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Abstract

Structural topology optimization plays a crucial role in engineering by determining the optimal
material layout within a design space to maximize performance under given constraints. We
introduce Neural Implicit Topology Optimization (NITO), a deep learning regression approach
to accelerate topology optimization tasks. We demonstrate that, compared to state-of-the-art
diffusion models, NITO generates structures that are under 15% as structurally sub-optimal
and does so ten times faster. Furthermore, we show that NITO is entirely resolution-free
and domain-agnostic, offering a more scalable solution than the current fixed-resolution
and domain-specific diffusion models. To achieve this state-of-the-art performance NITO
combines three key innovations. First, we introduce the Boundary Point Order-Invariant MLP
(BPOM), which represents boundary conditions in a sparse and domain-agnostic manner,
allowing NITO to train on variable conditioning, domain shapes, and mesh resolutions.
Second, we adopt a neural implicit field representation, which allows NITO to synthesize
topologies of any shape or resolution. Finally, we propose an inference-time refinement
step using a few steps of gradient-based optimization to enable NITO to achieve results
comparable to direct optimization methods. These three innovations empower NITO with
a precision and versatility that is currently unparalleled among competing deep learning
approaches for topology optimization.

1 Introduction
Deep learning methods have established a near-uncontested dominance in a variety of generative problems,
such as image and text synthesis (Rombach et al., 2022; Achiam et al., 2023). In engineering-related design
synthesis tasks, despite a wealth of promising exploratory work (Regenwetter et al., 2022; Song et al.,
2023; Hu et al., 2024; Wu et al., 2021), the performance of such models remains highly contested. Design
synthesis is a particularly challenging problem for statistical models (Regenwetter et al., 2023). This is in part
due to the nonlinearities between ‘feature space’ and ‘performance space’ – very similar designs may have
extreme discrepancy in performance. Additionally, design constraints (which may be safety-critical) cause
difficult-to-learn gaps in the distributional support of the design space. For these reasons, direct optimization
of design parameters has classically been preferred since many optimization algorithms efficiently navigate
complex constraints and objectives (Boyd & Vandenberghe, 2004).

The numerous challenges of successful design synthesis using deep learning and the relative success of direct
optimization is exemplified by a prominent and frequently-occuring design problem known as structural
topology optimization. Structural topology optimization (TO) aims to allocate a finite amount of material
within a designated space to maximize structural stiffness, known as compliance minimization. However,
depending on the specific engineering application, other performance goals like heat transfer might also be
considered. A popular TO method is the Solid Isotropic Material with Penalization method (Bendsøe &
Kikuchi, 1988; Rozvany et al., 1992) (SIMP). While methods such as SIMP are powerful engineering tools,
they struggle with computational cost when solving large-scale problems due to their iterative nature and
expensive per-step computations (Sigmund & Maute, 2013).

In recent years, many works have investigated the prospect of tackling topology optimization problems using
machine learning (Regenwetter et al., 2022; Shin et al., 2023). Many of these are methods for direct topology
synthesis, which are often trained on a dataset of optimized topologies while conditioned on the corresponding
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Figure 1: NITO framework. Left: Ground truth obtained using SIMP. Second Column: Output of neural
fields. Right Columns: the NITO framework output leveraging a few steps (5 and 10 steps) of optimization.
NITO rapidly generates high-quality, constraint-satisfying topologies.

boundary conditions (force loads and support locations) that yielded each optimized topology (Nie et al.,
2021b; Mazé & Ahmed, 2023; Giannone et al., 2023; Giannone & Ahmed, 2023; Hu et al., 2024). The main
justification for these approaches is significant time savings compared to TO solvers like SIMP. This could
allow designers to run TO in real time during an interative design process, remedying frequent pain-points of
current direct-optimization TO users (Saadi & Yang, 2023).

Despite early success, deep learning issues have struggled with several issues. One of these is generalizability,
which is critical for their application to real-world TO problems, which are almost always unique. These
real TO problems feature one-of-a-kind load and support locations, allow material placement in a specific
domain shape and aspect ratio, and require a particular level of detail (i.e., mesh resolution). Most existing
deep learning methods discretize the physical domain into pixels or voxels to leverage a convolutional neural
networks (CNN) as their basic building block (Mazé & Ahmed, 2023; Giannone & Ahmed, 2023; Giannone
et al., 2023; Nie et al., 2021b; Hu et al., 2024). This limits their generation capabilities to a specific resolution
and shape (such as a square domain). Thus, applying the problem to a new resolution or aspect ratio
necessitates an entirely new dataset and model.

In addition to their generalizability issues, pure data-driven approaches typically do not generate optimal
topologies compared to classic iterative optimizers like SIMP, despite being faster (Woldseth et al., 2022). This
is primarily attributable to the fact that data-driven models typically focus on density estimation and remain
agnostic to the physics of a given problem. To address this, researchers often try to incorporate the physics
into their model. These approaches typically rely on physical fields (or approximations) as a representation of
the boundary condition constraints of the underlying problems (Mazé & Ahmed, 2023; Giannone & Ahmed,
2023; Giannone et al., 2023; Nie et al., 2021b; Chen et al., 2023; Hu et al., 2024). These physical fields
are represented as images to be handled by CNNs. Not only is this approach computationally expensive,
particularly for high dimensionality, but it further exacerbates the lack of generalizability across problems
and domains. These non-generalizabile ML-based TO methods are essentially unable to solve new problems
and commonly receive criticism from the computational structural engineering community (Woldseth et al.,
2022).
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In this work, we take a stride toward overcoming key generalizability and optimality shortcombings of
ML-based TO. To avoid the generalizability pitfall of CNN-based generative schemes, we propose an approach
based on neural implicit fields that can be applied to physical domains of any size, shape, and resolution.
We also propose a generalizable scheme for representing sparse boundary conditions in numerical physics
domains, eliminating the need for computationally expensive and domain-limiting physical field calculations,
previously thought to be crucial for constraint representation (Chen et al., 2023). Instead, we show that
our computationally- and memory-efficient scheme is capable of representing sparse boundary conditions
effectively, without loss of performance. To address optimality issues, we propose to couple our deep learning
approach with a few steps of direct optimization to refine generated topologies during inference. Our approach
outperforms the state-of-the-art in ML-based direct topology synthesis by more than 80% in key performance
metrics while running 2.5-50 times faster.

