM FORMULATION

Suppose a learning system is defined as $\mathcal{L} = \langle S, Q, K, R \rangle$, where $S = \{s_i\}_{i=1}^N$ is the set of N students, $Q = \{q_j\}_{j=1}^M$ the set of M questions, and $K = \{k_l\}_{l=1}^L$ the set of L knowledge concepts. Students answer questions from Q , generating response logs $R = \{r_{ij} \mid \text{student } s_i \text{ answered question } q_j\}$, where $r_{ij} = 1$ if s_i answers q_j correctly and $r_{ij} = 0$ otherwise. For each student s_i , the sequence of historical interactions up to timestamp T is denoted as $X_i^T = \{(q_j, r_{ij})^t\}_{t=1}^T$, where $(q_j, r_{ij})^t$ is the question-response pair at time step t .

A student s_i 's cognitive structure at time T is defined as a graph $\mathcal{G}_i^T = (\mathcal{V}_i^T, \mathcal{E}_i^T)$. The node set $\mathcal{V}_i^T \in \mathbb{R}^{L \times c}$ represents s_i 's construction states for the L concepts in K , and the edge set $\mathcal{E}_i^T \in \mathbb{R}^{L \times L \times c}$ represents the construction states of inter-concept relations, where c is the size of the discrete construction state space (e.g., “constructed” vs. “unconstructed”). Since we treat the cognitive structure as an undirected graph, all subsequent operations are applied to the upper-triangular entries \mathcal{E}^+ of \mathcal{E} , after which the matrix is symmetrized. Our goal is to generate \mathcal{G}_i^T from X_i^T , formally defined as a mapping function $f_{CSG} : X_i^T \rightarrow \mathcal{G}_i^T$.

To implement this mapping, we propose the *Cognitive Structure Diffusion Probabilistic Model* (CSDPM). The CSDPM is first pretrained on simulated cognitive structures to initialize its generative capacity, and then fine-tuned via policy optimization to align generation with genuine cognitive development. The holistic structures produced by the optimized CSDPM can then be used in downstream tasks such as knowledge tracing (KT) and cognitive diagnosis (CD): $P_{KT}(r_{ij}^{T+1}) = f_{KT}(\mathcal{G}_i^T, \beta(q_j^{T+1}); \Phi)$ and $P_{CD}(r_{ij}) = f_{CD}(\mathcal{G}_i^T, \beta(q_j); \Omega)$, where $\beta(q)$ denotes the embedding of question q , and Φ, Ω are model parameters.

The overall architecture of CSG is illustrated in Fig.1. The CSG framework consists of two stages: pretraining CSDPM and optimizing CSDPM, which we will detail in the following subsections.

3.2 STAGE I: PRETRAINING CSDPM WITH SIMULATED COGNITIVE STRUCTURES

The goal of Stage I is to initialize the CSDPM so that it captures meaningful inductive biases about how students construct knowledge. Unlike other graph generation domains (Liu et al., 2024a; Zhang et al., 2024a; Trivedi et al., 2024; Zhao et al., 2021), training here ideally requires access to ground-

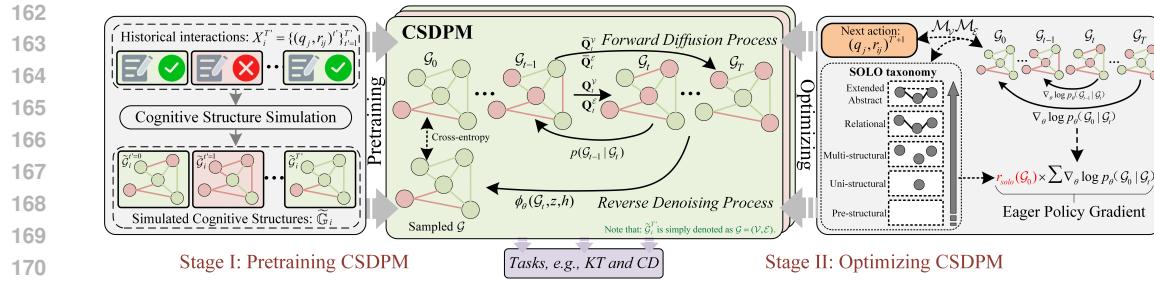


Figure 1: **(Overview)**. The CSG includes two stages: pretraining CSDPM with Simulated Cognitive Structures and optimizing CSDPM via SOLO-based Hierarchical Reward. In stage I, the Cognitive Structure Simulation module (left) produces simulated cognitive structures that are used to pretrain the CSDPM. In stage II, a SOLO-based reward is introduced to optimize the CSDPM’s policy via RL (right). Once pretrained and optimized, the CSDPM can generates cognitive structures, whose effectiveness is validated on KT and CD through response prediction.

truth cognitive structures, which are not directly observable in practice. To address this, we design a simple *rule-based simulation process* grounded in theories of cognitive structure (Ausubel, 1968) and constructivist learning (Steffe & Gale, 1995), which serves as a proxy for pretraining.

Cognitive Structure Simulation. For each student s_i and interaction history X_i^T , we simulate a cognitive structure $\tilde{\mathcal{G}}_i^T = (\mathcal{V}_i^T, \mathcal{E}_i^T)$ by defining rule-based functions for concept states and relation states. Inspired by Lin et al. (2016a), we compute the construction state of concept k_l by

$$f_{UOC}(k_l, X_i^T) = \frac{\sum_{(q_j, r_{ij})^t \in X_i^T} \omega_{l,j} \cdot r_{ij}}{\sum_{(q_j, r_{ij})^t \in X_i^T} \omega_{l,j}}, \quad (1)$$

and the construction state of the relation between concepts k_a and k_b by

$$f_{UOR}(k_a, k_b, X_i^T) = \frac{\sum_{(q_j, r_{ij})^t \in X_i^T} \mathbf{1}\{\omega_{a,j} > 0 \wedge \omega_{b,j} > 0\} (\omega_{a,j} + \omega_{b,j}) r_{ij}}{\sum_{(q_j, r_{ij})^t \in X_i^T} \mathbf{1}\{\omega_{a,j} > 0 \wedge \omega_{b,j} > 0\} (\omega_{a,j} + \omega_{b,j})}. \quad (2)$$

Here, $\omega_{l,j}$ denotes the weight of concept k_l in question q_j , obtained by normalizing the Q-matrix across concepts that a question involves. This ensures that if a question taps multiple concepts, each receives a proportional share of weight. To better reflect real-world data and improve robustness, we also add small Gaussian perturbations to the Q-matrix entries. In Appendix H, we also provide a detailed example with full calculation steps.

Intuition. Equations 1 and 2 can be viewed as *weighted accuracies* that approximate the likelihood a student has constructed a given concept or relation. Eq. 1 averages the student’s correctness on all questions involving concept k_l , weighted by how strongly the question tests k_l . Intuitively, if a student answers many k_l -related questions correctly, the ratio will approach 1, signaling that the concept is well constructed. Eq. 2 measures co-construction: it averages correctness on questions that involve *both* k_a and k_b , weighted by their combined relevance. Thus, if a student tends to succeed on joint questions, the relation between the two concepts is considered constructed.

From probabilities to discrete states. The f_{UOC} and f_{UOR} are empirical probabilities in $[0, 1]$. To map them into the discrete construction space Δ^c , we round the values and apply a one-hot encoding, yielding $\tilde{v}_{i,l}^T$ and $\tilde{e}_{i,a-b}^T$. By repeating this process for all students s_i and timestamps T , we obtain a set of simulated cognitive structures $\tilde{\mathcal{G}}$, which provides the training data to pretrain the CSDPM through forward diffusion and reverse denoising. For clarity, we drop student subscripts and time superscripts when unambiguous, writing \mathcal{G}, v, e in place of $\tilde{\mathcal{G}}_i^T, \tilde{v}_{i,l}^T, \tilde{e}_{i,a-b}^T$. To avoid confusion between interaction timestamps and diffusion steps, we denote the former by T' now and reserve T for diffusion steps.

Forward Diffusion Process. Our CSDPM uses a forward diffusion process $q(\mathcal{G}_{1:T} \mid \mathcal{G}_0) = \prod_{t=1}^T q(\mathcal{G}_t \mid \mathcal{G}_{t-1})$ that gradually corrupts an initial simulated cognitive structure $\mathcal{G}_0 \sim q(\mathcal{G}_0)$ into near-uniform noise $q(\mathcal{G}_T)$ after T steps. The transition admits a node/edge factorization over the

216 discrete construction state space:
 217

$$218 \quad q(\mathcal{V}_t | \mathcal{V}_{t-1}) = \prod_{v \in \mathcal{V}} q(v_t | v_{t-1}), \quad q(\mathcal{E}_t | \mathcal{E}_{t-1}) = \prod_{e \in \mathcal{E}^+} q(e_t | e_{t-1}), \quad (3)$$

220 where \mathcal{E}^+ denotes the upper-triangular edge set (the graph is symmetrized afterwards). For each
 221 categorical node state $v \in \Delta^c$, we use the discrete noising kernel $q(v_t | v_{t-1}) = \text{Cat}(v_t; v_{t-1} \mathbf{Q}_t^v)$,
 222 $\mathbf{Q}_t^v = \alpha_t \mathbf{I} + (1 - \alpha_t) \frac{\mathbf{1}_c \mathbf{1}_c^\top}{c}$ with schedule $\alpha_t \in [0, 1]$ decreasing as t increases (Austin et al., 2021).
 223 Here, $\mathbf{1}_c$ is the c -dimensional all-ones vector and $\frac{\mathbf{1}_c \mathbf{1}_c^\top}{c}$ is the uniform transition over Δ^c . Thus,
 224 $\alpha_t = 1$ leaves the signal unchanged ($\mathbf{Q}_t^v = \mathbf{I}$), while smaller α_t mixes in more uniform noise. Let
 225 $\mathbf{Q}_t^v = \mathbf{Q}_1^v \mathbf{Q}_2^v \cdots \mathbf{Q}_t^v$. Then the marginal and one-step posteriors admit closed forms:
 226

$$227 \quad q(v_t | v_0) = \text{Cat}(v_t; v_0 \bar{\mathbf{Q}}_t^v), q(v_{t-1} | v_t, v_0) = \text{Cat}\left(v_{t-1}; \frac{(v_t (\mathbf{Q}_t^v)^\top) \odot (v_0 \bar{\mathbf{Q}}_{t-1}^v)}{v_0 \bar{\mathbf{Q}}_t^v v_t^\top}\right), \quad (4)$$

230 where \odot denotes element-wise product and all vectors are row-stochastic. As t grows and
 231 $\prod_{s=1}^t \alpha_s \rightarrow 0$, each node approaches the uniform distribution $q(v_T | v_0) \approx \text{Cat}(v_T; \frac{\mathbf{1}_c}{c})$; edge
 232 transitions are defined analogously.
 233

