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ABSTRACT

Cognitive structure (CS), a student’s construction of concepts and inter-concept
relations, has long been recognized as a foundational notion in educational psy-
chology, yet remains largely unassessable in practice. Existing approaches such
as knowledge tracing (KT) and cognitive diagnosis (CD) simplify and indirectly
approximate CS, but they intertwine representation learning with prediction ob-
jectives, limiting generalization, interpretability, and reuse across tasks. To ad-
dress this gap, we propose Cognitive Structure Generation (CSG), a task-agnostic
framework that explicitly models CS through generative modeling. Based on edu-
cational theories, CSG first pretrains a Cognitive Structure Diffusion Probabilistic
Model (CSDPM) and then applies reinforcement learning with SOLO-based hi-
erarchical rewards to capture plausible patterns of cognitive development. By
decoupling cognitive structure representation from downstream prediction, CSG
produces interpretable and transferable cognitive structures that can be seamlessly
integrated into diverse student modeling tasks. Experiments on four real-world
datasets show that CSG yields more comprehensive representations, substantially
improving performance while offering enhanced interpretability and modularity.

1 INTRODUCTION

Cognitive structure, originally conceived in topological psychology and later embraced by cogni-
tive psychology in education (Piaget, 1952; Bruner, 2009; Ausubel, 1968), denotes the knowledge
system within a student’s mind, manifested as an inherent learning state. Through the learning
processes, students continually integrate new concepts and reorganize existing ones to refine their
cognitive structures for further learning. Formally, a cognitive structure can be modeled as an evolv-
ing graph (Novak & Gowin, 1984), with nodes and edges representing the student’s construction of
concepts and inter-concept relations, respectively (Steffe & Gale, 1995).

Cognitive structure assessment, has long been a central topic in psychometrics (Lord & Novick,
2008). Traditional methods primarily relied on expert-defined educational principles to directly
calculate cognitive structure but lacked sufficient accuracy (Tatsuoka, 2009; Lin et al., 2016b). Con-
sidering that cognitive structure is an inherent learning state, researchers have shifted to indirectly
measuring it based on students’ responses to test items. Knowledge tracing (KT) (Corbett & An-
derson, 1994) and cognitive diagnosis (CD) (Leighton & Gierl, 2007) are prototypical tasks. KT
predicts the response rt at time t as PKT (rt) = fKT

(
ht,βt; Φ

)
, where ht is the student’s latent

state inferred from historical interactions before t, βt is the tested item’s features, and Φ denotes
the model parameters (Abdelrahman et al., 2023). CD models the association between response r
and student’s cognitive state or ability θ based on tested item β as PCD(r) = fCD

(
θ,β; Ω

)
,where

Ω denotes the model parameters (Wang et al., 2024). Although recently emerged KT (Piech et al.,
2015; Choi et al., 2020; Zhang et al., 2017) and CD (Cheng et al., 2019; Wang et al., 2020) models
have achieved remarkable performance, they still face two foundational limitations.

First, both the student’s latent state ht in KT and the cognitive state or ability θ in CD are typi-
cally narrowed to the student’s construction of individual concepts, i.e. ht,θ → RL (where L is
the number of concepts), and thus cannot model the student’s construction of inter-concept rela-
tions necessary for modeling a complete cognitive structure and its holistic evolution during the
real learning process. Although some studies have applied graph learning methods on static con-
cept maps (Liu et al., 2019; Nakagawa et al., 2019; Tong et al., 2020) or heterogeneous interaction
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graphs (Gao et al., 2021; Yang et al., 2024) to obtain enhanced representations of ht and θ, they
only model students’ construction on individual concepts and still do not explicitly model students’
construction of inter-concept relations. Therefore, our core motivation is to explicitly and compre-
hensively model cognitive structure (CS), the states of the students’ construction of concepts and
inter-concept relations (Ausubel, 1968), which remains a foundational yet unassessable concept in
educational practice.

Second, by definition, students’ responses are only an external manifestation or an indirect indicator
of their underlying learning state—namely, the cognitive structure in this paper, ht in KT, and θ
in CD. Yet most existing models have become increasingly preoccupied with maximizing response
prediction accuracy, often through extensive domain feature integration (Liu et al., 2021; Xu et al.,
2023; Zhou et al., 2021), ever more sophisticated network designs and optimizations (Yang et al.,
2023a;b; Li et al., 2024; Liu et al., 2024b; Chen et al., 2023), and so forth. While such directions
improve accuracy, they still tightly couple state inference with response prediction, intertwining
representation learning with prediction objectives, which restricts generalization, particularly when
models are applied in cold-start or uncertain settings, and limits interpretability and modular reuse.

To bridge this gap, we propose Cognitive Structure Generation (CSG), a task-agnostic framework
that explicitly models CS through generative modeling, which decouples cognitive structure repre-
sentation from downstream prediction. Guided by cognitive structure theory (Ausubel, 1968) and
constructivism (Steffe & Gale, 1995), CSG aims to produce interpretable and transferable cognitive
structures that can be seamlessly integrated into diverse student modeling tasks, thereby enhancing
generalization, interpretability, and modularity. Specifically:

First, consider that a cognitive structure is manifested as a graph, we naturally cast cognitive struc-
ture generation as a graph generation task, and propose a Cognitive Structure Diffusion Probabilistic
Model (CSDPM), whose forward diffusion and reverse denoising processes can learn the underly-
ing distribution of real cognitive structures and produce novel ones. However, since real cognitive
structures cannot be directly observed, we devise a rule-based method to infer students’ construction
of concepts and inter-concept relations from interaction logs, yielding a set of simulated cognitive
structures, which is then used to pretrain the CSDPM and initialize its basic capability for CSG.

Second, although the cognitive structures sampled from the pretrained CSDPM match the distribu-
tion over simulated cognitive structures, they are insufficient to reflect the genuine levels of cognitive
development (Flavell, 1977; Keil, 1992) that students achieve through their learning processes. To
fill this gap, inspired by the Structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs
& Collis, 2014) that characterizes five levels of cognitive development, we define a fine-grained,
hierarchical reward function. Using these reward signals, we optimize the policy of the denoising
process via reinforcement learning to better capture plausible patterns of cognitive development.

To the end, the pretrained and fine-tuned CSDPM, has been fully equipped for cognitive structure
generation, and the generated cognitive structures can be leveraged for diverse downstream student
modeling tasks in the educational domain. To the best of our knowledge, we are the first to:

• Reformulate cognitive structure modeling as a cognitive structure generation task;

• Decouples cognitive structure representation from downstream prediction;

• Propose a CSDPM with a two-stage design, pretraining on simulated structures and fine-
tuning via reinforcement learning with SOLO-based hierarchical rewards.

Experimental results on four popular real-world education datasets show that cognitive structures
generated by CSG offer more comprehensive and effective representations for student modeling,
substantially improving performance on KT and CD tasks while enhancing interpretability.