Contributions:

1. We introduce a novel framework for TO called “Neural Implicit Topology Optimizer (NITO),” a model
capable of generating near-optimal topologies. NITO achieves domain- and resolution-agnosticism
through its use of neural inplicit fields and our novel “Boundary Point Order-Invariant MLP (BPOM),”
It achieves state-of-the-art performance through its use of few-step optimization-based refinement
during inference.

2. NITO is resolution-free and domain-agnostic during both training and inference. We show in our
experiments that NITO can be trained on multiple resolutions and domain shapes simultaneously
and can generate topologies across a variety of resolutions, overcoming a major shortcoming of prior
works.

3. We empirically show that NITO is an effective framework, producing topologies with up to 80%
lower compliance errors than SOTA learning-based models, while requiring an order of magnitude
fewer parameters, allowing 2.5-50x faster interence. These performance metrics are consistent across
a variety of resolutions, despite maintaining the same architecture and number of parameters.

4. We implement a new SIMP optimizer for minimum compliance TO. Compared to solvers used to
generate existing datasets, our new optimizer produces topologies that are on average 3% lower in
compliance, yielding a dataset comprised of significantly more optimal topologies. Our optimizer
runs up to 6x faster than widely-used Python implementations. We also introduce a high-quality
dataset and improved versions of state-of-the-art models.

2 Background
This section will provide background information on topology optimization and neural implicit fields. We
introduce previous work using neural fields for optimal topology generation in this section and review existing
work using deep learning for TO in the Appendix.

2.1 Structural Topology Optimization
In structural applications, TO often aims to minimize compliance (structural deformation) given a set of
forces and supports (Liu & Tovar, 2014). Fig. 2 illustrates the common structural TO problem formulation, in
which a set of forces and supports are specified, along with a target folume fracton. TO finds a topology that
minimizes compliance under these conditons. A prominent technique in TO is the Solid Isotropic Material
with Penalization (SIMP) method, introduced by Bendsøe (1989). This method models material properties
through a density field, where the density value signifies the amount of material in a specific region. The
optimization iteratively simulates the system to evaluate the objective, and then adjusts the density field
based on the gradient of the objective score for the field. Mathematically, we represent the density distribution
as ρ(ϕ), where ϕ is a set of design variables, each representing a value within the problem domain Ω. The
optimization task is structured as follows:

min
ϕ

f = FT d

s. t. K(ϕ)d = F∑
e∈Ω ρe(ϕ)ve ≤ V

ϕmin ≤ ϕi ≤ ϕmax ∀i ∈ Ω

(1)
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Figure 2: Topology Optimization. Given a domain, boundary conditions, loads, and volume fraction, TO
aims to find the design variables ϕ that maximize performance (such as minimizing compliance f), fulfilling
all the prescribed constraints and respecting the underlying physics (Static equilibrium).

The objective is to minimize the compliance FT d. F is the load tensor and d the nodal displacement derived
from K(ϕ)d = F, where K(ϕ) is the stiffness matrix contingent on the design variables ϕ. The constraint∑

e∈Ω ρe(ϕ)ve ≤ V ensures the total volume does not exceed a maximum limit V (often expressed as a
fraction of the domain volume). The optimization seeks design variables within specified bounds (ϕmin and
ϕmax) for every element i in the domain Ω. By allowing continuous variation of design variables between
0 and 1, this formulation supports gradient-based optimization. Nonetheless, the expensive finite element
simulation (solving K(ϕ)d = F) at each iteration creates significant computational cost. Notably, solving the
linear system of the equations scales cubically (O(n3)) with the number of nodes.

2.2 Deep Learning For Topology Optimization

The limitations associated with conventional optimization have motivated a significant body of work around
deep learning approaches for topology optimization (TO). These approaches have been discussed in detail in
dedicated reviews (Woldseth et al., 2022; Shin et al., 2023). Most relevant to our work are other methods
that perform the task in an end-to-end manner, meaning they take constraints and boundary conditions as
input and produce near-optimal topologies to minimize compliance (Oh et al., 2019; Sharpe & Seepersad,
2019; Parrott et al., 2022). For example, Yu et al. (2019) proposes an auto-encoding GAN approach that
uses an autoencoder for topology generation and a GAN for super-resolution which is applied simultaneously.
Rawat & Shen (2019) and Li et al. (2019) take a similar approach but use GANs for both initial generation
and super-resolution. This is while Sharpe & Seepersad (2019), Nie et al. (2021a), and Behzadi & Ilieş
(2021) propose directly generating topologies using conditional GANs and Wang et al. (2021b) introduce
U-Net-based architectures for TO. More recently, researchers have looked at using implicit neural fields to
generate topologies. Specifically, Hu et al. (2024) use implicit neural representations to produce topologies in
their approach called IF-TONIR. In their approach, however, the authors use stress and strain fields for their
representations of boundary conditions which rely on CNNs and somewhat reduce the generalizability of the
implicit neural fields’ versatility.

Conditioning on Physics Fields: Most of the recent state-of-the-art approaches (Mazé & Ahmed, 2023;
Nie et al., 2021b; Chen et al., 2023) have adopted a conditioning method in which the boundary conditions of
TO problems are represented through physical fields such as stress and strain energy. Although these fields are
typically simulation-derived, kernel-based approximations have also been proposed to reduce cost (Giannone
& Ahmed, 2023). Regardless, this field-based conditioning approach is essential for these models to generate
high-performing topologies. Problematically, field-based conditioning has only successfully been handled by
CNN models, which prevent the model from being applied to any new problem with different domain shape
or resolution than the training data.
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Diffusion-based Topology Optimization: New methods that utilize diffusion models have recently
achieved significant performance improvements over the aforementioned methods (Mazé & Ahmed, 2023;
Giannone & Ahmed, 2023; Giannone et al., 2023). Mazé & Ahmed (2023) were the first to do so and
demonstrated that diffusion models are significantly better than GANs at optimal topology generation. They
also showed that introducing guidance based on a regression model for predicting compliance and a classifier
trained to identify floating material significantly improves the performance of such models. Like iterative
optimization, however, diffusion models are slow, requiring the models to be run as many as 1000 times to
generate a sample. This puts their value into question when the time savings are not notable compared to the
optimizer itself. Giannone et al. (2023) propose aligning the diffusion models denoising with the optimizer’s
intermediate designs as a way to reduce the number of iterations needed for the diffusion model and show
that they can indeed reduce the number of sampling steps significantly.