234 **Reverse Denoising Process.** Given the forward corruption, we learn a parametric reverse process
 235 $p_\theta(\mathcal{G}_{0:T}) = p(\mathcal{G}_T) \prod_{t=1}^T p_\theta(\mathcal{G}_{t-1} | \mathcal{G}_t)$ to recover cognitive structures from near-uniform noise
 236 $p(\mathcal{G}_T) \approx q(\mathcal{G}_T)$. We factor the reverse transition into nodes and edges:

$$237 \quad p_\theta(\mathcal{G}_{t-1} | \mathcal{G}_t) = \prod_{v \in \mathcal{V}} p_\theta(v_{t-1} | \mathcal{G}_t) \prod_{e \in \mathcal{E}^+} p_\theta(e_{t-1} | \mathcal{G}_t). \quad (5)$$

240 Following the standard x_0 -parameterization in discrete diffusion (Hasselt, 2010; Karras et al., 2022),
 241 each conditional can be expressed by marginalizing the exact posterior with a prediction of the clean
 242 state:
 243

$$244 \quad p_\theta(v_{t-1} | \mathcal{G}_t) = \sum_{v_0 \in \Delta^c} q(v_{t-1} | v_t, v_0) p_\theta(v_0 | \mathcal{G}_t), \quad p_\theta(e_{t-1} | \mathcal{G}_t) = \sum_{e_0 \in \Delta^c} q(e_{t-1} | e_t, e_0) p_\theta(e_0 | \mathcal{G}_t), \quad (6)$$

246 where a neural network predicts $p_\theta(v_0 | \mathcal{G}_t)$ and $p_\theta(e_0 | \mathcal{G}_t)$ given the noisy graph \mathcal{G}_t .
 247

248 **Training Objective.** We pretrain on the simulated dataset $\tilde{\mathbb{G}}$ by maximizing the expected log-
 249 likelihood of clean structures conditioned on noisy ones:
 250

$$251 \quad J_{\text{CSDPM}}(\theta) = \mathbb{E}_{\mathcal{G}_0 \sim \tilde{\mathbb{G}}, t \sim \mathcal{U}[\mathbb{1}, T]} [\mathbb{E}_{q(\mathcal{G}_t | \mathcal{G}_0)} [\log p_\theta(\mathcal{G}_0 | \mathcal{G}_t)]], \quad (7)$$

252 with t sampled uniformly from $[\mathbb{1}, T]$. At generation time, we sample $\mathcal{G}_T \sim p(\mathcal{G}_T)$ and iteratively
 253 draw $\mathcal{G}_{t-1} \sim p_\theta(\mathcal{G}_{t-1} | \mathcal{G}_t)$ to obtain the trajectory $(\mathcal{G}_T, \mathcal{G}_{T-1}, \dots, \mathcal{G}_0)$ for CSG.
 254

255 **Parametrization.** We instantiate p_θ with an extended Graph Transformer Dwivedi & Bresson
 256 (2020); Vignac et al. (2023) that takes a noisy cognitive structure $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t)$ as input and outputs
 257 distributions over clean node and edge states. Following (Vignac et al., 2023), we retain graph-
 258 theoretic feature integration and additionally condition the model on two auxiliary features: (i) a
 259 diffusion-step embedding that encodes the current noise level t , and (ii) an embedding of the stu-
 260 dent’s interaction history $X^{T'}$, which provides task-specific guidance. An algorithmic summary is
 261 provided in Appendix B.
 262

263 3.3 STAGE II: OPTIMIZING CSDPM VIA SOLO-BASED HIERARCHICAL REWARD

264 Building on the pretrained CSDPM, we further optimize its reverse denoising process to better align
 265 generation with genuine cognitive development. Inspired by the SOLO taxonomy (Biggs & Collis,
 266 2014), we introduce a fine-grained hierarchical reward function and cast the denoising process as a
 267 reinforcement learning problem.
 268

269 **Standard Markov Decision Process Formulation.** A standard MDP is specified by
 270 $(\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \rho_0)$, where \mathcal{S} is the state space, \mathcal{A} the action space, $\mathcal{P}(s' | s, a)$ the transition kernel,
 271 $r(s, a)$ the reward, and ρ_0 the initial-state distribution. Under a parameterized policy $\pi_\theta(a | s)$, an

agent generates a trajectory $\tau = (\mathbf{s}_0, \mathbf{a}_0, \dots, \mathbf{s}_T)$ by sampling $\mathbf{s}_0 \sim \rho_0$, then repeatedly choosing $\mathbf{a}_t \sim \pi_\theta(\cdot | \mathbf{s}_t)$, receiving reward $r(\mathbf{s}_t, \mathbf{a}_t)$, and transitioning via $\mathbf{s}_{t+1} \sim \mathcal{P}(\cdot | \mathbf{s}_t, \mathbf{a}_t)$. The return is $\mathcal{R}(\tau) = \sum_{t=0}^T r(\mathbf{s}_t, \mathbf{a}_t)$, and the RL objective is to maximize $\mathcal{J}_{\text{RL}}(\theta) = \mathbb{E}_{\tau \sim p(\tau | \pi_\theta)}[\mathcal{R}(\tau)]$. By the policy-gradient theorem (Grondman et al., 2012), this objective can be optimized using REINFORCE algorithm (Sutton et al., 1998):

$$\nabla_\theta \mathcal{J}_{\text{RL}}(\theta) = \mathbb{E}_{\tau \sim p(\tau | \pi_\theta)} \left[\sum_{t=0}^T \nabla_\theta \log \pi_\theta(\mathbf{a}_t | \mathbf{s}_t) \mathcal{R}(\tau) \right]. \quad (8)$$

Mapping the Reverse Denoising Process to a T -step MDP. The pretrained CSDPM defines samples via its reverse denoising chain $p_\theta(\mathcal{G}_{0:T})$, but the marginal $p_\theta(\mathcal{G}_0)$ is intractable (Ho et al., 2020), and the reward $r(\mathcal{G}_0)$ is a black box with no gradient signal (Black et al., 2024). Following Fan et al. (2023); Liu et al. (2024c), we reformulate the denoising process as a T -step MDP:

$$\begin{aligned} \mathbf{s}_t &\triangleq (\mathcal{G}_{T-t}, T-t), \quad \mathbf{a}_t \triangleq \mathcal{G}_{T-t-1}, \\ \pi_\theta(\mathbf{a}_t | \mathbf{s}_t) &\triangleq p_\theta(\mathcal{G}_{T-t-1} | \mathcal{G}_{T-t}, T-t), \quad \mathcal{P}(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \triangleq \delta(\mathbf{s}_{t+1} - (\mathcal{G}_{T-t-1}, T-t-1)), \quad (9) \\ r(\mathbf{s}_t, \mathbf{a}_t) &\triangleq r(\mathcal{G}_0) \text{ if } t = T, \quad r(\mathbf{s}_t, \mathbf{a}_t) \triangleq 0 \text{ if } t < T, \end{aligned}$$

where $\delta(\cdot)$ denotes a Dirac distribution, capturing the fact that transitions are deterministic: given \mathbf{s}_t and \mathbf{a}_t , the next state is exactly $\mathbf{s}_{t+1} = (\mathcal{G}_{T-t-1}, T-t-1)$. The initial state $\mathbf{s}_0 = (\mathcal{G}_T, T)$ is the fully noised structure, and the terminal state $\mathbf{s}_T = (\mathcal{G}_0, 0)$ is the fully denoised structure.

SOLO-based Hierarchical Reward Function. After formulating the reverse denoising process of CSDPM as a MDP, we can optimize it for specific reward signals, which should ideally reflect the levels of cognitive development that students achieve through their learning processes. Inspired by the SOLO taxonomy (Biggs & Collis, 2014), we propose a fine-grained, hierarchical reward function that scores the generated cognitive structures according to their alignment with the five levels of SOLO, which correspond to progressively better construction of concepts and inter-concept relations within more sophisticated cognitive structure.

Given a sampled structure $\mathcal{G}_0 = (\mathcal{V}_0, \mathcal{E}_0)$ and the next real interaction $(q_j, r_{ij})^{T'+1}$, we compare the predicted construction of relevant concepts and relations against the observed response. The matching degrees are

$$\mathcal{M}_V = \frac{1}{|\mathcal{V}_{q_j}|} \sum_{v \in \mathcal{V}_{q_j}} (r_{ij} \vee v), \quad \mathcal{M}_E = \frac{1}{|\mathcal{E}_{q_j}|} \sum_{e \in \mathcal{E}_{q_j}} (r_{ij} \vee e), \quad (10)$$

where \vee denotes the XNOR operation. The SOLO-based reward is then

$$r_{\text{ solo}}(\mathcal{G}_0) = \begin{cases} r_1, & \mathcal{M}_V = 0, \\ r_2, & 0 < \mathcal{M}_V < \kappa, \\ r_3, & \mathcal{M}_V \geq \kappa \wedge \mathcal{M}_E < \kappa, \\ r_4, & \kappa \leq \mathcal{M}_V < 1 \wedge \kappa \leq \mathcal{M}_E < 1, \\ r_5, & (\mathcal{M}_V = 1 \wedge \mathcal{M}_E \geq \kappa) \vee (\mathcal{M}_V \geq \kappa \wedge \mathcal{M}_E = 1), \end{cases} \quad (11)$$

with $r_1 < r_2 < r_3 < r_4 < r_5$ corresponding to SOLO levels: (i) *Pre-structural*: No meaningful concept alignment; (ii) *Uni-structural*: Alignment of a single or few concepts; (iii) *Multi-structural*: Alignment of multiple concepts, few relations; (iv) *Relational*: Alignment of multiple concepts and multiple relations; (v) *Extended abstract*: Alignment of almost all concepts and relations.

Since $\mathcal{M}_V, \mathcal{M}_E \in [0, 1]$, we adopt $\kappa = 0.5$ as the default threshold to distinguish “few” from “multiple” alignments. For instance, $0 < \mathcal{M}_V < 0.5$ maps to the uni-structural level and is rewarded with r_2 . Sensitivity analyses on thresholds and reward scales are reported in Appendix F.