2 RELATED WORKS

We organize related works into three strands. Cognitive Structure Modeling has been rooted
in psychology and education (Piaget, 1952; Ausubel, 1968), where traditional psychometric ap-
proaches construct rule-based graphs of students’ concepts and relations but lack personalization.
With the rise of learning analytics, researchers approximate cognitive structures from student re-
sponses via knowledge tracing (Piech et al., 2015; Choi et al., 2020) and cognitive diagnosis
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(Leighton & Gierl, 2007; Cheng et al., 2019). KT methods employ hidden-state models, classi-
fiers, or encoder–decoders, sometimes augmented with concept maps or heterogeneous graphs (Liu
et al., 2019; Yang et al., 2024), while CD methods focus on fine-grained attributes (Xu et al., 2023).
We also note recent diffusion-based KT/CD models such as MSKT (Zhang et al., 2024b) and Dif-
fCog (Zhao et al., 2024), which couple diffusion processes with latent knowledge representations
for improved KT/CD prediction. However, they tend to focus on the mastery of individual concepts,
overlooking the holistic evolution of cognitive structures. They focus solely on students’ mastery of
individual concepts while overlooking their mastery of inter-concept relations, thereby hindering the
modeling of their holistic evolution of cognitive structures. Recent attempts still rely on predefined
graphs (Chen et al., 2024), leaving the task of holistic cognitive structure generation largely unex-
plored. Graph Diffusion Probabilistic Models (DPMs) extend deep generative frameworks such
as autoregressive models, VAEs, GANs, and normalizing flows. Continuous-time DPMs (Jo et al.,
2022) denoise Gaussian-corrupted graphs, whereas discrete variants (Vignac et al., 2023) use cate-
gorical transitions to better preserve sparsity. These advances demonstrate the potential of diffusion
models for complex graph generation, yet their mechanisms remain to be adapted for the unique
challenges of cognitive structure generation. Optimization of DPMs has increasingly leveraged
reinforcement learning to align generative models with external objectives. Recent approaches in
vision (Fan et al., 2023; Black et al., 2024) and graphs (Liu et al., 2024c) treat reverse diffusion as a
Markov decision process optimized via policy gradients. Building on this line of work, we propose a
SOLO-based reward to optimize the graph diffusion model for CSG, thereby aligning the generated
structures more effectively with cognitive development levels. For a more comprehensive discussion
of related studies, please refer to Appendix A.

3 THE CSG FRAMEWORK

3.1 PROBLEM FORMULATION

Suppose a learning system is defined as L = ⟨S,Q,K,R⟩, where S = {si}Ni=1 is the set of
N students, Q = {qj}Mj=1 the set of M questions, and K = {kl}Ll=1 the set of L knowl-
edge concepts. Students answer questions from Q, generating response logs R = {rij |
student si answered question qj}, where rij = 1 if si answers qj correctly and rij = 0 other-
wise. For each student si, the sequence of historical interactions up to timestamp T is denoted as
XT

i = {(qj , rij)t}Tt=1, where (qj , rij)
t is the question–response pair at time step t.

A student si’s cognitive structure at time T is defined as a graph GTi = (VT
i , ETi ). The node

set VT
i ∈ RL×c represents si’s construction states for the L concepts in K, and the edge set

ETi ∈ RL×L×c represents the construction states of inter-concept relations, where c is the size
of the discrete construction state space (e.g., “constructed” vs. “unconstructed”). Since we treat
the cognitive structure as an undirected graph, all subsequent operations are applied to the upper-
triangular entries E+ of E , after which the matrix is symmetrized. Our goal is to generate GTi from
XT

i , formally defined as a mapping function fCSG : XT
i → GTi .

To implement this mapping, we propose the Cognitive Structure Diffusion Probabilistic Model (CS-
DPM). The CSDPM is first pretrained on simulated cognitive structures to initialize its genera-
tive capacity, and then fine-tuned via policy optimization to align generation with genuine cogni-
tive development. The holistic structures produced by the optimized CSDPM can then be used in
downstream tasks such as knowledge tracing (KT) and cognitive diagnosis (CD): PKT (r

T+1
ij ) =

fKT

(
GTi ,β(q

T+1
j ); Φ

)
and PCD(rij) = fCD

(
GTi ,β(qj); Ω

)
, where β(q) denotes the embedding

of question q, and Φ, Ω are model parameters.

The overall architecture of CSG is illustrated in Fig.1. The CSG framework consists of two stages:
pretraining CSDPM and optimizing CSDPM, which we will detail in the following subsections.

3.2 STAGE I: PRETRAINING CSDPM WITH SIMULATED COGNITIVE STRUCTURES

The goal of Stage I is to initialize the CSDPM so that it captures meaningful inductive biases about
how students construct knowledge. Unlike other graph generation domains (Liu et al., 2024a; Zhang
et al., 2024a; Trivedi et al., 2024; Zhao et al., 2021), training here ideally requires access to ground-
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Figure 1: (Overview). The CSG includes two stages: pretraining CSDPM with Simulated Cognitive
Structures and optimizing CSDPM via SOLO-based Hierarchical Reward. In stage I, the Cognitive
Structure Simulation module (left) produces simulated cognitive structures that are used to pretrain
the CSDPM. In stage II, a SOLO-based reward is introduced to optimize the CSDPM’s policy via
RL (right). Once pretrained and optimized, the CSDPM can generates cognitive structures, whose
effectiveness is validated on KT and CD tasks through response prediction.

truth cognitive structures, which are not directly observable in practice. To address this, we design
a simple rule-based simulation process grounded in theories of cognitive structure (Ausubel, 1968)
and constructivist learning (Steffe & Gale, 1995), which serves as a proxy for pretraining.

Cognitive Structure Simulation. For each student si and interaction history XT
i , we simulate a

cognitive structure G̃Ti = (VT
i , ETi ) by defining rule-based functions for concept states and relation

states. Inspired by Lin et al. (2016a), we compute the construction state of concept kl by

fUOC(kl, X
T
i ) =

∑
(qj ,rij)t∈XT

i
ωl,j · rij∑

(qj ,rij)t∈XT
i
ωl,j

, (1)

and the construction state of the relation between concepts ka and kb by

fUOR(ka, kb, X
T
i ) =

∑
(qj ,rij)t∈XT

i
1{ωa,j > 0 ∧ ωb,j > 0} (ωa,j + ωb,j)rij∑

(qj ,rij)t∈XT
i
1{ωa,j > 0 ∧ ωb,j > 0} (ωa,j + ωb,j)

. (2)

Here, ωl,j denotes the weight of concept kl in question qj , obtained by normalizing the Q-matrix
across concepts that a question involves. This ensures that if a question taps multiple concepts, each
receives a proportional share of weight. To better reflect real-world data and improve robustness,
we also add small Gaussian perturbations to the Q-matrix entries. In Appendix H, we also provide
a detailed example with full calculation steps.

Intuition. Equations 1 and 2 can be viewed as weighted accuracies that approximate the likelihood
a student has constructed a given concept or relation. Eq. 1 averages the student’s correctness on
all questions involving concept kl, weighted by how strongly the question tests kl. Intuitively, if
a student answers many kl-related questions correctly, the ratio will approach 1, signaling that the
concept is well constructed. Eq. 2 measures co-construction: it averages correctness on questions
that involve both ka and kb, weighted by their combined relevance. Thus, if a student tends to
succeed on joint questions, the relation between the two concepts is considered constructed.