Despite the upsides of the best-performing models which are diffusion-based, they lack speed and are all
based around CNNs, which means that they treat the problem as images. Furthermore, the mechanism they
use for conditioning based on boundary conditions is field-based, meaning these methods compute some
physical or energy field to represent the boundary conditions of the problem, treat these fields as images, and
employ CNN-based architectures to handle them. This method introduces two limitations. These models
generate images instead of density fields, restricting them to a specific problem domain and resolution (e.g. a
square-shaped domain treated as 64x64 images) and making them unsuitable for different domain shapes
and resolutions. Additionally, the use of image-based fields for boundary conditions further narrows their
generalizability. This approach fails to capture boundary conditions in their raw form, limiting applicability to
problems with boundary conditions defined for the exact domain they are trained on and excluding problems
with irregular boundary conditions.

2.3 Implicit Neural Fields
A neural field is a field that is partially or fully defined by a neural network (Xie et al., 2022). This neural
network takes some form of coordinate representation in space x ∈ Rn as input and outputs a set of values (i.e.
a measure of the desired field) Φ(x) ∈ Rm:

Φ̃(x) = fΘ(x) (2)

where fΘ is the neural network function given parameters Θ. These neural fields have proven effective in
representing audio (Du et al., 2021), images (Skorokhodov et al., 2021; Sitzmann et al., 2020), videos (Yu et al.,
2022), 3d objects (Park et al., 2019), 3D scenes (Mildenhall et al., 2020), and many more applications (see
the review by Xie et al. (2022) for a more comprehensive picture). It has also been shown that neural implicit
representations can be directly optimized using gradient-based optimizers similar to SIMP to represent the
optimal topology for any given problem (Zehnder et al., 2021; Joglekar et al., 2023; Chandrasekhar & Suresh,
2021), which shows that these implicit neural representations are indeed capable of generating density fields
that represent individual optimal topologies. Compared to existing work, which representes one individual
topology per neural field, we propose a conditional implicit neural field approach that generates different
optimal topologies based on conditions (i.e., volume, loads, supports).

3 Methodology
We introduce NITO: Neural Implicit Topology Optimization. Unlike the majority of existing deep learning
approaches in TO, NITO effortlessly generalizes across different solution domains and problem resolutions.
NITO also achieves a more effective balance of speed and optimality than existing approachs. To enable these
achievements, NITO combines three key innovations. First is the neural field-based topology representation
that affords much of NITO’s flexibility. Second is the Boundary Point Order-invariant MLP (BPOM) which
is the second ingredient in NITO’s domain- and resolution-agnosticism. NITO’s third and final component is
a few-step optimization-based refinement of topologies during inference, allowing NITO to rapidly generate
solutions that rival the highly-optimal structures generated by direct optimization methods. This section
discusses these key three innovations in detail. A detailed schematic of how the NITO framework operates is
shown in Figure 3.
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Figure 3: The NITO framework for topology optimization: Boundary conditions processed as point clouds
using BPOM; neural field conditioned on these representations by modulating layer normalization based
on latent constraint representation to predict optimal density field; predicted field refined through direct
optimization steps. Top-right: Point cloud boundary conditions (right) vs. field-based representations like
stress fields (middle), given a TO problem (left). Point clouds offer generalizable, memory-efficient boundary
condition representation, unlike expensive, domain-limiting iterative FEA method.

3.1 Implicit Topology Representation using Neural Fields
The spatial density distribution used in SIMP is highly compatible with neural fields. We denote as ρ(x),
where x is the coordinate of a given point in space and ρ(x) is the density of material in that part of space.
Since we need to learn a conditional distribution based on the boundary conditions and volume ratio for a
given problem, we learn:

ρ̂(x|C; θ) = fθ(x, C), (3)
where f denotes the neural field function which is defined by the neural network architecture and C is a
condition vector that includes information about the domain shape, boundary conditions, and desired volume
ratio. In practice, this density field is desired to have a density of exactly 0 or 1 at any point, representing
where material should or should not be placed. As such, the density fields that are generated by the SIMP
optimizer for a given problem have binary values.

In practice, it is more practical to formulate the problem as the probability of material being placed at any
given coordinate. As such, the formulation of the objective can be written as:

L(θ) = − Ex,C [ρ(x|C) log fθ(x, C)
+(1 − ρ(x|C)) log(1 − fθ(x, C))]

(4)

where ρ(x|C) is the probability of material existing at x, which in this case is the same as the output of the
SIMP optimizer.

We implement our neural fields using simple multi-layer perceptrons (MLPs) with SIREN (Sitzmann et al.,
2020) layers which apply sine activation functions to the output of each layer. Since neural fields tend
to ignore higher-frequency features (Tancik et al., 2020), we apply Fourier feature mapping to the input
coordinates of the model to mitigate this issue.

3.2 Latent Constraint Representation using Boundary Point Order-invariant MLP (BPOM)
Having discussed the neural field implementation, we now consider boundary conditions in discretized domains,
as seen in TO problems. In particular, we discuss how arbitrary discrete boundary conditions can condition
generative models in a sparse and generalizable way. This is particularly important for large domains, where
defining constraints over grids is computationally cumbersome and memory-expensive.
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In most existing studies, authors only considered simple input-only conditioning, which is prone to be ignored
by the model (Perez et al., 2017). We suspect this tendency of models to ignore sparse input conditions
explains the singular popularity of the rigid field-based conditioning discussed in Sec. 2.2, despite its lack
of generalizability. In this paper, we instead propose a simple and effective condition representation model
that leverages more advanced conditioning methods to incorporate conditioning information. This allows
our model to train on simple and generalizable point-cloud-based conditions, expanding its applicability to
various domains and resolutions.
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Figure 4: Comparison of field-based (middle), and point-cloud-based (right) representations, given a TO
problem (left). Unlike the expensive and domain-limiting iterative FEA method, the point clouds offer a
generalizable and memory efficient, representation of the boundary conditions.