Policy Gradient Estimation. With the reverse denoising process formulated as a T -step MDP, an agent generates a CSG trajectory $\tau = (\mathcal{G}_T, \mathcal{G}_{T-1}, \dots, \mathcal{G}_0)$, where $\tau \sim p(\tau | \pi_\theta) = p_\theta(\mathcal{G}_{0:T})$. Since rewards are only assigned at the terminal state, the cumulative return of any trajectory reduces to

$$\mathcal{R}(\tau) = \sum_{t=0}^T r(\mathbf{s}_t, \mathbf{a}_t) = r_{\text{ solo}}(\mathcal{G}_0). \quad (12)$$

324 The learning objective is therefore $\mathcal{J}_{\text{RL}}(\theta) = \mathbb{E}_{\tau \sim p(\tau | \pi_\theta)}[\mathcal{R}(\tau)] = \mathbb{E}_{\mathcal{G}_0: T \sim p_\theta} [r_{\text{solo}}(\mathcal{G}_0)]$, which
 325 coincides with the end-structure objective $\mathcal{J}_{\mathcal{G}_0}(\theta)$.
 326

327 A standard REINFORCE estimator gives the gradient

$$328 \quad \nabla_\theta \mathcal{J}_{\text{RL}}(\theta) = \mathbb{E}_{\mathcal{G}_0: T \sim p_\theta} \left[r_{\text{solo}}(\mathcal{G}_0) \sum_{t=1}^T \nabla_\theta \log p_\theta(\mathcal{G}_{t-1} | \mathcal{G}_t) \right], \quad (13)$$

331 but this estimator suffers from high variance on discrete graph diffusion. Following Liu et al.
 332 (2024c), we instead adopt the *eager policy gradient*, which directly reinforces the likelihood of
 333 high-reward terminal structures (i.e., the clean cognitive structures after T reverse denoising steps),
 334 rather than distributing credit iteratively via the term $\nabla_\theta \log p_\theta(\mathcal{G}_{t-1} | \mathcal{G}_t)$. With Monte Carlo esti-
 335 mation, the policy gradient can be modified as follows:

$$336 \quad \nabla_\theta \mathcal{J}_{\text{RL}}(\theta) \approx \frac{1}{|\mathcal{D}|} \sum_{d=1}^{|\mathcal{D}|} \frac{T}{|\mathcal{T}_d|} \sum_{t \in \mathcal{T}_d} r_{\text{solo}}(\mathcal{G}_0^{(d)}) \nabla_\theta \log p_\theta(\mathcal{G}_0^{(d)} | \mathcal{G}_t^{(d)}), \quad (14)$$

339 where \mathcal{D} is the set of sampled trajectories, and $\mathcal{T}_d \subseteq \llbracket 1, T \rrbracket$ is a random subset of timesteps for
 340 trajectory d . This estimator treats all trajectories ending at the same \mathcal{G}_0 as an equivalence class and
 341 reinforces them jointly, which significantly improves stability and sample efficiency. The full policy
 342 optimization procedure is summarized in Appendix C.

343 **Two-Stage Training Paradigm.** Overall, the training of CSG adopts a two-stage paradigm, inspired
 344 by the pretraining–finetuning strategy of LLMs (Devlin et al., 2019). In Stage I, it bypasses pure
 345 noise by leveraging simulated cognitive structures grounded in educational principles to establish a
 346 meaningful prior. In Stage II, a SOLO-based hierarchical reward assesses the generated structures by
 347 how well they match the progressively levels of understanding defined by the SOLO, which guides
 348 CSG to refine its initial representations and move beyond handcrafted assumptions.

350 4 EXPERIMENTS

352 **Downstream Modeling for CSG.** Since ground-truth cognitive structures cannot be directly ob-
 353 served, we follow the standard evaluation approach in prior work (Piech et al., 2015; Wang et al.,
 354 2020) and use learning performance outcomes as an indication of latent representation quality. The
 355 basic idea is that if the generated structures capture students’ latent cognitive states, the resulting rep-
 356 resentations should improve prediction accuracy on standard benchmarks. We focus on two widely
 357 studied tasks: *knowledge tracing* (KT), which predicts learning performance, and *cognitive diagno-*
 358 *sis* (CD), which estimates fine-grained knowledge proficiency. Together, these tasks serve as proxies
 359 for assessing how well the structures encode interpretable and transferable cognitive information.

360 **From Structures to Representations.** To operationalize the generated cognitive structures in down-
 361 stream models, we employ the *edge-aware hard-clustering graph pooling* method from Zhu et al.
 362 (2023). This method produces a compact cognitive state vector for each student by jointly sum-
 363 marizing node and edge features, thereby preserving information about both concept mastery and
 364 inter-concept relation mastery. The resulting vector is concatenated with the tested question embed-
 365 ding before being passed to the task-specific output layers.

366 **CSG-KT.** For knowledge tracing, we use the pooled structure representation to augment a standard
 367 DKT (Piech et al., 2015) model. The prediction function is

$$369 \quad P_{KT}(r_{ij}^{T'+1}) = f_{KT, \Phi} : \sigma \left(\text{FC} \left(\text{Pooling}(\mathcal{G}_i^{T'}) \oplus \text{emb}(\beta(q_j^{T'+1})) \right) \right), \quad (15)$$

370 where T' is the current interaction timestamp, $\text{emb}(\cdot)$ denotes the question embedding, \oplus is con-
 371 catenation, FC is a fully-connected layer, and σ is the sigmoid activation. This formulation allows
 372 the model to predict whether student s_i will answer question $q_j^{T'+1}$ correctly, informed by their
 373 generated cognitive structure.

375 **CSG-CD.** For cognitive diagnosis, we integrate the pooled structure representation into the NCD
 376 framework (Wang et al., 2020). The prediction function is

$$377 \quad P_{CD}(r_{ij}) = f_{CD, \Omega} : \sigma \left(\mathcal{Q}_j \odot \left((\text{Pooling}(\mathcal{G}_i^{T'}) - \mathbf{h}_{\text{diff}}) \times \mathbf{h}_{\text{disc}} \right) \right), \quad (16)$$

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
150100
150101
150102
150103
150104
150105
150106
150107
150108
150109
150110
150111
150112
150113
150114
150115
150116
150117
150118
150119
150120
150121
150122
150123
150124
150125
150126
150127
150128
150129
150130
150131
150132
150133
150134
150135
150136
150137
150138
150139
150140
150141
150142
150143
150144
150145
150146
150147
150148
150149
150150
150151
150152
150153
150154
150155
150156
150157
150158
150159
150160
150161
150162
150163
150164
150165
150166
150167
150168
150169
150170
150171
150172
150173
150174
150175
150176
150177
150178
150179
150180
150181
150182
150183
150184
150185
150186
150187
150188
150189
150190
150191
150192
150193
150194
150195
150196
150197
150198
150199
150200
150201
150202
150203
150204
150205
150206
150207
150208
150209
150210
150211
150212
150213
150214
150215
150216
150217
150218
150219
150220
150221
150222
150223
150224
150225
150226
150227
150228
150229
150230
150231
150232
150233
150234
150235
150236
150237
150238
150239
150240
150241
150242
150243
150244
150245
150246
150247
150248
150249
150250
150251
150252
150253
150254
150255
150256
150257
150258
150259
150260
150261
150262
150263
150264
150265
150266
150267
150268
150269
150270
150271
150272
150273
150274
150275
150276
150277
150278
150279
150280
150281
150282
150283
150284
150285
150286
150287
150288
150289
150290
150291
150292
150293
150294
150295
150296
150297
150298
150299
150300
150301
150302
150303
150304
150305
150306
150307
150308
150309
150310
150311
150312
150313
150314
150315
150316
150317
150318
150319
150320
150321
150322
150323
150324
150325
150326
150327
150328
150329
150330
150331
150332
150333
150334
150335
150336
150337
150338
150339
150340
150341
150342
150343
150344
150345
150346
150347
150348
150349
150350
150351
150352
150353
150354
150355
150356
150357
150358
150359
150360
150361
150362
150363
150364
150365
150366
150367
150368
150369
150370
150371
150372
150373
150374
150375
150376
150377
150378
150379
150380
150381
150382
150383
150384
150385
150386
150387
150388
150389
150390
150391
150392
150393
150394
150395
150396
150397
150398
150399
150400
150401
150402
150403
150404
150405
150406
150407
150408
150409
150410
150411
150412
150413
150414
150415
150416
150417
150418
150419
150420
150421
150422
150423
150424
150425
150426
150427
150428
150429
150430
150431
150432
150433
150434
150435
150436
150437
150438
150439
150440
150441
150442
150443
150444
150445
150446
150447
150448
150449
150450
150451
150452
150453
150454
150455
150456
150457
150458
150459
150460
150461
150462
150463
150464
150465
150466
150467
150468
150469
150470
150471
150472
150473
150474
150475
150476
150477
150478
150479
150480
150481
150482
150483
150484
150485
150486
150487
150488
150489
150490
150491
150492
150493
150494
150495
150496
150497
150498
150499
150500
150501
150502
150503
150504
150505
150506
150507
150508
150509
150510
150511
150512
150513
150514
150515
150516
150517
150518
150519
150520
150521
150522
150523
150524
150525
150526
150527
150528
150529
150530
150531
150532
150533
150534
150535
150536
150537
150538
150539
150540
150541
150542
150543
150544
150545
150546
150547
150548
150549
150550
150551
150552
150553
150554
150555
150556
150557
150558
150559
150560
150561
150562
150563
150564
150565
150566
150567
150568
150569
150570
150571
150572
150573
150574
150575
150576
150577
150578
150579
150580
150581
150582
150583
150584
150585
150586
150587
150588
150589
150590
150591
150592
150593
150594
150595
150596
150597
150598
150599
150600
150601
150602
150603
150604
150605
150606
150607
150608
150609
150610
150611
150612
150613
150614
150615
150616
150617
150618
150619
150620
150621
150622
150623
150624
150625
150626
150627
150628
150629
150630
150631
150632
150633
150634
150635
150636
150637
150638
150639
150640
150641
150642
150643
150644
150645
150646
150647
150648
150649
150650
150651
150652
150653
150654
150655
150656
150657
150658
150659
150660
150661
150662
150663

Table 3: Ablation study on the impact of CSG variants for KT and CD across multiple datasets.

Category	Model	Math1			Math2			FrcSub			NIPS		
		Metrics	AUC↑	ACC↑	RMSE↓	AUC↑	ACC↑	RMSE↓	AUC↑	ACC↑	RMSE↓	AUC↑	ACC↑
KT	V_1 -KT	0.7842	0.7050	0.4496	0.7276	0.6745	0.4571	0.8144	0.7486	0.3455	0.6807	0.6504	0.4697
	V_2 -KT	0.7991	0.7196	0.4433	0.7421	0.6887	0.4543	0.8288	0.7630	0.3397	0.6951	0.6647	0.4674
	V_3 -KT	0.8042	0.7343	0.4472	0.7567	0.6930	0.4511	0.8433	0.7775	0.3241	0.7196	0.6691	0.4663
	V_4 -KT	0.8085	0.7351	0.4413	0.7614	0.6974	0.4491	0.8479	0.7821	0.3287	0.7242	0.6697	0.4604
	V_5 -KT	0.8111	0.7387	0.4322	0.7758	0.7184	0.4379	0.8598	0.7882	0.3262	0.7318	0.6730	0.4528
	CSG-KT	0.8220	0.7412	0.4283	0.7772	0.7197	0.4390	0.8636	0.8022	0.3192	0.7413	0.6757	0.4511
CD	V_1 -CD	0.7870	0.7477	0.4218	0.7967	0.7277	0.4508	0.8210	0.8063	0.3475	0.7671	0.7068	0.4411
	V_2 -CD	0.7913	0.7520	0.4157	0.8008	0.7319	0.4471	0.8354	0.8138	0.3309	0.7713	0.7210	0.4371
	V_3 -CD	0.7958	0.7665	0.4098	0.8051	0.7463	0.4406	0.8601	0.8385	0.3276	0.7857	0.7254	0.4313
	V_4 -CD	0.7965	0.7669	0.4041	0.8086	0.7469	0.4395	0.8650	0.8434	0.3275	0.7903	0.7300	0.4257
	V_5 -CD	0.7985	0.7673	0.4030	0.8169	0.7473	0.4377	0.8661	0.8438	0.3205	0.7997	0.7392	0.4353
	CSG-CD	0.8133	0.7710	0.3987	0.8179	0.7521	0.4270	0.8699	0.8451	0.3152	0.8036	0.7507	0.4242

datasets of very different scales and interaction densities, both CSG-KT and CSG-CD consistently deliver robust performance, underscoring the general applicability of our framework. We note that we employed simple KT/CD models with CSG to demonstrate effectiveness and reduce confounding factors, leaving adaptation to advanced methods for future work.