From probabilities to discrete states. The fUOC and fUOR are empirical probabilities in [0, 1].
To map them into the discrete construction space ∆c, we round the values and apply a one-hot
encoding, yielding ṽTi,l and ẽTi,a−b. By repeating this process for all students si and timestamps T ,
we obtain a set of simulated cognitive structures G̃, which provides the training data to pretrain the
CSDPM through forward diffusion and reverse denoising. For clarity, we drop student subscripts and
time superscripts when unambiguous, writing G, v, e in place of G̃Ti , ṽTi,l, ẽTi,a−b. To avoid confusion
between interaction timestamps and diffusion steps, we denote the former by T ′ now and reserve T
for diffusion steps.

Forward Diffusion Process. Our CSDPM uses a forward diffusion process q(G1:T | G0) =∏T
t=1 q(Gt | Gt−1) that gradually corrupts an initial simulated cognitive structure G0 ∼ q(G0) into

near–uniform noise q(GT ) after T steps. The transition admits a node/edge factorization over the
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discrete construction state space:

q(Vt |Vt−1) =
∏
v∈V

q(vt |vt−1), q(Et |Et−1) =
∏
e∈E+

q(et |et−1), (3)

where E+ denotes the upper–triangular edge set (the graph is symmetrized afterwards). For each
categorical node state v ∈ ∆c, we use the discrete noising kernel q(vt|vt−1) = Cat(vt; vt−1Q

v
t ),

Qv
t = αtI + (1− αt)

1c1
⊤
c

c with schedule αt∈ [0, 1] decreasing as t increases (Austin et al., 2021).

Here, 1c is the c-dimensional all-ones vector and 1c1
⊤
c

c is the uniform transition over ∆c. Thus,
αt = 1 leaves the signal unchanged (Qv

t = I), while smaller αt mixes in more uniform noise. Let
Q̄v

t =Qv
1Q

v
2 · · ·Qv

t . Then the marginal and one–step posteriors admit closed forms:

q(vt |v0) = Cat
(
vt; v0 Q̄

v
t

)
, q(vt−1 |vt, v0) = Cat

(
vt−1;

(
vt(Q

v
t )

⊤)⊙ (v0Q̄v
t−1

)
v0Q̄v

t v
⊤
t

)
, (4)

where ⊙ denotes element-wise product and all vectors are row-stochastic. As t grows and∏t
s=1 αs → 0, each node approaches the uniform distribution q(vT | v0) ≈ Cat(vT ;

1c

c ); edge
transitions are defined analogously.

Reverse Denoising Process. Given the forward corruption, we learn a parametric reverse process
pθ(G0:T ) = p(GT )

∏T
t=1 pθ(Gt−1 | Gt) to recover cognitive structures from near–uniform noise

p(GT )≈q(GT ). We factor the reverse transition into nodes and edges:

pθ(Gt−1 |Gt) =
∏
v∈V

pθ(vt−1 |Gt)
∏
e∈E+

pθ(et−1 |Gt). (5)

Following the standard x0-parameterization in discrete diffusion (Hasselt, 2010; Karras et al., 2022),
each conditional can be expressed by marginalizing the exact posterior with a prediction of the clean
state:

pθ(vt−1 |Gt) =
∑

v0∈∆c

q(vt−1 |vt, v0) pθ(v0 |Gt) , pθ(et−1 |Gt) =
∑

e0∈∆c

q(et−1 |et, e0) pθ(e0 |Gt) ,

(6)
where a neural network predicts pθ(v0 |Gt) and pθ(e0 |Gt) given the noisy graph Gt.

Training Objective. We pretrain on the simulated dataset G̃ by maximizing the expected log-
likelihood of clean structures conditioned on noisy ones:

JCSDPM(θ) = EG0∼G̃,t∼UJ1,T K

[
Eq(Gt|G0) [log pθ(G0|Gt)]

]
, (7)

with t sampled uniformly from J1, T K. At generation time, we sample GT ∼ p(GT ) and iteratively
draw Gt−1∼pθ(Gt−1 |Gt) to obtain the trajectory (GT ,GT−1, . . . ,G0) for CSG.

Parametrization. We instantiate pθ with an extended Graph Transformer Dwivedi & Bresson
(2020); Vignac et al. (2023) that takes a noisy cognitive structure Gt = (Vt, Et) as input and outputs
distributions over clean node and edge states. Following (Vignac et al., 2023), we retain graph-
theoretic feature integration and additionally condition the model on two auxiliary features: (i) a
diffusion-step embedding that encodes the current noise level t, and (ii) an embedding of the stu-
dent’s interaction history XT ′

, which provides task-specific guidance. An algorithmic summary is
provided in Appendix B.

3.3 STAGE II: OPTIMIZING CSDPM VIA SOLO-BASED HIERARCHICAL REWARD

Building on the pretrained CSDPM, we further optimize its reverse denoising process to better align
generation with genuine cognitive development. Inspired by the SOLO taxonomy (Biggs & Collis,
2014), we introduce a fine-grained hierarchical reward function and cast the denoising process as a
reinforcement learning problem.

Standard Markov Decision Process Formulation. A standard MDP is specified by
(S,A,P, r, ρ0), where S is the state space, A the action space, P(s′|s,a) the transition kernel,
r(s,a) the reward, and ρ0 the initial-state distribution. Under a parameterized policy πθ(a|s), an
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agent generates a trajectory τ = (s0,a0, . . . , sT ) by sampling s0 ∼ ρ0, then repeatedly choosing
at ∼ πθ(·|st), receiving reward r(st,at), and transitioning via st+1 ∼ P(·|st,at). The return is
R(τ ) =

∑T
t=0 r(st,at), and the RL objective is to maximize JRL(θ) = Eτ∼p(τ |πθ)[R(τ )]. By

the policy-gradient theorem (Grondman et al., 2012), this objective can be optimized using REIN-
FORCE algorithm (Sutton et al., 1998):

∇θJRL(θ) = Eτ∼p(τ |πθ)

[ T∑
t=0

∇θ log πθ(at|st)R(τ )
]
. (8)

Mapping the Reverse Denoising Process to a T -step MDP. The pretrained CSDPM defines sam-
ples via its reverse denoising chain pθ(G0:T ), but the marginal pθ(G0) is intractable (Ho et al., 2020),
and the reward r(G0) is a black box with no gradient signal (Black et al., 2024). Following Fan et al.
(2023); Liu et al. (2024c), we reformulate the denoising process as a T -step MDP:

st ≜ (GT−t, T − t), at ≜ GT−t−1,

πθ(at|st) ≜ pθ(GT−t−1|GT−t, T − t), P(st+1|st,at) ≜ δ
(
st+1 − (GT−t−1, T − t− 1)

)
,

r(st,at) ≜ r(G0) if t = T, r(st,at) ≜ 0 if t < T,

(9)

where δ(·) denotes a Dirac distribution, capturing the fact that transitions are deterministic: given st
and at, the next state is exactly st+1 = (GT−t−1, T − t − 1). The initial state s0 = (GT , T ) is the
fully noised structure, and the terminal state sT = (G0, 0) is the fully denoised structure.

SOLO-based Hierarchical Reward Function. After formulating the reverse denoising process
of CSDPM as a MDP, we can optimize it for specific reward signals, which should ideally reflect
the levels of cognitive development that students achieve through their learning processes. Inspired
by the SOLO taxonomy (Biggs & Collis, 2014), we propose a fine-grained, hierarchical reward
function that scores the generated cognitive structures according to their alignment with the five
levels of SOLO, which correspond to progressively better construction of concepts and inter-concept
relations within more sophisticated cognitive structure.