Constraints as Point Clouds: In our approach, we represent TO boundary conditions as point clouds,
which are agnostic to the problem domain and solution resolution. In all problems, conditioning is based on
loads, displacement constraints, and volume fraction (see Figure 4). Since a problem may have arbitrarily
many loads or boundary conditions, we need a mechanism that can take all loads and boundary conditions
for a problem and reduce them to a single latent representation. To do this, we treat these sparse conditions
as a set of two point clouds – one for loads, and another for supports (see Figures 3 and 4). Then we process
each point cloud using ResP Layers proposed by Ma et al. (2022) in their point cloud model, PointMLP.
However, unlike PointMLP, we removed the geometric affine module (as proposed by the authors for complex
point cloud geometries) due to the simpler geometric nature of our sparse boundary condition point clouds.

Order-Invariant Aggregation: Since the point clouds can have any size, we take the output of the
point cloud model and perform order-invariant pooling to reduce every point cloud into one single vector
representing the boundary conditions. We do this by computing minimum, maximum, and average pooling
and concatenating the three pooling results. In the end, the three point clouds are each reduced and then
concatenated into one vector. We call this boundary condition representation Boundary Point Order-Invariant
MLP (BPOM) and we show that this representation works just as well as physical fields. Finally, for the
volume fraction condition (which is always a single floating point value), we use a single fully-connected layer
and concatenate its output to the BPOM outputs of the boundary condition point clouds.

Feature-wise Linear Modulation: Next, we discuss how the condition vector is fed into the neural fields
model. Neural fields possess the capability to assimilate prior behaviors and exhibit generalization to novel
fields through conditioning on a latent variable C, which encapsulates the characteristics of a field. Specifically,
this includes the boundary conditions and the volume ratio in our problem. Perez et al. (2017) propose
Feature-wise Linear Modulation (FiLM) which applies conditioning by modulating the outputs of the different
layers of the model. The conditioning mechanism includes two networks α(C) and β(C), which predict a
multiplicative and additive adjustment to the outputs of each layer. Our implementation is inspired by similar
mechanisms built around normalization layers such as adaptive instance normalization (AdaIN) (Huang &
Belongie, 2017). Instead of modulating the outputs of each layer, we apply layer normalization and modulate
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the scale and shift of the layer norm for each feature of the layer output. Our neural field can be described as:

fθ(x, C) = f (L) ◦ f (L−1) ◦ · · · ◦ f (0)(x, C)) (5)

where f (i) for i ∈ {1, 2, ..., L−1} indicates the function applied at each layer of the neural field except the first
and last layer. Each layer in the model takes a hidden state h(i) as input and performs a linear transformation
and layer normalization with modulation based on the condition vector:

f i(hi, C) = sin(LN1,0(W ihi + bi) × α(C) + β(C)), (6)

where LN1,0 is layer normalization with scale 1 and shift zero and α and β are fully-connected (FC) layers
that determine the feature-wise scale and shift based on the condition inputs.

BPOM allows NITO to generalize to any domain shape and TO problem as long as that information is
contained in the condition latent representation C.

3.3 High-quality Solutions using Optimization-Based Refinement
Despite the success of generative models and other deep learning techniques for TO, we observe that the
performance of these models always lags behind the optimization baseline. To address this, we follow an
optimization-based refinement approach proposed by Giannone et al. (2023) who suggest applying a few
steps (5-10) of SIMP optimization to topologies synthesized by deep learning models during inference (compared
to 200-500 iterations for full optimization). This allows SIMP to rapidly hone in on more accurate structures
for the given boundary conditions using near-optimal generated topologies as a starting point. To ensure that
the optimization itself is performed optimally, we implement the SIMP method based on the latest research
on TO (Wang et al., 2021a) and use this solver for our experiments and training. This optimization-based
refinement represents the third and final key innovation of our NITO framework.

3.4 Training and Model Details
The training of the conditional neural implicit model is performed in 3 stages. In the first stage, we perform
training by sampling points of a 16x16 grid (i.e., we sample points in space that each belong to one of the
16x16 divisions in space for the unit square domain). Furthermore, when sampling, if the material exists in
a given sampling grid we randomly choose a point with material rather than picking points that are void.
The first stage of training is carried out for 20 epochs. In the second stage we sample on a 32x32 grid for 20
epochs. Finally we we train for 10 more epochs, sampling on a 32x32 grid but rather than preferring material
points, we sample completely randomly. We use AdamW optimizer with a starting learning rate of 10−4

which is reduced on a cosine annealing schedule to be reduced at the end of each epoch to reach 5 × 10−6 at
the final epoch. The learning rate is stepped at the end of each epoch.

In our implementation, we use 8 layers of size 1024 for the neural fields and use 4 layers of size 256 for the
three point cloud models (one for applied force and one for constraints in each x and y direction). Although
intermediate layers of the neural fields model use the aforementioned FiLM activations, the final layer’s
activation function is a simple sigmoid. Further details can be found in our code.

4 Experiments
In this section, we present an assortment of experiments to compare the performance of NITO to existing
state-of-the-art models in the literature. With these experiments, we provide compelling evidence that
NITO is a scalable, resolution-free and domain-adaptable paradigm that outperforms convolution-based
methodologies with a significantly smaller parameter count. We further demonstrate that NITO can generate
constraint-satisfying, high-performance topologies much faster than a state-of-the-art SIMP optimizer, while
merging the power of deep learning models as an efficient first stage, and the precision and guarantees of
optimization as a reliable second stage. For more experiments, discussion, and visualization, we refer the
reader to the Appendix.

4.1 Experimental Details
Before presenting the results, we will first discuss key experimental details.
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Dataset and Solver: We create a dataset comprised of various domain shapes and resolutions using a
custom SIMP optimizer leveraging recent advancements in iterative TO (Wang et al., 2021a). Noting that
much of the previous data-driven TO work uses datasets generated by ToPy (Hunter et al., 2017), which
lacks these recent TO advancements and is much slower than our solver, our dataset is larger and more
optimal than those used in previous works. We then used this new and faster solver to generate a new dataset
with mixed resolution and shapes. To allow for comparison to prior works, we re-created the 64x64 dataset
from Mazé & Ahmed (2023) with our solver, finding significant improvements in optimality. We additionally
created high-resolution 256x256 data. Finally, we also generated 64x32, 64x48, and 64x16 data, to test
NITO’s ability to handle mixed domain shapes (something prior works cannot handle). We include loading
conditions, boundary conditions, volume fractions, and stress and strain energy fields in our dataset. A total
of 199,000 samples can be found in our dataset including 48,000 64x64 samples, 61,000 256x256 samples,
and 30,000 samples of 16x64, 32x64, and 48x64 each. For each resolution, 1,000 samples are used for testing.
To keep results consistent with prior works we use the exact same 1,000 test samples in the 64x64 subset
as prior works have used. For fairness in comparison, we retrained the TopoDiff model (Mazé & Ahmed,
2023) (the best-performing model in literature) on our new re-optimized dataset (64x64 and 256x256 only),
while also acknowledging the original performance metrics reported by the authors. Further details on the
dataset and solver are included in the Appendix.