Ablation Study. We evaluate several variants of our framework by comparing their prediction performance on sampled cognitive structures, as summarized in Table 2: **(i)** V_1 uses only the rule-based simulated structures without any learning; **(ii)** V_2 pretrains CSDPM on simulated structures but does not apply RL optimization; **(iii)** V_3 skips pretraining and applies RL with a generic reward $r(\cdot)$; **(iv)** V_4 skips pretraining and applies RL with the SOLO-based reward $r_{solo}(\cdot)$; **(v)** V_5 combines pretraining with RL under the generic reward; and **(vi)** CSG is our complete framework with both pretraining and SOLO-based optimization. The generic reward $r(\cdot)$ does not differentiate developmental levels and simply sums \mathcal{M}_V and \mathcal{M}_E into a single scalar.

For a fair comparison, we use the rule-based simulated set $\tilde{\mathbb{G}}$ for V_1 , and sample the corresponding generated set \mathbb{G}_0 for variants V_2 – V_5 . Each variant is then used to independently train and evaluate downstream KT and CD models, denoted as V_i -KT and V_i -CD, respectively, for $i = 1, \dots, 5$.

Results in Table 3 show several key findings: **(i)** Overall, performance steadily improves from the simplest variant V_1 through V_5 to our full CSG, for both KT and CD tasks. **(ii)** Despite its simplicity, V_1 performs competitively with classical baselines (e.g., DKT for KT, IRT and NCD for CD), validating that our rule-based simulation already provides a strong approximation of students’ learning states. On Math1, Math2, and FrcSub, where sequences are short but coverage is high, this simulation is especially effective; on NIPS34, longer interaction sequences offset lower coverage, yielding similarly strong outcomes. **(iii)** V_3 generally outperforms V_2 , suggesting that task-driven RL optimization can capture hidden learning patterns and incorporate them into generated structures. **(iv)** The improvements of V_4 over V_3 , and of full CSG over V_5 , highlight the value of explicitly modeling developmental levels and confirm the effectiveness of SOLO-based hierarchical rewards.

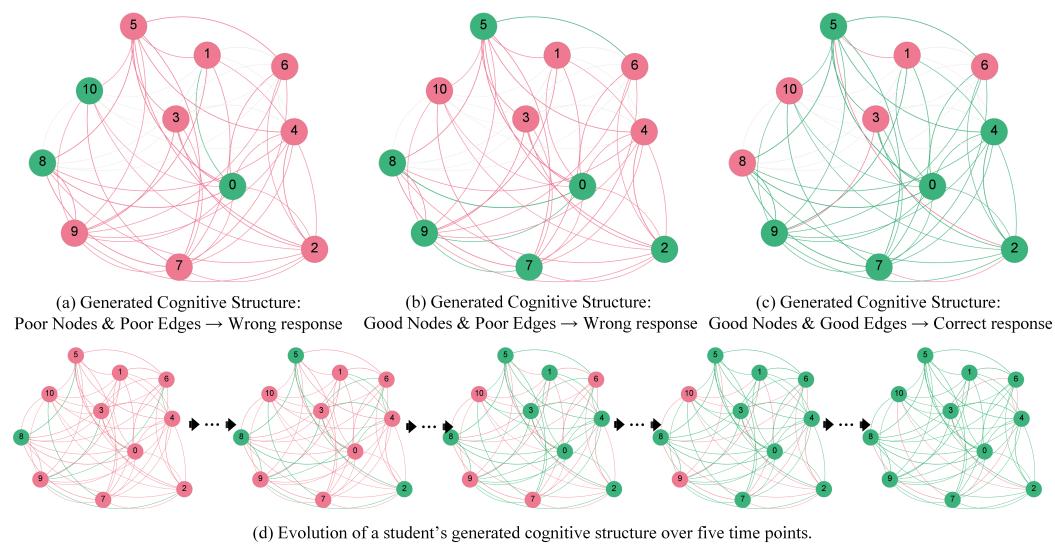
Visualization and Interpretability Analysis. In this work, interpretability is one of our main motivations for explicitly modeling cognitive structures. Specifically, past methods typically encode knowledge mastery or proficiency implicitly within model parameters and then rely on heatmaps or radar charts to visualize and interpret hidden states. Our CSG takes a step toward improving interpretability by constructing cognitive structures in line with cognitive structure theory (Ausubel, 1968) and constructivism (Steffe & Gale, 1995). In our CSG, nodes directly represent students’ constructed states of knowledge concepts, and edges represent their constructed states of inter-concept relations, so that only minimal modification is needed for post-hoc analysis.

As shown in Fig. 2, we observe the following: **(i)** Subfigure (a) shows the cognitive structure generated by CSG-CD for student s_5 immediately before answering question q_1 (assessing concepts $k_{0,2,5,7,9}$). The student exhibits weak construction of both individual concepts and their inter-concept relations, so CSG-CD predicts that the student will answer incorrectly. Subfigure (b) shows the structure for student s_{18} before the same question q_1 ; here the student has strong construction of all five concepts but still weak construction of their relations, and CSG-CD again predicts that

Table 2: Detailed configurations of CSG variants used in the ablation study.

Variants	Pretraining	Optimization	
		$r(\cdot)$	$r_{solo}(\cdot)$
V_1	✗	✗	✗
V_2	✓	✗	✗
V_3	✗	✓	✗
V_4	✗	✗	✓
V_5	✓	✓	✗
CSG	✓	✗	✓

486 the student will answer incorrectly. Subfigure (c) shows the structure for student s_{37} before q_1 ; in
 487 this case, the student demonstrates strong construction of both concepts and relations, so CSG-CD
 488 predicts a correct response. **(ii)** Subfigure (d) shows five representative cognitive structures gen-
 489 erated by CSG-KT for student s_{15} at different points in their learning trajectory. Over time, s_{15} 's
 490 cognitive structure evolves from minimal construction to a fully developed structure that integrates
 491 the entire knowledge system in s_{15} 's mind, broadly aligning with the SOLO taxonomy levels of
 492 cognitive development. These case studies illustrate that CSG-generated structures not only cap-
 493 ture students' subjective construction of the objective knowledge system but also trace its evolution
 494 throughout learning. The results are consistent with established findings in educational psychology,
 495 thereby providing meaningful explanations for students' response behaviors. Additional analyses
 496 on hyperparameters and inference time are provided in Appendix F, G.



516 Figure 2: **(Case).** Examples of generated cognitive structures and the evolution process. Each
 517 graph depicts a student's generated cognitive structure at a given timestamp. Nodes represent the
 518 student's construction of concepts (the names of all concepts are listed in Table 7 in Appendix),
 519 while edges represent their construction of inter-concept relations. Green indicates fully constructed
 520 elements, red indicates elements not yet constructed, and gray denotes low-frequency or irrelevant
 521 edges shown for clarity.

5 CONCLUSION

522 In this work, we introduced Cognitive Structure Generation (CSG), a framework for modeling stu-
 523 dents' evolving cognitive structures with a graph diffusion model. By decoupling structure rep-
 524 resentation from downstream prediction, CSG produces explicit cognitive structures that align with
 525 developmental patterns. Our two-stage design first pretrains on simulated structures grounded in
 526 educational theory, then optimizes with reinforcement learning guided by a SOLO-based hierar-
 527 chical reward to **capture plausible patterns of cognitive development**. Experiments on four real-world
 528 datasets show that CSG consistently improves performance on knowledge tracing (KT) and cog-
 529 nitive diagnosis (CD), while also enhancing generalizability, interpretability, and modular design.
 530 These results highlight the promise of holistic cognitive structure modeling as a foundation for more
 531 effective and transparent educational intelligence systems. Further discussion of limitations and
 532 future work is provided in Appendix J.

533 REFERENCES

534 Ghodai Abdelrahman, Qing Wang, and Bernardo Nunes. Knowledge tracing: A survey. *ACM*
 535 *Computing Surveys*, 55(11):1–37, 2023.

540 Terry A Ackerman, Mark J Gierl, and Cindy M Walker. Using multidimensional item response
 541 theory to evaluate educational and psychological tests. *Educational Measurement: Issues and*
 542 *Practice*, 22(3):37–51, 2003.

543

544 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
 545 Structured denoising diffusion models in discrete state-spaces. In Marc'Aurelio Ran-
 546 zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
 547 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neu-*
 548 *ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*,
 549 pp. 17981–17993, 2021. URL [https://proceedings.neurips.cc/paper/2021/
 550 hash/958c530554f78bcd8e97125b70e6973d-Abstract.html](https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html).

551

552 David Paul Ausubel. Educational psychology: A cognitive view. *Holt, Rinehart and Win-*
 553 *ston*, 1968. URL [https://archive.org/details/in.ernet.dli.2015.112045/
 554 page/n397/mode/2up](https://archive.org/details/in.ernet.dli.2015.112045/page/n397/mode/2up).

555

556 John B Biggs and Kevin F Collis. *Evaluating the quality of learning: The SOLO taxonomy (Structure*
 557 *of the Observed Learning Outcome)*. Academic press, 2014.

558

559 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
 560 models with reinforcement learning. In *The Twelfth International Conference on Learning*
 561 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 562 <https://openreview.net/forum?id=YCWjhGrJFD>.

563

564 Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine learning
 565 algorithms. *Pattern recognition*, 30(7):1145–1159, 1997.

566

567 Derek C Briggs and Ruhan Ciri. Challenges to the use of artificial neural networks for diagnostic
 568 classifications with student test data. *International Journal of Testing*, 17(4):302–321, 2017.