Given a sampled structure G0 = (V0, E0) and the next real interaction (qj , rij)
T ′+1, we compare

the predicted construction of relevant concepts and relations against the observed response. The
matching degrees are

MV =
1

|Vqj |
∑

v∈Vqj

(rij ⊻ v), ME =
1

|Eqj |
∑
e∈Eqj

(rij ⊻ e), (10)

where ⊻ denotes the XNOR operation. The SOLO-based reward is then

rsolo(G0) =



r1, MV = 0,

r2, 0 <MV < κ,

r3, MV ≥ κ ∧ME < κ,

r4, κ ≤MV < 1 ∧ κ ≤ME < 1,

r5, (MV = 1 ∧ME ≥ κ) ∨ (MV ≥ κ ∧ME = 1),

(11)

with r1 < r2 < r3 < r4 < r5 corresponding to SOLO levels: (i) Pre-structural: No meaningful
concept alignment; (ii) Uni-structural: Alignment of a single or few concepts; (iii) Multi-structural:
Alignment of multiple concepts, few relations; (iv) Relational: Alignment of multiple concepts and
multiple relations; (v) Extended abstract: Alignment of almost all concepts and relations.

Since MV ,ME ∈ [0, 1], we adopt κ = 0.5 as the default threshold to distinguish “few” from
“multiple” alignments. For instance, 0 <MV < 0.5 maps to the uni-structural level and is rewarded
with r2. Sensitivity analyses on thresholds and reward scales are reported in Appendix F.

Policy Gradient Estimation. With the reverse denoising process formulated as a T -step MDP, an
agent generates a CSG trajectory τ = (GT ,GT−1, . . . ,G0), where τ ∼ p(τ |πθ) = pθ(G0:T ). Since
rewards are only assigned at the terminal state, the cumulative return of any trajectory reduces to

R(τ ) =
T∑

t=0

r(st,at) = rsolo(G0). (12)
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The learning objective is therefore JRL(θ) = Eτ∼p(τ |πθ)[R(τ )] = EG0:T∼pθ
[rsolo(G0)], which

coincides with the end-structure objective JG0
(θ).

A standard REINFORCE estimator gives the gradient

∇θJRL(θ) = EG0:T∼pθ

[
rsolo(G0)

T∑
t=1

∇θ log pθ(Gt−1|Gt)
]
, (13)

but this estimator suffers from high variance on discrete graph diffusion. Following Liu et al.
(2024c), we instead adopt the eager policy gradient, which directly reinforces the likelihood of
high-reward terminal structures (i.e., the clean cognitive structures after T reverse denoising steps),
rather than distributing credit iteratively via the term ∇θ log pθ(Gt−1|Gt). With Monte Carlo esti-
mation, the policy gradient can be modified as follows:

∇θJRL(θ) ≈
1

|D|

|D|∑
d=1

T

|Td|
∑
t∈Td

rsolo
(
G(d)0

)
∇θ log pθ

(
G(d)0 | G(d)t

)
, (14)

where D is the set of sampled trajectories, and Td ⊆ J1, T K is a random subset of timesteps for
trajectory d. This estimator treats all trajectories ending at the same G0 as an equivalence class and
reinforces them jointly, which significantly improves stability and sample efficiency. The full policy
optimization procedure is summarized in Appendix C.

Two-Stage Training Paradigm. Overall, the training of CSG adopts a two-stage paradigm, inspired
by the pretraining–finetuning strategy of LLMs (Devlin et al., 2019). In Stage I, it bypasses pure
noise by leveraging simulated cognitive structures grounded in educational principles to establish a
meaningful prior. In Stage II, a SOLO-based hierarchical reward assesses the generated structures by
how well they match the progressively levels of understanding defined by the SOLO, which guides
CSG to refine its initial representations and move beyond handcrafted assumptions.

4 EXPERIMENTS

Downstream Modeling for CSG. Since ground-truth cognitive structures cannot be directly ob-
served, we follow the standard evaluation approach in prior work (Piech et al., 2015; Wang et al.,
2020) and use learning performance outcomes as an indication of latent representation quality. The
basic idea is that if the generated structures capture students’ latent cognitive states, the resulting rep-
resentations should improve prediction accuracy on standard benchmarks. We focus on two widely
studied tasks: knowledge tracing (KT), which predicts learning performance, and cognitive diagno-
sis (CD), which estimates fine-grained knowledge proficiency. Together, these tasks serve as proxies
for assessing how well the structures encode interpretable and transferable cognitive information.

From Structures to Representations. To operationalize the generated cognitive structures in down-
stream models, we employ the edge-aware hard-clustering graph pooling method from Zhu et al.
(2023). This method produces a compact cognitive state vector for each student by jointly sum-
marizing node and edge features, thereby preserving information about both concept mastery and
inter-concept relation mastery. The resulting vector is concatenated with the tested question embed-
ding before being passed to the task-specific output layers.

CSG-KT. For knowledge tracing, we use the pooled structure representation to augment a standard
DKT (Piech et al., 2015) model. The prediction function is

PKT (r
T ′+1
ij ) = fKT,Φ : σ

(
FC
(

Pooling(GT
′

i ) ⊕ emb(β(qT
′+1

j ))
))

, (15)

where T ′ is the current interaction timestamp, emb(·) denotes the question embedding, ⊕ is con-
catenation, FC is a fully-connected layer, and σ is the sigmoid activation. This formulation allows
the model to predict whether student si will answer question qT

′+1
j correctly, informed by their

generated cognitive structure.

CSG-CD. For cognitive diagnosis, we integrate the pooled structure representation into the NCD
framework (Wang et al., 2020). The prediction function is

PCD(rij) = fCD,Ω : σ
(
Qj ⊙

(
(Pooling(GT

′

i )− hdiff )× hdisc

))
, (16)
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Table 1: Performance comparison between CSG-KT and CSG-CD with their baselines on differ-
ent datasets, averaged over five-fold cross-validation. Statistical significance is assessed via the
Wilcoxon rank-sum test, with * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

Category Model Math1 Math2 FrcSub NIPS
Metrics AUC↑ ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓

KT

DKT 0.7735 0.7082 0.4524 0.7381 0.6678 0.4600 0.8202 0.7529 0.3392 0.6593 0.6214 0.4690
SAKT 0.7612 0.7017 0.4552 0.7250 0.6583 0.4618 0.8113 0.7513 0.3419 0.6531 0.6176 0.4710
GKT 0.7843 0.7147 0.4493 0.7463 0.6759 0.4519 0.8247 0.7608 0.3360 0.6841 0.6339 0.4645
SKT 0.7895 0.7181 0.4489 0.7529 0.6842 0.4492 0.8385 0.7696 0.3338 0.6985 0.6429 0.4637

GRKT 0.7943 0.7242 0.4461 0.7618 0.6976 0.4448 0.8418 0.7754 0.3280 0.7070 0.6501 0.4601
MIKT 0.8030 0.7281 0.4412 0.7701 0.7017 0.4426 0.8472 0.7804 0.3253 0.7147 0.6570 0.4583