Evaluation Metrics: We evaluate the models in terms of performance (i.e., minimum compliance) and
constraint satisfaction. First, to measure how well the models perform in compliance minimization, we
measure compliance error (CE), which is calculated by subtracting the compliance of a generated sample
from the compliance of the SIMP-optimized solution for the corresponding problem, then normalizing by
the SIMP-optimized compliance value. Since mean compliance error tends to be dominated by just a few
samples, we report mean and median compliance error. We also report median volume fraction error (VFE),
which quantifies the absolute error between the generated topology’s actual volume fraction and the target
volume fraction for the given problem. Beyond these base performance metrics, we quantify inference time.
The speed of the SIMP optimizer is also benchmarked for comparison. We remove outlying samples, which
have extremely high compliance errors (above 1000%) due to models failing to place material in locations
where the load is applied. We do this for all models including other SOTA models that we compare against,
as is common practice in prior works (Mazé & Ahmed, 2023; Giannone et al., 2023; Nie et al., 2021b).

Setup: We train NITO for 50 epochs in four different scenarios: (1) We train on topologies with a resolution
of 64x64. (2) We train on 256x256 topologies. (3) We train on both 64x64 and 256x256 datasets simultaneously
to demonstrate resolution-free generalizability. (4) We train on all 64x64, 256x256, 64x48, 64x32, and 64x16
datasets to demonstrate the generalizability of our approach across both resolution and domain shapes. To
compare our approach to the state of the art, we also train TopoDiff on the 64x64 in the manner the original
authors did (Mazé & Ahmed, 2023). TopoDiff is currently state-of-the-art in literature (Giannone et al.,
2023). Training a diffusion model like TopoDiff on large images of size 256x256 is computationally expensive.
Despite this, we train TopoDiff on the 256x256 dataset for 500,000 steps and report the results, however, we
do not train TopoDiff with guidance (which, as demonstrated in the original work (Mazé & Ahmed, 2023)
and corroborated by our experiments, does not lead to any significant improvement in performances).

4.2 Performance Comparison to State of The Art
In Table 1 we present a quantitative evaluation of SOTA models for topology optimization on the commonly-
tested 64x64 resolution. Mean compliance error results are on average much higher than median results due
to a small number of samples having extreme compliance. TopologyGAN and cDDPM show higher values in
CE % Mean and VFE % Mean compared to other models. TopologyGAN is consistent with prior benchmarks
of the model and cDDPM is a naive conditioning of diffusion models, which struggles to perform well in
such a complex problem. A vanilla neural fields model without optimization does not perform as well as
TopoDiff in mean compliance error, but performs similarlarly in median compliance error and volume fraction
errors. Unambiguously though, Table 1 demonstrates that our NITO framework achieves a significant leap in
performance compared to the SOTA. Neural fields start with average compliance errors of more than double
TopoDiff. However, after even 5 steps of direct optimization, NITO outperforms TopoDiff and other methods
by a large margin. When taking 10 steps of refinement using direct optimization, NITO finds solutions that
are on average only 0.1% more compliant than the solutions yielded by 500 steps of optimization.
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Table 1: Quantitative evaluation on 64x64 datasets (All models only trained on 64x64 data). All TopoDiff
variants are re-trained on optimized topologies obtained using our improved optimizer. ∗TopologyGAN
and cDDPM results from Mazé & Ahmed (2023) and Giannone et al. (2023). w/ G: using a classifier and
regression guidance. CE: Compliance Error. VFE: Volume Fraction Error. NITO achieves SOTA performance
on topology optimization in terms of compliance and volume fraction error.

Model Refinement Steps CE % Mean CE % Median VFE % Mean
TopologyGAN∗ - 48.51 2.06 11.87
cDDPM∗ - 60.79 3.15 1.72
TopoDiff - 3.23 0.45 1.14
TopoDiff w/ G - 2.59 0.49 1.18
NITO (ours) - 8.13 0.47 1.40
NITO (ours) 5 0.30 0.12 0.40
NITO (ours) 10 0.17 0.071 0.25

Table 2: Quantitative Evaluation on 256x256 datasets (All models are only trained on 256x256 data).
The columns are the same as Table 1. NITO is effective at generating topologies with high performance
irrespective of the considered problem resolution. On the other hand, the performance of TopoDiff has
degraded so much that NITO outperforms it even without a refinement step.

Model Refinement Steps CE % Mean CE % Median VFE % Mean
TopoDiff - 16.62 0.59 2.92
NITO (ours) - 9.178 0.96 1.52
NITO (ours) 5 0.25 0.09 0.34

NITO (ours) 10 0.033 0.012 0.128

Next, we proceed to test NITO and TopoDiff on the much more challenging dataset of 256x256 topologies.
Table 2 presents the results of this study for NITO and TopoDiff (the leading SOTA approach). In this case,
we train TopoDiff with a larger model size to allow for effective learning on the 256x256 images. Despite this,
we see a significant performance degradation of TopoDiff with increased resolution. This performance decrease
is so severe that the NITO outperforms TopoDiff in most metrics even without a refinement step (highlighted
in green in table 2). With refinement, NITO achieves results on par with or slightly better than the 64x64
tests, all while using the same model size, architecture, and training. This illustrates that NITO scales
effectively to higher resolutions without performance degradation.