569

570 Jerome S Bruner. *The process of education*. Harvard university press, 2009.

571

572 Li Cai, Kilchan Choi, Mark Hansen, and Lauren Harrell. Item response theory. *Annual Review of*
 573 *Statistics and Its Application*, 3(1):297–321, 2016.

574

575 Xiangzhi Chen, Le Wu, Fei Liu, Lei Chen, Kun Zhang, Richang Hong, and Meng Wang.
 576 Disentangling cognitive diagnosis with limited exercise labels. In Alice Oh, Tristan Nau-
 577 mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances*
 578 *in Neural Information Processing Systems 36: Annual Conference on Neural Infor-*
 579 *mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,*
 580 *2023*, 2023. URL [http://papers.nips.cc/paper_files/paper/2023/
 581 hash/3a14ae9951e8153a8fc814b5f506b5b7-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2023/hash/3a14ae9951e8153a8fc814b5f506b5b7-Abstract-Conference.html).

582

583 Zhifu Chen, Hengnian Gu, Jin Peng Zhou, and Dongdai Zhou. Enhancing cognitive diagnosis by
 584 modeling learner cognitive structure state, 2024. URL <https://arxiv.org/abs/2412.19759>.

585

586 Song Cheng, Qi Liu, Enhong Chen, Zai Huang, Zhenya Huang, Yiyi Chen, Haiping Ma, and
 587 Guoping Hu. DIRT: Deep learning enhanced item response theory for cognitive diagnosis. In *Pro-*
 588 ,
 589 pp. 2397–2400, 2019.

590

591 Weihua Cheng, Hanwen Du, Chunxiao Li, Ersheng Ni, Liangdi Tan, Tianqi Xu, and Yongxin Ni.
 592 Uncertainty-aware knowledge tracing. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), *AAAI-*
 593 *25, Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 -*
 594 *March 4, 2025, Philadelphia, PA, USA*, pp. 27905–27913. AAAI Press, 2025. doi: 10.1609/
 595 *AAAI.V39I27.35007*. URL <https://doi.org/10.1609/aaai.v39i27.35007>.

596

597 Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha,
 598 Dongmin Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and value compu-
 599 tation for knowledge tracing. In *Proceedings of the seventh ACM conference on learning@ scale*,
 600 pp. 341–344, 2020.

594 Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of procedural
 595 knowledge. *User modeling and user-adapted interaction*, 4:253–278, 1994.
 596

597 Jiajun Cui, Hong Qian, Bo Jiang, and Wei Zhang. Leveraging pedagogical theories to understand
 598 student learning process with graph-based reasonable knowledge tracing. In Ricardo Baeza-Yates
 599 and Francesco Bonchi (eds.), *Proceedings of the 30th ACM SIGKDD Conference on Knowl-
 600 edge Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024*, pp. 502–
 601 513. ACM, 2024. doi: 10.1145/3637528.3671853. URL <https://doi.org/10.1145/3637528.3671853>.
 602

603 Ying Cui, Mark Gierl, and Qi Guo. Statistical classification for cognitive diagnostic assessment: An
 604 artificial neural network approach. *Educational Psychology*, 36(6):1065–1082, 2016.
 605

606 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 607 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
 608 the North American chapter of the association for computational linguistics: human language
 609 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
 610

611 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020. URL <https://arxiv.org/abs/2012.09699>.
 612

613 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter
 614 Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement
 615 learning for fine-tuning text-to-image diffusion models. In Alice Oh, Tristan Naumann,
 616 Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in
 617 Neural Information Processing Systems 36: Annual Conference on Neural Information
 618 Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 619 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/fc65fab891d83433bd3c8d966edde311-Abstract-Conference.html.
 620

621 John H Flavell. *Cognitive development*. Prentice-Hall, 1977.
 622

623 Weibo Gao, Qi Liu, Zhenya Huang, Yu Yin, Haoyang Bi, Mu-Chun Wang, Jianhui Ma, Shijin Wang,
 624 and Yu Su. RCD: relation map driven cognitive diagnosis for intelligent education systems. In
 625 Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (eds.),
*SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in
 626 Information Retrieval, Virtual Event, Canada, July 11-15, 2021*, pp. 501–510. ACM, 2021.
 627

628 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 629 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and
 630 statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.
 631

632 Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
 633 reinforcement learning: Standard and natural policy gradients. *IEEE Transactions on Systems,
 Man, and Cybernetics, part C (applications and reviews)*, 42(6):1291–1307, 2012.
 634

635 Hengnian Gu, Guoqian Luo, Xiaoxiao Dong, Shulin Li, and Dongdai Zhou. Revisiting cognition in
 636 neural cognitive diagnosis. In Yizhou Sun, Flavio Chierichetti, Hady W. Lauw, Claudia Perlich,
 637 Wee Hyong Tok, and Andrew Tomkins (eds.), *Proceedings of the 31st ACM SIGKDD Conference
 638 on Knowledge Discovery and Data Mining, V.I, KDD 2025, Toronto, ON, Canada, August 3-7,
 2025*, pp. 402–412. ACM, 2025. doi: 10.1145/3690624.3709319. URL <https://doi.org/10.1145/3690624.3709319>.
 639

640 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.
 641

642 Tiankai Hang, Shuyang Gu, Jianmin Bao, Fangyun Wei, Dong Chen, Xin Geng, and Baining Guo.
 643 Improved noise schedule for diffusion training. In *Proceedings of the IEEE/CVF International
 644 Conference on Computer Vision*, pp. 4796–4806, 2025.
 645

646 Hado Hasselt. Double q-learning. *Advances in neural information processing systems*, 23, 2010.
 647 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 648 neural information processing systems*, 33:6840–6851, 2020.

648 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
 649 system of stochastic differential equations. In *International conference on machine learning*, pp.
 650 10362–10383. PMLR, 2022.

651

652 Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. *arXiv
 653 preprint arXiv:2302.03596*, 2023.

654 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design
 655 space of diffusion-based generative models. In Sanmi Koyejo, S. Mohamed, A. Agar-
 656 wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-
 657 mation Processing Systems 35: Annual Conference on Neural Information Processing
 658 Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 659 2022*. URL [http://papers.nips.cc/paper_files/paper/2022/hash/
 660 a98846e9d9cc01cfb87eb694d946ce6b-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2022/hash/a98846e9d9cc01cfb87eb694d946ce6b-Abstract-Conference.html).

661 Frank C Keil. *Concepts, kinds, and cognitive development*. mit Press, 1992.

662

663 Jacqueline Leighton and Mark Gierl. *Cognitive diagnostic assessment for education: Theory and
 664 applications*. Cambridge University Press, 2007.

665 Kurt Lewin. *Principles of topological psychology*. Read Books Ltd, 2013.

666

667 Jiatong Li, Qi Liu, Fei Wang, Jiayu Liu, Zhenya Huang, Fangzhou Yao, Linbo Zhu, and Yu Su.
 668 Towards the identifiability and explainability for personalized learner modeling: An inductive
 669 paradigm. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei
 670 Lee (eds.), *Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, May 13-
 671 17, 2024*, pp. 3420–3431. ACM, 2024. doi: 10.1145/3589334.3645437. URL <https://doi.org/10.1145/3589334.3645437>.

672

673 Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duve-
 674 naud, Raquel Urtasun, and Richard S. Zemel. Efficient graph generation with graph
 675 recurrent attention networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
 676 imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in Neu-
 677 ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
 678 cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 679 4257–4267, 2019. URL [https://proceedings.neurips.cc/paper/2019/hash/
 680 d0921d442ee91b896ad95059d13df618-Abstract.html](https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html).

681 Yu-Shih Lin, Yi-Chun Chang, Keng-Hou Liew, and Chih-Ping Chu. Effects of concept map ex-
 682 traction and a test-based diagnostic environment on learning achievement and learners’ per-
 683 ceptions. *Br. J. Educ. Technol.*, 47(4):649–664, 2016a. doi: 10.1111/BJET.12250. URL
 684 <https://doi.org/10.1111/bjet.12250>.

685 Yu-Shih Lin, Yi-Chun Chang, Keng-Hou Liew, and Chih-Ping Chu. Effects of concept map extrac-
 686 tion and a test-based diagnostic environment on learning achievement and learners’ perceptions.
 687 *British Journal of Educational Technology*, 47(4):649–664, 2016b.

688

689 Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph diffusion transformers for
 690 multi-conditional molecular generation. In Amir Globersons, Lester Mackey, Danielle Bel-
 691 grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
 692 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 693 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 694 2024*, 2024a. URL [http://papers.nips.cc/paper_files/paper/2024/hash/
 695 0f6931a9e339a012a9909306d7c758b4-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/0f6931a9e339a012a9909306d7c758b4-Abstract-Conference.html).

696 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
 697 manifolds. *arXiv preprint arXiv:2202.09778*, 2022.

698 Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained
 699 graph variational autoencoders for molecule design. In Samy Bengio, Hanna M. Wallach,
 700 Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Ad-
 701 vances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
 702 mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.

702 7806–7815, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/b8a03c5c15fcfa8dae0b03351eb1742f-Abstract.html>.
 703
 704

705 Qi Liu, Shiwei Tong, Chuanren Liu, Enhong Chen, Haiping Ma, and Shijin Wang.
 706 Exploiting cognitive structure for adaptive learning. In Ankur Teredesai, Vipin Kumar, Ying
 707 Li, Rómer Rosales, Evimaria Terzi, and George Karypis (eds.), *Proceedings of the 25th ACM
 708 SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019*, pp. 627–635. ACM, 2019. doi: 10.1145/3292500.3330922.
 709 URL <https://doi.org/10.1145/3292500.3330922>.
 710

711 Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su, and Guoping Hu. EKT: exercise-
 712 aware knowledge tracing for student performance prediction. *IEEE Trans. Knowl. Data Eng.*,
 713 33(1):100–115, 2021. doi: 10.1109/TKDE.2019.2924374. URL <https://doi.org/10.1109/TKDE.2019.2924374>.
 714

715 Shuo Liu, Junhao Shen, Hong Qian, and Aimin Zhou. Inductive cognitive diagnosis for fast student
 716 learning in web-based intelligent education systems. In Tat-Seng Chua, Chong-Wah Ngo, Ravi
 717 Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (eds.), *Proceedings of the ACM on Web Conference
 718 2024, WWW 2024, Singapore, May 13-17, 2024*, pp. 4260–4271. ACM, 2024b. doi: 10.1145/3589334.3645589. URL <https://doi.org/10.1145/3589334.3645589>.
 719

720 Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Wei Chen. Graph
 721 diffusion policy optimization. In Amir Globersons, Lester Mackey, Danielle Belgrave,
 722 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in
 723 Neural Information Processing Systems 38: Annual Conference on Neural Information
 724 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 725 2024*, 2024c. URL http://papers.nips.cc/paper_files/paper/2024/hash/124256ed80af5d4bf4c4de17b66c4298-Abstract-Conference.html.
 726