ENAS-KT 0.8103 0.7326 0.4334 0.7722 0.7120 0.4405 0.8506 0.7865 0.3207 0.7233 0.6634 0.4565
simpleKT 0.8074 0.7304 0.4390 0.7713 0.7083 0.4411 0.8485 0.7844 0.3232 0.7191 0.6618 0.4542
PSI-KT 0.8118 0.7392 0.4317 0.7759 0.7140 0.4403 0.8533 0.7908 0.3309 0.7260 0.6687 0.4520

CSG-KT 0.8220* 0.7412** 0.4283** 0.7772* 0.7197* 0.4390* 0.8636* 0.8022* 0.3192** 0.7413** 0.6757** 0.4511**

CD

IRT 0.7356 0.7179 0.4279 0.7589 0.6981 0.4516 0.7414 0.7091 0.3944 0.7489 0.6907 0.4516
MIRT 0.7482 0.7347 0.4256 0.7699 0.7038 0.4478 0.8086 0.7745 0.3589 0.7589 0.7017 0.4483
NCD 0.7691 0.7459 0.4084 0.7781 0.7182 0.4456 0.8250 0.8042 0.3498 0.7697 0.7113 0.4412
RCD 0.7861 0.7584 0.4033 0.7911 0.7275 0.4406 0.8321 0.8178 0.3419 0.7736 0.7171 0.4345

HyperCDM 0.7876 0.7599 0.4016 0.7972 0.7320 0.4383 0.8417 0.8239 0.3387 0.7821 0.7209 0.4301
DisenGCD 0.7983 0.7628 0.4001 0.8039 0.7457 0.4324 0.8559 0.8375 0.3342 0.7886 0.7311 0.4275
CSG-CD 0.8133* 0.7710** 0.3987*** 0.8179** 0.7521* 0.4270*** 0.8699*** 0.8451* 0.3152*** 0.8036* 0.7507** 0.4242***

where Qj is one row of the Q-matrix that specifies which concepts question qj assesses. The vectors
hdiff and hdisc are transformations of the question embedding emb(β(qj)), following Wang et al.
(2020). Here, ⊙ and × denote element-wise product and scalar multiplication, respectively. This
formulation assesses the consistency of a student’s structure GT ′

i with their actual response rij.
Both CSG-KT and CSG-CD are trained via cross-entropy loss, minimizing the discrepancy between
predicted probabilities and ground-truth responses.

Experimental Settings. We evaluate our CSG on four real-world datasets of varying scales: Math1,
Math2, FrcSub, and NIPS341, with statistics provided in Appendix D. To evaluate the utility of the
generated cognitive structures, we compare CSG-KT and CSG-CD against several baselines in their
respective tasks. For KT, we include DKT (Piech et al., 2015), SAKT (Pandey & Karypis, 2019),
GKT (Nakagawa et al., 2019), SKT (Tong et al., 2020), GRKT (Cui et al., 2024), MIKT (Sun et al.,
2024), ENAS-KT (Yang et al., 2023a), simpleKT (Liu et al., 2023), and PSI-KT (Zhou et al., 2024b).
For CD, we include IRT (Cai et al., 2016), MIRT (Ackerman et al., 2003), NCD (Wang et al., 2020),
RCD (Gao et al., 2021), HyperCDM (Shen et al., 2024), and DisenGCD (Yang et al., 2024).

Our goal is to broadly evaluate the utility of CSG-generated structures as general-purpose repre-
sentations across tasks, rather than to provide an exhaustive benchmark of all KT/CD models. We
therefore select representative baselines from three main categories: (i) classical models (e.g., DKT,
IRT), (ii) structure-aware models (e.g., GKT, SKT, GRKT, RCD), and (iii) recent state-of-the-art
models (e.g., simpleKT, PSI-KT, ENAS-KT, HyperCDM, DisenGCD). Following common practice,
we use AUC (Bradley, 1997), ACC, and RMSE as evaluation metrics. Additional implementation
details can be found in Appendix E.

All experiments use an 8:1:1 random split of student interaction records. This split is strictly disjoint:
no test interaction ever appears in the training set, and no model is trained on test data. For evalua-
tion, CSG generates cognitive structures from a student’s interaction history up to time T ′. For KT,
these structures are used to predict the response at T ′+1. For CD, the model is never exposed to the
target response rij for the item it is asked to predict. This ensures that evaluation strictly measures
generalization rather than memorization, and that no information leaks from training to testing.

Overall Performance. Table 1 reports the performance of CSG-KT, CSG-CD, and all KT/CD
baselines on four public datasets, measured by average AUC, ACC, and RMSE over 5-fold cross-
validation, with the best scores highlighted in bold. We observe: (i) CSG-KT not only substan-
tially outperforms classical knowledge tracing models (e.g., DKT, SAKT), but also delivers clear
gains over graph-based methods that model only concept construction without inter-concept rela-
tions (e.g., GKT, SKT, GRKT), and even surpasses recent SOTA approaches (e.g., PSI-KT, MIKT,
ENAS-KT). Similarly, CSG-CD markedly improves upon classical parameter-estimation models
(e.g., IRT, MIRT), achieves significant gains over neural models that represent student ability only
at the concept level (e.g., NCD), and also exceeds heterogeneous graph-based SOTA methods. These
results indicate that generative cognitive structures provide more comprehensive and accurate repre-
sentations of student learning states, while capturing their dynamic evolution over time. (ii) Across

1Math1, Math2, and FrcSub are available at http://staff.ustc.edu.cn/˜qiliuql/
data/math2015.rar. NIPS34 is available at http://ednet-leaderboard.
s3-website-ap-northeast-1.amazonaws.com/
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Table 3: Ablation study on the impact of CSG variants for KT and CD across multiple datasets.

Category Model Math1 Math2 FrcSub NIPS
Metrics AUC↑ ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓

KT

V1-KT 0.7842 0.7050 0.4496 0.7276 0.6745 0.4571 0.8144 0.7486 0.3455 0.6807 0.6504 0.4697
V2-KT 0.7991 0.7196 0.4433 0.7421 0.6887 0.4543 0.8288 0.7630 0.3397 0.6951 0.6647 0.4674
V3-KT 0.8042 0.7343 0.4472 0.7567 0.6930 0.4511 0.8433 0.7775 0.3241 0.7196 0.6691 0.4663
V4-KT 0.8085 0.7351 0.4413 0.7614 0.6974 0.4491 0.8479 0.7821 0.3287 0.7242 0.6697 0.4604
V5-KT 0.8111 0.7387 0.4322 0.7758 0.7184 0.4379 0.8598 0.7882 0.3262 0.7318 0.6730 0.4528

CSG-KT 0.8220 0.7412 0.4283 0.7772 0.7197 0.4390 0.8636 0.8022 0.3192 0.7413 0.6757 0.4511

CD

V1-CD 0.7870 0.7477 0.4218 0.7967 0.7277 0.4508 0.8210 0.8063 0.3475 0.7671 0.7068 0.4411
V2-CD 0.7913 0.7520 0.4157 0.8008 0.7319 0.4471 0.8354 0.8138 0.3309 0.7713 0.7210 0.4371
V3-CD 0.7958 0.7665 0.4098 0.8051 0.7463 0.4406 0.8601 0.8385 0.3276 0.7857 0.7254 0.4313
V4-CD 0.7965 0.7669 0.4041 0.8086 0.7469 0.4395 0.8650 0.8434 0.3275 0.7903 0.7300 0.4257
V5-CD 0.7985 0.7673 0.4030 0.8169 0.7473 0.4377 0.8661 0.8438 0.3205 0.7997 0.7392 0.4353

CSG-CD 0.8133 0.7710 0.3987 0.8179 0.7521 0.4270 0.8699 0.8451 0.3152 0.8036 0.7507 0.4242

datasets of very different scales and interaction densities, both CSG-KT and CSG-CD consistently
deliver robust performance, underscoring the general applicability of our framework. We note that
we employed simple KT/CD models with CSG to demonstrate effectiveness and reduce confounding
factors, leaving adaptation to advanced methods for future work.