4.3 Topology Refinement Across Baselines

NITO uses a few steps of optimization to refine generated topologies. In this section, we consider the
performance of SOTA models, should they be subjected to the same few-step refinement using optimization.
Table 3 indicates that optimization of topologies generated by TopoDiff yields a much smaller performance
boost compared to NITO and even reduces performance in some cases. After just 5 iterations of refinement,
NITO outperforms all variants of TopoDiff tested (including TopoDiff with 10 iterations). NITO’s lead
continues to grow with more refinement steps. Visual examination suggests that while TopoDiff-generated
topologies are detailed, topologies generated by the neural field tend to be slightly more blurry (see Fig. 1).
Therefore, we hypothesize that Topodiff finds crisp locally-optimal solutions, while NITO, despite being a
much smaller model and not using FEA-based physical fields, finds less locally-optimal solutions that lie
closer to a stronger ‘global’ optimum. This suggests that NITO is more robust, generalizable, and efficient.
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Table 3: In this table, we consider the effects of few-step direct optimization to topologies generated by
TopoDiff. While direct optimization significantly improves the topologies generated by the neural field, it
only slightly improves topologies generated by TopoDiff.

Model Refinement Steps CE % Mean CE % Median VFE % Mean
TopoDiff - 3.23 (-) 0.45 (-) 1.14 (-)
TopoDiff 5 3.55 (+9.91%) 0.42 (-6.67%) 0.67 (-41.2%)
TopoDiff 10 1.38 (-57.3%) 0.33 (-26.7%) 0.45 (-60.5%)
TopoDiff w/ G - 2.59 (-) 0.49 (-) 1.18 (-)
TopoDiff w/ G 5 2.24 (-13.5%) 0.44 (-10.2%) 0.69 (-41.5%)
TopoDiff w/ G 10 1.05 (-59.5%) 0.32 (-34.7%) 0.45 (-61.9%)
NITO (ours) - 8.13 (-) 0.47 (-) 1.40 (-)
NITO (ours) 5 0.30 (-96.3%) 0.12 (-74.5%) 0.40 (-71.4%)
NITO (ours) 10 0.17 (-97.9%) 0.071(-84.9%) 0.25 (-82.1%)

Table 4: Average inference time for different problem resolutions. We include 10 SIMP iterations when
computing NITO inference time. NITO is resolution-free, i.e. we can leverage the same small model for
64x64, 256x256, and any intermediate resolution. These times are measured using an RTX 4090 GPU and an
Intel Core i9-13900K CPU. We run the SIMP optimizer for 300 iterations.

64x64 Resolution 256x256 Resolution
Model Parameters (M) Inference (s) Parameters (M) Inference (s)
TopoDiff 121 1.86 553 10.81
TopoDiff w/ G 239 4.79 1092 22.04
DOM 121 0.82 553 7.82
SIMP (Hunter et al., 2017) - 18.12 - 316.02
SIMP (our implementation) - 3.45 - 69.45
NITO (No Ref.) (ours) 22 0.005 22 0.16
NITO (ours) 22 0.14 22 2.88

4.4 Inference Speed & Efficiency
Speed is one of the key benefits of ML-based TO over direct optimization. In Table 4 we present a comparative
analysis showing that NITO is significantly faster than both iterative TO methods and competing generative
models in inference time. For the 64x64 and 256x256 data respectively, resolution, NITO is 83% and 63%
faster than the fastest state-of-the-art model DOM (Giannone et al., 2023), and 97% and 96% faster than our
fast SIMP implementation (which itself is up to 6x faster than existing implementations). Thus, in addition
to generating superior topologies, NITO’s speed and efficiency is orders of magnitude faster than the SOTA.

Table 4 also highlights the number of parameters each model uses in their architecture. NITO can be trained
on both image resolutions with the same number of parameters, 22 million, achieving SOTA performance,
while CNN-based models have to be made larger and still face significant performance degradation. This is
further evidence of NITO’s efficiency and scalability. We train NITO for both 64x64 and 256x256 resolution
for the same number of steps while sampling the same number of points for each batch during training, which
means that the model trains roughly for the same amount of time and with the same memory requirements.
In fact a single consumer GPU (we use an RTX 4090) is enough to train NITO. On the contrary, diffusion
models like TopoDiff or DOM must grow to match larger resolutions and therefore require more memory and
time to run and train. For resolutions above 256x256 or 3D TO problems, these frameworks can be impractical
to train or run for most practitioners. In contrast, NITO is built to generalize to different domains/resolutions
without issue, allowing for practical training of large problems with consumer-level computational resources.
In the following, we specifically showcase the versatility of NITO when handling different domains.
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4.5 Resolution-Free and Cross-Domain Generalization

Training Data
64x64 256x256 64x64 & 256x256 All Data

Testing
Data

CE
Mean

CE
Med.

VFE
Mean

CE
Mean

CE
Med.

VFE
Mean

CE
Mean

CE
Med.

VFE
Mean

CE
Mean

CE
Med.

VFE
Mean

64x64 0.17 0.071 0.25 0.27 0.11 0.30 0.22 0.072 0.29 0.22 0.074 0.31
256x256 0.058 0.016 0.13 0.033 0.012 0.128 0.048 0.027 0.14 0.066 0.032 0.14
64x48 - - - - - - - - - 0.43 0.20 0.35
64x32 - - - - - - - - - 0.90 0.20 0.41
64x16 - - - - - - - - - 1.16 0.14 0.72

Table 5: Quantitative evaluation of NITO trained on mixed resolution and aspect ratio data using 10
steps of refinement. All metrics are reported as percentages. The results show that NITO trained on
mixed-resolution and mixed-shape data performs well across different resolutions and shapes.

To showcase NITO’s ability to generalize across multiple resolutions and physical domains, we present results
for different training configurations of NITO and its performance on different domains and resolutions. These
results are presented in detail in Table 5. We see that the model simultaneously trained on data of all
resolutions and aspect ratios performs on par and better than other SOTA models on both the 256x256
data and the 64x64 data while also effectively handling the non-square configurations in the dataset. This
illustrates NITO’s resolution-free and domain-adaptable nature. It can be trained on multiple domains and
perform well on all of them. Similarly, NITO can train on one resolution and be applied to problems at a
new resolution. This capability is demonstrated by testing NITO models trained on 64x64 data with 256x256
resolution tasks, and vice versa. Remarkably, NITO’s performance is consistent across resolutions and
shapes: it performs similarly when trained on lower-resolution data compared to higher or mixed-resolution
data, and likewise when tested on higher-resolution or lower-resolution problems. This underscores NITO’s
exceptional adaptability, indicating that its architecture not only supports training across multiple domains
but also facilitates the transfer of learning from one domain to another, provided the problems share related
distributions. This ability signifies a critical advantage of such frameworks—the potential to train on
cost-effective low-resolution data and immediately apply or quickly fine-tune the models for higher resolutions.