727 Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, and Weiqi Luo. simplekt: a simple but
 728 tough-to-beat baseline for knowledge tracing. *arXiv preprint arXiv:2302.06881*, 2023.
 729

730 Frederic M Lord and Melvin R Novick. *Statistical theories of mental test scores*. IAP, 2008.
 731

732 Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
 733 generation. In *International Conference on Machine Learning*, pp. 7192–7203. PMLR, 2021.
 734

735 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE: spec-
 736 tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In Kama-
 737 lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
 738 *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 15159–15179. PMLR,
 739 2022. URL <https://proceedings.mlr.press/v162/martinkus22a.html>.
 740

741 Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: Mod-
 742 eling student proficiency using graph neural network. In Payam M. Barnaghi, Georg Gottlob,
 743 Yannis Manolopoulos, Theodoros Tzouramanis, and Athena Vakali (eds.), *2019 IEEE/WIC/ACM
 744 International Conference on Web Intelligence, WI 2019, Thessaloniki, Greece, October 14-17,
 745 2019*, pp. 156–163. ACM, 2019. doi: 10.1145/3350546.3352513. URL <https://doi.org/10.1145/3350546.3352513>.
 746

747 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 748 In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.
 749

750 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
 751 mutation invariant graph generation via score-based generative modeling. In *International con-
 752 ference on artificial intelligence and statistics*, pp. 4474–4484. PMLR, 2020.
 753

754 Joseph D Novak and D Bob Gowin. *Learning how to learn*. cambridge University press, 1984.
 755

756 Shalini Pandey and George Karypis. A self attentive model for knowledge tracing. In Michel C.
 757 Desmarais, Collin F. Lynch, Agathe Merceron, and Roger Nkambou (eds.), *Proceedings of the
 758 12th International Conference on Educational Data Mining, EDM 2019, Montréal, Canada, July*

756 2-5, 2019. International Educational Data Mining Society (IEDMS), 2019. URL https://drive.google.com/file/d/18d_X6AXkPMhiHFQ2POarstVbX_7oMdFM.

757

758

759 John Piaget. The origins of intelligence in children. *International University*, 1952.

760

761 Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein. Deep knowledge tracing. *Advances in neural information processing systems*, 28, 2015.

762

763 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.

764

765

766

767 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–22510, 2023.

768

769

770

771 Junhao Shen, Hong Qian, Shuo Liu, Wei Zhang, Bo Jiang, and Aimin Zhou. Capturing homogeneous influence among students: Hypergraph cognitive diagnosis for intelligent education systems. In Ricardo Baeza-Yates and Francesco Bonchi (eds.), *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024*, pp. 2628–2639. ACM, 2024. doi: 10.1145/3637528.3672002. URL <https://doi.org/10.1145/3637528.3672002>.

772

773

774

775

776

777 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020.

778

779

780 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

781

782 Leslie P Steffe and Jerry Edward Gale. *Constructivism in education*. Psychology Press, 1995. URL <https://emis.dsd.sztaki.hu/journals/ZDM/zdm982r2.pdf>.

783

784 Jianwen Sun, Fenghua Yu, Qian Wan, Qing Li, Sannyuya Liu, and Xiaoxuan Shen. Interpretable knowledge tracing with multiscale state representation. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (eds.), *Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024*, pp. 3265–3276. ACM, 2024. doi: 10.1145/3589334.3645373. URL <https://doi.org/10.1145/3589334.3645373>.

785

786

787

788

789 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT press Cambridge, 1998.

790

791

792 Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller (eds.), *Advances in Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999]*, pp. 1057–1063. The MIT Press, 1999. URL <http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf>.

793

794

795

796

797 Kikumi K Tatsuoka. *Cognitive assessment: An introduction to the rule space method*. Routledge, 2009.

798

799

800 Shiwei Tong, Qi Liu, Wei Huang, Zhenya Huang, Enhong Chen, Chuanren Liu, Haiping Ma, and Shijin Wang. Structure-based knowledge tracing: An influence propagation view. In Claudia Plant, Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, and Xindong Wu (eds.), *20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020*, pp. 541–550. IEEE, 2020. doi: 10.1109/ICDM50108.2020.00063. URL <https://doi.org/10.1109/ICDM50108.2020.00063>.

801

802

803

804

805

806 Puja Trivedi, Ryan A. Rossi, David Arbour, Tong Yu, Franck Dernoncourt, Sungchul Kim, Nedim Lipka, Namyoung Park, Nesreen K. Ahmed, and Danai Koutra. Editing partially observable networks via graph diffusion models. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=2cEhQ4vtTf>.

807

808

809

810 Ralph W Tyler. Basic principles of curriculum and instruction. In *Curriculum studies reader E2*,
 811 pp. 60–68. Routledge, 2013.

812

813 Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
 814 Frossard. Digress: Discrete denoising diffusion for graph generation. In *The Eleventh Inter-
 815 national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*.
 816 OpenReview.net, 2023. URL <https://openreview.net/forum?id=UaAD-Nu86WX>.

817

818 Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and Shijin
 819 Wang. Neural cognitive diagnosis for intelligent education systems. In *Proceedings of the AAAI
 820 conference on artificial intelligence*, volume 34, pp. 6153–6161, 2020.

821

822 Fei Wang, Weibo Gao, Qi Liu, Jiatong Li, Guanhao Zhao, Zheng Zhang, Zhenya Huang, Mengxiao
 823 Zhu, Shijin Wang, Wei Tong, et al. A survey of models for cognitive diagnosis: New developments
 824 and future directions. *arXiv preprint arXiv:2407.05458*, 2024.

825

826 Bihai Xu, Zhenya Huang, Jiayu Liu, Shuanghong Shen, Qi Liu, Enhong Chen, Jinze Wu, and
 827 Shijin Wang. Learning behavior-oriented knowledge tracing. In Ambuj K. Singh, Yizhou Sun,
 828 Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye
 829 (eds.), *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
 830 Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023*, pp. 2789–2800. ACM, 2023. doi:
 10.1145/3580305.3599407. URL <https://doi.org/10.1145/3580305.3599407>.

831

832 Shangshang Yang, Xiaoshan Yu, Ye Tian, Xueming Yan, Haiping Ma, and Xingyi Zhang. Evo-
 833 lutionary neural architecture search for transformer in knowledge tracing. In Alice Oh, Tris-
 834 tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Ad-
 835 vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 836 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 837 2023*, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/3e53d82a1113e3d240059a9195668edc-Abstract-Conference.html.

838

839 Shangshang Yang, Cheng Zhen, Ye Tian, Haiping Ma, Yuanchao Liu, Panpan Zhang, and Xingyi
 840 Zhang. Evolutionary multi-objective neural architecture search for generalized cognitive diag-
 841 nosis models. In *2023 5th International Conference on Data-driven Optimization of Complex
 842 Systems (DOCS)*, pp. 1–10. IEEE, 2023b.

843

844 Shangshang Yang, Mingyang Chen, Ziwen Wang, Xiaoshan Yu, Panpan Zhang, Haiping Ma,
 845 and Xingyi Zhang. Disengcd: A meta multigraph-assisted disentangled graph learning
 846 framework for cognitive diagnosis. In Amir Globersons, Lester Mackey, Danielle Bel-
 847 grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
 848 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 849 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 850 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/a69d7f3a1340d55c720e572742439eaf-Abstract-Conference.html.

851

852 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 853 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of
 854 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024.

855

856 Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory networks
 857 for knowledge tracing. In *Proceedings of the 26th international conference on World Wide Web*,
 pp. 765–774, 2017.

858

859 Jiying Zhang, Zijing Liu, Yu Wang, Bin Feng, and Yu Li. Subgdiff: A subgraph diffusion
 860 model to improve molecular representation learning. In Amir Globersons, Lester Mackey,
 861 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 862 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 863 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 864 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/3477ca0ce484aa2fa42c1361ab601c25-Abstract-Conference.html.

864 Kai Zhang, Tao Ji, and Huiling Zhang. Knowledge tracing via multiple-state diffusion repre-
 865 sentation. *Expert Syst. Appl.*, 255:124797, 2024b. doi: 10.1016/J.ESWA.2024.124797. URL
 866 <https://doi.org/10.1016/j.eswa.2024.124797>.

867 Mengchun Zhang, Maryam Qamar, Taegoo Kang, Yuna Jung, Chenshuang Zhang, Sung-Ho Bae,
 868 and Chaoning Zhang. A survey on graph diffusion models: Generative ai in science for molecule,
 869 protein and material. *arXiv preprint arXiv:2304.01565*, 2023a.

870 Yunfei Zhang, Chuan Qin, Dazhong Shen, Haiping Ma, Le Zhang, Xingyi Zhang, and Hengshu
 871 Zhu. Relicd: A reliable cognitive diagnosis framework with confidence awareness. In Guihai
 872 Chen, Latifur Khan, Xiaofeng Gao, Meikang Qiu, Witold Pedrycz, and Xindong Wu (eds.), *IEEE*
 873 *International Conference on Data Mining, ICDM 2023, Shanghai, China, December 1-4, 2023*,
 874 pp. 858–867. IEEE, 2023b. doi: 10.1109/ICDM58522.2023.00095. URL <https://doi.org/10.1109/ICDM58522.2023.00095>.

875 Bowen Zhao, Jiuding Sun, Bin Xu, Xingyu Lu, Yuchen Li, Jifan Yu, Minghui Liu, Tingjian Zhang,
 876 Qiuyang Chen, Hanming Li, et al. Edukg: a heterogeneous sustainable k-12 educational knowl-
 877 edge graph. *arXiv preprint arXiv:2210.12228*, 2022.

878 Guanhao Zhao, Zhenya Huang, Yan Zhuang, Haoyang Bi, Yiyuan Wang, Fei Wang, Zhiyuan Ma, and
 879 Yixia Zhao. A diffusion-based cognitive diagnosis framework for robust learner assessment. *IEEE*
 880 *Trans. Learn. Technol.*, 17:2281–2295, 2024. doi: 10.1109/TLT.2024.3492214. URL <https://doi.org/10.1109/TLT.2024.3492214>.

881 Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. Adaptive diffusion in graph
 882 neural networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
 883 and Jennifer Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 23321–23333, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/c42af2fa7356818e0389593714f59b52-Abstract.html>.

884 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
 885 pre-trained models: a survey. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 8363–8371, 2024a.

886 Hanqi Zhou, Robert Bamler, Charley M Wu, and Álvaro Tejero-Cantero. Predictive, scalable and
 887 interpretable knowledge tracing on structured domains. *arXiv preprint arXiv:2403.13179*, 2024b.

888 Yuqiang Zhou, Qi Liu, Jinze Wu, Fei Wang, Zhenya Huang, Wei Tong, Hui Xiong, Enhong Chen,
 889 and Jianhui Ma. Modeling context-aware features for cognitive diagnosis in student learning.
 890 In Feida Zhu, Beng Chin Ooi, and Chunyan Miao (eds.), *KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021*, pp. 2420–2428. ACM, 2021. doi: 10.1145/3447548.3467264. URL <https://doi.org/10.1145/3447548.3467264>.