Table 2: Detailed configura-
tions of CSG variants used in
the ablation study.

Variants Pretraining Optimization
r(·) rsolo(·)

V1 ✗ ✗ ✗
V2 ✓ ✗ ✗
V3 ✗ ✓ ✗
V4 ✗ ✗ ✓
V5 ✓ ✓ ✗

CSG ✓ ✗ ✓

Ablation Study. We evaluate several variants of our framework
by comparing their prediction performance on sampled cognitive
structures, as summarized in Table 2: (i) V1 uses only the rule-
based simulated structures without any learning; (ii) V2 pretrains
CSDPM on simulated structures but does not apply RL optimiza-
tion; (iii) V3 skips pretraining and applies RL with a generic reward
r(·); (iv) V4 skips pretraining and applies RL with the SOLO-based
reward rsolo(·); (v) V5 combines pretraining with RL under the
generic reward; and (vi) CSG is our complete framework with both
pretraining and SOLO-based optimization. The generic reward r(·)
does not differentiate developmental levels and simply sums MV
andME into a single scalar.

For a fair comparison, we use the rule-based simulated set G̃ for V1, and sample the corresponding
generated set G0 for variants V2–V5. Each variant is then used to independently train and evaluate
downstream KT and CD models, denoted as Vi-KT and Vi-CD, respectively, for i = 1, . . . , 5.

Results in Table 3 show several key findings: (i) Overall, performance steadily improves from the
simplest variant V1 through V5 to our full CSG, for both KT and CD tasks. (ii) Despite its sim-
plicity, V1 performs competitively with classical baselines (e.g., DKT for KT, IRT and NCD for
CD), validating that our rule-based simulation already provides a strong approximation of students’
learning states. On Math1, Math2, and FrcSub, where sequences are short but coverage is high, this
simulation is especially effective; on NIPS34, longer interaction sequences offset lower coverage,
yielding similarly strong outcomes. (iii) V3 generally outperforms V2, suggesting that task-driven
RL optimization can capture hidden learning patterns and incorporate them into generated structures.
(iv) The improvements of V4 over V3, and of full CSG over V5, highlight the value of explicitly
modeling developmental levels and confirm the effectiveness of SOLO-based hierarchical rewards.

Visualization and Interpretability Analysis. In this work, interpretability is one of our main mo-
tivations for explicitly modeling cognitive structures. Specifically, past methods typically encode
knowledge mastery or proficiency implicitly within model parameters and then rely on heatmaps
or radar charts to visualize and interpret hidden states. Our CSG takes a step toward improving
interpretability by constructing cognitive structures in line with cognitive structure theory (Ausubel,
1968) and constructivism (Steffe & Gale, 1995). In our CSG, nodes directly represent students’ con-
structed states of knowledge concepts, and edges represent their constructed states of inter-concept
relations, so that only minimal modification is needed for post-hoc analysis.

As shown in Fig. 2, we observe the following: (i) Subfigure (a) shows the cognitive structure gen-
erated by CSG-CD for student s5 immediately before answering question q1 (assessing concepts
k0,2,5,7,9). The student exhibits weak construction of both individual concepts and their inter-
concept relations, so CSG-CD predicts that the student will answer incorrectly. Subfigure (b) shows
the structure for student s18 before the same question q1; here the student has strong construction
of all five concepts but still weak construction of their relations, and CSG-CD again predicts that
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the student will answer incorrectly. Subfigure (c) shows the structure for student s37 before q1; in
this case, the student demonstrates strong construction of both concepts and relations, so CSG-CD
predicts a correct response. (ii) Subfigure (d) shows five representative cognitive structures gen-
erated by CSG-KT for student s15 at different points in their learning trajectory. Over time, s15’s
cognitive structure evolves from minimal construction to a fully developed structure that integrates
the entire knowledge system in s15’s mind, broadly aligning with the SOLO taxonomy levels of
cognitive development. These case studies illustrate that CSG-generated structures not only cap-
ture students’ subjective construction of the objective knowledge system but also trace its evolution
throughout learning. The results are consistent with established findings in educational psychology,
thereby providing meaningful explanations for students’ response behaviors. Additional analyses
on hyperparameters and inference time are provided in Appendix F, G.

Figure 2: (Case). Examples of generated cognitive structures and the evolution process. Each
graph depicts a student’s generated cognitive structure at a given timestamp. Nodes represent the
student’s construction of concepts (the names of all concepts are listed in Table 7 in Appendix),
while edges represent their construction of inter-concept relations. Green indicates fully constructed
elements, red indicates elements not yet constructed, and gray denotes low-frequency or irrelevant
edges shown for clarity.

5 CONCLUSION

In this work, we introduced Cognitive Structure Generation (CSG), a framework for modeling stu-
dents’ evolving cognitive structures with a graph diffusion model. By decoupling structure repre-
sentation from downstream prediction, CSG produces explicit cognitive structures that align with
developmental patterns. Our two-stage design first pretrains on simulated structures grounded in
educational theory, then optimizes with reinforcement learning guided by a SOLO-based hierarchi-
cal reward to capture plausible patterns of cognitive development. Experiments on four real-world
datasets show that CSG consistently improves performance on knowledge tracing (KT) and cog-
nitive diagnosis (CD), while also enhancing generalizability, interpretability, and modular design.
These results highlight the promise of holistic cognitive structure modeling as a foundation for more
effective and transparent educational intelligence systems. Further discussion of limitations and
future work is provided in Appendix J.
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A ADDITIONAL DISCUSSION OF RELATED WORKS

As a central topic in educational measurement, modeling cognitive structures has long remained
a challenging task. With the advancement of educational data mining techniques, recent progress
in graph generation offers promising support. Accordingly, we review related works as follows:
cognitive structure modeling, graph diffusion probabilistic models, and optimization of DPMs.

Cognitive Structure Modeling. The students’ cognitive structures (Lewin, 2013; Piaget, 1952;
Bruner, 2009; Ausubel, 1968) represent their internal knowledge system, an evolving graph whose
nodes reflect their construction of concepts and whose edges capture their construction of inter-
concept relations (Novak & Gowin, 1984; Steffe & Gale, 1995). Traditional psychometric ap-
proaches derive such structures from expert-defined rules, which limit personalization and accuracy
(Lord & Novick, 2008; Tatsuoka, 2009; Lin et al., 2016b). Considering that cognitive structure
is an inherent learning state, researchers have shifted to indirectly measuring it based on students’
responses to test items, e.g., knowledge tracing (KT) and cognitive diagnosis (CD).