5 Conclusion & Limitations
In this paper, we introduce Neural Implicit Topology Optimization (NITO), a novel resolution-free and domain-
agnostic deep learning framework for topology optimization. Using a neural implicit field representation and
our Boundary Point Order-Invariant MLP (BPOM) to represent boundary conditions, NITO can be effortlessly
trained and deployed on mixed domain shapes and resolutions. Thanks to its few-step optimization-based
refinement, NITO significantly outperforms state-of-the-art models in topology optimality across multiple
resolutions and domains. Notably, NITO is much faster and has significantly fewer parameters than previous
state of the art models. As such, NITO offers a solution to high-dimensional problems that were previously
insurmountable with CNN-based methods. Furthermore, NITO’s scalability and generalizability offer a robust
foundation for future models in topology optimization and other physics-based problems.

Limitations: While NITO presents significant advancements in topology optimization, it is not without
shortcomings. Firstly, NITO is not a generative model, which means that the outputs of NITO are deterministic
and not diverse for a given set of constraints. This limits NITO’s ability to generate solutions that enable
exploration of the design space. This characteristic could potentially hinder NITO’s efficacy in addressing
problems outside its training distribution, given the lack of a generative mechanism that enhances performance
in entirely new tasks (See the Appendix for a broader discussion). Future work could be devoted to addressing
this matter, potentially by leveraging recent advances in generative frameworks for neural implicit fields (You
et al., 2023; Kosiorek et al., 2021). In addition, NITO generates topologies that lack sufficient detail before
refinement, making it heavily reliant on its refinement step. Future improvements could aim to refine NITO’s
training procedures and architecture to reduce the reliance on direct optimization.
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Table 6: Quantiative Evaluation on out-of-distribution 64x64 datasets. w/ G: using a classifier and/or
regression guidance. FS-SIMP: Few-Steps of optimization. CE: Compliance Error. VFE: Volume Fraction
Error.

Model Train Res. FS-SIMP CE % Mean CE % Median VFE % Mean VFE % Median
out-of-distro

NeuralField 64 - 73.24 12.81 8.12 6.87
TopoDiff 64 - 8.57 1.14 1.14 0.97
TopoDiff w/ G 64 - 7.79 1.26 1.21 1.00
TopoDiff 64 5 6.20 1.07 0.93 0.55
TopoDiff w/ G 64 5 5.44 1.05 0.89 0.55
NITO (ours) 64 5 9.33 2.37 2.22 1.32
TopoDiff 64 10 2.91 0.71 0.64 0.33
TopoDiff w/ G 64 10 2.25 0.71 0.63 0.35
NITO (ours) 64 10 6.38 1.43 1.55 0.85

A.1 Out of Distribution Experiments
Something that should be looked at when it comes to these models is their performance generalizability
to problems that are very different from the distribution of data used for training. To do this we test
the performance of different models on an out-of-distribution test set for the 64x64 dataset. These results
are presented in Table 6 for TopoDiff and NITO. As it can be seen NITO’s performance has significantly
deteriorated on out-of-distribution data. This can be attributed to two matters. The first and most impactful
is the nature of these models. TopoDiff generalizes better when it comes to these out-of-distribution tests given
the fact that the model is generative in nature. This allows TopoDiff to handle out-of-distribution conditions
better. To understand this we can look at generative models as a sort of retrieval approach, which allows the
models to generate detailed and high-quality samples by finding the most similar topologies from the training
data even when faced with very different inputs. On the other hand, NITO is a deterministic model that
learns to map specific boundary conditions to near-optimal density fields. This makes it rather challenging
for models like NITO when it comes to generating topologies for unseen and very different inputs since the
mapping is a deterministic one. This highlights the importance of future work focusing on transforming
our framework to be generative, which should be possible since many works have shown implicit neural
approaches can be made generative (You et al., 2023). The second potential reason contributing to TopoDiff’s
better performance on out-of-distribution samples is the use of physics-based fields for conditioning. This is
because mapping stress fields to topologies makes it easier to handle very different boundary conditions since
the stress fields may still be similar to samples in the dataset. However, this creates the kind of limitation
that we discussed before, as such it is better to focus on making more robust generative schemes rather than
using physical fields.
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Figure 5: Visual comparison of samples generated for the out-of-distribution test. Each row is labeled.
Ground truth samples are SIMP-optimized samples.
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A.2 Further Examination Of Results & Outperforming The Optimizer

Figure 6: Distributions of volume fraction error (Bottom) and Compliance Error(Top). We see that NITO
is capable of out-performing SIMP 19% of the time as highlighted by yellow in the negative compliance
errors (meaning better than SIMP) on the top histogram. This data is for the 64x64 test set.

In Figure 6, we show the distribution of compliance error and volume fraction error for NITO on the 64x64
dataset. We see that the majority of volume fraction error is below 1% and a small number of high error
samples skew the average. Similarly, we see that the majority of the compliance errors for NITO are below
1% as well. Most notably, we observe that on 19.2% of the samples in the test set NITO actually outperforms
SIMP as indicated by the negative compliance errors visible on the histogram. This is a rather interesting
outcome where NITO is capable of doing better than the optimizer that the training data came from. In
Figure 24, we visualize a few instances of this phenomenon. It can be seen that in some problems NITO
actually comes up with a different solution which as it happens out-performs SIMP, while in other instances
the topologies are very similar and NITO has adjusted some of the finer details and redistributed the material
differently to achieve better performance.
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Figure 7: Example topologies where NITO outperforms SIMP. It can be seen that in some instances NITO
finds very different topologies that outperform SIMP and in some instances, NITO has removed some details
and redistributed the material in a way that has improved performance.
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B Visualizations
Here we will provide a set of different visualizations for each test case.