891 Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of
 892 molecules via deep reinforcement learning. *CoRR*, abs/1810.08678, 2018. URL <http://arxiv.org/abs/1810.08678>.

893 Cheng Zhu, Jiayi Zhu, Lijuan Zhang, Xi Wu, Shuqi Yang, Ping Liang, Honghan Chen, and Ying
 894 Tan. Edge-aware hard clustering graph pooling for brain imaging data. *CoRR*, abs/2308.11909,
 895 2023. doi: 10.48550/ARXIV.2308.11909. URL <https://doi.org/10.48550/arXiv.2308.11909>.

896 Zhan Zhuang, Yulong Zhang, Xuehao Wang, Jiangang Lu, Ying Wei, and Yu Zhang. Time-varying
 897 lora: Towards effective cross-domain fine-tuning of diffusion models. *Advances in Neural Information Processing Systems*, 37:73920–73951, 2024.

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 A ADDITIONAL DISCUSSION OF RELATED WORKS
919
920921 As a central topic in educational measurement, modeling cognitive structures has long remained
922 a challenging task. With the advancement of educational data mining techniques, recent progress
923 in graph generation offers promising support. Accordingly, we review related works as follows:
924 *cognitive structure modeling, graph diffusion probabilistic models, and optimization of DPMs.*925 **Cognitive Structure Modeling.** The students' cognitive structures (Lewin, 2013; Piaget, 1952;
926 Bruner, 2009; Ausubel, 1968) represent their internal knowledge system, an evolving graph whose
927 nodes reflect their construction of concepts and whose edges capture their construction of inter-
928 concept relations (Novak & Gowin, 1984; Steffe & Gale, 1995). Traditional psychometric ap-
929 proaches derive such structures from expert-defined rules, which limit personalization and accuracy
930 (Lord & Novick, 2008; Tatsuoka, 2009; Lin et al., 2016b). Considering that cognitive structure
931 is an inherent learning state, researchers have shifted to indirectly measuring it based on students'
932 responses to test items, e.g., knowledge tracing (KT) and cognitive diagnosis (CD).933 From the KT perspective (Piech et al., 2015; Choi et al., 2020; Zhang et al., 2017), cognitive
934 structures are implicitly approximated via students' learning states (also termed hidden states or
935 knowledge states) inferred from response logs. This includes theory-guided state models (Gu et al.,
936 2025; Sun et al., 2024), mastery pattern classifiers (Briggs & Circi, 2017; Cui et al., 2016), and en-
937 coder-decoder architectures (Li et al., 2024; Liu et al., 2024b; Chen et al., 2023). Some KT methods
938 enrich these states with static concept maps or heterogeneous interaction graphs (Liu et al., 2019;
939 Nakagawa et al., 2019; Tong et al., 2020; Gao et al., 2021; Yang et al., 2024), yet they typically
940 emphasize concept mastery without modeling the formation of inter-concept relations.941 From the CD perspective (Leighton & Gierl, 2007; Cheng et al., 2019; Wang et al., 2020), models
942 aim to identify fine-grained cognitive attributes or abilities underlying observed responses. While
943 some approaches introduce additional features (Liu et al., 2021; Xu et al., 2023; Zhou et al., 2021),
944 address data distribution issues (Cheng et al., 2025; Zhang et al., 2023b), or optimize network struc-
945 tures (Yang et al., 2023a;b), they also tend to focus on the correctness of individual concepts, over-
946 looking the holistic evolution of cognitive structures.947 Recent work has also coupled diffusion models with KT/CD objectives. MSKT (Zhang et al., 2024b)
948 uses a diffusion process to refine sequential latent knowledge states along student interaction logs for
949 KT, and DiffCog (Zhao et al., 2024) applies diffusion as a denoiser over latent CD ability vectors to
950 obtain more robust proficiency estimates; however, both operate purely in the latent-vector space and
951 do not generate explicit, learner-specific cognitive structure graphs. A recent attempt (Chen et al.,
952 2024) to model cognitive structure state still relies on a predefined concept graph and treats node
953 and edge construction independently, failing to capture their coupled dynamics. To our knowledge,
954 we are the first to explicitly formulate the task of cognitive structure generation and present a unified
955 framework for its holistic modeling.956 **Graph Diffusion Probabilistic Models.** Graph generation has long relied on traditional deep gen-
957 erative frameworks (e.g., auto-regressive models (Liao et al., 2019), VAEs (Liu et al., 2018), GANs
958 (Martinkus et al., 2022), and normalizing flows (Luo et al., 2021)) to capture complex graph dis-
959 tributions. More recently, diffusion probabilistic models (DPMs) (Ho et al., 2020) have emerged
960 as a powerful new trend for graph generation (Zhang et al., 2023a). Continuous-time graph DPMs
961 (e.g., EDP-GNN (Niu et al., 2020), GDSS (Jo et al., 2022), DruM (Jo et al., 2023)) learn to denoise
962 Gaussian-corrupted graph representations (Song et al., 2020) but can struggle to preserve graph
963 sparsity. To address this, discrete diffusion methods like DiGress (Vignac et al., 2023) replace con-
964 tinuous noise with categorical transitions, achieving strong results on complex benchmarks. To our
965 knowledge, we are the first to introduce a graph diffusion probabilistic model for CSG.966 **Optimization of DPMs.** Reinforcement learning (RL) has been widely used to steer graph genera-
967 tors toward downstream objectives. Traditional methods (Sutton et al., 1999; Zhou et al., 2018) rely
968 on custom environments and exhibit high computational costs. Diffusion models (DPMs) have been
969 aligned to external rewards in vision: DPO (Fan et al., 2023) and DDPO (Black et al., 2024) treat
970 the reverse diffusion as a Markov decision process and apply policy gradients to optimize black-
971 box reward signals, and DPM alignment has been extended to graphs by GDPO (Liu et al., 2024c),
972 which introduces an eager policy gradient. Thus, we propose a SOLO-based reward to optimize the
973 CSDPM, which is effective for aligning with cognitive development levels.

972 B THE COMPLETE PROCEDURE OF PRETRAINING CSDPM
973974 **Algorithm 1:** Pretraining CSDPM
975

976 **Input:** Simulated dataset $\tilde{\mathbb{G}}$, diffusion steps T , loss weight λ_{ve}
 977 **while** not converged **do**
 978 Sample $(\mathcal{G}_0, X^{T'}) \sim \tilde{\mathbb{G}}$;
 979 // Sample a simulated cognitive structure and its interaction
 980 // sequence
 981 Sample $t \sim \mathcal{U}[\![1, T]\!]$;
 982 Sample $\mathcal{G}_t \sim q(\mathcal{G}_t | \mathcal{G}_0)$;
 983 $z \leftarrow f(\mathcal{G}_t, t)$; // Graph-theoretic features
 984 $h \leftarrow \text{emb}(X^{T'})$; // Interaction-guidance features
 985 $(\hat{p}^{\mathcal{V}}, \hat{p}^{\mathcal{E}}) \leftarrow \phi_{\theta}(\mathcal{G}_t, z, h)$; // Denoising pass
 986 optimizer.step $(\mathcal{L}_{CE}(\hat{p}^{\mathcal{V}}, \mathcal{V}_0) + \lambda_{ve} \mathcal{L}_{CE}(\hat{p}^{\mathcal{E}}, \mathcal{E}_0))$; // Cross-entropy loss

988 C THE COMPLETE PROCEDURE OF POLICY OPTIMIZATION
989991 **Algorithm 2:** Optimizing CSDPM

992 **Input:** Pretrained CSDPM p_{θ} , diffusion steps T , reward function $r_{solo}(\cdot)$, learning rate η ,
 993 number of trajectories $|\mathcal{D}|$, timestep samples $|\mathcal{T}|$, training steps N

994 **Output:** Optimized CSDPM p_{θ}

995 **for** $n = 1, \dots, N$ **do**

996 **for** $d = 1, \dots, |\mathcal{D}|$ **do**
 997 Sample cognitive structure trajectory $\mathcal{G}_{0:T}^{(d)} \sim p_{\theta}(\mathcal{G}_{0:T})$;
 998 Compute reward $r_{solo}(\mathcal{G}_0^{(d)})$;
 999 Sample random timesteps subset $\mathcal{T}_d \subseteq [\![1, T]\!]$;
 1000 // Estimate reward statistics
 1001 $\bar{r} \leftarrow \frac{1}{|\mathcal{D}|} \sum_{d=1}^{|\mathcal{D}|} r_{solo}(\mathcal{G}_0^{(d)})$, $\text{std}[r] \leftarrow \sqrt{\frac{1}{|\mathcal{D}|-1} \sum_{d=1}^{|\mathcal{D}|} (r_{solo}(\mathcal{G}_0^{(d)}) - \bar{r})^2}$;
 1002 // Estimate eager policy gradient
 1003 $\nabla_{\theta} J_{\text{RL}}(\theta) \leftarrow \frac{1}{|\mathcal{D}|} \sum_{d=1}^{|\mathcal{D}|} \frac{T}{|\mathcal{T}_d|} \sum_{t \in \mathcal{T}_d} \frac{r_{solo}(\mathcal{G}_0^{(d)}) - \bar{r}}{\text{std}[r]} \nabla_{\theta} \log p_{\theta}(\mathcal{G}_0^{(d)} | \mathcal{G}_t^{(d)})$;
 1004 // Update parameters
 1005 $\theta \leftarrow \theta + \eta \cdot \nabla_{\theta} J_{\text{RL}}(\theta)$;

1009 D STATISTICS OF ALL FOUR DATASETS.
10101012 Table 4: Statistics of all four datasets.
1013

Datasets	Math1	Math2	FrcSub	NIPS34
# of students	4,209	3,911	536	4918
# of questions	20	20	20	948
# of knowledge concepts	11	16	8	57
# of interactions	72,359	78,221	10,720	1,399,470
# of interactions per student	17.19	20.00	20.00	284.56