From the KT perspective (Piech et al., 2015; Choi et al., 2020; Zhang et al., 2017), cognitive
structures are implicitly approximated via students’ learning states (also termed hidden states or
knowledge states) inferred from response logs. This includes theory-guided state models (Gu et al.,
2025; Sun et al., 2024), mastery pattern classifiers (Briggs & Circi, 2017; Cui et al., 2016), and en-
coder–decoder architectures (Li et al., 2024; Liu et al., 2024b; Chen et al., 2023). Some KT methods
enrich these states with static concept maps or heterogeneous interaction graphs (Liu et al., 2019;
Nakagawa et al., 2019; Tong et al., 2020; Gao et al., 2021; Yang et al., 2024), yet they typically
emphasize concept mastery without modeling the formation of inter-concept relations.

From the CD perspective (Leighton & Gierl, 2007; Cheng et al., 2019; Wang et al., 2020), models
aim to identify fine-grained cognitive attributes or abilities underlying observed responses. While
some approaches introduce additional features (Liu et al., 2021; Xu et al., 2023; Zhou et al., 2021),
address data distribution issues (Cheng et al., 2025; Zhang et al., 2023b), or optimize network struc-
tures (Yang et al., 2023a;b), they also tend to focus on the correctness of individual concepts, over-
looking the holistic evolution of cognitive structures.

Recent work has also coupled diffusion models with KT/CD objectives. MSKT (Zhang et al., 2024b)
uses a diffusion process to refine sequential latent knowledge states along student interaction logs for
KT, and DiffCog (Zhao et al., 2024) applies diffusion as a denoiser over latent CD ability vectors to
obtain more robust proficiency estimates; however, both operate purely in the latent-vector space and
do not generate explicit, learner-specific cognitive structure graphs. A recent attempt (Chen et al.,
2024) to model cognitive structure state still relies on a predefined concept graph and treats node
and edge construction independently, failing to capture their coupled dynamics. To our knowledge,
we are the first to explicitly formulate the task of cognitive structure generation and present a unified
framework for its holistic modeling.

Graph Diffusion Probabilistic Models. Graph generation has long relied on traditional deep gen-
erative frameworks (e.g., auto-regressive models (Liao et al., 2019), VAEs (Liu et al., 2018), GANs
(Martinkus et al., 2022), and normalizing flows (Luo et al., 2021)) to capture complex graph dis-
tributions. More recently, diffusion probabilistic models (DPMs) (Ho et al., 2020) have emerged
as a powerful new trend for graph generation (Zhang et al., 2023a). Continuous-time graph DPMs
(e.g., EDP-GNN (Niu et al., 2020), GDSS (Jo et al., 2022), DruM (Jo et al., 2023)) learn to denoise
Gaussian-corrupted graph representations (Song et al., 2020) but can struggle to preserve graph
sparsity. To address this, discrete diffusion methods like DiGress (Vignac et al., 2023) replace con-
tinuous noise with categorical transitions, achieving strong results on complex benchmarks. To our
knowledge, we are the first to introduce a graph diffusion probabilistic model for CSG.

Optimization of DPMs. Reinforcement learning (RL) has been widely used to steer graph genera-
tors toward downstream objectives. Traditional methods (Sutton et al., 1999; Zhou et al., 2018) rely
on custom environments and exhibit high computational costs. Diffusion models (DPMs) have been
aligned to external rewards in vision: DPO (Fan et al., 2023) and DDPO (Black et al., 2024) treat
the reverse diffusion as a Markov decision process and apply policy gradients to optimize black-
box reward signals, and DPM alignment has been extended to graphs by GDPO (Liu et al., 2024c),
which introduces an eager policy gradient. Thus, we propose a SOLO-based reward to optimize the
CSDPM, which is effective for aligning with cognitive development levels.
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B THE COMPLETE PROCEDURE OF PRETRAINING CSDPM

Algorithm 1: Pretraining CSDPM

Input: Simulated dataset G̃, diffusion steps T , loss weight λve

while not converged do
Sample (G0, XT ′

) ∼ G̃;
// Sample a simulated cognitive structure and its interaction

sequence
Sample t ∼ UJ1, T K;
Sample Gt ∼ q(Gt|G0 );
z ← f(Gt, t) ; // Graph-theoretic features

h← emb(XT ′
) ; // Interaction-guidance features

(p̂V , p̂E)← ϕθ(Gt, z, h) ; // Denoising pass
optimizer.step (LCE(p̂

V ,V0) + λveLCE(p̂
E , E0)) ; // Cross-entropy loss

C THE COMPLETE PROCEDURE OF POLICY OPTIMIZATION

Algorithm 2: Optimizing CSDPM
Input: Pretrained CSDPM pθ, diffusion steps T , reward function rsolo(·), learning rate η,

number of trajectories |D|, timestep samples |T |, training steps N
Output: Optimized CSDPM pθ
for n = 1, . . . , N do

for d = 1, . . . , |D| do
Sample cognitive structure trajectory G(d)0:T ∼ pθ(G0:T );
Compute reward rsolo(G(d)0 ) ;
Sample random timesteps subset Td ⊆ J1, T K;

// Estimate reward statistics

r̄ ← 1
|D|
∑|D|

d=1 rsolo(G
(d)
0 ), std[r]←

√
1

|D|−1

∑|D|
d=1(rsolo(G

(d)
0 )− r̄)2;

// Estimate eager policy gradient

∇θJRL(θ)← 1
|D|
∑|D|

d=1
T

|Td|
∑

t∈Td

rsolo(G(d)
0 )−r̄

std[r] ∇θ log pθ(G(d)0 |G
(d)
t );

// Update parameters
θ ← θ + η · ∇θJRL(θ);

D STATISTICS OF ALL FOUR DATASETS.

Table 4: Statistics of all four datasets.

Datasets Math1 Math2 FrcSub NIPS34
# of students 4,209 3,911 536 4918
# of questions 20 20 20 948
# of knowledge concepts 11 16 8 57
# of interactions 72,359 78,221 10,720 1,399,470
# of interactions per student 17.19 20.00 20.00 284.56

E IMPLEMENTATION DETAILS

For the parameterization of the CSDPM, we employ the extended Graph Transformer architecture
from Dwivedi & Bresson (2020); Vignac et al. (2023), configuring it with 8 transformer layers,
whose hidden dimensions (e.g., MLP, attention heads, and feed-forward layers) are set identically
to those in Vignac et al. (2023). For pretraining the CSDPM, the CSDPM is trained using a uniform
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transition kernel for diffusion and the AdamW optimizer, with the number of diffusion steps T set as
500, node–edge loss balancing coefficient λve (0, 1), the batch size (64, 512), dropout rate (0, 0.5),
and initial learning rate [1e-5,1e-2] with weight decay tuned via random or grid search strategy.
The number of sampled trajectories D is searched in {128, 256, 512}. For CSG-KT and CSG-CD,
the dimension of the graph pooling for cognitive state representation is searched in {8, 16, 32, 64}.
To configure the training process, we initialize the parameters using Xavier initialization (Glorot
& Bengio, 2010) and employ flexible methods such as random, grid, and bayes search& select
strategies. For fairness, the hyper-parameter settings of the baseline models have been further tuned
using the same tuning strategies to achieve optimal results. All experiments were run on Linux
servers equipped with an Intel Xeon Platinum 8352V CPU and NVIDIA RTX 4090 GPUs.