B.1 Direct Optimization Visualization
In this section we provide some visualizations, demonstrating the effect of direct optimization on neural
field-generated density fields. The main objective here is to showcase the importance and effectiveness of a
few steps of direct optimization on the generated samples which completes the NITO framework. As can be
seen in Figures 8 and 9, neural fields tend to have some smoothing and averaging in areas of high detail in the
topology, which makes the baseline performance of neural fields worse. With only a small number of direct
optimization iterations, however, we see that NITO can resolve the complex details effectively, showcasing
why direct optimization is a crucial aspect of our framework.

In contrast, when we look at the effect of direct optimization on TopoDiff (Figures 10 and 11) we see that in
cases where the details predicted by TopoDiff are accurate, the optimizer does not provide much benefit, and
when TopoDiff has not generated the correct details the generated topology is far from optimal which means
that few steps of optimization do not provide significant benefits.
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Figure 8: Visualization of the effect of direct optimization on samples generated by neural fields. The
first column of each set of images shows the ground truth, the next column shows the raw predictions from
neural fields, and the two columns that follow show the effects of 5 and 10 steps of direct optimization on the
samples respectively. These samples are from the 64x64 test set.
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Figure 9: Visualization of the effect of direct optimization on samples generated by neural fields. The
first column of each set of images shows the ground truth, the next column shows the raw predictions from
neural fields, and the two columns that follow show the effects of 5 and 10 steps of direct optimization on the
samples respectively. These samples are from the 256x256 test set.
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Figure 10: Visualization of the effect of direct optimization on samples generated by TopoDiff. The first
column of each set of images shows the ground truth, the next column shows the samples generated by
TopoDiff, and the two columns that follow show the effects of 5 and 10 steps of direct optimization on the
samples respectively. These samples are from the 64x64 test set.
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Figure 11: Visualization of the effect of direct optimization on samples generated by TopoDiff. The first
column of each set of images shows the ground truth, the next column shows the samples generated by
TopoDiff, and the two columns that follow show the effects of 5 and 10 steps of direct optimization on the
samples respectively. These samples are from the 256x256 test set.
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B.2 Generated Samples Visualizations
In this section, we provide visualizations of samples predicted by different configurations of our model on
different problems.

Figure 12: Ground truth images from the 64x64 SIMP datasets. Images that follow visualize NITO
generated samples for the same problems.
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Figure 13: NITO generated topologies using a model trained on 64x64. Tested on the 64x64 data.
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Figure 14: NITO generated topologies using a model trained on 256x256. Tested on the 64x64 data.
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Figure 15: NITO generated topologies using a model trained on both 64x64 and 256x256. Tested on the
64x64 data.
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Figure 16: Ground truth images from the 256x256 SIMP datasets. Images that follow visualize NITO
generated samples for the same problems.
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Figure 17: NITO generated topologies using a model trained on 256x256. Tested on the 256x256 data.
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Figure 18: NITO generated topologies using a model trained on 64x64. Tested on the 256x256 data.
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Figure 19: NITO generated topologies using a model trained on both 64x64 and 256x256. Tested on the
256x256 data.
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C Dataset & Optimizer Details
Our experiments use a dataset of SIMP-optimized topologies in a unit square domain with a size of 64x64 and
256x256 and rectangular domains with different aspect rations including 64x48, 64x32, and 64x16. For each
topology in the dataset information about the loading condition, boundary condition, and volume fraction,
are included. Furthermore, we include the stress and strain energy fields. Our dataset is similar to the
one proposed by Mazé & Ahmed (2023), however, we noted that the dataset used in prior works has been
generated using an older version of SIMP, namely ToPy (Hunter et al., 2017).

This solver, although a robust implementation of SIMP, does not implement the latest improvements to the
SIMP algorithm and uses a slower solver, which causes two issues. Firstly, the topologies that are used in the
dataset proposed by Mazé & Ahmed (2023) are lower-performing topologies in comparison to what the latest
solvers produce, hence possibly overestimating the performance of these models in some cases. Secondly, the
SIMP method itself that prior studies compared their inference time with did not use the fastest solvers,
making those comparisons also somewhat inaccurate. To ensure that this is not the case in our studies we
implement the SIMP optimizer from scratch in Python (The code for which will be publicly available), which
performs the optimization using the latest and fastest implementation of the SIMP algorithm as far as the
authors are aware (Wang et al., 2021a).

As such we re-create the 64x64 dataset proposed by Mazé & Ahmed (2023) using our solvers and find that
the resulting topologies using our method are significantly better performing in comparison to the prior
datasets used by many other works of research (Giannone et al., 2023; Giannone & Ahmed, 2023; Mazé &
Ahmed, 2023; Nie et al., 2021b). Given this, it is safe to assume that the performance of the models in prior
studies that compare to the inferior dataset may have been overestimated while also training models on
lower-performance samoples. However, to allow for a fair comparison we retrain the best-performing model
in the literature TopoDiff (Mazé & Ahmed, 2023) on our new dataset and rerun their experiments on this
new dataset. However, we report the performance of other models as the original authors measured them
overestimated or otherwise.

The 64x64 dataset includes 48,000 training samples and 1,000 test samples which we use for testing our
models. The 256x256 dataset includes 60,000 training samples and 1,800 samples for testing and the other
three domains have 29,000 samples each with 1,000 test samples each. The figures that follow visualize some
of the training samples for each dataset. In the following figures, we include figures showing samples from all
datasets.
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Figure 20: Random samples from the 64x64 dataset. Green arrows show the locations and directions of
the loads applied in each problem. Blue triangles indicate points that are constrained in x and red triangles
indicate points that are constrained in y.
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Figure 21: Random samples from the 256x256 dataset. Green arrows show the locations and directions of
the loads applied in each problem. Blue triangles indicate points that are constrained in x and red triangles
indicate points that are constrained in y.
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Figure 22: Random samples from the 64x48 dataset. Green arrows show the locations and directions of
the loads applied in each problem. Blue triangles indicate points that are constrained in x and red triangles
indicate points that are constrained in y.
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Figure 23: Random samples from the 64x32 dataset. Green arrows show the locations and directions of
the loads applied in each problem. Blue triangles indicate points that are constrained in x and red triangles
indicate points that are constrained in y.

Figure 24: Random samples from the 64x16 dataset. Green arrows show the locations and directions of
the loads applied in each problem. Blue triangles indicate points that are constrained in x and red triangles
indicate points that are constrained in y.
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