1019 E IMPLEMENTATION DETAILS
1020

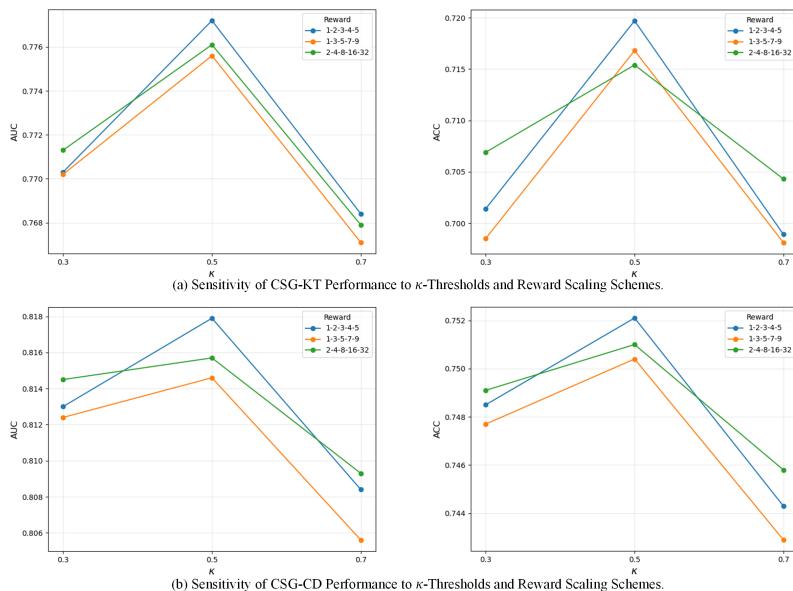
1023 For the parameterization of the CSDPM, we employ the extended Graph Transformer architecture
 1024 from Dwivedi & Bresson (2020); Vignac et al. (2023), configuring it with 8 transformer layers,
 1025 whose hidden dimensions (e.g., MLP, attention heads, and feed-forward layers) are set identically
 to those in Vignac et al. (2023). For pretraining the CSDPM, the CSDPM is trained using a uniform

1026 transition kernel for diffusion and the AdamW optimizer, with the number of diffusion steps T set as
 1027 500, node–edge loss balancing coefficient λ_{ve} (0, 1), the batch size (64, 512), dropout rate (0, 0.5),
 1028 and initial learning rate [1e-5, 1e-2] with weight decay tuned via random or grid search strategy.
 1029 The number of sampled trajectories \mathcal{D} is searched in {128, 256, 512}. For CSG-KT and CSG-CD,
 1030 the dimension of the graph pooling for cognitive state representation is searched in {8, 16, 32, 64}.
 1031 To configure the training process, we initialize the parameters using Xavier initialization (Glorot
 1032 & Bengio, 2010) and employ flexible methods such as random, grid, and bayes search& select
 1033 strategies. For fairness, the hyper-parameter settings of the baseline models have been further tuned
 1034 using the same tuning strategies to achieve optimal results. All experiments were run on Linux
 1035 servers equipped with an Intel Xeon Platinum 8352V CPU and NVIDIA RTX 4090 GPUs.
 1036

F HYPERPARAMETERS ANALYSIS

1039 We conducted a sensitivity analysis of some key parameters. We summarize the following observa-
 1040 tions and conclusions: The optimal node–edge loss balancing coefficient $\lambda_{ve} \in (0, 1)$ was 0.5 for
 1041 Math1, Math2, and FrcSub, and 0.6 for NIPS34, which has a larger number of nodes yielding a cor-
 1042 respondingly greater number of edges. For both CSG-KT and CSG-CD, the optimal graph pooling
 1043 dimension was 16 for Math1 and Math2, 8 for FrcSub, and 32 for NIPS34.

1044 To further examine the robustness of our reward design, we conducted an ablation study by systemat-
 1045 ically varying the threshold parameter κ of the matching degrees \mathcal{M}_V and \mathcal{M}_E , as well as the reward
 1046 scaling schemes. Specifically, we tested three settings of $\kappa \in \{0.3, 0.5, 0.7\}$, and three reward tu-
 1047 ples: (i) a simple linear progression (1, 2, 3, 4, 5), (ii) a steeper linear progression (1, 3, 5, 7, 9), and
 1048 (iii) an exponential progression (2, 4, 8, 16, 32). Figure 3 summarizes the final AUC and ACC re-
 1049 sults, where we take the Math2 dataset as a representative example. The combination of $\kappa = 0.5$
 1050 with the simple linear reward (1, 2, 3, 4, 5) consistently achieves the best balance between perfor-
 1051 mance and stability. In contrast, exponential scaling tends to amplify the contribution of rare high-
 1052 level cases, leading to unstable optimization, while the steeper linear scheme introduces uneven
 1053 signals that bias the model toward intermediate levels. The neutral threshold $\kappa = 0.5$ also proved
 1054 optimal: a looser setting ($\kappa = 0.3$) misclassifies partially aligned structures, whereas a stricter set-
 1055 ting ($\kappa = 0.7$) over-penalizes mid-level structures. In practice, the selected reward tuple yields
 1056 stable training behavior and consistent performance across datasets, and we apply the same values
 1057 throughout all experiments without dataset-specific tuning.



1078 **Figure 3: (Hyperparameter Study).** Sensitivity of CSG-KT and CSG-CD Performance (AUC and
 1079 ACC) to κ -Thresholds and Reward Scaling Schemes.

1080 **G INFERENCE TIME ANALYSIS**
10811082 We further report the inference time of CSG for generating a single cognitive structure graph. As
1083 shown in Table 5, the inference time remains low across datasets of different sizes, demonstrating
1084 the practical feasibility and efficiency of our CSG.
10851086 Table 5: Inference time for generating a single cognitive structure graph.
1087

Dataset	Nodes	Inference Time (ms)
Math1	11	2.61
Math2	16	4.24
FrcSub	8	0.74
NIPS34	57	25.65

1094 **H SIMPLE EXAMPLE OF COGNITIVE STRUCTURE SIMULATION**
10951096 Given five questions q_1 – q_5 that assess the concepts *Sine Theorem* and *Cosine Theorem*, we make an
1097 idealized assumption: if a question involves only one concept, its weight for that concept is set to
1098 1; if it involves both concepts, the weights for each concept are set to 0.5. Suppose a student s_i 's
1099 responses to these five questions are recorded as X_i^5 , as shown in the Table 6 below.
11001101 Table 6: Example of question weights and student responses.
1102

Question	Sine Weight	Cosine Weight	Response
q_1	1.0	0.0	Correct
q_2	1.0	0.0	Correct
q_3	0.5	0.5	Correct
q_4	0.5	0.5	Incorrect
q_5	1.0	0.0	Incorrect

1103 Accordingly, using Eqs.1 and 2, based on interaction records X_i^5 , we can calculate the stu-
1104 dent's construction for the concepts *Sine Theorem* and *Cosine Theorem*, the node-level term
1105 $f_{UOC}(\text{Sine Theorem}, X_i^5)$ and the edge-level term $f_{UOR}(\text{Sine Theorem}, \text{Cosine Theorem}, X_i^5)$ in
1106 the simulated cognitive structure, as follows:
1107

1108
$$f_{UOC}(\text{Sine Theorem}, X_i^5) = \frac{1.0 \cdot 1.0 + 1.0 \cdot 1.0 + 0.5 \cdot 1.0 + 0.5 \cdot 0 + 1.0 \cdot 0}{1.0 + 1.0 + 0.5 + 0.5 + 1.0} = \frac{2.5}{4.0} = 0.625,$$

1109
$$f_{UOR}(\text{Sine Theorem}, \text{Cosine Theorem}, X_i^5) = \frac{0 \cdot (1.0 + 0) + 0 \cdot (1.0 + 0) + 1 \cdot 0 \cdot (0.5 + 0.5) + 1 \cdot 0 \cdot (0.5 + 0.5) + 0 \cdot (1.0 + 0) \cdot 0}{0 \cdot (1.0 + 0) + 0 \cdot (1.0 + 0) + 1 \cdot 0 \cdot (0.5 + 0.5) + 1 \cdot 0 \cdot (0.5 + 0.5) + 0 \cdot (1.0 + 0)} = \frac{1.0}{2.0} = 0.5.$$

1110 **I LIST OF KNOWLEDGE CONCEPTS IN MATH1**
11111112 The table below lists the concept names in the Math1 dataset, which are used for the visualization
1113 and interpretability analysis.
11141115 Table 7: List of knowledge concepts in Math1.
1116

No.	Concept Name
0	Set
1	Inequality
2	Trigonometric function
3	Logarithm versus exponential
4	Plane vector
5	Property of function
6	Image of function
7	Spatial imagination
8	Abstract summarization
9	Reasoning and demonstration
10	Calculation

1134 **J LIMITATIONS AND FUTURE WORK**
11351136 CSG leverages diffusion models, which are generally more computationally intensive than classical
1137 architectures used in knowledge tracing and cognitive diagnosis, such as LSTMs and GNNs. How-
1138 ever, recent advances in accelerating the denoising process of diffusion models (Nichol & Dhariwal,
1139 2021; Liu et al., 2022; Song et al., 2023; Yin et al., 2024; Rombach et al., 2022; Hang et al., 2025)
1140 offer promising avenues to improve efficiency. Moreover, student cognitive structures typically do
1141 not require real-time updates, making the added computational cost acceptable in practical settings.
11421143 For the simulated cognitive structures, in Stage I, we deliberately use a simple rule-based simulator
1144 instead of more complex alternatives such as BKT-/IRT-based simulators or human-elicited cognitive
1145 maps. BKT-/IRT-based simulators require training additional models and careful hyperparameter
1146 tuning on the same performance data, while expert maps depend on costly manual labeling and are
1147 rarely available at scale. By contrast, our weighted-correctness rules provide a transparent, training-
1148 free proxy that can be computed directly from existing Q-matrices and logs. We acknowledge that
1149 this design may introduce bias, but in our framework these signals are only used for pretraining, and
1150 the subsequent SOLO-based RL refinement on real interactions can partially correct such bias. In
1151 future work, we plan to explore learned or hybrid simulators that retain interpretability while further
1152 reducing reliance on handcrafted rules.
11531154 Besides, our current work focuses on a setting standard in KT/CD and many deployed learning
1155 systems: a curriculum- or test-defined concept set that is relatively stable within a course or semester
1156 (Tyler, 2013; Zhao et al., 2022), and CSG models how students' cognitive structures over this fixed
1157 set evolve across time. The CSG framework is not inherently limited to a flat concept layer. In
1158 principle, it can be extended to multi-level or heterogeneous graphs, where nodes represent domains,
1159 intermediate concepts, or finer-grained skills, and edges describe relations both within and across
1160 levels. New concepts can be incorporated without retraining the entire system. For example, one
1161 could (i) pretrain the diffusion backbone on a broader ontology and fine-tune it when new concepts
1162 appear (Ruiz et al., 2023; Zhuang et al., 2024), or (ii) initialize embeddings for new concepts from
1163 textual or ontological neighbors (Hamilton et al., 2017) and continue diffusion+RL training with
1164 mild regularization to preserve existing structures. More generally, inductive mechanisms such as
1165 feature-based initialization, adapter layers, or continual-learning approaches (Zhou et al., 2024a)
1166 can be integrated to support dynamically expanding concept sets. We leave a systematic exploration
1167 of such multi-level and dynamically evolving extensions as future work.
11681169 **K LLMS USAGE**
11701171 During the preparation of this paper, LLMs (specifically, ChatGPT) were used to assist in generating
1172 tables and figures and to support language polishing and proofreading.
11731174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187