F HYPERPARAMETERS ANALYSIS

We conducted a sensitivity analysis of some key parameters. We summarize the following observa-
tions and conclusions: The optimal node–edge loss balancing coefficient λve ∈ (0, 1) was 0.5 for
Math1, Math2, and FrcSub, and 0.6 for NIPS34, which has a larger number of nodes yielding a cor-
respondingly greater number of edges. For both CSG-KT and CSG-CD, the optimal graph pooling
dimension was 16 for Math1 and Math2, 8 for FrcSub, and 32 for NIPS34.

To further examine the robustness of our reward design, we conducted an ablation study by systemat-
ically varying the threshold parameter κ of the matching degreesMV andME , as well as the reward
scaling schemes. Specifically, we tested three settings of κ ∈ {0.3, 0.5, 0.7}, and three reward tu-
ples: (i) a simple linear progression (1, 2, 3, 4, 5), (ii) a steeper linear progression (1, 3, 5, 7, 9), and
(iii) an exponential progression (2, 4, 8, 16, 32). Figure 3 summarizes the final AUC and ACC re-
sults, where we take the Math2 dataset as a representative example. The combination of κ = 0.5
with the simple linear reward (1, 2, 3, 4, 5) consistently achieves the best balance between perfor-
mance and stability. In contrast, exponential scaling tends to amplify the contribution of rare high-
level cases, leading to unstable optimization, while the steeper linear scheme introduces uneven
signals that bias the model toward intermediate levels. The neutral threshold κ = 0.5 also proved
optimal: a looser setting (κ = 0.3) misclassifies partially aligned structures, whereas a stricter set-
ting (κ = 0.7) over-penalizes mid-level structures. In practice, the selected reward tuple yields
stable training behavior and consistent performance across datasets, and we apply the same values
throughout all experiments without dataset-specific tuning.

Figure 3: (Hyperparameter Study). Sensitivity of CSG-KT and CSG-CD Performance (AUC and
ACC) to κ-Thresholds and Reward Scaling Schemes.
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G INFERENCE TIME ANALYSIS

We further report the inference time of CSG for generating a single cognitive structure graph. As
shown in Table 5, the inference time remains low across datasets of different sizes, demonstrating
the practical feasibility and efficiency of our CSG.

Table 5: Inference time for generating a single cognitive structure graph.

Dataset Nodes Inference Time (ms)
Math1 11 2.61
Math2 16 4.24
FrcSub 8 0.74
NIPS34 57 25.65

H SIMPLE EXAMPLE OF COGNITIVE STRUCTURE SIMULATION

Given five questions q1–q5 that assess the concepts Sine Theorem and Cosine Theorem, we make an
idealized assumption: if a question involves only one concept, its weight for that concept is set to
1; if it involves both concepts, the weights for each concept are set to 0.5. Suppose a student si’s
responses to these five questions are recorded as X5

i , as shown in the Table 6 below.

Table 6: Example of question weights and student responses.

Question Sine Weight Cosine Weight Response
q1 1.0 0.0 Correct
q2 1.0 0.0 Correct
q3 0.5 0.5 Correct
q4 0.5 0.5 Incorrect
q5 1.0 0.0 Incorrect

Accordingly, using Eqs.1 and 2, based on interaction records X5
i , we can calculate the stu-

dent’s construction for the concepts Sine Theorem and Cosine Theorem, the node-level term
fUOC(Sine Theorem, X5

i ) and the edge-level term fUOR(Sine Theorem, Cosine Theorem, X5
i ) in

the simulated cognitive structure, as follows:

fUOC(Sine Theorem, X5
i ) =

1.0·1.0+1.0·1.0+0.5·1.0+0.5·0+1.0·0
1.0+1.0+0.5+0.5+1.0 = 2.5

4.0 = 0.625,

fUOR(Sine Theorem, Cosine Theorem, X5
i ) =

0·(1.0+0)·0+0·(1.0+0)·0+1.0·(0.5+0.5)·1.0+1.0·(0.5+0.5)·0+0·(1.0+0)·0
0·(1.0+0)+0·(1.0+0)+1.0·(0.5+0.5)+1.0·(0.5+0.5)+0·(1.0+0) = 1.0

2.0 = 0.5.

I LIST OF KNOWLEDGE CONCEPTS IN MATH1

The table below lists the concept names in the Math1 dataset, which are used for the visualization
and interpretability analysis.

Table 7: List of knowledge concepts in Math1.

No. Concept Name
0 Set
1 Inequality
2 Trigonometric function
3 Logarithm versus exponential
4 Plane vector
5 Property of function
6 Image of function
7 Spatial imagination
8 Abstract summarization
9 Reasoning and demonstration

10 Calculation

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

J LIMITATIONS AND FUTURE WORK

CSG leverages diffusion models, which are generally more computationally intensive than classical
architectures used in knowledge tracing and cognitive diagnosis, such as LSTMs and GNNs. How-
ever, recent advances in accelerating the denoising process of diffusion models (Nichol & Dhariwal,
2021; Liu et al., 2022; Song et al., 2023; Yin et al., 2024; Rombach et al., 2022; Hang et al., 2025)
offer promising avenues to improve efficiency. Moreover, student cognitive structures typically do
not require real-time updates, making the added computational cost acceptable in practical settings.

For the simulated cognitive structures, in Stage I, we deliberately use a simple rule-based simulator
instead of more complex alternatives such as BKT-/IRT-based simulators or human-elicited cognitive
maps. BKT-/IRT-based simulators require training additional models and careful hyperparameter
tuning on the same performance data, while expert maps depend on costly manual labeling and are
rarely available at scale. By contrast, our weighted-correctness rules provide a transparent, training-
free proxy that can be computed directly from existing Q-matrices and logs. We acknowledge that
this design may introduce bias, but in our framework these signals are only used for pretraining, and
the subsequent SOLO-based RL refinement on real interactions can partially correct such bias. In
future work, we plan to explore learned or hybrid simulators that retain interpretability while further
reducing reliance on handcrafted rules.

Besides, our current work focuses on a setting standard in KT/CD and many deployed learning
systems: a curriculum- or test-defined concept set that is relatively stable within a course or semester
(Tyler, 2013; Zhao et al., 2022), and CSG models how students’ cognitive structures over this fixed
set evolve across time. The CSG framework is not inherently limited to a flat concept layer. In
principle, it can be extended to multi-level or heterogeneous graphs, where nodes represent domains,
intermediate concepts, or finer-grained skills, and edges describe relations both within and across
levels. New concepts can be incorporated without retraining the entire system. For example, one
could (i) pretrain the diffusion backbone on a broader ontology and fine-tune it when new concepts
appear (Ruiz et al., 2023; Zhuang et al., 2024), or (ii) initialize embeddings for new concepts from
textual or ontological neighbors (Hamilton et al., 2017) and continue diffusion+RL training with
mild regularization to preserve existing structures. More generally, inductive mechanisms such as
feature-based initialization, adapter layers, or continual-learning approaches (Zhou et al., 2024a)
can be integrated to support dynamically expanding concept sets. We leave a systematic exploration
of such multi-level and dynamically evolving extensions as future work.

K LLMS USAGE

During the preparation of this paper, LLMs (specifically, ChatGPT) were used to assist in generating
tables and figures and to support language polishing and proofreading.
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